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Abstract

PID is the most popular controller in the industry. PID controllers are linear, and thus
have fundamental limitations, such that certain performance criteria cannot be achieved. To
overcome these limitations, nonlinear reset control can be used. Reset control can achieve
less overshoot and a faster response time than linear controllers. However, the resetting
mechanism has a jump function which causes jumps in the control input, which can result in
limit cycles.

Linear filters and controllers are designed in the industry using loop shaping, which is done
in the frequency domain. In this thesis it is investigated how to analyze reset systems in the
frequency domain. A reset system is nonlinear, so transfer functions needs to be approximated
by describing functions. The sinusoidal input describing function considers only the first
harmonic of the output and therefore does not capture all the dynamics of the element.

The effects of the higher order harmonics are important in precision systems, since unwanted
dynamics should not be excited nor should performance be affected. In this thesis, the higher
order sinusoidal input describing functions (HOSIDF) are derived analytically. The HOSIDF
shows the magnitude and phase response per harmonic, such that stability and performance
analysis can be improved.

Because the HOSIDF shows multiple responses, it is not trivial how to do loop shaping. The
information from the HOSIDF is combined, creating a combined magnitude and combined
phase response. It is seen that the combined magnitude looks promising, but the combined
phase has jumps. It is concluded that the combined magnitude and combined phase are not
mature enough to rely on during loop shaping and further work in this direction is required.
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Chapter 1

Introduction

PID controllers are one of the most used controllers in the industry [4]. Their structure is
simple, they are easy to implement and easy to tune. Because they are linear controllers,
they have fundamental limitations. When designing high precision mechatronic systems,
performance is often limited because of these limitations.

These limitations could be avoided by introducing more advanced controllers. However, in-
troducing other types of control is hard to push to the industry, because often they are too
complex, require a lot of computational power or require a good model of the plant. Industry
wants better control, but at the same time wants the simplicity of PID control. It is impossi-
ble to improve PID control beyond its linear limitations, and hence non linear behavior needs
to be implemented.

PID control consist of three gains; the proportional gain (P), the integrator gain (I) and
the derivative gain (D). Non linear control dynamics can be implement for all three terms.
The P term of PID can be improved by introducing e.q. variable gain methods, as has been
investigated by [5]. Variable gain considers only the P action in PID, which has no influence
on the phase of the system. The D term of PID creates phase lead, but also introduces
unwanted gain in the system. The D term can be improved by split path non linear (SPAN)
filters, as seen in [6]. In [6], phase lead is created without increasing the gain. The SPAN filter
however does not fit easily in the PID framework, because it depends on the input amplitude
as well, making frequency analysis not sufficient anymore. The I term of PID creates high
gain at low frequencies, but introduces unwanted phase lag. Reset control can improve the I
term, by reducing its phase lag. Reset control is easily implemented in the PID framework,
because only the integrator element is replaced. Because of its easy implementation, reset
control is studied in this thesis.

A reset system contains a Clegg integrator instead of a linear integrator. The Clegg integrator
was introduced in the 1950s by J.C. Clegg [7]. This integrator can reset its state and thus has
nonlinear behavior. The Clegg integrator has only approximately -38◦ phase lag but similar
gain behavior compared to a linear integrator. It is this property that is interesting, because
it breaks Bode’s phase gain relation [8]. The phase lead could reduce overshoot and improve
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2 Introduction

settling time. Qualitative design of reset control was introduced in the 1970s, where Horowitz
did pioneering research about the Clegg integrator used in control system design [9].

Linear controllers and filters are designed in the frequency domain using loop shaping. Loop
shaping is only accurate for linear systems, because the exact frequency response of these
systems are known. To do loop shaping with reset systems, their frequency response needs to
be approximated. In current literature [10, 11, 12], first order describing functions are used
to represent reset systems in the frequency domain. First order describing functions are not
accurate enough to cover all the dynamics. Higher order harmonics are neglected, which may
contain useful information. In this thesis, the higher order harmonics are investigated. To do
so, a research goal is set:

Integrate higher order information into a frequency domain representation for the analysis of
reset systems containing a Clegg integrator.

Some subgoals are set to reach this goal:

• Show that the current frequency analysis of reset systems is not accurate enough.

• Derive analytically the higher order describing functions for a reset system.

• Visualize the higher order describing functions.

• Combine the higher order describing functions to enable loop shaping.

In the second chapter of this thesis, background theory is given on how to design linear con-
trollers using loop shaping. In this chapter we also motivate the need to study reset systems
by providing examples of the limitations of linear controllers. In the third chapter, reset
systems are introduced. This is done in the time domain, as this is the natural domain to
define reset systems. In the fourth chapter, the current method of analyzing reset systems in
the frequency domain is discussed. This analysis is done using first order describing functi-
ons. This chapter will show why the first order describing function is not accurate enough.
In the fifth chapter, the higher order sinusoidal input describing functions (HOSIDF) are
derived analytically for reset systems. The HOSIDF is visualized like a describing function,
showing magnitude and phase behavior per harmonic. Because the HOSIDF shows multiple
responses, it is not trivial how to do loop shaping. In the sixth chapter, a new method for
analyzing magnitude and phase behavior is provided, by combining the HOSIDF to form a
single response. With this single response, loop shaping can be achieved.

Kars Heinen Master of Science Thesis



Chapter 2

Background information

In this chapter, background theory is given on how to design linear controllers in the frequency
domain using loop shaping. Linear controllers have fundamental limitations, of which two of
them are discussed. These fundamental limitations will lead to the study of reset systems.

2-1 Feedback systems

When a plant needs to be driven to a certain output, a controller is used. The plant and
the controller combined form a system. In practice, a system is influenced by noises and
disturbances. It is desired to let the controller compensate for these disturbances and noises
as well.

A general feedback system overview is given in Figure 2-1, where P (s) is the plant that needs
to be driven, C(s) is the feedback controller, r is the reference value, d is the load disturbance
noise and n is the output noise. The load disturbance noise d represents the noise that drives
the system away from its reference. The sensed output is affected by noise signal n, which
consists of measurement errors.

C(s)
r +

-

+

+

+

+
P(s)

d n

ye u

Figure 2-1: General feedback system overview

The ability to track a reference signal, reject disturbances or to what degree the system is
affected by noise can be captured by four transfer functions. These four transfer functions
are called "The gang of four" and are described in [8]. In this thesis, we focus only on the
sensitivity function (which captures the effect of noise rejection) and the complementary
sensitivity function (which captures the ability to track a signal).
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4 Background information

Sensitivity function S(s) =
Y (s)

N(s)

1

1 + C(s)P (s)

Complementary sensitivity function T(s) =
Y (s)

R(s)

C(s)P (s)

1 + C(s)P (s)

2-2 Sensitivity and complementary sensitivity relationship

The sensitivity function and the complementary sensitivity function are related through
Eq. (2-1). It is seen that both functions can not be close to one at the same time. At
each frequency the properties of tracking performance and noise rejection must be traded off.
If the peak of the complementary sensitivity function needs to be decreased, the sensitivity
function will increase for that same peak frequency [13].

S(jω) + T (jω) =
1

1 + C(jω)P (jω)
+

C(jω)P (jω)

1 + C(jω)P (jω)
= 1 (2-1)

Performance criteria can be determined from the sensitivity and complementary sensitivity
function. The complementary sensitivity function T (jω) determines the ability to track a
reference signal. Reference signals often consists of low frequencies, so for low frequencies,
T (jω) should have a high magnitude. The sensitivity function S(jω) determines the ability to
reject measurement noise. Noise often consists of high frequencies, so for great measurement
noise rejection, the sensitivity function needs to have a high magnitude for high frequencies.
To sum this up:

for low frequencies T (jω) = 1 S(jω) = 0
for high frequencies S(jω) = 1 T (jω) = 0

2-3 Loop shaping

When designing feedback controllers, loop shaping is used. It is the industry standard for de-
signing linear controllers and filters. Many company’s like Hittech, ASML and others are using
this technique. Loop shaping is shaping the open loop bode plot to certain frequency charac-
teristics, such that closed loop specifications will be met. Many closed loop specifications can
be translated to open loop frequency domain characteristics for second order systems. With
loop shaping, the open loop L(jω) is considered, which is defined as L(jω) = C(jω)P (jω).
L(jω) can be substituted in the sensitivity and complementary sensitivity function:

S(jω) =
1

1 + L(jω)
T (jω) =

L(jω)

1 + L(jω)
(2-2)

As said before, tracking performance is determined by a high magnitude of T (jω) for low
frequencies. This implies a high open loop gain L(jω). For no steady state error, infinite gain
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2-4 Limitations of linear control 5

is required at 0 rad/s. To achieve this, an integrator is needed in the system. Even if the
plant itself has an integrator, integral control is still desired, such that the low frequencies
have a high as possible magnitude, to ensure even better tracking.

High frequency noise rejection is necessary as well, to ensure precision. To achieve this, a
high magnitude for S(jω) is required at high frequencies. This implies a low open loop gain
at high frequencies.

From the open loop bode plot, the bandwidth, the phase margin and gain margin can be
derived, as can be seen in Figure 2-2. The bandwidth (ωb) of a system is defined up to which
frequency a system can track its input well enough. This is the frequency at which the gain
plot crosses the 0 dB line. Phase margin (PM) is defined as how much additional phase
lag could be introduced in the open loop to make the closed loop system unstable. This is
defined as 180◦ plus the phase of the open loop system at the bandwidth frequency. The
phase margin should be at least positive to guarantee closed loop stability. The gain margin
(GM) is defined as how much change in open loop gain is required to make the closed loop
system unstable. This is the gain corresponding to the frequency where the phase is −180◦.

-150
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-50

0

50

M
ag

ni
tu

de
 (

dB
)

10-1 100 101 102 103 104
-270

-180

-90

0

P
ha

se
 (

de
g)

PM

GM
o
wb

Bode Diagram
Gm = 16.7 dB (at 106 rad/s) ,  Pm = 59.3 deg (at 32.3 rad/s)

Frequency  (rad/s)

Figure 2-2: Bandwidth, phase and gain margin of a system

In Figure 2-2 it is seen that for low frequencies the open loop gain is high (to ensure good
tracking) and for high frequencies the open loop gain is low (to ensure good noise rejection).

2-4 Limitations of linear control

Linear control has fundamental limitations. Because of this, certain specifications on rise
time, overshoot and disturbance rejection e.g. can not be achieved at the same time. In this
section, two fundamental limitations of linear control are discussed.
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6 Background information

2-4-1 Bode’s phase gain relation

It is desired to have much phase margin around the bandwidth frequency, since this will add
robustness to the system. However, if phase is added around a certain frequency, the open
loop slope gain will increase as well. This happens because the magnitude and phase curve
are related (in minimum phase systems) through Bode’s limitation [8], which is shown in
Eq. (2-3). In Eq. (2-3), n represents the slope in the magnitude curve. A slope of -1 means
that the magnitude curve drops 20 dB per frequency decade.

∠G(jω) = n 90◦ (2-3)

When the slope around the bandwidth frequency is increased, the magnitude drops at lower
frequencies, and increases at higher frequencies. This will cause poorer reference tracking
(less magnitude at low frequencies) and higher noise amplification (higher magnitude at high
frequencies). So if phase is added to the system, the slope will increase, causing poorer refe-
rence tracking and poorer noise rejection. This can be seen as a trade-off between robustness
and performance.

Consider a plant P(s) and controller C(s), which are defined in Eq. (2-4). The open loop
Bode plot is shown in Figure 2-3. The plant P (s) is a single mass, which has zero phase
margin. When some phase is added by means of a lead controller C(s), performance worses.
The tracking performance becomes poorer because in this region the magnitude line drops,
and the noise rejection becomes poorer, because the magnitude line increases in this region.

P (s) =
1

s2
, C(s) = ωp

s + ωz

s + ωp
(2-4)

-50

0

50

100

M
ag

nt
id

e 
[d

B
]

Gain phase relation

z p

-180

-160

-140

-120

P
ha

se
 [d

eg
re

es
]

PM

z p

P(s)
C(s)P(s)

Tracking Stability Noise rejection

Figure 2-3: Trade-off between robustness and performance
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2-5 Summary 7

2-4-2 Waterbed effect

Noise transfer in a system is described by the sensitivity function. In [8] it is shown that for
the sensitivity function, Bode’s integral formula holds Eq. (2-5). Note that pk are the poles
in the right half plane from the open loop transfer function L(jω).

∫

∞

0

ln|S(jω)|dω = π
∑

pk (2-5)

When the open loop transfer function has no poles in the right half plane, the integral simplifies
to:

∫

∞

0

ln|S(jω)|dω = 0 (2-6)

From Eq. (2-6) it can be seen that the area from the sensitivity function underneath the 0
dB line should be the same as above the 0 dB line. This implies that if for one frequency the
sensitivity function is lowered, it has to increase for another frequency. Because of this, it is
impossible to have good noise rejection for all frequencies. This effect is called the waterbed
effect.

Figure 2-4: Illustrated waterbed effect. Image by [1]

2-5 Summary

It was seen that linear controllers have fundamental limitations. When phase is added to the
system, performance worses. It is desired to add phase to the system, while keeping the same
performance. Instead of adding phase to the system, less phase can be subtracted as well to
achieve the same. Integrators subtract phase from the system. In the next chapter a non
linear integrator is introduced, which shows better performance in the time domain.
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Chapter 3

Reset systems

In industry, 90% of control is PID, because it has a simple structure and is easily implemented
[4]. PID control is linear, and therefore has fundamental limitations, as discussed in the
previous chapter. To overcome these limitations, other types of controllers have to be used.
The industry does not want to switch to more advanced controllers (like state feedback control,
fuzzy state etc) because this often requires a good model of the plant, or requires a lot of
computation power. Therefore, PID control needs to be improved. This can be done by
introducing non linear behavior. There are several methods to implement non linear behavior,
like variable gain [5], split path non linear (SPAN) filters [6], or reset control [9]. In this thesis,
reset control is considered. Reset control can improve the integrator behavior by reducing its
phase lag by 52◦. This can result in less overshoot and faster settling time. However, it can
introduce limit cycles in the system, because reset systems can behave differently in steady
state than linear systems.

In this chapter, an overview of reset systems is given, such that the reader is familiar with
the topic. More detail about the reduced phase lag is given in the next chapter.

3-1 Clegg integrator

The Clegg integrator is the main component of a reset system. It can reset its state when
the input is zero. The behavior of the Clegg integrator is compared to a linear integrator by
means of a sinusoidal input in Figure 3-1. In this example, the Clegg integrator resets its
state when the input is zero.
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Figure 3-1: Linear integrator compared to Clegg integrator with sinusoidal input

The Clegg integrator is noted with an arrow through its state, representing the reset action,
as seen in Figure 3-2.

1

s

Figure 3-2: Transfer function representation of Clegg integrator

3-2 Introduction in reset systems

A reset system can reset some parameter in the system. The resetting action occurs when
a certain condition holds, which is called the reset law. In most cases, the states of the
reset system are reset. Resetting a state is done by using a Clegg integrator instead of a
linear integrator. Note that an integrator is used in every system which has states, as seen
in Figure 3-3. An integrator is not only used for the integral term of a PID controller. Many
other examples can be found where integrators are used, like in a low pass filter. With the
Clegg integrator, a low pass filter can be reset as well.

A

1
s CB

D

+

+

+
+u(t) y(t)x(t)x(t)

Figure 3-3: Linear system in state space form
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3-2 Introduction in reset systems 11

A state space representation of a general reset system is given in Eq. (3-1). The reset matrix
Ar defines to what extent reset occurs (partial reset). When Ar = 0, full reset occurs and
when Ar = 1, no reset occurs and the system behaves like a linear integrator. The time t+ is
the time shortly after when the reset occurs.

ẋ(t) = Ax(t) + Bu(t) u(t) 6= 0

x(t+) = Arx(t) u(t) = 0

y(t) = Cx(t) + Du(t)

(3-1)

Consider a reset system consisting only of a Clegg integrator. When the reset system has full
reset (Ar = 0), the simplified state space model is given by Eq. (3-2).

ẏ(t) = u(t) u(t) 6= 0

y(t+) = 0 u(t) = 0
(3-2)

A more common reset system is the first order reset element (FORE). This element can e.g.
represent a first order low pass filter with reset. The FORE is shown in Figure 3-4.

FORE(s) =
1

✘✘✘✘✿s + a
(3-3)

1

s

A

Figure 3-4: Overview of a FORE implemented in Simulink

The FORE can be extended to a second order reset element (SORE) or higher orders.

3-2-1 Performance of reset systems

When using a reset controller instead of a linear controller, less overshoot can be achieved.
Consider a plant P (s), controlled by a first order linear controller C(s) and by a FORE R(s),
as in Eq. (3-4). The FORE will reset to zero when its input (the system error e) will be zero.
It is seen that the FORE has the same controller structure as the linear controller, but the
integrator is replaced with a Clegg integrator to achieve reset. In Figure 3-5, the closed loop
step responses are plotted for the linear and the reset controller.

P (s) =
s + 1

s2 + 0.2s
, C(s) =

1

s + 1
, R(s) =

1

✘✘✘✿s + 1
(3-4)
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Figure 3-5: Step response of linear controller compared to reset controller

It is seen in Figure 3-5 that the reset controller has less overshoot and a faster settling time.
When the error of the system is 0 (for example around 1.6 sec), it is seen that the output of
the linear controller is still positive, creating overshoot. This happens because the controller
itself has some ‘inertia’, which is caused by the integrator term. The reset controller will reset
its controller output to 0, such that the ‘inertia’ is removed, creating less overshoot. The reset
controller keeps resetting every time the system error goes trough zero. Around 14.2 seconds,
the system output seems to be 1, but the oscillation is still present, although small.

Reset control is unfortunately not always better then linear control. Consider the next exam-
ple; a first order plant P(s) is controlled by a PI controller C(s), as seen in Eq. (3-5). A reset
controller R(s) is created, which has the same structure as the linear controller, but with a
Clegg integrator. As seen in Figure 3-6, the reset controller does go to its reference value, but
immediately drops when it hits the reference value, creating oscillations. These oscillations
are limit cycles [2].

P (s) =
1

s + 0.5
, C(s) =

s + 1

s
, R(s) =

s + 1

�✒s
(3-5)
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Figure 3-6: Step response showing limit cycles using a reset controller

Limit cycles occur in plants where integrator action is needed to drive the plant to the
desired output. In other words, limit cycles occur if the plant has a steady state error. A
linear integrator, will ’store’ energy in its state to maintain zero steady state error. A Clegg
integrator will ’remove’ this energy, because of the reset action. Because this energy gets
removed, the output will suddenly drop. When this happens, limit cycles will occur, and the
system undershoots every time the output reaches the reference value. Limit cycles can be
removed with adaptive feed forward control [14].

3-3 Reset configurations

3-3-1 Partial reset

When varying the reset matrix Ar between 0 and 1, partial reset can be achieved. Partial
reset resets the states to a fraction of the states. Full reset happens when Ar = 0, and no
reset happens when Ar = 1, like the linear case. For SORE and higher order reset elements,
this matrix is usually chosen as Ar = γI, where γ is the amount of reset.

In the example below, the same systems from the previous sections are simulated. In Figure 3-
7a the system from Eq. (3-4) is simulated. In Figure 3-7b the system from Eq. (3-5) is
simulated. The partial reset value γ is varied from 0 to 1 with steps of 0.2.
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Figure 3-7: Partial reset comparison

As can be seen from Figure 3-7a, partial reset gives a trade-off between linear and non linear
control. In Figure 3-7b, limit cycles still exist, so partial reset does not solve limit cycles in
this case. The amount of partial reset does however determine the amplitude of the limit
cycle. For some partial reset value between 0.6 and 0.8, the first peak flips sign, such that
only undershoot is present in the system.

3-3-2 Reset law

In the examples discussed so far, reset occurred when the input of the reset element was zero.
Other reset laws are possible as well, like resetting within a certain reset band or resetting at
a fixed time interval. These two reset laws are discussed in this section.

Reset band

Instead of resetting the integrator when the input is zero, it resets when the input enters
a certain band. This band is usually chosen to lie around zero with a certain range δ. A
reset band may provide phase lead in time delay systems [2]. A reset band is mathematically
described in Eq. (3-6). In Eq. (3-6), the band has a fixed width, but the band could be of
variable width as well [12].

ẋ(t) = Ax(t) + Bu(t) u(t), u̇(t) /∈ Bδ

x(t+) = Arx(t) u(t), u̇(t) ∈ Bδ

y(t) = Cx(t) + Du(t)

with Bδ = (x, y) ∈ R2|(x = −δ ∧ y > 0) ∨ (x = δ ∧ y < 0)

(3-6)
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3-3 Reset configurations 15

Fixed time reset control

In [15], Zheng et al proposed a new reset law where reset occurs at fixed time instances. In
[16], Gup et al used this design technique in hard disk drive systems. Fixed time reset control
is defined in Eq. (3-7).

ẋ(t) = Ax(t) + Be(t) t 6= tk

x(t+) = Arx(t) t = tk

u(t) = Cx(t) + De(t)

(3-7)

In [15], it is seen that the after reset value needs to be optimized to exclude limit cycles.
When model uncertainties are present, this could influence the performance of the system.

3-3-3 PI+CL control

In Figure 3-6 it was seen that the Clegg integrator didn’t show overshoot, but did show limit
cycles. To get a combination of less overshoot and no steady state error, a combination of
a linear controller and a reset controller can be implemented. This is often named a PI+CI
controller. In this controller, the PI controller is called the base system and the CI controller
the reset system. Varying the contribution of both controllers with a factor preset, the amount
of non linearity can be chosen. When preset = 1, the integral part is a Clegg integrator, and
when preset = 0, the integral part is a linear integrator. The PI+CL controller structure is
given in Eq. (3-8) and a system overview is given in Figure 3-8. In [2] the PI+CL is explained
more, and in [17] some design rules are given.

PI + CL = kp

(

1 +
1

τi

(

1 − preset

s
+

preset

�✒s

))

(3-8)

Figure 3-8: Overview of PI+CL controller. Image by [2]

In Figure 3-9 the performance increase can be seen for implementing a PI+CL controller. The
system is the same system as in Eq. (3-5), but now the PI+CL controller is implemented,
as shown in Figure 3-8. The parameter preset is tuned to 0.2, τi = 1 and kp = 1. It can be
seen that the limit cycle disappears, the overshoot becomes less and that the settling time
decreases.
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Figure 3-9: System response of PI+CL controller compared to linear and reset controller

3-4 Stability analysis

There are many methods to prove stability for reset systems. Most stability conditions require
the equivalent linear system to be stable [2, 18, 19]. We are however interested in marginal
stable reset systems (this will be explained in the next chapter), which do not have stable
linear equivalents. The requirement to have a linear equivalent stable system it thus too
conservative. The most advanced result paper is found which proves the (in)stability of a
reset system subjected to zero inputs [20]. This paper is used to prove (in)stability of reset
systems in this thesis. The paper considers zero input systems, but the method can be used
for step inputs as well, since step inputs can be rewritten as a zero input with an extra
feedforward term, as seen in Figure 3-10. In this section, the method from [20] is explained.

C(s)
r +

-
P(s)

y

C(s)

r

-

+

+
P(s)

y

C(s)

Figure 3-10: Step input represented as zero input with feed forward
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3-4 Stability analysis 17

The stability criterion states that the time interval τ between reset instances has to be known.
When the reset interval is known, stability can be proven. Assume a second order plant
without feed trough matrix D, so G(s) = C(sI − A)−1B. When this plant is controlled
by a Clegg integrator and subjected to zero input, the state space system from Eq. (3-9) is
formed. In here, xc is the state of the controller and xp the state of the plant.

ẋp(t) = Axp(t) + Bxc(t)

ẋc(t) = −y(t) y(t) 6= 0

xc(t) = 0 y(t) = 0

y(t) = Cxp(t)

(3-9)

The zero crossing times of y(t) are collected in the ordered set (ti ≤ ti+1, i = 1, 2, ...,).
Between the crossing times of the reset action, the plant states behaves like an LTI system.

x(t) = P (t − ti)x(ti) (3-10)

Of which

P (t) =
[

I 0
]

eĀt

[

I
0

]

with Ā(t) =

[

A B
−C 0

]

(3-11)

The reset interval τ can be obtained if the smallest positive τ is found, for which C is an
eigenvector of P (τ) [20]. This is hard to calculate analytically, and therefore another approach
is used; A reset system is simulated in Simulink with high tolerances. This reset system can
e.g. be a Clegg integrator controlling a second order plant. A step input is applied to the
closed loop system. The system will start oscillating, and the crossing times are stored, such
that the reset interval τ can be calculated. When the reset interval is known, the P matrix
can be calculated, of which the eigenvalues are checked. When the biggest eigenvalue is
smaller than 1, the system is stable. When the biggest eigenvalue is exactly 1, the system is
marginally stable. When the biggest eigenvalue is larger than 1, the system is unstable.
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Chapter 4

Frequency analysis of reset systems

For linear systems, frequency analysis and loop shaping are a common way to analyze and
design controllers. For reset systems to be a useful tool in industry, these frequency domain
methods should be applicable as well. In this chapter, we address how we can approximate
frequency responses with describing functions, and show what the limitations of that approach
are.

4-1 Describing functions

For linear systems, transfer functions can be used to analyze the system in the frequency
domain. For non linear systems, transfer functions do not exist, since they only represent
linear systems. Non linear elements can also depend on parameters other than frequency, like
amplitude. To overcome this problem, describing functions are often used to describe a non
linear system in the frequency domain.

A describing function approaches a transfer function for non linear elements. It is the linear
approximation of the steady state output considering only the first harmonic of the output
[21]. Examples of how to use the describing function can be found in [22, 23].

There are several types of describing functions [24]. In this thesis the sinusoidal input des-
cribing function (SIDF) is considered, since this represents a transfer function the most. It
is defined as the phasor representation of the output divided by the phasor representation of
the input at a certain frequency [25]. This is similar to what a transfer function does. The
describing function can be created by applying a sinusoidal input and calculating its time
domain response. When this response is Fourier transformed, a Fourier series is created. The
describing function considers only the first harmonic of the Fourier series.

The Clegg integrator does not depend on its input amplitude (like other non linear elements),
but only on its input frequency. Because of this, it is much easier to represent the describing
function of a reset system in the same way as a transfer function. In [10], the describing
function for a reset system with the same structure are Eq. (3-1) is given. This is shown in
Eq. (4-1).
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G(ω) = C(jωI − A)−1(I + jΘD(ω))B + D

with ΘD(ω) = −2ω2

π
∆(ω)[Γr(ω) − Λ−1(ω)]

Λ(ω) = ω2I + A2

∆(ω) = I + e
π

ω
A

∆r(ω) = I + Are
π

ω
A

Γr(ω) = ∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(4-1)

4-1-1 Describing function of the Clegg integrator

The describing function of the Clegg integrator (Eq. (4-2)) is obtained if the following system
matrices are plugged in Eq. (4-1) : A = 0, B = 1, C = 1, D = 0, Ar = 0. Notice that there
are two notations, which both are used in literature.

CI(ω) =
1

jω

(

1 + j
4

π

)

=
1

jω
1.62ej52◦

(4-2)

From now on, when we talk about the frequency response of the Clegg integrator, we consider
its first order describing function. From Eq. (4-2) it can be seen that the Clegg integrator has
a higher magnitude response, but also a phase lead of 52◦ compared to the linear integrator.
It is this last characteristic that make reset systems so interesting. The Clegg integrator has
the same frequency behavior as a linear integrator, but with only 38◦ phase lag, instead of
90◦. A frequency domain comparison is shown in Figure 4-1 between the linear and Clegg
integrator.
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Figure 4-1: Frequency response comparison of a linear integrator and a Clegg integrator
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4-2 Describing function error 21

4-2 Describing function error

As said before, the describing function describes only the first harmonic of its output. The
output of a Clegg integrator contains jumps, resulting in sharp edges. These sharp edges
cannot accurately be captured with a single sine wave, which the first order describing function
tries to do. This is easily seen by performing the following experiment. A Clegg integrator
is simulated, by applying an input u(t) = sin(2t). When looking at the describing function
of the Clegg integrator, the describing function suggests that the output should be a sine
wave with an amplitude of 0.81 and a phase shift of -38◦. However, the output looks a lot
different, as can be seen in Figure 4-2. There is a big difference between the output of the
Clegg integrator and the output the describing function approximates.
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Figure 4-2: Simulation of real output compared to describing function for the Clegg integrator

4-3 Loop Shaping

In linear feedback control, controllers can be designed in the frequency domain using loop
shaping. When looking at the open loop transfer function of the system, stability is guaranteed
as long as the system has a open loop positive phase margin, as described in Section 2-3. In
this section, the possibility of loop shaping with reset systems is investigated.

Consider a feedback system with plant P (s) and reset controller R(s), as in Eq. (4-3). To get
the frequency response of the plant and the controller, a conversion from the Laplace notation
to the frequency notation has to be made. When the two frequency functions are multiplied
with each other, the open loop frequency response is known, which is shown in Figure 4-3.

R(s) =
1

�✒s
P (s) = 0.15

s + 2

s2 + 0.2s

R(ω) =
1

jω
(1 + j

4

π
) P (jω) = 0.15

jω + 2

(jω)2 + 0.2jω

(4-3)
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Figure 4-3: Unstable open loop frequency response of system controlled by a Clegg integrator

In Figure 4-3, the open loop is calculated for 10000 frequencies between 10−2 rad/s and 102

rad/s. The crossover frequency is calculated with interpolation. With the crossover frequency,
the phase of the open loop system is calculated, and thus the phase margin is known. The
phase margin for this system is -2.33◦, so it is expected to behave unstable when closing the
loop. However, the output is stable, as seen in Figure 4-4.
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Figure 4-4: Stable closed loop step response for unstable describing function
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When applying the stability criterion from Section 3-4, eigenvalues of 0.854 (2x) are obtained.
Because the eigenvalues are smaller than 1, stability is proven.

It is concluded that the describing function produces inaccurate results to do loop shaping
with this plant. In the next section it is explored if the same inaccuracy is seen for other
plants.

4-3-1 Accuracy of the describing function

The plant from the previous section was chosen to explain the error of the describing function.
One could see this plant as an integrator with a lead filter, but these plants are not very
common in industry. More common plants are second order systems like mass damper systems
or mass spring damper (MSD) systems. In this section, it is investigated for these type of
plants how accurate the describing function is.

Mass damper and MSD systems have a phase response which goes to -180◦. When controlling
such a system with a Clegg integrator, the phase will pass -180◦ at some point, and will go
to -218◦. For both systems, there exists a control gain for the Clegg integrator such that the
closed loop performance is marginally stable. Marginal stability is important, because this
can be tested in the time domain and in the frequency domain. With the stability condition
proposed in Section 3-4, marginal stability can be tested in the time domain. When the
frequency response is known, marginal stability can also be tested in the frequency domain.
The frequency response is made by the describing function from the Clegg integrator. This
is an approximation, so the frequency response is expected not to be exact. If the system
is tuned to perform marginally stable in the time domain, the accuracy of the describing
function can be verified.

In the next two parts the accuracy of the first order describing function is tested for mass
damper systems and for mass spring damper (MSD) systems. Both the systems will be
controlled by a Clegg integrator with a gain K. A step input will applied to the closed loop
system. The gain K will be fine tuned by hand to find the point of marginal stability. This
point is checked with the stability condition from Section 3-4. It is practical impossible to
tune the system to perform exactly marginally stable, so it is tuned such that the system
is slightly stable. It is decided that when the biggest eigenvalue is between 0.999 and 1,
the system is marginally stable. Next, the crossover frequency is found by interpolating the
results from the frequency response. With the crossover frequency, the corresponding phase
is calculated. Because the system is tuned to perform marginally stable, the phase should be
exactly -180◦ at the crossover frequency.

Mass damper systems

Consider a mass damper system P (s) controlled by a Clegg integrator R(s) with gain K, as
in Eq. (4-4). Mass damper systems start at -90◦ and go to -180◦. When controlling this with
a Clegg integrator, the phase of the open loop system will pass -180◦ and go to -218◦.

R(s) = K
1

�✒s
P (s) =

1

s2 + as
(4-4)
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24 Frequency analysis of reset systems

A few mass damper systems are simulated by varying the value a. The gain K is increased
until the system performs marginally stable. This gain K is fine tuned by hand, and checked
with the stability criterion. In Table 4-1 the results are listed for several values of a. The
gain K is listed, and the corresponding phase at the crossover frequency. Because the systems
perform marginally stable, the phase at the crossover frequencies should be exactly -180◦.

It is seen that the phases of all the systems are equally off by 0.69◦. It it seen that for every
increase in value of a, the gain K can be cubicly increased to find a marginally stable system.
Three systems with different values for a are plotted in Figure 4-5, with corresponding values
of K to make the system marginally stable. It is concluded that the first order describing
function is evenly inaccurate for any mass damper system.

Table 4-1: Values for marginally stable mass damper systems controlled by a Clegg integrator

a K phase (◦)
0.100 0.0017306 -180.6908
0.200 0.013845 -180.6910
0.400 0.111 -180.6910
0.800 0.886 -180.6912
1.000 1.731 -180.6908
10.000 1730.600 -180.6908
100.000 1730670.000 -180.6913
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Figure 4-5: Frequency response of marginally stable mass damper systems, different values of a
with corresponding K
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4-3 Loop Shaping 25

Mass spring damper systems

The procedure for testing mass damper systems is used as well for mass spring damper
(MSD) systems. MSD systems have transfer functions as shown in Eq. (4-5). The parameter
ωn represents the natural frequency of the system and ζ the amount of damping. These
systems go to -218◦ as well, passing -180◦. Because of this, there exists a gain K for the Clegg
integrator such that the closed loop system performs marginally stable. We fine tune the gain
K by hand, and check for marginally stability using the stability condition from Section 3-4.

R(s) = K
1

�✒s
P (s) =

ω2
n

s2 + 2ζωns + ω2
n

(4-5)

Several MSD systems are created which performs marginally stable. First the natural fre-
quency ωn is varied, and later the damping factor ζ. In Table 4-2 the natural frequency ωn,
the damping factor ζ, the gain value K and the phase at the crossover frequency are listed.
In Figure 4-6, some MSD systems are simulated with different values for ωn and ζ, with cor-
responding values for K to create a marginally stable system. It is seen that when changing
the damping ζ, the gradient of the phase (∇) changes at the crossover frequency. Because of
this, the gradient of phase is listed as well in Table 4-2. The gradient of phase is measured in
degrees per decade.

Table 4-2: Values for marginally stable mass spring damper systems controlled by a Clegg
integrator

ωn ζ K phase (◦) ∇ phase (◦/dec)
1000 0.2 666.66 -180.1691 -258.04
100 0.2 66.64 -180.1631 -258.04
10 0.2 6.664 -180.1631 -258.04
1 0.2 0.6665 -180.1654 -258.04
10 0.0125 0.2581 -180.0024 -4143.23
10 0.05 1.136 -180.0103 -1011.23
10 0.2 6.66 -180.1467 -258.04
10 0.6 50.600 -180.4599 -104.09
10 1.2 283.900 -180.6064 -75.71
10 2.4 2005.800 -180.6668 -66.90
10 4.8 15497 -180.6849 -64.52
10 9.6 122866 -180.6897 -63.91
10 19.2 980700 -180.6908 -63.76

Master of Science Thesis Kars Heinen



26 Frequency analysis of reset systems

10-1 100 101 102 103 104 105
-300

-200

-100

0

100

M
ag

ni
tu

de
 [d

B
]

Clegg Intergrator controlling a MSD system

10-1 100 101 102 103 104 105

Frequency [rad/s]

-218

-180

-128

-38

P
ha

se
 [d

eg
]

n
 = 1

n
 = 10

n
 = 100

n
 = 1000

-180 line

(a) MSD system with varying ωn

100 101 102 103
-150

-100

-50

0

50

100

M
ag

ni
tu

de
 [d

B
]

Clegg Intergrator controlling a MSD system

100 101 102 103

Frequency [rad/s]

-218

-180

-128

-38

P
ha

se
 [d

eg
]

 = 0.05
 = 0.2
 = 0.6
 = 2.4
 = 9.6

-180 line

(b) MSD system with varying ζ

Figure 4-6: Frequency response of marginally stable MSD systems, different values of ωn, ζ with
corresponding K

In Table 4-2 it is seen that when the natural frequency ωn is changed, the gain could be
increased linearly with the change in natural frequency. The accuracy of the describing
function has a constant offset of 0.16◦. The gradient of the phase is also constant. When
the damping ζ is altered, the gradient of the phase changes. When the damping is low, the
gradient of the phase is high (in absolute value), and the phase of the first order describing
function is close to -180◦, implying an accurate phase. When the damping is high, the gradient
of the phase is low, and phase of the first order describing function drifts away from -180◦.

The gradient of phase for a mass damper system is -63.71◦/dec. This is almost the same
gradient as for a MSD system with a high damping. A MSD system with high damping does
act like a mass damper system, so it is expected that the gradient of phase is the same.

It is suspected that the accuracy of the describing function is depended on the gradient of the
phase. When the gradient of the phase is largely negative, the describing functions becomes
more accurate. When the gradient of phase is small, the describing function becomes more
inaccurate. It is noticed that the describing function has an different accuracy for different
plants. It is suspected that the accuracy of the describing function is influenced by the plant
doing loop shaping.

It is seen that the describing function is inaccurate, but in our favor. The describing function
predicts instability for mass damper and MSD systems, but it is seen that the system was still
(marginally) stable. This is in our favor, since less phase margin is expected by the describing
function than happens in reality.

It was seen in Section 4-2 that the describing function is not accurate in the time domain,
and this section also proofs its inaccuracy in the frequency domain. If the describing function
is not reliable for stability, then we can not know how accurate it is for tracking, disturbance
rejection and noise attenuation. To make the describing function more accurate, higher orders
needs to be introduced.
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Chapter 5

HOSIDF

Loop shaping is extremely useful when designing controllers. As seen in the previous chapter,
the relation between phase margin and stability cannot be translated to non linear reset
control, because the describing function is not accurate enough. There are papers which
describe methods to deal with the inaccuracy of the describing function, like [26], where
they discuss the describing function approach for a rate limiter element. It is however more
desired to create a reliable method of describing function analysis, than to learn to deal with
an inaccurate method. In current describing function analysis, only the first harmonic of a
Fourier series is considered. It is desired to extend the describing function to higher orders,
making the frequency domain analysis more accurate.

With simulation, the full Fourier series of an output signal from the Clegg integrator can be
calculated. With the Fourier series, the amplitude and phase shift for each harmonic can be
found. However, calculating the Fourier series takes a lot of time, since individual experiments
and time consuming calculations per frequency are needed. Instead of calculating the Fourier
series of a simulated output, an analytical solution is found.

Nuij [3] created a framework to analyze higher order describing functions for non linear
elements. This framework will be used for the non linear reset elements. Other work which
uses this framework can be found in [27, 28].

The Clegg integrator creates a non linear output, which consists of multiple sine waves be-
cause of its periodic properties. Because of this, the Clegg integrator can be seen as a
virtual harmonic generator, as described by [3], and seen in Figure 5-1. When a sine wave
of frequency ω is inserted, the virtual harmonic generator will create harmonics of frequency
ω, 2ω, 3ω, ..., nω. These harmonics are inserted in several describing functions (denoted with
Hn(ω) in Figure 5-1). The describing functions will transform the harmonics with a certain
amplitude and certain phase shift, like a transfer function. These describing functions form
together the higher order sinusoidal describing function (HOSIDF). As noted before, the be-
havior of the Clegg integrator does not depend on its input amplitude, but only on its input
frequency. This makes the analysis much easier.
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Figure 5-1: Block diagram representation of the HOSIDF, image based on [3]

5-1 Analytical solution

Guo et al [10] calculated analytically the describing function of the first harmonic for a general
reset system. Based on their work, a derivation is calculated for the HOSIDF. Notice that in
[10], the reset matrix is defined as D. This is confusing since D usually represents the feed
through matrix of a state space model. In this thesis, Ar is used to represent the reset matrix.

Theorem 1. For a reset system given in Eq. (5-1), the HOSIDF is calculated by Eq. (5-2).

ẋ(t) = Ax(t) + Bu(t) u(t) 6= 0

x(t+) = Arx(t) u(t) = 0

y(t) = Cx(t) + Du(t)

(5-1)

G(ω, n) =











C(jωI − A)−1(I + jΘD(ω))B + D for n = 1
C(jωnI − A)−1jΘD(ω)B for odd n ≥ 2
0 for even n ≥ 2

with ΘD(ω) = −2ω2

π
∆(ω)[Γr(ω) − Λ−1(ω)]

Λ(ω) = ω2I + A2

∆(ω) = I + e
π

ω
A

∆r(ω) = I + Are
π

ω
A

Γr(ω) = ∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(5-2)
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5-1 Analytical solution 29

Proof. This proof is divided in two parts. A reset element can be divided into a linear and
non linear part, as seen in Figure 5-2. The B and C matrix are chosen to be in the non linear
part for convenience, although they behave linear. First, an analysis for the non linear part
is made, and later for the linear part.

A

1
s CB

D

+

+

+
+

Linear part

Non linear part

u(t) y(t)

Figure 5-2: Non linear and linear part of a reset system

The following notation is defined for convenience:

Λ(ω) = ω2I + A2

∆(ω) = I + e
π

ω
A

∆r(ω) = I + Are
π

ω
A

Γr(ω) = ∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(5-3)

The linear part is analyzed by setting the feed through matrix D in Eq. (5-1) to zero. When
a reset element is subjected to a sinusoidal input of u(t) = sin(ωt), an equation for the steady
output yss(t) can be calculated, as can be found in [10].

yss(t) = CeAtθk(ω) − CΛ−1(ω)[ωIcos(ωt) + Asin(ωt)]B

θk(ω) = (−1)k+1e−Atk [Γr(w) − Λ−1(ω)]ωB
(5-4)

The Fourier series for the first harmonic is already given in [10], so only higher orders will be
calculated (n ≥ 2):

Yss(ω, n) =
ω

2π

∫ 2π

ω

0

yss(t)e−jωntdt

=
ωC

2π
(I1 + I2) − ωCΛ−1(ω)

2π
(ωJ1 + AJ2)B

(5-5)

With

I1 =

∫ π

ω

0

eAtθ0(ω)e−jωntdt

= θ0(ω)(A − jωnI)−1(e
π

ω
A(−1)n − 1)

= −[Γr(ω) − Λ−1(ω)]ωB(A − jωnI)−1(e
π

ω
A(−1)n − 1)
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I2 =

∫ 2π

ω

π

ω

eAtθ1(ω)e−jωntdt

= θ1(ω)(A − jωnI)−1(e
2π

ω
A − e

π

ω
Ae−jπn)

= [Γr(ω) − Λ−1(ω)]ωB(A − jωnI)−1(e
π

ω
A − e−jπn)

J1 =

∫ π

ω

0

e−jωntcos(ωt)dt

= 0 for (n ≥ 2)

J2 =

∫ π

ω

0

e−jωntsin(ωt)dt

= 0 for (n ≥ 2)

Yss(ω, n) =
ωC

2π
(I1 + I2) for (n ≥ 2)

=
ωC

2π
[Γr(ω) − Λ−1(ω)]ωB(A − jωnI)−1

[

− e
π

ω
A(−1)n + 1 + e

π

ω
A − e−jπn

]

(5-6)

It is noticed that the last term in Eq. (5-6) becomes 0 for even numbers of n. Rewriting
Eq. (5-6) with this in mind:

Yss(ω, n) =

{

ω2C
π

(A − jωnI)−1∆(ω)[Γr(ω) − Λ−1(ω)]B for odd n ≥ 2
0 for even n ≥ 2

(5-7)

The input signal u(t) stays the same as described in [10], such that the final describing function
becomes:

G(ω, n) =
Yss(ω, n)

U(jω)
with U(jω) = − j

2
(5-8)

G(ω, n) =











C(jωI − A)−1(I + jΘD(ω))B for n = 1
C(jωnI − A)−1jΘD(ω)B for odd n ≥ 2
0 for even n ≥ 2

with ΘD(ω) = −2ω2

π
∆(ω)[Γr(ω) − Λ−1(ω)]

(5-9)

The linear part of the reset element needs to be added. The D matrix does not have effect
on all the harmonics, since this is outside the non linear part. To represent the D matrix in
the HOSIDF, it is added to the first harmonic.
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It is concluded:

G(ω, n) =











C(jωI − A)−1(I + jΘD(ω))B + D for n = 1
C(jωnI − A)−1jΘD(ω)B for odd n ≥ 2
0 for even n ≥ 2

with ΘD(ω) = −2ω2

π
∆(ω)[Γr(ω) − Λ−1(ω)]

Λ(ω) = ω2I + A2

∆(ω) = I + e
π

ω
A

∆r(ω) = I + Are
π

ω
A

Γr(ω) = ∆−1
r (ω)Ar∆(ω)Λ−1(ω)

(5-10)

To verify the analytical solution, several simulations are done in Appendix A.

5-2 Visualization of the HOSIDF

The HOSIDF was calculated in the previous section. In order to be relevant for industry, it
should be represented in the frequency domain like a Bode plot. In this section, we provide
a visual frequency response of the higher order harmonics of the Clegg integrator.

When the system matrices of the Clegg integrator are plugged in Eq. (5-10), the HOSIDF
for the Clegg integrator (CI) is obtained, as seen in Eq. (5-11). When the magnitude and
phase are calculated per harmonic, the HOSIDF can be plotted. In Figure 5-3 the HOSIDF
is plotted for the Clegg integrator. On the x-axis, the frequency of the sinusoidal input is
seen. When the Clegg integrator is subjected to a sinusoidal input, several harmonics are
created, because of the Virtual Harmonic Generator. The magnitude and phase behavior per
harmonic order is plotted. It is noted that the Clegg integrator only has non-zero phase for
the first order harmonic.

for n = 1 CI(ω) =
1

jω
(1 + j

4

π
) (5-11)

for odd n ≥ 2 CI(ω, n) =
4

πωn
for even n ≥ 2 CI(ω, n) = 0
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Figure 5-3: HOSIDF of Clegg integrator

5-3 Loop shaping

In linear feedback control, controllers can be designed using loop shaping. Closed loop stability
is guaranteed as long as the system has an open loop positive phase margin. It is highly desired
to apply the loop shaping method to reset systems. When the plant P (s) is added after the
controller, an analysis of the open loop system can be made, as seen in Figure 5-4.
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Figure 5-4: Block diagram of open loop reset controller and plant
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Because of the additive property of controller blocks, the plant block P (s) can be moved
before the summation, as seen in Figure 5-5. It is seen that every harmonic of a reset system
passes through a separate plant block. Each harmonic represents a different frequency, such
that several frequencies are applied to the plant. The outputs of the plant blocks are summed
up, creating an output consisting of sine waves which have properties depended on the reset
controller and the plant.
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Figure 5-5: Block diagram of open loop reset controller and integrated plant

With Figure 5-5 in mind, the HOSIDF of the open loop system needs to be calculated as
follows; For every harmonic, the phasor output of the reset controller is calculated, which
results in a magnitude and phase. When inserting a 1 rad/s sine wave to a reset controller, a
third harmonic is formed (which corresponds to a 3 rad/s sine wave). For the third harmonic (3
rad/s), the phasor output of the plant is calculated. The phasor output of the third harmonic
of the reset controller and the plant are summed up. This is done for every harmonic n. This
results in a open loop HOSIDF of:

L(ω, n) = R(ω, n)P (njω) (5-12)

5-3-1 Multiple peaks

It is noticed that multiple peaks occur in the open loop HOSIDF of a Clegg integrator and
a mass spring damper (MSD) system. Consider an open loop HOSIDF which consists of a
Clegg integrator and a MSD system, with natural frequency 10 rad/s and damping factor of
0.0125 (see Eq. (5-13)). In Figure 5-6 it is seen that the first order describing function shows
a peak at 10 rad/s, which is the resonance frequency of the plant. The 3rd order shows a
peak at 3.33 rad/s. The 5th order shows a peak at 2 rad/s. If an input frequency of 2 rad/s is
considered, the 5th order represents a 10 rad/s sine wave. This frequency (10 rad/s) excites
the resonance frequency in the plant, and therefore the 5th order shows a peak at 2 rad/s.

R(s) =
1

�✒s
P (s) =

100

s2 + 0.25s + 100
(5-13)
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Figure 5-6: Open loop HOSIDF of Clegg integrator and MSD system

5-3-2 Analysis

Consider again the system from Eq. (4-3). This system has a stable closed loop step response
(see Figure 4-4), but a negative phase margin, because of the inaccuracy of the first order
describing function. With the HOSIDF, a new open loop frequency analysis can be made, as
shown in Figure 5-7. It is clearly seen that all the higher orders have a positive phase margin,
since their minimum phase is around -140◦. It is suspected that the higher orders have a
positive contribution to the phase margin, since the system behaves stable.
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Figure 5-7: Open loop HOSIDF plot of Eq. (4-3)
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In Section 4-3-1 it was suspected that the accuracy of the first order describing function was
related to the gradient of the phase of the open loop system. With the HOSIDF, new insights
can be obtained. Two MSD systems with different damping coefficients from Section 4-3-1
are simulated, both controlled by a Clegg integrator with a gain. Because they have different
damping coefficients, they have a different gradient of phase. The gain is tuned such that the
closed loop system performs marginally stable. In Figure 5-8a, a MSD system with ζ = 1.2
is simulated. In Figure 5-8b, a MSD system with ζ = 0.0125 is simulated.
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(a) MSD plant with ζ = 1.2

10-2 10-1 100 101 102 103
-300

-200

-100

0

100

M
ag

ni
tu

de
 [d

B
]

HOSIDF of open loop

10-2 10-1 100 101 102 103

Input frequency [rad/s]

-300

-200

-100

0

P
ha

se
 [d

eg
]

order 1
order 3
order 5
order 7
order 9
order 11
order 13

(b) MSD plant with ζ = 0.0125

Figure 5-8: Open loop HOSIDF of marginally stable MSD plants with different damping factors

It is seen that the higher order harmonics behave differently for both systems. For the MSD
system with ζ = 1.2, the crossover frequency for the first order is 33.5 rad/s. The third order
has a magnitude of -30 dB and a phase of -166◦ at this frequency. For the MSD system
with ζ = 0.0125, the crossover frequency the the first order is 10.1 rad/s. The third order
has a magnitude of -58 and a phase of -179.5◦ at this frequency. So when the damping is
high, the magnitude of the third order lies closer to the first order than when the damping is
low. This results in more contribution from the third order to the total system, making the
first order describing function less accurate for the total system. This is in agreement with
Section 4-3-1, where we concluded that for a MSD system with high damping, the first order
describing function is less accurate than for MSD system with low damping.

It is seen that the higher order harmonics have some contribution to the phase margin. It is
unclear yet how much they contribute. This will be researched in the next chapter.

5-4 Filtering effect of higher orders

When the plant has a pole at a certain frequency, the slope of the magnitude will decrease,
and thus the magnitude will drop after this frequency. When the plant is controlled by a
reset controller, a higher order harmonic will hit this pole frequency earlier, because of the
properties discussed in the previous section. Because a higher order harmonic will hit the
pole earlier, its magnitude will drop earlier as well. This will cause a filtering effect of the
higher order harmonics.
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Consider a plant P (s) controlled by a Clegg integrator R(s), as shown in Eq. (5-14). The
plant has three poles located at 0.1 rad/s, 10 rad/s and 1000 rad/s. The open loop HOSIDF
plot for this system is shown in Figure 5-9. It is seen that after each pole location, the distance
between the harmonics increases.

R(s) =
1

�✒s
P (s) =

1

(s + 0.1)(s + 10)(s + 1000)
(5-14)
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Figure 5-9: Filtering effect of the higher order harmonics

It is seen that magnitude line does not drop immediately after a pole location, but has some
transient behavior which results in a smooth curvature. To know the ’steady state’ distance
of the harmonics, several new plants are created which consists of only pure integrators, as in
Eq. (5-15). Pure integrators do not show transient behavior because their pole location is at
ω = 0. In Table 5-1 the distances are listed between the magnitude of the first and the third
order describing function. It is seen that the distance linearly increases with 9.54 dB (0.333
in magnitude) if the plant has one more pole.

R(s) =
1

�✒s
Pn(s) =

(1

s

)n

(5-15)
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Figure 5-10: Open loop filtering effect of plants P1 to P3 controlled by a Clegg integrator

Plant Distance between 1st and 3rd order
P0 -11.63 dB
P1 -21.17 dB
P2 -30.71 dB
P3 -40.26 dB
P4 -49.80 dB

Table 5-1: Distance between 1st and 3rd order harmonic per plant

Master of Science Thesis Kars Heinen



38 HOSIDF

Kars Heinen Master of Science Thesis



Chapter 6

Combined HOSIDF

The HOSIDF is an useful tool to analyze reset systems. However, loop shaping is not trivial.
Multiple harmonics show up in the HOSIDF, so it is e.g. unclear where the bandwidth
frequency is located. It is desired to combine the higher order describing functions to form
a single line for magnitude and phase, such that loop shaping can be achieved. Because the
higher orders are combined, it is expected that this approach leads to more accurate results
than the first order describing function.

In this chapter, a combined magnitude response is calculated by means of power in a signal.
A combined phase response is calculated as well, which considers the algebraic phase between
two vectors. It is seen that the combined phase shows jumps, such that loop shaping becomes
inaccurate.

6-1 Magnitude

The closed loop bandwidth of a linear system is defined as the frequency where the closed
loop output contains half the power of the input [29]. The magnitude part of the Bode plot
represents the amplitude corresponding to the power throughput of a system. The power P
of a signal is defined as the energy measured over a certain time interval, as seen in Eq. (6-1)
[30]. Linear systems consists of only pure sine waves, for which the power is calculated by
Eq. (6-2). When the power of a sine wave is already known, its amplitude can be calculated
by Eq. (6-3).

Px =
1

T

∫ T

0

|x(t)2|dt (6-1)

Psin =
ω

2π

∫ 2π

ω

0

∣

∣

∣(A sin(ωt))2
∣

∣

∣ dt =
1

2
A2 (6-2)

A =
√

2P (6-3)
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For linear systems, the power can be calculated from its sine wave amplitude, and this power
can then be converted back to a corresponding amplitude. This is trivial, since the calcula-
ted amplitude is the same as the applied amplitude. However, for non linear systems (like
reset systems) this approach will lead to new insights. The output of a reset systems is a
summation of sine waves, as discussed in Chapter 5. When the output power is calculated,
its corresponding sine wave amplitude can be calculated by Eq. (6-3). Dividing the output
amplitude by its input amplitude creates a new combined magnitude line.

Theorem 2. The combined magnitude line for a reset system is calculated as

Acombined(ω) =
√

A1(ω)2 + A3(ω)2 + A5(ω)2 + ... (6-4)

Proof. When a reset system is subjected to a sine wave input, the output consists of a sum-
mation of sine waves, as discussed in Chapter 5. The amplitudes and phases of these sine
waves can be calculated with the HOSIDF. The output power is calculated by plugging the
summation of sine waves in to Eq. (6-1).

Py(ω) =
ω

2π

∫ 2π

ω

0

∣

∣

∣y(t)2
∣

∣

∣dt

=
ω

2π

∫ 2π

ω

0

(

A1(ω)sin(ωt + φ1(ω)) + A3(ω)sin(3ωt + φ3(ω)) + A5(ω)sin(5ωt + φ5(ω)) + ...
)2

dt

=
1

2

(

A1(ω)2 + A3(ω)2 + A5(ω)2 + ...
)

(6-5)

To convert the output power to its corresponding amplitude, Py is plugged into Eq. (6-3).

Ay(ω) =
√

2Py(ω) =
√

A1(ω)2 + A3(ω)2 + A5(ω)2 + ... (6-6)

Dividing the output amplitude Ay by the input amplitude Au results in Eq. (6-7). Remember
that the input signal was already a pure sine wave of amplitude 1.

Acombined(ω) =
Ay

Au
=
√

A1(ω)2 + A3(ω)2 + A5(ω)2 + ... (6-7)

It is noted from Eq. (6-7) that the combined magnitudes always lies higher than the magnitude
of the first order describing function, since the higher order amplitudes are never zero.

6-1-1 Clegg integrator

The combined magnitude is plotted in the HOSIDF for the Clegg integrator in Figure 6-1. As
can be seen, the combined magnitude lies slightly above the first order describing function.
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Figure 6-1: HOSIDF of Clegg integrator with combined magnitude

Every higher order harmonic for the Clegg integrator is of lower amplitude. When adding
the higher orders to form the combined magnitude, the combined magnitude will therefore
reach an asymptote. When the Clegg integrator is subjected to a 1 rad/s sine wave, the
asymptote is

√
3 ≈ 1.73. This is proven in Appendix B-1. Because the magnitudes of the

harmonics decreases evenly over the frequency spectrum, it does the same for the combined
magnitude. The difference between the first order describing function magnitude and the
combined magnitude is therefore constant. This constant difference is calculated in Eq. (6-8).

Acombined(ω = 1)

Afirst order(ω = 1)
=

√
3

√

1 + 16

π2

= 1.0698 = 0.5863 dB (6-8)

6-2 Phase

In the previous section, a combined magnitude was derived by looking at the power of the
output. However, power tells nothing about the phase of a system. It is likely that the higher
order harmonics have a contribution to the overall phase of the system. In this section, a new
method is derived to analyze the phase of a reset system.

From linear algebra, it is known that the angle between vectors u and y can be expressed
as Eq. (6-9). We are interested in the phase between an input signal u(t) = sin(ωt) and its
corresponding reset system output, which is a summation of sine waves. In continuous time,
the dot product and the 2-norm are defined in equation Eq. (6-10) for periodic signals, where
u(t) is the complex conjugate of u(t). T is the fundamental time period of the signals.

φ = cos−1

(

y · u

‖y‖2 ‖u‖2

)

(6-9)

y · u =
1

T

∫ T

0

y(t)u(t)dt ‖u‖2 =

√

1

T

∫ T

0

u(t)2dt (6-10)
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Theorem 3. The combined phase of a reset system is calculated as

φc(ω) = cos−1





A1(ω)
√

A2
1(ω) + A2

3(ω) + A2
5(ω) + ...

cos(φ1(ω))



 (6-11)

Proof.

φc = cos−1













ω

2π

∫ 2π

ω

0

y(t)u(t)dt
√

ω

2π

∫ 2π

ω

0

y(t)2dt

√

ω

2π

∫ 2π

ω

0

u(t)2dt













(6-12)

ω

2π

∫ 2π

ω

0

y(t)u(t)dt =
ω

2π

∫ 2π

ω

0

(A1sin(ωt + φ1) + A3sin(3ωt + φ3) + A5sin(5ωt + φ5) + ...)sin(ωt))dt

=
ω

2π

∫ 2π

ω

0

A1sin(ωt + φ1)sin(ωt)dt +

ω

2π

∫ 2π

ω

0

A3sin(3ωt + φ3)sin(ωt)dt +

ω

2π

∫ 2π

ω

0

A5sin(5ωt + φ5)sin(ωt)dt + ...

(6-13)

There are infinite harmonics, so this results in infinite integrals. This can be reduced to
solving two integrals, one for the first harmonic, and one for harmonic n, where n is odd and
higher than 2. Only the odd harmonics are relevant, since the even harmonics are zero.

∫ 2π

ω

0

A1sin(ωt + φ1)sin(ωt)dt =
πA1cos(φ1)

ω
∫ 2π

ω

0

Ansin(nωt + φn)sin(ωt)dt = 0 (for odd n > 2)

(6-14)

ω

2π

∫ 2π

ω

0

y(t)u(t)dt =
ω

2π

πA1cos(φ1)

ω
(6-15)

The 2-norms are calculated as follows:

√

ω

2π

∫ 2π

ω

0

u(t)2dt =

√

ω

2π

∫ 2π

ω

0

sin(ωt)2dt =

√

ω

2π

π

ω
(6-16)

√

ω

2π

∫ 2π

ω

0

y(t)2dt =

√

ω

2π

∫ 2π

ω

0

(A1sin(ωt + φ1) + A3sin(3ωt + φ3) + A5sin(5ωt + φ5) + ...)2dt

=

√

ω

2π

π(A2
1 + A2

3 + A2
5 + ...)

ω
(6-17)
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Combining the results will lead to the final phase equation.

φc(ω) = cos−1













ω

2π

∫ 2π

ω

0

y(t)u(t)dt
√

ω

2π

∫ 2π

ω

0

y(t)2dt

√

ω

2π

∫ 2π

ω

0

u(t)2dt













= cos−1













πA1(ω)cos(φ1(ω))

ω
√

π

ω

√

π(A2
1(ω) + A2

3(ω) + A2
5(ω) + ...)

ω













= cos−1





A1(ω)
√

A2
1(ω) + A2

3(ω) + A2
5(ω) + ...

cos(φ1(ω))





(6-18)

It is noted that the combined phase is not depended on the phases of the higher order
harmonics, but on the amplitudes of the higher order harmonics. When the higher order
amplitudes are of low magnitude, the combined phase lies close to the phase of the first order
describing function.

It is also noted that the phase of the first order describing function (φ1) is inserted in the cosine
function. A cosine function is periodic, and therefore returns the same value for e.g. -170◦,
170◦ and -190◦. When these numbers are plugged in the inverse cosine, 170◦ is returned. This
way, information about the quadrant is lost. Algorithm 1 is implemented after the combined
phase calculation, to compensate for the the lost quadrant information.

b := floor(φ1/180◦);

if b is divisible by 2 then

φc = 180◦b + φc;

else

φc = 180◦(b+1) - φc;

end

Algorithm 1: Quadrant compensation for the combined phase

6-2-1 Clegg integrator

The combined phase is plotted in the HOSIDF for the Clegg integrator in Figure 6-1a. As can
be seen, the combined phase lies below to the first order describing function. In Appendix B-
2 it is shown that the combined phase is -42.68◦. This is 4.44◦ lower then the first order
describing function.

Master of Science Thesis Kars Heinen



44 Combined HOSIDF

100 101
-60

-40

-20

0

20

M
a

g
n

it
u

d
e

 [
d

B
]

HOSIDF of Clegg integrator

order 1

order 3

order 5

order 7

order 9

order 11

order 13

Combined

100 101

Input frequency [rad/s]

-60

-40

-20

0

P
h

a
s
e

 [
d

e
g

]

Figure 6-2: HOSIDF of Clegg integrator with combined magnitude and phase

6-2-2 Jump behavior

The combined phase looks interesting, but there is a problem. Consider a system which
consists of a Clegg integrator R(s) controlling a mass damper system P (s), as in Eq. (6-19).
Its HOSIDF is plotted in Figure 6-3. It is seen that the combined phase has a jump around
1.27 rad/s, such that there is no frequency where the phase is exactly -180◦. This is incorrect,
since this would mean that a reset system cannot be unstable. It is also noticed that the
combined phase drifts away from the first order phase around 1.27 rad/s. For frequencies
much lower or higher, the combined phase is almost equal to the first order phase.

R(s) =
1

�✒s
P (s) =

1

s2 + s
(6-19)
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Figure 6-3: HOSIDF with jump in combined phase
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The jump happens because the output of the cosine of the phase of the first order describing
function is multiplied with an amplitude. This amplitude is always smaller than 1, while the
output of a cosine is always between -1 and 1. When the amplitude is 0.999, the multiplication
of both will lie between -0.999 and 0.999. When taking the inverse cosine of this, the result
is between 2.5◦ and 177.5◦. In other words, there is no smooth behavior going from -170◦ to
-190◦. This results in a phase jump around -180◦.

The phase jump can also be explained in a graphical way. Consider Figure 6-4, where two
points on the unit disk are drawn, such that both the hypotenuses are 1. Point P1 has an
angle φ1 and an adjacent side of a1. Point P2 has an angle φ2 and an adjacent side of a2,
which is always a fraction smaller (0.99) than a1, so a2 = 0.99a1. Because of the latter, there
is always a horizontal distance d between P1 and P2. When φ1 is exactly 0◦, the point P1 lays
on the intersection of the unit circle and the x-axis. Because d remains non zero and both the
hypotenuses remain 1, P2 has to be above or below the x-axis. When φ1 is smoothly lowered
such that P1 goes through the x-axis, P2 will follow with a jump.

a1 a2
d

φ1φ2

P1

P2

Figure 6-4: Unit circle showing two points with a non zero adjacent distance

Consider the case where the combined phase is calculated for a certain frequency. This will
result in Eq. (6-20).

φc = cos−1





A1
√

A2
1 + A2

3 + A2
5 + ...

cos(φ1)



 (6-20)

When calculating a cosine of an angle, the adjacent side is returned (assuming a hypotenuse
of 1). So in case of the combined phase, a1 = cos(φ1). The output of this cosine is however
multiplied with an amplitude, creating an adjacent side of a different length (a2). When the
inverse cosine is taken from this adjacent side, an angle is returned (assuming a hypotenuse
of 1). In case of the combined phase for the HOSIDF, the distance d is given by Eq. (6-21).
The value for d will never be zero, so a jump will always occur.
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d = a1 − a2 = cos(φ1) − A1
√

A2
1 + A2

3 + A2
5 + ...

cos(φ1) = cos(φ1)



1 − A1
√

A2
1 + A2

3 + A2
5 + ...





(6-21)

6-3 Loop shaping

In the previous two sections, a new magnitude and phase approach has been created for reset
systems. The new approach takes the higher order harmonics into account, which can lead
to more accurate results. In this section, the results of the combined magnitude and phase
are discussed. This is done by applying loop shaping for mass spring damper (MSD) systems
with and without damping. We also discuss the accuracy of loop shaping with the combined
magnitude and phase.

6-3-1 Mass spring damper system without damping

Consider a Clegg integrator R(s) controlling a plant P (s), as in Eq. (6-22). The plant P (s)
is a MSD system with a natural frequency of 1 rad/s and no damping, such that the reso-
nance frequency has infinite gain. The HOSIDF is plotted in Figure 6-5, with the combined
magnitude and phase.

R(s) =
1

�✒s
P (s) =

1

s2 + 1
(6-22)
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Figure 6-5: HOSIDF with combined magnitude and phase of MSD system with no damping,
controlled by a Clegg integrator
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In Figure 6-5 it is seen that multiple resonance frequencies appear in the combined magnitude
response. Each harmonic hits the resonance frequency of the plant (as discussed in Section 5-
3), and therefore has infinite gain as well. The harmonics are added up to form the combined
magnitude, which as a result has multiple infinite gain peaks. The infinite gain peaks from
the harmonics can be seen in the time domain as well. In Figure 6-6a, the system is excited
in open loop by a sine wave of 0.2 rad/s. At this frequency, the fifth order hits the resonance
frequency of the plant. In the time domain it is seen that the output grows, indicating a
infinite steady state amplitude. In Figure 6-6b, the system is excited by a sine wave of 0.6
rad/s. This frequency is not related to a harmonic resonance, and therefore does not grow
in the time domain. These time domain simulations verify the combined magnitude line
of the HOSIDF. The multiple peaks are not captured by the first order describing function,
indicating that the combined magnitude shows more accurate information than the first order
describing function.
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(b) Open loop response of u(t) = sin(0.6t)

Figure 6-6: Open loop time domain responses of MSD system with zero damping

It is noted that the combined phase has no jump behavior at the crossover frequency in
Figure 6-5. This is because the magnitude at crossover frequency has infinite gain, making
the combined phase equal to the phase of the first order describing function. It is also noted
that the combined phase has a dip at every resonance frequency. This happens because at
a harmonic resonance frequency, the harmonic has infinite gain. When this infinite gain is
insert in Eq. (6-11), the output is φc = cos−1(0 · cos(φ1)) = −90◦

As discussed before, the combined magnitude lies always higher than the first order describing
function. If the plot is recreated with more harmonics for a low frequency range, Figure 6-7
is obtained. In this plot, only the first order and the combined phase are listed in the legend.
The shown peaks are the higher order harmonics. It is seen that the minimum of the combined
magnitude lies ∼2 dB higher than the first order describing function. High magnitude in the
low frequency range implies good tracking. Because the combined phase lies higher than
the first order describing function, it may give better tracking performance than what was
expected by the first order describing function.

It is also seen that the phase makes multiple jumps between -50◦ and -90◦. At a harmonic
resonance frequency, the gain of the harmonic is infinite, so the combined phase goes to -90◦.
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The minimum phase stays however around -50◦, which is lower than the -38◦ of the first order
describing function.
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Figure 6-7: Zoomed in HOSIDF of MSD with no damping showing many harmonics

6-3-2 Mass spring damper system with damping

Systems with zero damping are hard to find in practice. In the next example, a mass spring
damper (MSD) system with little damping is considered.

A MSD system is controlled by a Clegg integrator, as in Eq. (6-23). The HOSIDF is plotted
in Figure 6-8. It is seen from the HOSIDF plot that the combined magnitude lies higher than
the first order describing function for low frequencies. For MSD systems without damping,
this offset was around 2 dB. For this MSD system, the offset is around 1 dB. The resonance
peaks for a MSD with damping are lower in magnitude, such that the combined magnitude is
lower in magnitude as well. This makes the offset between the combined magnitude and the
first order describing function less. When more damping is added, the peaks are even further
lowered, creating an even lower offset between the combined magnitude and the first order
describing function.

The combined phase has small dips where the harmonic resonance frequencies are. The
maximum phase in the low frequency region is no longer -50◦, but comes closer to -42.68◦,
which is the combined phase of a Clegg integrator. When more damping is added, the
combined phase will approach the combined phase of the Clegg integrator.

R(s) =
1

�✒s
P (s) =

1

s2 + 0.1s + 1
(6-23)
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(b) HOSIDF of Eq. (6-23), zoomed in

Figure 6-8: HOSIDF of MSD system with little damping controlled by a Clegg integrator from
Eq. (6-23)

The combined phase in Figure 6-8 has a jump where the first order describing function passes
-180◦, although this is not clearly visible. If more damping is added, the higher orders will lie
more close to the first order describing function around the crossover frequency. This makes
the distance d from Section 6-2-2 bigger, so a bigger jump occurs. The combined phase jump
will lead to inaccurate results, as will be discussed in the next section.

6-3-3 Accuracy of combined HOSIDF

In Section 4-3-1, it was seen that loop shaping was not accurate if the first order describing
function was considered. In this chapter, the HOSIDF was combined to form a single response
for magnitude and phase. In this section, we investigate if the combined HOSIDF shows more
accurate results.

Consider a MSD system (ωn = 10, ζ = 1.2) which is controlled by a Clegg integrator with a
gain, as in Eq. (6-24). This is the same system as in Section 4-3-1, so the gain is chosen such
that the system is marginally stable. In Figure 6-9, the HOSIDF is plotted for this system.
The zoomed in HOSIDF is shown in Figure 6-9b and considers only the first order describing
function and the combined magnitude and phase response. It is seen that the magnitude of
the first order describing function and the combined magnitude is close to each other. The
crossover frequency is determined from the combined magnitude and is plotted in Figure 6-
9b. The combined phase shows a jump of 4◦ around 33.5 rad/s. This results in a large offset
between the combined phase and the phase of the first describing function at the crossover
frequency.

In Section 4-3-1, it was calculated that the first order describing function had a phase of
-180.6◦ around the crossover frequency. This was however calculated with the crossover
frequency of the first order describing function. The magnitude response of the first order
describing function is however so close to the combined magnitude, that it is not relevant
which magnitude response we chose to determine the crossover frequency. The combined
phase is -182◦ around the crossover frequency, which is further away from -180◦ than -180.6◦.
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R(s) =
K

�✒s
P (s) =

ω2
n

s2 + 2ζωns + ω2
n

(6-24)
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Figure 6-9: HOSIDF of marginal stable MSD system controlled by a Clegg integrator with
combined magnitude and phase

To summarize, the combined phase predicts a more inaccurate result than the first order
describing function. If more damping is added to the system, the jump from the combined
magnitude increases, and thus creating a big offset.

It is seen that the combined magnitude shows promising results, because it captures the
harmonic resonances. The combined phase however encounters a jump when the first order
describing function passes -180◦. This makes the result from the combined phase inaccurate.
The combination of magnitude and phase needs to match to test for marginal stability. For
marginal stable systems, the frequency where the magnitude crosses 0 dB should be the same
frequency where the phase crosses -180◦. A new method for magnitude and phase analysis is
created, but this can not be verified with the marginal stability test if the new phase response
is inaccurate. It is concluded that the combined magnitude and phase is not mature enough
yet to rely on during loop shaping.
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Chapter 7

Discussion

The HOSIDF is a promising way of analyzing reset systems. Not every aspect of the HOSIDF
could be analyzed, and therefore there are topics which could be researched further.

7-1 Rules of thumb design

With the HOSIDF, a tool is created which gives much more insight is given for reset systems.
For similar first order describing functions, the higher harmonics can be different. Because
the higher order harmonics can now be analyzed, new design rules can be made for reset
systems. It is desired to have some rules of thumb to design reset systems.

7-2 Analytical stability solution

In Section 3-4 a stability criterion was shown. With this criterion, reset systems can be proven
to be (un)stable, when the reset interval τ was known. The reset interval was simulated with
Simulink, instead of calculating it analytically. Therefore, computational errors could occur.
The stability analysis would be more accurate if the reset interval was calculated instead of
simulated.

7-3 Combined phase jump

It was seen in Section 6-2-2 that the combined phase has jumps when the first order describing
function passes -180◦. There is no frequency where the combined phase is exactly -180◦. If
the magnitude is higher than 0 dB at the -180◦, the system will become unstable. If the
phase is never -180◦, a reset system can not be unstable. There are however many examples
of unstable reset systems. This concludes that the combined phase is not correct, and further
research needs to be done.
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This thesis considered only jumps which happened when the first order describing function
was -180◦, but jumps happens at every n · 180◦ with n ∈ Z.

7-4 Closed loop HOSIDF

Stability and performance analysis is done in open loop, and therefore only the open loop
HOSIDF have been considered. Calculating the closed loop HOSIDF is not as trivial as for
linear systems. A linear integrator in open loop will become a first order element when closing
the loop. A Clegg integrator in open loop will however not become a FORE in closed loop.
The closed loop response of a Clegg integrator is plotted in Figure 7-1a. In 7-1b the Fourier
transformation is plotted. It is seen that the amplitude of harmonics do not always decrease
when the harmonic order increases. The 7th order harmonic appears to be slightly higher
than the 5th order.
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Figure 7-1: Closed loop response of Clegg integrator

The open loop HOSIDF L(ω, n) is known for every harmonic. When each harmonic is inserted
in Eq. (7-1), the closed loop HOSIDF in Figure 7-2 is obtained. It can be seen here that all
the harmonic magnitudes are decreasing if the order increases. In this plot, the 7th order
harmonic is not higher than the 5th. This is in contrast with the Fourier transformation seen
in Figure 7-1b.

T (ω, n) =
L(ω, n)

1 + L(ω, n)
(7-1)
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Figure 7-2: HOSIDF of closed loop Clegg integrator

It is clear that the closed loop HOSIDF plot from Figure 7-2 is incorrect. The plot was created
using Eq. (7-1), which calculates the closed loop per harmonic. This way, the closed loop
HOSIDF does not take the harmonic influences on each other into account. It is suspected
that in feedback, the harmonics have some sort of interaction with each other. Further
research needs to be done about this topic.

7-5 Closed loop stable sinusoidal input

If a linear system is unstable, every input will result in a unstable closed loop response. If a
reset system is unstable, not every input will result in instability.

Consider a system with a Clegg integrator and a plant P (s) = 0.11 s+2

s2+0.2s
. This system has

an unstable closed loop step response. However, if a sine wave is applied to the closed loop
system, it depends on the input frequency if the output is unstable or not. With simulation
it is found that for this system, a frequency up to 0.71039 rad/s gives an unstable response.
Any frequency higher than this gives a stable response. When the plant is changed to P (s) =

4

s2+s+1
, the same behavior occurs for an input frequency up to 2.0628 rad/s.

This is unexpected behavior and further research needs to be done.

Master of Science Thesis Kars Heinen



54 Discussion

Kars Heinen Master of Science Thesis



Chapter 8

Conclusion

The research goal of this study was to:

Integrate higher order information into a frequency domain representation for the analysis of
reset systems containing a Clegg integrator.

First, an introduction was given to reset systems. Reset control can overcome fundamental
limitations of linear control, which could lead to better results. It was shown that linear
controllers are designed in the frequency domain using loop shaping. Reset systems are hard
to represent in the frequency domain since they are non linear. Their frequency response
needs to be approximated using describing functions. The current state of the art uses
only first order describing functions. It was proven with a stability condition that the first
order describing function is not accurate. The inaccuracy was however in our favor, because
the describing function predicted instability for stable systems. Current describing function
analysis did not give accurate results, so higher order needed to be considered.

The HOSIDF has been introduced, which gives better insight of reset elements in the frequency
domain, because it considers the higher order dynamics. The HOSIDF shows magnitude and
phase behavior per harmonic, such that performance and stability could be investigated more
accurate. Because the HOSIDF shows multiple responses, it is not trivial how to do loop
shaping.

A new method for analyzing the magnitude and phase behavior of a reset system has been
proposed, by combining the information from the HOSIDF to form a single response for
magnitude and phase. It was seen that the combined magnitude seems promising, since
resonance frequencies were clearly seen in the low frequency spectrum. However, the combined
phase showed a jump where the first order describing function passed -180◦. This jump leads
to inaccurate results. It is concluded that the combined magnitude and phase approach is
not mature enough, and further research needs to be done in this direction.
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Appendix A

HOSIDF verification results

The HOSIDF was found analytically so it should match the output of a reset element. It is
still desired to verify the results to see if no errors are made during the derivation.

One way to verify the results is to simulate the response of a sine wave input to a reset
system. When taking the Fourier series of the system output, one should see the harmonics
of the output signal. The amplitude of these harmonics should match the results from the
calculated HOSIDF.

Several reset systems are tested; a Clegg integrator, a first order reset element (FORE), a
P+CL controller, a partial reset Clegg integrator and a Clegg integrator controlling a plant.
All simulations are done in the same way: A sine wave of 10 rad/s and amplitude 1 is excited
to the system. The output will be simulated in Simulink and Fourier transformed with the
’FFT’ command in MATLAB. The sample frequency is chosen to be 200 samples per period,
to avoid aliasing. The simulation time is such that there are exactly 500 periods, to avoid
spectral leakage. This results in a sampling time of 3.141 ms and a simulation time of 314.159
s.

A-1 Clegg integrator

R(s) =
1

�✒s
(A-1)

A Clegg integrator (Eq. (A-1)) is simulated in open loop, as seen in Figure A-1a. Note that
in Figure A-1a, only 2 seconds are shown, for displaying purposes. The simulated output is
Fourier transformed with the Fast Fourier Transform (FFT), which can be seen in Figure A-
1b.
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Figure A-1: Clegg integrator time domain simulation with corresponding Fourier transform

As can be seen in Figure A-1b, the FFT shows a big peak at 10 rad/s, which is the base
frequency (1st harmonic). At 20 rad/s (the 2nd harmonic) the FFT is zero, as expected. At
30 rad/s (3rd harmonic) the FFT has a much lower peak value than the first harmonic. The
FFT magnitudes are compared to the amplitudes of the HOSIDF. To calculate the HOSIDF,
the transfer function from Eq. (A-1) has to be converted to a state space representation,
which is done in Eq. (A-2). The resulting HOSIDF is shown in Figure A-2a. In Figure A-2b,
the magnitude plot is zoomed in and the y-axis displays the magnitude in absolute value,
instead of decibels.

A B

C D
=

0 1

1 0
, Ar = 0 (A-2)
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Figure A-2: HOSIDF of Clegg integrator
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Table A-1: Comparison of FFT results with HOSIDF

Order FFT Mag HOSIDF Mag Error in %
1 0.1610 0.1619 0.5844
3 0.0425 0.0424 0.0361
5 0.0255 0.0255 0.1019
7 0.0182 0.0182 0.2008
9 0.0142 0.0141 0.3329
11 0.0116 0.0116 0.4984
13 0.0099 0.0098 0.6974
15 0.0086 0.0085 0.9304
17 0.0076 0.0075 1.1975
19 0.0068 0.0067 1.4992
21 0.0062 0.0061 1.8359
23 0.0057 0.0055 2.2081
25 0.0052 0.0051 2.6163

The magnitudes of the FFT are compared to the calculated amplitudes from the HOSIDF.
As can be seen in Table A-1, the FFT and the HOSIDF are almost the same. The small
error is due to the calculation of the FFT, which always has computational errors, although
small. When calculating the FFT with higher sampling frequency and a longer experiment
time, the error gets smaller. This highly indicates that the FFT is not a perfectly accurate
method. Because of this, the error increases for higher orders.

The same experiment is repeated for a FORE, a P+CL controller, a partial reset Clegg
integrator and a Clegg integrator controlling a plant. These can be found in the next sections.
Because the method is the same for the other sections, only the results are shown.

A-2 FORE

An open loop first order reset element R(s) is simulated.

R(s) =
1

✘✘✘✘✿s + 10
(A-3)

Table A-2: Comparison of FFT results with HOSIDF for a FORE

Order FFT Mag HOSIDF Mag Error in %
1 0.8347 0.8357 0.1161
3 0.1058 0.1050 0.7195
5 0.0656 0.0651 0.7361
7 0.0473 0.0470 0.7610
9 0.0370 0.0367 0.7942
11 0.0303 0.0301 0.8356
13 0.0257 0.0255 0.8854
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A-3 P+CL controller

A P+CL controller is simulated in open loop. A P+CL controller is a PI controller, but
then the linear integrator is replaced with the Clegg integrator. This controller needs a feed
through matrix D to describe its behavior. Its controller structure is given in Figure A-3,
and its equation by Eq. (A-4).

R(s) =
s + 1

�✒s
(A-4)

1

s

+
+

Figure A-3: Overview of a P+CL controller

Table A-3: Comparison of FFT results with HOSIDF for P+CL control

Order FFT Mag HOSIDF Mag Error in %
1 1.7090 1.7113 0.1315
3 0.2123 0.2122 0.0353
5 0.1275 0.1273 0.1012
7 0.0911 0.0909 0.2001
9 0.0710 0.0707 0.3322
11 0.0582 0.0579 0.4976
13 0.0493 0.0490 0.6967

A-4 Partial Clegg integrator

The Clegg integrator is simulated in open loop again, but now with it will not reset to zero,
but to a fraction of its current state. The reset matrix is Ar = 0.4.

R(s) =
1

�✒s
Ar = 0.4 (A-5)

Table A-4: Comparison of FFT results with HOSIDF for a partial Clegg integrator

Order FFT Mag HOSIDF Mag Error in %
1 0.1134 0.1139 0.4852
3 0.0182 0.0182 0.1314
5 0.0109 0.0109 0.1973
7 0.0078 0.0078 0.2963
9 0.0061 0.0061 0.4285
11 0.0050 0.0050 0.5941
13 0.0042 0.0042 0.7933
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A-5 Clegg integrator with plant 61

A-5 Clegg integrator with plant

A Clegg integrator R(s) controlling a plant P (s) in simulated in open loop.

R(s) =
1

�✒s
P (s) =

2s + 3

s2 + 2s + 3
(A-6)

Table A-5: Comparison of FFT results with HOSIDF for Clegg integrator controlling a plant

Order FFT Mag HOSIDF Mag Error in %
1 0.0331 0.0331 0.1415
3 0.0028 0.0028 0.0616
5 0.0010 0.0010 0.1731
7 0.0005 0.0005 0.3407
9 0.0003 0.0003 0.5649
11 0.0002 0.0002 0.8464
13 0.0002 0.0002 1.1858
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Appendix B

Combined HOSIDF for the Clegg
integrator

B-1 Combined magnitude for Clegg integrator

B-1-1 Graphical proof

Consider a Clegg integrator which is excited to a sine wave of frequency ω (see Figure B-1).
The output has a jump when the input goes through zero, which happens at t = k π

ω
for

k=0,1,2,...

When calculating the power of a signal, the integral is calculated for the squared signal.
Because the signal is squared, its negative content will become positive. The sine wave and
the Clegg integrator have a symmetric response, the absolute value of the both the input and
output are the same before and after t = π

ω
. Because of this symmetry, it is sufficient to look

at the power of half a period.
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Figure B-1: Clegg integrator output subjected to a sinusoidal input

The output of a Clegg integrator can be described with y(t) = 1

ω
(1−cos(ωt)) when 0 < t < π

ω
.

The power of the output signal is calculated as follows:

Ypwr(t) =
ω

π

∫ π

ω

0

( 1

ω
(1 − cos(ωt))

)2

dt =
3

2ω2
(B-1)

When calculating this back to a corresponding amplitude:

Ay =
√

2Py =

√

3

ω2
(B-2)

When a sine wave of 1 rad/s and amplitude 1 is applied, the power theory results in an
amplitude of

√
3.

Gpwr =
Ay

Au
=

√
3 (B-3)

B-1-2 Mathematical proof

In the previous section, the power of a Clegg integrator was calculated by a graphical approach.
In this section, the same will be proven, but now the HOSIDF will be used. The output
of a reset system can be described by a summation of harmonics. The amplitudes of the
harmonics can be calculated by taking the absolute values of the complex numbers, which
can be calculated by the HOSIDF. In Eq. (B-4) the HOSIDF equations are shown for the
Clegg integrator. When the amplitudes are known, these can be plugged in Eq. (6-7) to
get the amplitude for the combined magnitude. In this section, the combined magnitude is
calculated for an input frequency of 1 rad/s.
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for n = 1 CI(ω) =
1

jω
(1 + j

4

π
)

for odd n ≥ 2 CI(ω) =
4

πωn

(B-4)

for n = 1 A1(ω = 1) =

∣

∣

∣

∣

1

j
(1 + j

4

π
)

∣

∣

∣

∣

=

√

1 +
42

π2

for odd n ≥ 2 An(ω = 1) =

∣

∣

∣

∣

4

πn

∣

∣

∣

∣

=
4

πn

(B-5)

The squared amplitudes needs to be summed up. Because every higher harmonic is of lower
amplitude, they will reach an asymptote. This asymptote can be calculated by a series. Only
odd harmonics appear in the output, so we have to sum (2n + 1) for n = 1 until n = ∞.

∞
∑

n=1

A2
2n+1 =

42

π2

∞
∑

n=1

(2n + 1)−2 =
42

π2

(

π2

8
− 1

)

(B-6)

When all the squared amplitudes are added up, the following expression will form:

A2
1 + A2

3 + A2
5 + ... = 1 +

42

π2
+

42π2

8π2
− 42

π2
= 3 (B-7)

The power was however defined as the square root of this summation, so the end result will
be

√
3.

B-2 Combined phase for Clegg integrator

The combined phase of the Clegg integrator is the same for all frequencies. To calculate its
exact value, ω = 1 rad/s is plugged in to simplify the calculation.

φc(1) = cos−1





A1(1)
√

A2
1(1) + A2

3(1) + A2
5(1) + ...

cos(φ1(1))



 (B-8)

With

A1(1) =

√

(−1)2 +

(

4

π

)2

(B-9)

cos(φ1(1)) = cos

(

tan−1

( −1

4/π

))

= cos

(

tan−1

(−π

4

))

=
4

√

(−π)2 + 42
(B-10)
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This last line is better explained by Figure B-2. When an arctangent is calculated, an angle

will be the result, because φ = tan−1

(

o

a

)

. We calculate the artangens for
− π

4
, so the

opposite side is o = −π and the adjacent side is a = 4. This makes hypotenuse side h =
√

a2 + o2. The cos of the angle φ can be calculated as cos(φ) =
a

h
=

a√
a2 + o2

φ

h

o

a

Figure B-2: Angle calculation of a right-angled triangle

In Eq. (B-6) it was calculated that

A2
1(1) + A2

3(1) + A2
5(1) + ... = 3 (B-11)

Combining these parts results in

φ(1) = cos−1
(

√

1 + 16

π2√
3

4√
π2 + 16

)

= cos−1
( 4√

3

√
π2 + 16

√

π2(π2 + 16)

)

= cos−1
( 4

π
√

3

)

≈ 42.68◦

(B-12)

It is seen that the resulting phase is positive. Applying Algorithm 1 makes the phase negative.
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Appendix C

MATLAB Code of the HOSIDF

In this appendix, MATLAB code is given to calculate the HOSIDF. With hosidfcalc.m, the
frequency response is returned per harmonic. With hosidf.m, the HOSIDF of a reset system
is plotted. With hosidfol.m, the open loop HOSIDF of a reset system and a plant is plotted.

C-1 hosidfcalc.m

function [ G ] = hosidfcalc ( sys , Ar , n , freqs )
% G = hosidfcalc(SYS , AR, N, FREQS , CLOL)

% Calculated the higher order (n) describing function for a reset system.

%

% SYS is the reset element described in state space

% AR is the amount of reset you want to achieve (typical 0)

% N is the describing function order

% FREQS contains the frequencies the describing function is calculated for

% Kars Heinen - TU Delft - 2018

% to do; replace inv() by ’matlab \’ for faster results

% odd orders will be skipped

if ( mod (n , 2 ) == 0)
G = 0 ;
return ;

end

A = sys . a ; B = sys . b ; C = sys . c ; D = sys . d ;

G = zeros (1 , numel ( freqs ) ) ;

for i=1:numel ( freqs )
w = freqs ( i ) ;

Lambda = w∗w∗eye ( size ( A ) ) + A ^2;
LambdaInv = inv ( Lambda ) ;
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Delta = eye ( size ( A ) ) + expm ( A∗pi/w ) ;
DeltaR = eye ( size ( A ) ) + Ar∗expm ( A∗pi/w ) ;

GammaR = inv ( DeltaR ) ∗Ar∗Delta∗LambdaInv ;

ThetaD = (−2∗w∗w/pi ) ∗Delta ∗( GammaR−LambdaInv ) ;

if ( n==1)
G ( i ) = C∗inv ( j∗w∗eye ( size ( A ) ) − A ) ∗( eye ( size ( A ) ) + j∗ThetaD ) ∗B ;

else

% J1 and J2 dissappear

G ( i ) = C∗inv ( j∗w∗n∗eye ( size ( A ) ) − A ) ∗j∗ThetaD∗B ;
end

end

if ( n == 1)
G = G + D ;

end

end

C-2 hosidf.m

function hosidf ( sys , Ar , n , freqs )
% Plots the HOSIDF of a given reset system

% Basically a wrapper function around hosidfcalc () to actually plot stuff

% HOSIDF(SYS , Ar, N, FREQS , CLOL)

% SYS is the reset system in state space

% Ar is the reset matrix (typical 0)

% N are the orders to display (note: even orders will be skipped since they

result in zero anyway)

% FREQS are the frequencies to show

% Kars Heinen - TU Delft - 2018

% how many inputs are given

switch nargin

case 0
sys = ss ( −10 ,10 ,1 ,0) ; % standaard een 10/(s+10) doen

Ar = 0 ;
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 1
Ar = 0 ;
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 2
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 3
freqs = logspace ( −2 ,3 ,1000) ;

end

% freq vector contains frequency of <= 0?

if ( numel ( freqs ( freqs<=0)) > 0)
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error ( ’FREQS should not contain a number <= 0! ’ ) ;
end

% only odd order are accepted

n = n ( mod (n , 2 ) == 1) ;

% title generator

if ( numel ( sys . A ) > 1)
plottitle = ’HOSIDF of higher order sys’ ;

else

plottitle = sprintf ( ’HOSIDF of (%d, %d, %d, %d)’ , sys . A , sys . B , sys . C ,
sys . D ) ;

end

% ok finally the real function; hic sunt dracones

figure ;
legendInfo = [ ] ;

Gabs = [ ] ;
Gphase = [ ] ;

for i=1:numel ( n )
order = n ( i ) ;

L = hosidfcalc ( sys , Ar , order , freqs ) ;

Gabs (i , : ) = mag2db ( abs ( L ) ) ;
Gphase (i , : ) = unwrap ( rad2deg ( phase ( L ) ) ) ;

legendInfo{i} = [ ’order ’ num2str ( order ) ] ;
end

GabsMag = db2mag ( Gabs ) ;

% calculate combined magnitude

GabsCombined = mag2db ( sqrt ( sum ( GabsMag . ^ 2 , 1 ) ) ) ;

% calculate combined phase

ampPhase = GabsMag ( 1 , : ) . / sqrt ( sum ( GabsMag . ^ 2 , 1 ) ) ;
GphaseCombined = acosd ( ampPhase . ∗ cosd ( Gphase ( 1 , : ) ) ) ;

% combined phase algorithm quadrant compensation

for i=1:numel ( Gphase ( 1 , : ) )
b = floor ( Gphase (1 , i ) /180) ;

if ( mod (b , 2 ) ) % not divisble by 2

GphaseCombined ( i ) = 180∗( b+1) − GphaseCombined ( i ) ;
else % divisble by 2

GphaseCombined ( i ) = 180∗b + GphaseCombined ( i ) ;
end

end

% plot

ax1 = subplot ( 2 , 1 , 1 ) ;
semilogx ( freqs , Gabs , ’lineWidth ’ , 2) ; hold on ;
semilogx ( freqs , GabsCombined , ’lineWidth ’ , 2 , ’Color’ , ’black’ ) ; hold off ;
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legendInfo{numel ( n )+1} = ’Combined ’ ;

title ( plottitle ) ;
legend ( legendInfo ) ;
ylabel ( ’Magnitude [dB]’ ) ;

ax2 = subplot ( 2 , 1 , 2 ) ;
semilogx ( freqs , Gphase , ’lineWidth ’ , 2) ; hold on ;
semilogx ( freqs , GphaseCombined , ’lineWidth ’ , 2 , ’Color’ , ’black’ ) ; hold off

;

ylabel ( ’Phase [deg]’ ) ;
xlabel ( ’Input frequency [rad/s]’ ) ;
linkaxes ( [ ax1 , ax2 ] , ’x’ )

end

C-3 hosidfol.m

function hosidfol ( sysC , sysP , Ar , n , freqs )
% Plots the HOSIDF of a open loop system with reset controller C and plant

P

% HOSIDFOL(SYSC , SYSP , Ar, N, FREQS)

% SYSC is the reset system in state space

% SYSP is the plant

% Ar is the reset matrix (typical 0)

% N are the orders to display (note: even orders will be skipped since they

are zero)

% FREQS are the frequencies to show

% Kars Heinen - TU Delft - 2018

% how many inputs are given

switch nargin

case 0
sysC = ss ( 0 , 1 , 1 , 0 ) ; % example commonly used

sysP = tf ( [ 1 1 ] , [ 1 0 . 2 0 ] ) ;
Ar = 0 ;
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 1
sysP = tf ( [ 1 1 ] , [ 1 0 . 2 0 ] ) ;
Ar = 0 ;
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 2
Ar = 0 ;
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 3
n = 1 : 2 : 1 3 ;
freqs = logspace ( −2 ,3 ,1000) ;

case 4
freqs = logspace ( −2 ,3 ,1000) ;

end
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% freq vector contains frequency of <= 0?

if ( numel ( freqs ( freqs<=0)) > 0)
error ( ’FREQS should not contain a number <= 0! ’ ) ;

end

% only odd order are accepted

n = n ( mod (n , 2 ) == 1) ;

% title generator

plottitle = ’HOSIDF of open loop’ ;

% ok finally the real function; hic sunt dracones

figure ;
legendInfo = {zeros (1 , numel ( n ) +1) } ;

Gabs = zeros ( numel ( n ) , numel ( freqs ) ) ;
Gphase = zeros ( numel ( n ) , numel ( freqs ) ) ;

for i=1:numel ( n )
order = n ( i ) ;

[ mag , angle ] = bode ( sysP , freqs∗order ) ;
absP = mag2db ( squeeze ( mag ) ’ ) ;
angleP = squeeze ( angle ) ’ ;

C = hosidfcalc ( sysC , Ar , order , freqs ) ;
absC = mag2db ( abs ( C ) ) ;
angleC = rad2deg ( phase ( C ) ) ;

% do not convert to complex number and add , because the phase will wrap

Gabs (i , : ) = absP + absC ;
Gphase (i , : ) = angleP + angleC ;

legendInfo{i} = [ ’order ’ num2str ( order ) ] ;
end

GabsMag = db2mag ( Gabs ) ;

% calculate combined magnitude

GabsCombined = mag2db ( sqrt ( sum ( GabsMag . ^ 2 , 1 ) ) ) ;

% calculate combined phase

ampPhase = GabsMag ( 1 , : ) . / sqrt ( sum ( GabsMag . ^ 2 , 1 ) ) ;
GphaseCombined = acosd ( ampPhase . ∗ cosd ( Gphase ( 1 , : ) ) ) ;

% combined phase algorithm quadrant compensation

for i=1:numel ( Gphase ( 1 , : ) )
b = floor ( Gphase (1 , i ) /180) ;

if ( mod (b , 2 ) ) % not divisble by 2

GphaseCombined ( i ) = 180∗( b+1) − GphaseCombined ( i ) ;
else % divisble by 2

GphaseCombined ( i ) = 180∗b + GphaseCombined ( i ) ;
end

end
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% draw plot

ax1 = subplot ( 2 , 1 , 1 ) ;
semilogx ( freqs , Gabs , ’lineWidth ’ , 2) ; hold on ;
semilogx ( freqs , GabsCombined , ’lineWidth ’ , 2 , ’Color’ , ’black’ ) ; hold off ;

title ( plottitle ) ;
ylabel ( ’Magnitude [dB]’ ) ;

ax2 = subplot ( 2 , 1 , 2 ) ;
semilogx ( freqs , Gphase , ’lineWidth ’ , 2) ; hold on ;
semilogx ( freqs , GphaseCombined , ’lineWidth ’ , 2 , ’Color’ , ’black’ ) ; hold off

;

ylabel ( ’Phase [deg]’ ) ;
xlabel ( ’Input frequency [rad/s]’ ) ;
linkaxes ( [ ax1 , ax2 ] , ’x’ ) ;

legendInfo{numel ( n )+1} = ’Combined ’ ;
legend ( legendInfo ) ;

end
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