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Frequency analysis of Dutch vowels from 50 male speakers 

L. C. W. Pols, H. R. C. Tromp,* and R. Plomp 
Institute for Perception, TNO, Soesterberg, The Netherlands 
(Received 29 February 1972; revised 11 September 1972) 

The frequencies and levels of the first three formants of 12 Dutch vowels were measured. The vowels were 
spoken by 50 male speakers in an h (vowel) t context. Statistical analysis of these formant variables con- 
firreed that F• and F a are the most appropriate two distinctive parameters for describing the spectral dif- 
ferences among the vowel sounds. Maximum likelihood regions were computed and used to classify the 
vowels, and a score of 71.3% correct classification in the 1ogF• 4ogF a plane was obtained (87.3% if three 
related pairs are grouped together). These scores rose to 78.3% and 95.2%, respectively, when a simple 
speaker-dependent correction was applied. The scores are comparable with those obtained in an earlier study 
in which a principal-components analysis was applied to the 1/3-oct filter levels of the same vowel sounds 
[Klein, Plomp, and Pols, J. Acoust. Soc. Amer. 48, 999-1009 (1970)]. From the latter data a two-dhnen- 
sional representation ("optimal plane") equivalent to the 1ogFj 4ogFa plane could be derived. The relative 
merits of the two approaches are discussed. For automatic speech recognition in particular, the dimensional 
analysis is much more attractive than the formant analysis because it is much simpler and can be carried out 
in real time. 

Subject Classification: 9.3, 9.7. 

INTRODUCTION 

In a previous paper by Klein, Plomp, and Pols, • we 
presented a dimensional analysis of the frequency 
spectra of 12 Dutch vowels (!ul, lol, I•l, 1o{, lal, 
I•l, le!, Ix{, lil, ly[, I•el, and l•l), each pronounced 
by 50 male speakers. Diphthongs were excluded. A 
principal-components analysis of the sound-pressure 
levels (SPL) in 18 «-oct filter bands showed that the 
spectral differences among the 12 vowels could be 
represented satisfactorily in a four-dimensional factor 
space. The configuration of the average vowels in this 
factor space appeared to be highly correlated with the 
configuration of the average vowels in the F•--F2 
.formant plane and with their configuration in a four- 
dimensional perceptual space derived from confusion 
data. 

The «-oct frequency analysis, applied in this earlier 
investigation, is not suited for accurate determination 
of the formant characteristics of individual speakers. 
Since we wanted to'study the relative merits of the 
principal-components analysis and the more traditional 
formant frequency and level analysis more carefully, 
the formant data for each speaker were obtained with a 
narrow-band frequency analysis. We used the same 
50X12 vowel sounds as in the previous, principal- 
components study. This paper presents the formant 
data and compares them with the principal-compo- 
nents representation. This comparison is presented 
in statistical measures such as the percentage of 
correct identifications obtained by applying an algo- 
rithm for recognizing the vowels based on a computa- 
tion of the maximum-likelihood regions in the multi- 
dimensional representation. 

I. FORMANT ANALYSIS 

A. Method 

The determination of the frequencies and levels of 
the first three formants of each of the 50X12 vowel 

segments consisted of the following successive steps: 

(1) The word of the type h(vowel)t, recorded in a 
nonreverberant room (see previous paper•), was sampled 
via an 8-bit analog-to-digital converter at a rate of 
20 kHz. The 8-bit samples were stored in the memory 
of a digital computer (DEC PDP-7, 8K memory). 

(2) A number of these samples, comprising 10 
periods of the initial, constant vowel waveform, were 
selected out and then generated, as a continuous 
periodic signal, with a digital-to-analog converter. 

(3) This analog signal was fed to a wave analyzer 
(Hewlett-Packard, Model 302A) and a detailed fre- 
quency analysis was made over the range from 50 up to 
5000 Hz, with a bandwidth of 7 Hz. The frequency was 
varied automatically (Hewlett-Packard Sweep Drive, 
model 297A) with a speed of 1000 Hz/min. The spec- 
trum was recorded with the aid of a logarithmic con- 
verter, to register amplitude in decibels (Hewlett- 
Packard, Moseley Division, model 7560AM) and an 
X--Y recorder (Hewlett-Packard, Moseley Division, 
model 7035B). 

(4) From this recording, the frequencies and levels 
of the first three formants were determined by drawing 
the envelope of the spectrum by eye. Figure 1 gives an 
example of such a recording. In addition to the formants 
F•, F2, and Fa, the fundamental frequency F0 of about 
150 Hz and a large series of low-level harmonics of a 
fundamental of about 15 Hz can be seen. The latter 
series stems from the fact that the waveforms of the 

ten periods of the vowel segment are generally not com- 
pletely identical. For most vowel segments, there were 
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Fro. 1. Example of a recording representing the result of a narrow-band frequency analysis of the /ce/ of one of the 50 speakers. 
The spectral envelope of the formant regions is fitted by eye. The insert shows the repeated waveform of ten periods as used for the 
analysis, with the arrow indicating where the end and the beginning of the segment were connected. 

no difficulties in locating in an objective way the for- 
mants in the frequency spectrum. We feel, however, 
that in a number of cases our a priori knowledge of 
where the formant should be located played a significant 
role in our decision. Also Fant = (pp. 66-67) mentions 
this problem. 

B. Results 

Table I and Fig. 2 present the means and standard 
deviations of the formant frequency and level data, 
pooled over the 50 speakers. The formant levels are 
given in decibels below the overall SPL of that particular 
vowel segment. For certain corresponding vowels the 
average values can be compared with data of Peterson 
and Barney a (33 male speakers) and with data of Fant • 

(seven male speakers). There is a satisfactory agree- 
ment in formant frequencies but not in the formant 
levels. Recently, Koopmans 4 determined F• and F= for 
Dutch vowels spoken by 10 males and 10 females in 
one-syllable words, using a method very different from 
ours: She measured period durations in the vowel 
waveforms. Despite this difference, her F• values, 
averaged over ten male speakers, are in excellent 
agreement with ours; most F= values are, however, 
about 10% higher than in Table I. 

C. Information Content of the Formant Variables 

The main purpose of deriving formant frequencies 
and formant levels is to characterize the various vowels 

TanzE I. Average frequencies and levels, and their standard deviations, of the first three formants of 12 Dutch vowels pronounced 
by 50 male speakers. The formant levels are given in decibels below overall SPL. 

Formant frequency and standard Formant level and standard 
Dutch IPA deviation in Hz deviation in dB 
vowel symbol F• •m Fz •r•z Fa ara L• trL• Lz •rL• La •rLa 

1 hoet /u/ 339 46 810 85 2323 211 5.2 2.4 18.2 4.5 41.2 5.1 
2 hoot /o/ 487 42 911 90 2481 224 5.7 3.1 13.1 3.7 35.6 4.4 
3 hot /o/ 523 49 866 72 2692 189 6.1 2.5 13.9 4.6 34.3 5.0 
4 hat /a/ 679 80 1051 89 2619 172 8.4 3.0 12.0 3.4 31.2 4.5 
5 haat /a/ 795 95 1301 113 2565 199 8.2 2.3 13.8 3.4 28.7 4.9 
6 her /e/ 583 67 1725 164 2471 213 7.2 3.2 18.7 5.2 25.4 5.8 
7 heet /e/ 407 52 2017 161 2553 171 5.0 2.4 21.0 5.8 23.3 5.3 
8 hit /I/ 388 53 2003 180 2571 189 5.0 2.1 22.3 5.5 24.5 4.7 
9 halt /i/ 294 38 2208 169 2766 203 5.5 3.4 25.0 6.2 27.9 5.9 

10 huut /y/ 305 42 1730 152 2208 226 5.1 3.1 23.2 6.8 28.0 7.0 
11 hut /ce/ 438 48 1498 159 2354 201 4.8 2.4 20.5 5.3 28.2 5.8 
12 heut /4/ 443 46 1497 115 2260 140 5.1 2.5 20.7 4.9 27.9 5.3 
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FZG. 2. Average frequencies and levels below overall SPL of 
the first three formants of 12 Dutch vowels pronounced by 50 
male speakers. The vertical dashes indicate the standard devia- 
tions (in a few cases these dashes are given only in one direction 
to avoid overlapping). 

by parameters (acoustic features) which take specific 
values for each vowel. The more different, in terms of 
standard deviations, the values of a particular variable 
(e.g., F•) for two vowels are, the more appropriate this 
variable is to discriminate between these two vowels. 

Since the values for one vowel vary from subject to 
subject, the differences between vowels should be large 
compared to this variability within one vowel. Figure 2 
shows that no single parameter has a different value 
for all vowels. This implies that the vowels cannot be 
described uniquely by only one variable (out of the 
group F•, F2, F3, L•, L2, L•). A combination of at least 
two is necessary. A visual inspection of the graphs 
makes it clear that L• and Fa are not very appropriate 
as vowel descriptors because the variation of their 
average values, expressed in terms of their standard 
deviations, is small. Apparently, F• and F2 are better 
because their standard deviations are much smaller 
than of L2 and 

This analysis of the formant data in search of the 
most characteristic variables can be done in a more 

quantitative way by computing for each variable how 
the total variance in the 50X12 individual data points 
is composed. Part of the total variance is the variance 
of the 12 average vowel points; this represents the. 
difference between vowels. The remaining variance 
represents the spread of the individual data points 
around the 12 average values. In order to learn whether 
there is some systematic difference between speakers 
this remaining variance can be split up into two parts: 
the variance of the 50 average data points, representing 
the difference between speakers, and the residual 

TABLE II. Percentages of the total variance of each formant 
variable due to the different sources. 

Source of 

variance 1ogFt 1ogF• 1ogFa L, L• La 

Vowels 85.8 93.6 42.6 17.0 40.3 46.5 
Speakers 4.9 2.3 23.2 25.8 26.3 28.0 
Residue 9.3 4.1 34.2 57.2 33.4 25.5 

variance, representing the random spread of the indi- 
vidual points. 

Table II gives the result of such a computation. The 
variances due to the different sources are expressed in 
percent of the total variance. In this calculation, logF•, 
1ogF2, and logFa rather than F1, F•, and Fa are used, 
since we prefer to use a logarithmic frequency scale, 
more in line with the hearing process than a linear 
frequency scale. (Unless otherwise stated, this will be 
the case for the rest of the article.) Table II shows that, 
of the six variables, 1ogF• and logF• have the largest 
part of their variance "explained" by the vowels, the 
smallest part explained by the speakers, and also the 
smallest residuals. This confirms quantitatively the 
tradition of considering F• and F• as the most charac- 
teristic two acoustic features of vowels. The other four 

variables are much more speaker-dependent and their 
residual variances are also nmch larger than that of 
logF1 and 1ogF•. Without any correction for the differ- 
ences between speakers, the rank order of specificity of 
the six formant variables is logF•, logFh La, 1ogFa, L•, 
L•; with speaker-dependent correction, their rank order 
is logFe, logF•, La, L•, 1ogF•, L•. 

It is clear from Fig. 2 that the six formant variables 
are not independent. It appears that there is a good 
correlation between 1ogF• and L2, and between 1ogF• 
and La. This correlation roughly follows Fant's • so-called 
low-pass filter rule (12 dB/oct). The upper-right part 
of Table III presents the various correlation coefficients 
in the average vowel data (each computation based on 
12 pairs of numbers). The lower-left part of the table 
gives the correlation coefficients in the individual data 
(each computation based on 50)< 12 pairs of numbers). 
In addition to the correlation between logF• and L2, 
and logFe and La we see that also logF• and Lh 1ogF2 

TABLE III. Correlation matrix of the six formant variables. 
The upper-right part gives the correlation coefficients of the 
average data, the lower-left part the correlation coefficients of 
the individual data. 

1ogF, logF• 1ogF• L, L2 La 

1ogFt 1.000 --0.350 0.275 0.840 --0.g06 0.032 
1ogFa --0.302 1.000 0.063 --0.278 0.796 --0.927 
1ogFa 0.195 0.120 1.000 0.392 --0.241 --0.161 
L• 0.370 -0.090 0.116 1.000 --0.692 0.057 
L• --0.533 0.512 --0.044 -0.042 1.000 --0.547 
L• --0.021 -0.605 0.017 0.085 0.127 1.000 
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and L•, and L• and L• are significantly correlated. L• 
and L• are only correlated in the average data. 

T•tBLE IV. Identification scores of the 50)< 12 individual vowel 
sounds as a function of the number of formant variables taken 
into account. 

D. Identification Score 

We have concluded that the formant frequencies F1 
and F= are the most characteristic acoustic features of 
vowels. In Fig. 3, 1ogF= vs logF• is plotted for all 50X 12 
spoken vowels. The better the 12 vowels are repre- 
sented by separate clusters of 50 individual data points, 
the better each vowel is characterized by specific values 
of 1ogF1 and logF=. We should like to have a quantita- 
tive measure of the degree to which the 12 clusters do 
overlap each other. 

In the previous paper • such a quantitative measure 
was developed for the data resulting from a principal- 
components analysis of the vowel spectra. Described 
in simple terms, this procedure goes as follows: As- 
suming the points in each vowel cluster are distributed 
normally along the logF• and logF2 scales, ellipses of 

33 

Variable 

Noncentered data Centered data 

Non- Non- 

grouped Grouped gr•o•d Grouped (%) (%) (%) 

1ogF2 44.2 59.7 52.0 69.7 
+1ogF, 71.3 87.3 78.3 95.2 
q-logFa 75.3 89.3 80.5 95.5 
q-La 78.0 90.5 82.8 96.0 
+L2 80.0 91.5 85.0 96.7 
+L• 79.5 91.8 85.2 97.0 

equal probability (e.g., la, 2a, a=standard deviation) 
around each average vowel point (+ symbols in Fig. 3) 
can be calculated. The points where the ellipses of 
equal probability of each pair of two neighboring 
clusters cross each other define likelihood regions for 
the various vowels. Each individual vowel point is 

25 200 250 300 • 350 400 500 600 700 800 900 1000Hz 
I % , ' , ', ) , I , ' , ', ,' ,• I 

2.3 2./. 2.5 2.6 2.7 2.8 2.9 3.0 

Io9 F I 
Fro. 3. LogF• vs logF, of the 50X12 individual vowel sounds. The q- symbols indicate the average values of the 12 vowels. The 

curves represent the boundaries of the maximum-likelihood regions of the grouped data (three pairs of vowels grouped together). In 
this graph, no speaker-dependent correction is applied. 
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considered to be correctly situated if it is located in the 
likelihood region of that particular vowel. In this way 
an indentification score can be determined representing 
the percentage of points, added over all vowels, situated 
in the correct likelihood regions. 

In Fig. 3 the boundaries of nine maximum-likelihood 
regions are drawn; the regions for the vowel pairs 
/o/-/o/,/t/-/e/, and/oe/-/•/are combined. Figure 2 
showed that the vowels within these three pairs have 
very similar average formant frequencies and levels. 
The main difference among them is duration. The 
identification score for these so-called grouped data is 
87.3%. If all 12 vowels are considered separately (non- 
grouped data), this score drops to 71.3%. 

The identification score can be used as a measure to 

investigate whether clustering is improved if more than 
two variables are taken into account. For example, La 
might be considered as a third dimension, since Table II 
indicates that, next to logFx and logF2, La is the most 
characteristic parameter of the vowels. Computation 
has shown, however, that the identification score is im- 
proved more by adding logFa than La as a third dimen- 
sion. This might be due to the fact that Ls is highly 
correlated with 1ogF2 (see Table III), so it does not 
provide much extra information, whereas logFs is rather 
independent of logFt and logF, 

In a similar way, a fourth dimension can be added, 
and so on. Table IV gives the identification scores for 
1-6 dimensions if, step by step, that formant variable 
is added which contributes most to the identification 
score. The scores are computed both for the nongrouped 
and the grouped data. 

The whole computation was repeated after applying 
a speaker normalization. As Table II showed, for each 
of the six formant variables, a part of the total variance 
was due to differences among speakers. One possible 
way of eliminating this source is by subtracting, for 
each speaker individually, his average value on each 
of the six variables. The results of the identification- 
score calculation for these centered data are also given 
in Table IV. We see that the identification scores for 
the centered data are consistently higher than for the 
noncentered data. In both cases the scores computed 
using only 1ogF• and logF• are favorable compared with 
what is obtained when all six variables are used. This 
demonstrates again that most of the vowel information 
is covered by these formant frequencies. We should 
keep in mind, however, that the formants were deter- 
mined by drawing the best-fitting envelopes of the 
frequency spectra. Probably, the identification scores 
would have been significantly lower if a more objective 
decision procedure were used, such as the recently 
published technique of Schafer and Rabiner. • 

II. FORMANT ANALYSIS VERSUS PRINCIPAL- 
COMPONENTS ANALYSIS 

As was mentioned in the Introduction, we applied 
the formant analysis to the same vowel segments which 

TABLE V. Identification scores of the 50X 12 individual vowel 
sounds as a function of the number of factors taken into account. 
The factors were derived from the «-oct frequency spectra by 
applying a principal-components analysis. 2' stands for the 
maximally discriminating plane. 

Noncentered data Centered data 

Non- Non- 

Number of grouped Grouped grouDed G ed factors (%) (%) (%) r• 
I 36.8 51.0 44.3 60.2 
2 62.8 78.2 70.0 88.0 
2' 74.5 92.2 
3 73.0. 86.7 84.0 97.2 
4 75.0 88.7 84.7 97.5 
5 76.0 89.3 84.0 97.2 
6 80.7 93.2 85.8 97.7 

had previously been used in a principal-components 
analysis2 Before comparing the results of these two 
different approaches, the principal-components tech- 
nique will be described and the main results given. 

A. Method and Results of the Principal- 
Components Analysis 

The method consisted of the following successive 
steps. 

(1) The frequency spectra of 100-msec vowel seg- 
ments were measured with a set of one-third octave 

bandpass filters ranging from 100 to 10 000 Hz. The 
outputs of the filters with center frequencies of 100, 125, 
and 160 Hz, as well as the outputs of the filters with 
center frequencies of 200 and 250 Hz were combined 
(energies were added), both in order to reduce the in- 
fluence of differences in voice pitch and so that the 
bandwidths used would be comparable with the ear's 
critical bandwidth. 

(2) In order to normalize the differences in the over- 
all SPL of the vowels the output levels (in decibels) of 
the resulting 18 frequency bands were subtracted from 
the overall SPL of each individual vowel segment. 
The resulting numbers were considered as the coordinate 
values of 50X 12 points in an 18-dimensional Euclidean 
space. A principal-components analysis was carried out 
on these data. As a result, new directions (factors) were 
obtained. The first "explains" most of the total variance 
of the points, the second most of the variance un- 
explained by the first one, etc. A speaker-dependent 
correction was also applied, it was identical to the one 
used for the formant data (Sec. I-D). This means that 
a translation of the 12 vowel points of each speaker was 
performed in such a way that the 50 centers of gravity 
(representing average vowel spectra) for the various 
speakers coincided. Several other speaker normaliza- 
tions 1.6-9 were tried but none of them were more effec- 
tive than the very simple translation procedure which 
we used here. 

(3) Identification scores were computed for both the 
noncentered and the centered data, taking into account 
1-6 factors, respectively. 
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The identification scores found by this procedure are 
presented in Table V. The scores are also given for the 
grouped data (the three pairs of very similar vowels 
/3/-/o/, /•/-/e/, and /•/-/4•/ are combined). The 
row marked by 2' gives the identification scores, for 
the centered data, in that plane for which these scores 
are maximal. This maximally discriminating plane was 
found by rotating the I-II factor plane in small steps 
in the three-dimensional factor space, computing in 
each case the identification score for the data points 
projected on that plane. If a step resulted in an increased 
score, a subsequent step in the same direction was made, 
if not, then another rotation axis was tried. This itera- 
tive procedure produced the plane for which the vowels 
are maximally discriminated. Since the scores obtained 
are significantly higher than for the original plane (see 
Table V), we must conclude that principal-components 
analysis, although attractive and efficient for many 
applications, is not the most optimal technique for the 
reduction of this sort of data in identification experi- 
ments. For a further discussion of this question see 
Appendix A. 

IogF2*logF • *1ogF] o L] * L• * L• 

, ; ..... •- _ .,._• .,• --•'•'•"•--:• grouped 
• 80 ed 

$ •o 

1 2 3 4 5 6 
numar • f•clors [o 

Fzo. 5. • Fig. 4, but for the centered data (speaker-dependent 
correction). The •uare symbols represent the scores for the 
m•imally •sc•iminatlng plane. 

B. Comparison of the Two Approaches 

The information content of the formant variables and 

of the «-oct levels can be compared using identification 
score as a criterion. For this, the data of Tables IV and 
V are plotted in Figs. 4 and 5 for the noncentered and 
centered data, respectively. We see that, for the non- 
centered data, the formant variable analysis gives 
(for up to five dimensions) somewhat higher scores 
than the principal-components analysis. For the 
centered data, however, three factors give a better 
score than the three formant frequencies do. In this 
case, the scores with the maximally discriminating 
plane are only slightly less than with the 1ogF•--logF2 
plane. Generally, we may conclude that a description 
of vowel sounds in terms of the formant variables and 

a description in which a principal-components analysis 
of the whole frequency spectrum is carried out, result 
in quite comparable identification scores. 

For an evaJuation of the principal-components ap- 
proach it is also of interest to compare the configuration 
of vowel points in the 1ogFx--logF2 plane with their 
configuration in the plane that gives maximal discrimi- 
nation, based on factor analysis of the «-oct SPLs. 
Consider first the data averaged over the 50 speakers. 
The two centered configurations of 12 points each can 
be matched only if first the total variance of the two 
configurations is equalized. Then the maximally dis- 
criminating plane is rotated over such an angle that it 
coincides as well as possible with the 1ogF•--logF2 
plane. As a criterion for best coincidence, the method 
of least squares was used. In this case we minimized 
the sum of the squares of the distances between corre- 
sponding points in the two superimposed planes. The 
result of this matching procedure is presented in Fig. 6. 

3.1 a 

3.0 

2.9 

2,/- 2.5 2.6 22 2.8 2.9 

log F 1 

FIG. 6. Result of matching the configuration of the average 
centered vowel points in the maximally discriminating plane (A) 
to the coufiguration of average centered points in the 1ogFl-logF• 
plane (O). If to the coordinate values along dimensions I and II 
are added 2.6.52 and 3.141, respectively (being the overall averages 
of logF• and 1ogF2), these axes again represent 1ogFz and logFe 
(outer scales). 
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FIG. 7. Direction cosines between these axes in the maximally 
discriminating plane, related to best match with the logF•-logF• 
plane, and the original 18 dimensions representing the levels 
below overall SPL in 18 «-oct bands. 

There is an excellent agreement between the corre- 
sponding points indicating that, for the average vowels, 
the maximally discriminating plane is approximately 
equivalent to the 1ogF1--logF2 plane. This equivalence 
is illustrated by the very high correlations between the 
coordinate values (0.989 and 0.993 for the horizontal 
and vertical axes, respectively). The direction cosines 
(eigenvectors) between these axes and the original 18 
dimensions are given in Fig. 7. We can see that these 
eigenvectors are appropriate to extract information 
from the frequency spectra comparable with F• and F2: 
The eigenvectors I and II have their steepest slopes 
over the ranges 315-630 and 1000-2000 Hz, respec- 
tively, agreeing rather well with the ranges in which 
Ft and F• vary (see Fig. 2). A steep slope of the direc- 
tion-cosine curve at a certain frequency means that the 
filter band levels above and below that frequency are 
well distinguished. 

The direction cosines presented in Fig. 7 make it 
possible to derive directly from the «-oct frequency spec- 
trum a two-dimensional representation (called the 
optimal plane) in which the coordinates correlate highly 
with 1ogF• and 1ogF•. Since this relation was computed 
for average vowel data, we should like to know also 
how well this derivation holds for the data points of 
each speaker individually. Therefore, the same eigen- 
vector base, which was found to be optimal for the 
average data, was also applied to all centered individual 
data, using the same scale factor. As a measure of 
correspondence we used, for each individual, the dis- 
ta•nce between corresponding vowel points if both planes 
(optimal plane and 1ogF•--logF2 plane) were super- 
imposed. Of these 600 distances 48% was smaller than 
0.06, and 91% smaller than 0.12 (see Fig. 3 for an 
interpretation of these numbers). Though these dis- 
tances are not large, they indicate that if we are only 
interested in F• and F2 it will be better to measure them 
directly instead of computing them from «-oct-level 
data. The clusters of the various vowels in the 1ogFt 
--1ogF• plane and in the optimal plane can be super- 

imposed very well, but this does not hold for the corre- 
sponding data points individually. 

III. DISCUSSION 

In the previous sections, we compared two apparently 
different approaches to analyzing the spectra of vowel 
sounds. The first consisted of a narrow-band frequency 
analysis followed by a determination of the frequencies 
and levels of the lower three peaks in the envelope of 
the frequency spectrum, the formants. Thus we used 
the most prominent acoustical features to characterize 
the various vowels. The second approach consisted of a 
«-oct frequency analysis followed by a principal-compo- 
nents analysis. In order to compare the two approaches, 
we computed likelihood regions for the various vowels 
and, on their basis, identification scores. Both methods 
resulted in rather similar scores, particularly if more 
than two dimensions were used (Figs. 4 and 5). As far 
as higher identification scores were found using the 
formant data, we should remember that lower values 
would have been obtained had a more objective tech- 
nique been used to determine the formant frequencies 
and formant levels. The three-dimensional data de- 

rived with principal-components analysis were used 
to find a maximally discriminating plane by optimizing 
the identification score. After an optimal rotation of 
this plane to the logF•--logF• plane (Fig. 6), the high 
correlation suggests that the two approaches are closely 
related. The optimal plane may be considered as an 
alternative for the formant description of the data 
having about the same "information content" in terms 
of recognition results. For the individual data points, 
however, the correlation between the optimal plane and 
1ogF•-logF2 plane is lower. This means that the posi- 
tion of an individual vowel point in the optimal plane 
cannot be considered as an accurate substitute for the 

formant frequencies. 
Having found this alternative for the formant de- 

scription of the data, we may consider the question if 
this or the formants themself might be preferred as a 
description of the spectra of vowel sounds. In our 
opinion, no general answer to this question can be 
given. Preference depends upon the goal one sets for 
studies of vowel sounds. At least four different interests 

can be distinguished. 

(1) If one is interested in the relation between vowel 
spectra and vowel production, one would like to de- 
scribe the vowel sounds in terms that are related to 

parameters of the vocal tract. Though it is reasonable 
to suppose that, just as the factor representation com- 
pared so well with the formant representation, a similar 
comparison of the factor representation with articula- 
tory features (like tongue height and tongue advance- 
ment) would be successful, •ø it is obvious that the for- 
mant description has advantages. The formant variables 
certainly give a more direct insight in the physical 
properties of the vocal tract than the factors do. 
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(2) If one is interested in the relation between vowel 
spectra and vowel perception, the situation is different. 
There is no a priori reason why, in this case, the spectral 
differences between vowels should be described by 
distinctive features related to their production. It was 
reported earlier •'ll that the vowel representation in 
terms of principal components derived from «-oct fre- 
quency analysis corresponds quite well with perceptual 
representations derived from confusion and scaling ex- 
periments. Generally, the spectral differences between 
complex tones of equal loudness and pitch are highly 
correlated with their perceptual differences, irrespec- 
tive of whether the spectra are characterized as formants 
or not? The presence of the formants in vowel spectra 
does not imply that they are perceived in a specific way 
by some sort of "formant extractors" in the auditory 
system. Whether this is the case or not has to be 
decided by psychoacoustical experiments. At the 
moment, no decision can be made. 

(3) In studying the dynamic structure of speech, the 
factor analysis approach has some clear advantages. 
The coordinate values along the axes in the reduced 
dimensional representation can be computed in a very 
short time. Thus it is easy to follow sound transitions 
rather precisely as changing trajectories in that space 
(for instance, every 10 or 15 msec a sample can be 
taken). Since the approach is not restricted to vowel 
sounds but can be applied to any sound, also complete 
words and sentences can be represented and studied 
in this way. 

(4) The advantage of dimensional analysis over 
formant analysis is most obvious in automatic speech 
recognition systems. As we have seen, both approaches 
give comparable identification scores for vowels. Since 
it is rather difficult to develop a fast algorithm to extract 
formant frequencies, • the alternative technique is very 
attractive, because it can be applied in real time and 
because it is both objective and simple. In this case as 
well, it is a great advantage that the approach is not 
restricted only to vowel sounds. The technique has 
been successfully used already by one of the authors 13 in 
on-line speech analysis and real-time word recognition. 

IV. CONCLUSIONS 

ß Statistical analysis of formant frequencies and 
formant levels of 12 Dutch vowels confirms that F• and 

F2 are the most appropriate two distinctive parameters 
for describing the spectral differences among the vowel 
sounds. 

ß By means of a principal-components analysis of 
«-oct power levels, identification scores are obtained 
which are comparable with scores based upon formant 
analysis. 

ß For the data averaged over the speakers, the 
optimal plane derived from the «-oct data is equivalent 
with the 1ogFx--logF• plane suggesting that the two 
approaches may be dosely related. 

ß Principal-components analysis is preferred above 
formant analysis in automatic speech recognition be- 
cause it is much faster and simpler and is also applicable 
to nonvowel sounds. 
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APPENDIX A: DATA REDUCTION TECHNIQUES 

For a multidimensional set of data, as we have with 
our 18-dimensional «-oct vowel spectra, there are 
various possible techniques to diminish the number of 
dimensions in order to reduce the amount of data. An 

important requirement is that as much of the original 
information as is possible should be preserved by this 
reduction. Some of the possible procedures are: 

(1) Analysis of variance. This ranking technique 
looks to the ratio (F ratio) between the within-class 
variance and the between-class variance per dimension. 
A large ratio for a certain dimension means that the 
variation between the different vowels is large relative 
to the variation within a vowel for different speakers. 
Then one can single out the dimensions with the 
highest F ratios. This dimension reduction (feature 
evaluation) is used by Pruzansky 14 and Das and Mohn ia 
in speaker identification and verification experiments. 
The main disadvantage of this technique is that the 
interactions among dimensions are neglected. 

(2) Principal-components analysis. This techniquO 6 
successively calculates new directions, being linear 
combinations of all original dimensions, which explain 
as much of the residual variance as is possible. Here, 
dependency between the original dimensions is taken 
into account. However, the variance between vowels 
is not optimized relative to the within-vowels variance. 
This may result in a subspace in which the variance is 
maximal, but in which identification is not optimal for 
that number of dimensions. 

(3) Discriminant analysis. This technique is a com- 
bination of (1) and (2); it maximizes the between-class 
differences relative to the within-class differences, in a 
reduced number of dimensions, being linear combina- 
tions of the original dimensions. The simple case of 
classifying two clusters of data is fundamental to this 
analysis. l• ltowever, in our data, we do not have two 
but 12 clusters, moreover with unequal within-class 
variances. Mohn Is describes a modified discriminant 

analysis which is applicable also to this type of data. 
For our data, the identification scores for the centered 
data in two, three, and four dimensions, computed from 
the modified discriminant analysis, are $9.3%, 93.0%, 
and 99.0%. These scores are in general somewhat higher 
than in Table V, despite the fact that for this discrimi- 
nant analysis the different within-class covadance 
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matrices had to be pooled to one average within-class 
covariance matrix. 

(4) Maximally discriminating plane. As discussed 
under (2), a principal-components analysis gives a sub- 
space with a maximal amount of explained variance 
but not necessarily with maximal identification. So, 
if one is primarily interested in a subspace which gives 
highest identification scores, then it is better to make 
this the prime criterion. As far as we know, no algorithm 
exists to find this space directly, so we have done it 
with an iterative procedure. Computational limitations 
did not make it possible for us to determine iteratively 
a more than two-dimensional maximally discriminating 
space in a more than three-dimensional subspace. So 
we started with the three-dimensional factor space and 
rotated the I-II factor plane in small steps in that 
space. After each small rotation the percentage correct 
score was determined for the data projected on this 
plane. If the correct score became larger, one more rota- 
tion step in the same direction was done, otherwise 
another direction was chosen. In this iterative way, the 
best plane within the three-dimensional factor space 
was found; it made angles of 32 ø and 12 ø with the I-II 
factor plane. We call this the maximally discriminating 
plane; the correct score in this plane for the centered 
data is 92.2%. This score is significantly higher than 
in the I-II factor plane (88.0%). 

Which type of data reduction technique one should 
prefer depends on the type of data, the computational 
limitations, and the final goal of the research project. 
If one has very many parameters, • the analysis of 
variance seems most appropriate. If one wants to use a 
general data reduction technique and is not primarily 
interested in optimal recognition results, then the 
principal-components analysis seems to be a good 
techniqueJ The discriminant analysis seems to give 
the best recognition results but is rather complicated 
and in many situations not directly applicable? The 
fourth iterative technique is very time consuming and 
limited in its use since no general algorithm has yet 
been developed. 

*Present address: Postal and Telecommunications Services, 
Leidschendam, The Netherlands. 

•W. Klein, R. Plomp, and L. C. W. Pals, "Vowel Spectra, 
Vowel Spaces, and Vowel Identification," J. Acoust. Sac. 
Am. 48, 999-1009 (1970). 

2G. Fant, "Acoustic Analysis and Synthesis of Speech with 
Applications to Swedish," Ericsson Tech. 1, 3-108 (1959). 

3G. E. Peterson and H. L. Barney, "Control Methods Used in a 
Study of the Vowels," J. Acoust. Sac. Am. 24, 175-184 
(1952). 

4F. J. Koopmans, "Vcrgelijkend lonetisch klinkeronderzoek," 
Inst. Phonetic Sci, U. Amsterdam Publ. No. 32 (1971). 

SR. W. Schafer and L. R. Rabiner, "System for Automatic 
Formant Analysis of Voiced Speech," J. Acoust. Sac. Am. 
47,634--648 (1970). 

6j. F. Boehm and R. D. Wright, "Speaker Normalization for 
Automatic Word Recognition," J. Acoust. Sac. Am. 
49, 133(A) (1971). 

7L. J. Gerstman, "Classification of Self-Normalized Vowels," 
IEEE Trans. Audio Electroacoust. AU-16, 78-80 (1968). 

aB. M. Lobanov, "Classification of Russian Vowels Spoken by 
Different Speakers," J. Acoust. Sac. Am. 49, 606-608(L) 
(1971). 

9G. Fant, "A Note on Vocal Tract Size Factors and 
Non-Uniform F-Pattern Scaling," STL-QPSR 4, 22-30 
(1966). 

løS. Singh and D. R. Woods, "Perceptual Structure of 12 
American English Vowels," J. Acoust. Sac. Am. 
49, 1861-1866 (1971). 

•L. C. W. Pals, L. J. Th. van der Kamp, and R. Plomp, 
"Perceptual and Physical Space of Vowel Sounds," J. 
Acoust. Sac. Am. 46, 458•467 (1969). 

t2R. Plomp, "Timbre as a Multidimensional Attribute of 
Complex Tones," in Frequency •4nalysis and Periodicity 
Detection in Hearing, edited by R. Plomp and G. F. 
Smoorenburg (A. W. Sijthoff, Leiden, The Netherlands, 
1970), pp. 397-411. 

3aL. C. W. Pals, "Real-Time Recognition of Spoken Words," 
IEEE Trans. Camput. C-20, 972-978 (1971). 

•4S. Pruzansky, "Talker-Recognition Procedure Based on 
Analysis of Variance," J. Acoust. Sac. Am. 36, 2041-2047 
(1964). 

t•S. K. Das and W. S. Mohn, "A Scheme for Speech Processing 
in Automatic Speaker Verification," IEEE Trans. Audio 
Electroacoust. AU-19, 32•,3 (1970). 

t6H. H. Harman, Modern Factor •4nalysis (U. of Chicago Press, 
Chicago, 1967). 

•R. B. Cattell, Ed., Handbook of Multivariate Experimental 
Psychology (Rand McNally, Chicago, 1966). 

taW. S. Mohn, "Statistical Feature Evaluation in Speaker 
Indentifiction," Ph.D. dissertation, North Carolina State U., 
Rayleigh, N. C. (1969). 

t9p. D. Bricker, R. Gnanadesikan, M. V. Mathews, S. 
Pruzansky, P. A. Tukey, K. W. Wachter, and J. L. Warner, 
"Statistical Techniques for Talker Identification," Bell Syst. 
Tech. J. $0, 1427-1454 (1971). 

The Journal of the Acoustical Society of America 1101 


