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ABSTRACT

We investigate the frequency and damping rate of fast axisymmetric waves that are subject to wave leakage for a
one-dimensional magnetic cylindrical structure in the solar corona. We consider the ideal magnetohydrodynamic
(MHD) dispersion relation for axisymmetric MHD waves superimposed on a straight magnetic cylinder in the zero
β limit, similar to a jet or loop in the solar corona. An analytic study accompanied by numerical calculations has
been carried out to model the frequency, damping rate, and phase speed of the sausage wave around the cut-off
frequency and in the long wavelength limit. Analytic expressions have been obtained based on equations around
the points of interest. They are linear approximations of the dependence of the sausage frequency on the wave
number around the cut-off wavelength for both leaky and non-leaky regimes and in the long wavelength limit.
Moreover, an expression for the damping rate of the leaky sausage wave has been obtained both around the cut-off
frequency and in the long wavelength limit. These analytic results are compared with numerical computations. The
expressions show that the complex frequencies are mainly dominated by the density ratio. In addition, it is shown
that the damping eventually becomes independent of the wave number in the long wavelength limit. We conclude
that the sausage mode damping directly depends on the density ratios of the internal and external media where
the damping declines in higher density contrasts. Even in the long wavelength limit, the sausage mode is weakly
damped for high-density contrasts. As such, sausage modes could be observed for a significant number of periods
in high-density contrast loops or jets.
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1. INTRODUCTION

Since the late 1990s, it has become clear that magnetohy-
drodynamic (MHD) waves are almost everywhere in the solar
atmosphere. From a predominantly theoretical concept, they
have evolved to a physical reality. An obvious starting point for
a theoretical study of MHD waves on magnetic flux tubes was
the analysis of linear MHD waves superimposed on a straight
cylindrical plasma column with a constant longitudinal (vertical)
magnetic field and a piecewise constant density. This analysis
leads to two dispersion relations in terms of Bessel functions.
Edwin & Roberts (1983) were not the first to document the dis-
persion relations but they complemented and extended previous
work and gave a complete overview of the MHD waves given by
these dispersion relations. Edwin & Roberts (1983) considered
real frequencies ω and real longitudinal wave numbers kz and
supposed that there is no propagation of energy away or toward
the cylinder at r = R. Edwin & Roberts (1983) confined their
attention to the cylindrically symmetric (sausage or pulsational)
modes given by m = 0 and the asymmetric (kink or taut-wire)
modes given by m = 1.

Let us focus on the results of Edwin & Roberts (1983)
for coronal loops shown in their Figure 4. An intriguing and
shocking property of Figure 4 is that all dispersion curves,
with one exception, of MHD waves with frequencies ω between
the local internal Alfvén frequency ωAi and the local external
Alfvén frequency ωAe have a low longitudinal wave number
cut-off kc. The dispersion curves do not start at kz = 0 but at
kz = kc > 0. The only exception is the radial fundamental
mode of the kink waves (which was also discussed by Wentzel
1979), which is apparent from Figure 4 of Edwin & Roberts
(1983). The cut-off longitudinal wave number kc depends on the

radial tone under consideration. The longitudinal cut-off wave
number kc does not mean that MHD waves with kz < kc do
not exist. Recall that Edwin & Roberts considered modes with
ω and kz both real, and hence excluded MHD waves with real
kz and complex frequencies. It was known first from plasma
physics, geophysics, and later from solar physics that MHD
waves can have complex frequencies even in ideal MHD when
the background is non-uniform and the real part of the frequency
is in the Alfvén continuum, i.e., in between the minimum and
maximum value of the total Alfvén frequency. Even in a uniform
plasma with resonant absorption absent, a linear MHD wave can
have complex frequencies and undergo damping due to MHD
radiation. This damping due to MHD radiation or leakage was
first studied by Spruit (1982) both for axisymmetric (m = 0) and
non-axisymmetric linear MHD waves; see also Cally (1986),
Pascoe et al. (2007), Kopylova et al. (2007), and Nakariakov
et al. (2012).

In non-uniform plasma, both resonant absorption and MHD
radiation can lead to complex frequencies and damping. Damp-
ing of MHD waves by MHD radiation was first studied by
Spruit (1982), and the combination of the resonant absorption
and MHD radiation by Goossens & Hollweg (1993) and Stenuit
et al. (1999).

The influence of resonant absorption and MHD radiation
on the wave properties of the kink mode (m = 1) has been
researched intensively by, e.g., Cally (1986), Ruderman &
Roberts (2002), Goossens et al. (2002), Van Doorsselaere et al.
(2004), Verwichte et al. (2006a), Brady et al. (2006), Verwichte
et al. (2006b), Terradas et al. (2007), Arregui et al. (2008),
Vasheghani Farahani et al. (2009), Soler et al. (2011), and
Pascoe et al. (2012, 2013). However, less work has been done
on the influence of resonant absorption or MHD radiation
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on axisymmetric MHD waves, even though these waves are
presumably more susceptible to MHD radiation compared
with the kink mode (especially in the long wavelength limit).
On the other hand, resonant absorption does not operate on
axisymmetric MHD waves when the magnetic field is straight.
It does work when an azimuthal magnetic field is included in
addition to a longitudinal magnetic field, as explained by Sakurai
et al. (1991) Goossens et al. (1992), and Goossens et al. (1995)
and as seen in Figure 8 of Goossens & Poedts (1992). Here, we
focus on the possible damping of the axisymmetric (or sausage)
mode by MHD radiation. In order to keep the analysis as simple
as possible, we consider the same equilibrium model as Edwin
& Roberts (1983).

The study of MHD waves entered a new era when Roberts
et al. (1984) stated that MHD waves may prove adequate for
the diagnostics of the physical parameters of solar coronal plas-
mas (coronal seismology). Nakariakov et al. (2003) first claimed
observational evidence of the sausage mode. They interpreted
the 14–17 s quasi-periodic pulsations of an oscillating loop
observed with the Nobeyama Radioheliograph in terms of the
fundamental sausage mode (see also Melnikov et al. 2005).
Srivastava et al. (2008) observed sausage oscillations in chro-
mospheric cool post-flare loops with a measured period at the
loop apex of about 587 s and foot points about 349 s. They
interpreted the two different readings as indication of the funda-
mental and second harmonic oscillations of the sausage wave in
chromospheric loops. Fujimura & Tsuneta (2009) reported the
observation of sausage waves in the photosphere, where its ap-
plications to photospheric seismology were studied by Moreels
& Van Doorsselaere (2013). Recently, oscillations with periods
between 30 and 450 s observed in magnetic pores were inter-
preted as sausage waves (Morton et al. 2011). Standing fast and
slow sausage waves were simultaneously observed in a flaring
loop by Van Doorsselaere et al. (2011) having 75 and 8.5 s
periods, respectively, which were used to estimate the plasma
β. Forward modeling of the sausage mode was carried out by
Gruszecki et al. (2012) and Antolin & Van Doorsselaere (2013).

In order to use the sausage mode for seismology, its de-
pendence on the equilibrium parameters needs to be well un-
derstood. The geometric effects of the guiding structures were
shown to change the period of oscillations of the fundamental
sausage wave. A positive divergence in the loop cross section
would decrease the wave period (Pascoe et al. 2009). Moreover,
a transverse structuring in a magnetic slab in the form of a step
function profile would also shift the period ratio of the sausage
wave (Macnamara & Roberts 2011). Interestingly, the plasma
β of the external and internal media does not affect the cut-off
wave number (Inglis et al. 2009).

Recently, Nakariakov et al. (2012) performed a parametric
numerical study in order to investigate the dependence of the
sausage frequency on its wavelength for both trapped and leaky
regimes. Their results show that as the wavelength becomes
shorter, the period steadily increases. In the long wavelength
limit, the period becomes independent of the wavelength. It
was also deduced that the cut-off wavelength is proportional to
the density ratio of external and internal media. Still, analytic
expressions for sausage frequency and damping rate in the
neighborhood of the cut-off frequency have not been obtained.

The aim here is to derive analytic expressions in the zero-β
limit for the sausage wave frequency, damping rate, and phase
speed on the longitudinal wave number in the leaky regime
around the cut-off frequency. The results are also compared
with those obtained numerically. The importance of studying

the sausage wave in the leaky regime is to use it for coronal
seismology.

2. MODEL AND EQUILIBRIUM CONDITIONS

We study axisymmetric (m = 0) MHD waves or sausage
MHD waves superimposed on a straight static magnetic cylin-
der. The magnetic cylinder with radius a is embedded in a plasma
medium with an equilibrium magnetic field (Bz0) in the direction
of the cylinder axis. The equilibrium magnetic field is homoge-
neous because we consider the cold plasma limit (β = 0).

2.1. Solution at the Cut-off Wave Number kc

Consider the perturbations of the physical parameters to be
proportional to exp i(kz + mϕ + ωt). The dispersion relation for
the sausage wave (m = 0) is

ρi

ρe

(

ω2
Ai − ω2

)

(

ω2
Ae − ω2

)

me

ni

=
J1(nia)K0(mea)

J0(nia)K1(mea)
, (1)

with

m2
e =

k2C2
Ae − ω2

C2
Ae

, n2
i = −

k2C2
Ai − ω2

C2
Ai

, (2)

where ρ is the piecewise constant density, k is the longitudinal
wave number, ω is the complex frequency, and CAi and CAe are
the internal and external Alfvén speeds, respectively; see Edwin
& Roberts (1983).

The zeroth-order solution to Equation (1) at kc is ω = ωAe =
kcCAe. In this case, the arguments of the second order modified
Bessel function K become small and we can use their expansions
for small arguments (Abramowitz et al. 1988)

K0(mea) = −ln

(

1

2
mea

)

, K1(mea) =
1

mea
. (3)

After substituting ρi/ρe by C2
Ae/C2

Ai , Equation (1) reduces to

C2
Ae

C2
Ai

(

ω2 − ω2
Ai

)

(

ω2 − ω2
Ae

)

me

ni

= −
J1(nia)

J0(nia)
mealn

(

1

2
(mea)

)

. (4)

Hence, the argument of the Bessel function J0(nia) at kc has
to be the zero of a Bessel function; see also Khongorova et al.
(2012). This allows us to calculate the cut-off wave number kc

to be

kca =
CAij0,1

√

C2
Ae − C2

Ai

=
j0,1

D
, (5)

where j0,1 is the first zero of the Bessel function J0(nia) and we
have introduced a new notation for the factor depending on the
density contrast

D2 =
C2

Ae

C2
Ai

− 1 =
ρi

ρe

− 1 = ζ − 1.

Here, we have also used the notation ζ = ρi/ρe as first
introduced in Van Doorsselaere et al. (2004).

2.2. Leaky Regime to the Left of kc in the Neighborhood
of the Cut-off Wave Number

The dispersion relation for an outwardly propagating leaky
sausage wave (m = 0) is

ρi

ρe

(

ω2
Ai − ω2

)

(

ω2
Ae − ω2

)

ne

ni

=
J1(nia)H

(2)
0 (nea)

J0(nia)H
(2)
1 (nea)

, (6)
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where H 2(ner) = J (ner) − IY (ner) is the outgoing wave
solution; see Edwin & Roberts (1983) and Cally (1986). In
the zero-β regime we have

n2
e = −

k2C2
Ae − ω2

C2
Ae

. (7)

In order to determine the frequency around the cut-off value,
we write ω = ωAe + ∆ω and k = kc + ∆k, and consider both
∆ω and ∆k as small quantities (|∆k| ≪ kc). From physical
intuition, we know that the phase speed V must increase when
∆k < 0 and thus ℜ(∆V ) > 0. By substituting these expressions
in Equations (2) and (7), we obtain

n2
e =

(

ω2
Ae + 2ωAe∆ω − C2

Aek
2
c − 2kcC

2
Ae∆k

C2
Ae

)

n2
i =

(

ω2
Ae + 2ωAe∆ω − C2

Aik
2
c − 2kcC

2
Ai∆k

C2
Ai

)

, (8)

where terms with (∆ω)2 and (∆k)2 have been neglected in
comparison to linear or zeroth order terms. Since ωAe = CAekc,
the first and third term in the numerator of the expression for ne

in Equation (8) cancel each other out. Hence, the expression for
ne in terms of ∆ω and ∆k is

ne =

√

2∆e

C2
Ae

, ∆e = CAekc∆ω − kcC
2
Ae∆k

= ω2
Ae

(

∆ω

ωAe

−
∆k

kc

)

. (9)

We substitute ωAe = CAekc in the expression for ni of
Equation (8). Subsequently we factor out terms without ∆ω
and ∆k. The resulting expression for ni in terms of the small
parameters ∆ω and ∆k is then

ni = kcD (1 + ∆s) ,

where

∆s =
CAekc∆ω − kcC

2
Ai∆k

(

C2
Ae − C2

Ai

)

k2
c

=
1

D2

(

ζ
∆ω

ωAe

−
∆k

kc

)

. (10)

Hence, the dispersion relation (Equation (6)) around the cut-off
wave number is

C2
Ae

k2
cD

2(1 + 2∆s)

2∆e

√

2∆e

C2
Ae

kcD(1 + ∆s)
=

−
(

J0 (kcaD) − J2 (kcaD)

J1 (kcaD)
+

J1 (kcaD)

(kcaD) J1 (kcaD) ∆s

)

×
H

(2)
0

(

a
√

2∆e

C2
Ae

)

H
(2)
1

(

a
√

2∆e

C2
Ae

) . (11)

To obtain Equation (11), we have used the Taylor expansion of
the Bessel functions J0 and J1 about kcaD. Since the cut-off
point kc is a zero of the Bessel J0 in the internal medium (as

shown in the previous subsection), we obtain

CAeD
kc(1 + ∆s)

√
2∆e

= −
(

−
J2 (kcaD)

J1 (kcaD)
+

1

(kcaD) ∆s

)

×

⎧

⎪

⎨

⎪

⎩

J0

(

a
√

2∆e

C2
Ae

)

− iY0

(

a
√

2∆e

C2
Ae

)

J1

(

a
√

2∆e

C2
Ae

)

− iY1

(

a
√

2∆e

C2
Ae

)

⎫

⎪

⎬

⎪

⎭

.

(12)

We use the expansions for the Bessel and Hankel functions
(Abramowitz et al. 1988)

J0(nea) = 1 −
1

4

(

a2 2∆e

C2
Ae

)

,

J1(nea) =
1

2

(

a

√

2∆e

C2
Ae

)

,

Y0(nea) =
2

π
ln

(

1

2
a

√

2∆e

C2
Ae

)

,

Y1(nea) =
−2

πa
√

2∆e

C2
Ae

, (13)

and substitute them in Equation (12). We neglect higher order
terms to obtain

−CAeD
2k2

ca

(

1

2
a

√

2∆e

C2
Ae

+ i
2CAe

πa
√

2∆e

)

∆s

=
√

2∆e

[

1 −
i

π
ln

(

a2∆e

2C2
Ae

)]

. (14)

In order to eliminate ∆e in the denominator of the left-hand side
(LHS) of Equation (14), we multiply both sides by

√
2∆e, and

therefore we obtain

−CAeD
2

(

a∆e

C2
Ae

+ i
2CAe

πa

)

∆s

=
2∆e

k2
ca

[

1 −
i

π
ln

(

a2∆e

2C2
Ae

)]

. (15)

We substitute the expressions for ∆s and ∆e to obtain
{

1 + i
C2

Ae

πC2
Ai

−
i

π
ln

[

k2
ca

2

2

(

∆ω

ωAe

−
∆k

kc

)]}

∆ω

ωAe

=
{

1 +
i

π
−

i

π
ln

[

k2
ca

2

2

(

∆ω

ωAe

−
∆k

kc

)]}

∆k

kc

. (16)

Equation (16) is an implicit and complex dispersion relation for
the complex frequency of the sausage mode. To proceed, we
separate the real and imaginary parts of the frequency and write
two (implicit) relations. Since the arguments of the logarithms
in Equation (16) are complex, we use the logarithmic definition
ln(x + iy) = (1/2)ln(x2 + y2) + iarctan(y/x). Thus the real and
imaginary parts of the logarithmic terms are separated by

ln

{

k2
ca

2

2

(

∆ω

ωAe

−
∆k

kc

)}

= iarctan

(

ℑ(∆ω)

ℜ(∆ω) − CAe∆k

)

+
1

2
ln

{

(

k2
ca

2

2

)2
[

(

ℜ(∆ω)

ωAe

−
∆k

kc

)2

+

(

ℑ(∆ω)

ωAe

)2
]}

.

(17)
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The imaginary part of the frequency corresponds to the damping
of the wave. In combining Equations (16) and (17), the arctan
term could be neglected compared to the second term, because
the second term is the logarithm of a small quantity ∆k, whereas
the arctan term is linear in this small quantity. We define the real
argument of the logarithm as

∆W =
(

k2
ca

2

2

)2
{

(

ℜ(∆ω)

ωAe

−
∆k

kc

)2

+

(

ℑ(∆ω)

ωAe

)2
}

. (18)

Equation (16) is written in the form

∆ω

∆k
= CAe

[

1 +
i

π
−

iln(∆W )

2π

]

×
[

1 +
iC2

Ae

πC2
Ai

−
iln (∆W )

2π

]−1

. (19)

We multiply the denominator and numerator of Equation (19)
by the complex conjugate of the denominator (1−iC2

Ae/(πC2
Ai)+

(i/2π )ln(∆W )), and obtain

∆ω

∆k
= CAe

[

1 +
C2

Ae

π2C2
Ai

−
C2

Ae

2π2C2
Ai

ln (∆W )

+
1

4π2
(ln (∆W ))2 +

i

π
− i

C2
Ae

πC2
Ai

]

×
[

1 +
C4

Ae

π2C4
Ai

+
1

4π2
(ln (∆W ))2 −

C2
Ae

π2C2
Ai

ln (∆W )

]−1

.

(20)

Note that the term (1/2π2)ln(∆W ) has been neglected in
comparison to the term (1/4π2)[ln(∆W )]2 when obtaining
Equation (20), because we assume that |∆ω| ≪ 1. This
neglection is based on the fact that the arguments of the
logarithms are small so that the absolute value of the logarithm
is large. Hence, the square of the logarithm would be much
greater than the logarithm itself.

Finally, the dependence of the sausage mode frequency and
the damping rate on the wave number could be defined by two
coupled implicit equations as

ℜ(∆ω)

∆k
= CAe

[

1 +
C2

Ae

π2C2
Ai

−
C2

Aeln (∆W )

2π2C2
Ai

+
(ln (∆W ))2

4π2

]

×

[

1 +
C4

Ae

π2C4
Ai

+
(ln (∆W ))2

4π2
−

C2
Aeln (∆W )

π2C2
Ai

]−1

.

(21)

ℑ(∆ω)

∆k
= −

CAe

π

[

C2
Ae

C2
Ai

− 1

]

×

[

1 +
C4

Ae

π2C4
Ai

+
(ln (∆W ))2

4π2
−

C2
Aeln (∆W )

π2C2
Ai

]−1

(22)

for the frequency and damping rate. This system of equations is
implicit and can be solved numerically.

2.2.1. Expressions for Low-density Contrast

In this section, we consider the case where the density
contrast is not too high. In other words, we neglect the terms
in C2

Ae/C2
Ai = ρi/ρe = ζ in comparison with the logarithmic

terms. The mathematical condition for this is ζ ≪ ln ∆W or
∆W ≪ exp (−ζ ). Retaining only the terms containing (ln ∆W )2

in Equation (21), we obtain an extremely simple expression for
the frequency change:

ℜ(∆ω)

ωAe

=
∆k

kc

or
ℜ(∆ω)

∆k
= CAe. (23)

This equation physically means that the dispersion curve of the
frequency of the sausage mode (real part of ω) is tangent to the
line for the external Alfvén frequency at the location (and left)
of the cut-off wave number.

Using this expression, we find a much simpler expression
for ∆W :

∆W =
(

k2
ca

2

2

)2 ℑ(∆ω)2

ω2
Ae

, (24)

because the part containing ℜ(∆ω) exactly cancels out using
Equation (23). In Equation (22) we can also neglect all terms
other than (ln ∆W )2 (as for obtaining Equation (23)). The
equation then reduces to

ℑ(∆ω)

∆k
= −

4πCAe

(ln ∆W )2

(

C2
Ae

C2
Ai

− 1

)

. (25)

Using Equation (24) (and the definition of D), this equation can
be rewritten as

ℑ(∆ω)

ωAe

(

ln
ℑ(∆ω)2

ω2
Ae

)2

= −4πD2 ∆k

kc

. (26)

Let us now introduce two auxiliary variables

X = − ln
ℑ(∆ω)2

ω2
Ae

and η = −4πD2 ∆k

kc

> 0. (27)

Here X ≫ 1 and η ≪ 1. Equation (26) then can be written as

X2
√

exp (−X) = η. (28)

This transcendental equation can easily be solved numerically.
It turns out that this equation has two roots (for positive X),
one of which is close to X = 0 and the other one large. Since
X ≫ 1, we disregard the small solution and concentrate on the
large one. Let us denote the large solution as X(η).

We can thus obtain the explicit solution for the damping of the
sausage mode in the neighborhood of the cut-off wave number:

ℑ(∆ω)

∆k
= −

4πCAe

X(η)2

(

C2
Ae

C2
Ai

− 1

)

. (29)

We have numerically calculated the solutions to Equation (29),
and have displayed them in Figure 1.

2.2.2. Expressions for High-density Contrast

Let us now consider the other case when the logarithmic
term may be ignored in comparison with the density contrast.
Such an asymptotic solution may be relevant for high-density
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Figure 1. Imaginary part of the frequency as a function of the wave number
calculated for a density contrast of ρi/ρe = 5, using formula (29).

jets (Cirtain et al. 2007), for very dense coronal loops, or for
chromospheric structures (where Morton et al. 2012 recently
measured the cut-off wave number for sausage modes). We
again try to simplify the expressions for the frequency (Equa-
tion (21)) and damping (Equation (22)) of the sausage mode
to explicit equations. Hence, we consider the density ratios as
ρe/ρi = (C2

Ae/C2
Ai)

−1 ≪ 1 and terms without C2
Ae/C2

Ai may be
neglected. Equations (21) and (22) then reduce to the simpler
versions

ℜ(∆ω)

∆k
≈

C2
Ai

CAe

{

1 −
1

2
ln

[

k4
ca

4

4

(

[

ℜ(∆ω)

ωAe

−
∆k

kc

]2

+

[

πC2
Ai

C2
Ae

∆k

kc

]2
)]}

, (30)

for the frequency of the leaky sausage mode, and

ℑ(∆ω)

∆k
= −

πC2
Ai

CAe

, (31)

for the damping rate of the sausage mode. Indeed, ℑ(∆ω) > 0
if ∆k < 0, showing that we obtain a damped mode for wave
numbers smaller than the cut-off wave number kc.

To obtain Equation (31), we have neglected the logarithmic
term in Equation (16) compared to ρe/ρi . This implies

−
C2

Ae

C2
Ai

≪ ln

(

k2
ca

2

2

∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

)

. (32)

By exponentiating both sides, we obtain

2

k2
ca

2
exp

(

−
C2

Ae

C2
Ai

)

≪
∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

≪ 1. (33)

Therefore, the condition on ∆ω and ∆k must comply to
Equation (33), to neglect the logarithmic term, and ∆ω and ∆k
must be sufficiently large. Physically, this means that there is a
small region around the cut-off where the (real part of the) dis-
persion curve follows the Alfvén frequency (Equation (23)), but
as we gradually move to higher values of |∆k|, Equation (30)
becomes more appropriate and the dispersion curve diverges
from the Alfvén frequency. The expressions derived in this sub-
section are only valid sufficiently (but also not too far) away
from the cut-off wave number.

The equivalent of Equation (30) in the sense of the variations
of the phase speed with respect to the wave number could be
either obtained by the same process as for the frequency, where
the phase speed V is also expanded around the cut-off frequency
(V = CAe + ∆V ), or by the direct relation between ∆ω and ∆V
which is

∆ω

∆k
= kc

∆V

∆k
+ CAe. (34)

This results in

ℜ(∆V )

∆k
≈

C2
Ai

kcCAe

−
CAe

kc

−
C2

Ai

2kcCAe

ln

{

k4
ca

4

4

(

[

ℜ(∆V )

CAe

]2

+

[

πC2
Ai

C2
Ae

∆k

kc

]2
)}

.

(35)

The terms with C2
Ai can be neglected for high density contrasts

in comparison to C2
Ae, which leaves

ℜ(∆V )

∆k
≈ −

CAe

kc

. (36)

Note that the condition of Equation (33) applies here as well.

2.3. Leaky Regime in the Long Wavelength Limit

At this stage, it is interesting to look at the dependence of the
sausage wave frequency and damping rate on the wave number
in the long wavelength limit (k → 0). The dispersion relation
of (Equation (6)) at k = 0 is

ρi

ρe

(

ω2
Ai − ω2

0

)

(

ω2
Ae − ω2

0

)

ne

ni

=
J1(nia)H

(2)
0 (nea)

J0(nia)H
(2)
1 (nea)

, (37)

where ω0 = ω(k = 0) is the complex solution at k = 0.
Following the same procedure as around the cut-off, we obtain

CAe

(

1 + ∆A
2

)

CAi

(

1 + ∆Ae
2

) =

[

J1

(

ω0a

CAi

)

+ ω0a

2CAi

(

J0

(

ω0a

CAi

)

− J2

(

ω0a

CAi

))

∆A
]

[

J0

(

ω0a

CAi

)

− ω0a

CAi
J1

(

ω0

CAi
a
)

∆A
]

×
[

J0

(

ω0a

CAe

)

−
ω0a

CAe

J1

(

ω0a

CAe

)

∆Ae − iY0

(

ω0a

CAe

)

+ i
ω0a

CAe

Y1

(

ω0a

CAe

)

∆Ae

] [

J1

(

ω0a

CAe

)

+
ω0a

2CAe

{

J0

(

ω0a

CAe

)

− J2

(

ω0a

CAe

)}

∆Ae − iY1

(

ω0a

CAe

)

− i
ω0a

2CAe

Y0

(

ω0a

CAe

)

∆Ae + i
ω0a

2CAe

Y2

(

ω0a

CAe

)

∆Ae

]−1

, (38)

and

∆Ae =
2ω0∆ω − C2

Ae(∆k)2

ω2
0

, ∆A =
2ω0∆ω − C2

Ai(∆k)2

ω2
0

.

(39)

The parameters ∆A and ∆Ae have been obtained in the same
way as ∆s. In this case, the zeroth order dispersion relation is

CAe

CAi

=
J1

(

ω0a

CAi

)

J0

(

ω0a

CAi

) ×
J0

(

ω0a

CAe

)

− iY0

(

ω0a

CAe

)

J1

(

ω0a

CAe

)

− iY1

(

ω0a

CAe

) . (40)
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Figure 2. Frequency variations of the sausage oscillations around the cut-
off frequency and in the long wave length limit are shown. The solid lines
show the approximated analytic expressions in the leaky (Equation (30)) and
non-leaky regimes (Equation (55)) regimes around the cut-off wave number,
together with its dependence in the long wavelength limit (Equation (45)). The
dashed line shows the frequency calculated numerically considering an initial
value problem. The dash-dotted line shows the external Alfvén frequency. The
density ratio ρi/ρe = C2

Ae/C2
Ai has been taken 25. All frequencies have been

normalized by the external Alfvén frequency at the cut-off.

(A color version of this figure is available in the online journal.)

By substituting values for CAi and CAe corresponding to various
density contrasts in the corona, we obtain the exact value for ω0.

In this case, analytical progress is only possible for a high-
density contrast. We recall Equation (38) to consider higher
order terms. Multiply the denominator of the right-hand side
(RHS) with the numerator of the LHS of Equation (38) and vice
versa, and consider the values of the Bessel functions at k = 0.
Terms linear (or higher order) in ρe/ρi ≪ 1 are neglected.
Hence we obtain

1

2
J0

(

ω0a

CAi

)

J0

(

ω0a

CAe

)

∆Ae

−
CAe

CAi

J1

(

ω0a

CAi

)

J1

(

ω0a

CAe

)

∆A

+ i
CAe

CAi

J1

(

ω0a

CAi

)

Y1

(

ω0a

CAe

)

∆A = 0. (41)

In this domain, the real and imaginary parts of ω0 (normalized
by ωAe) are smaller than unity, and these values are obtained
by numerically solving Equation (40). The results also show
that the real part of ω0 is much larger than the imaginary part
of ω0; see Figures 2 and 4. Now, by substituting the limiting
expressions for the Bessel functions as

J0 = 1 −
(ω0a)2

4C2
Ai,e

, J1 =
1

2

ω0a

CAi,e

, and Y1 = −
2CAe

πω0,
, (42)

and substituting terms for ∆A and ∆Ae, we obtain

(

ω0 −
3ω3

0a
2

4C2
Ai

+
ω5

0a
4

16C2
AiC

2
Ae

− i
2C2

Aeω0

πC2
Ai

)

∆ω

=
(

1

2
C2

Ae −
ω2

0a
2C2

Ae

8C2
Ai

+
ω4

0a
4

32CAi

− i
C2

Ae

π

)

(∆k)2. (43)

By solving the zeroth order dispersion relation (Equation (40))
numerically, we find that for coronal conditions the imaginary
part of ω0 is much smaller than its real part; see Figures 2 and 4.
Thus, in writing ω0 in terms of its real and imaginary parts,

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
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R
e(

V
)/

C
A

e

Figure 3. Phase speed variation of the sausage wave around the cut-off frequency
is shown. The solid line shows the approximation obtained for the leaky and
non-leaky regimes by Equation (35) taking the density ratio ρi/ρe = C2

Ae/C2
Ai

equal to 25. The speeds are normalized by the external Alfvén speed. The dashed
line shows the sausage mode phase speed calculated by the numerical solution
of the initial value problem. The dash-dotted and the dotted lines represent the
external and internal Alfvén speeds, respectively.

(A color version of this figure is available in the online journal.)

terms with ℑ(ω0) can be neglected in comparison to ℜ(ω0).
Hence, Equation (43) could be simplified to

∆ω

(∆k)2
=

(

C2
Ae

2
−

(ℜ(ω0))2a2C2
Ae

8C2
Ai

− i
C2

Ae

π

)

×
(

ℜ(ω0) −
3a2

4C2
Ai

(ℜ(ω0))3 − i
2C2

Ae

πC2
Ai

ℜ(ω0)

)−1

.

(44)

We eliminate the imaginary terms in the denominator by
multiplying the numerator and denominator with the complex
conjugate of the denominator. Hence, an explicit expression for
the frequency dependence on the wave number is obtained

ℜ(∆ω)

(∆k)2
=

π2C4
Ai

8C2
Aeℜ(ω0)

(

1 +
4C2

Ae

π2C2
Ai

−
(ℜ(ω0))2a2

C2
Ai

)

, (45)

and the expression for the damping is

ℑ(∆ω)

(∆k)2
=

(

πC2
Ai

4C2
Aeℜ(ω0)

)

×
(

C2
Ae −

C2
Ae(ℜ(ω0))2a2

4C2
Ai

+
3(ℜ(ω0))2a2

4

)

. (46)

ℜ(ω0) and ℑ(ω0) are, respectively, the real and imaginary parts
of the frequency ω0 at k = 0.

It can readily be seen that the density contrast and conse-
quently the ratio of the internal and external Alfvén frequencies
controls the variations of the leaky frequencies and damping.
This is illustrated in Figure 2 for the frequency and in Figure 3
for the speed. In Figure 4, the dependencies of the damping on
the wave number is shown around the cut-off wavelength and the
long wavelength limit. The solid lines in all figures refer to the
linear approximations and the dashed lines show the numerical
solutions to the initial value problem.
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Figure 4. Solid lines show the damping of the sausage waves in the leaky
regime plotted around the cut-off frequency using Equation (31) and the long
wavelength limit using Equation (46). These curves are compared with the
damping described by the numerical solution of the initial value problem, which
is the dashed curve. The density ratio ρi/ρe = C2

Ae/C2
Ai has been taken equal

to 25. The damping has been normalized by the external Alfvén frequency at
the cut-off.

(A color version of this figure is available in the online journal.)

2.4. Non-leaky Regime to the Right of
and around the Cut-off Frequency

The dispersion relation for the non-leaky regime is (Edwin &
Roberts 1983)

ρi

ρe

(

ω2
Ai − ω2

)

(

ω2
Ae − ω2

)

me

ni

=
J1(nia)K0(mea)

J0(nia)K1(mea)
, (47)

with

m2
e =

k2C2
Ae − ω2

C2
Ae

, (48)

where m2
e is positive. In this case, the sausage wave is trapped

and there is no MHD radiation. We proceed as in the case of the
leaky regime. We use Taylor expansions of J0(nia) and J1(nia)
to obtain

C2
Ae

D2k2
c (1 + 2∆s)

(−2∆e)

√

−2∆e

C2
Ae

kcD(1 + ∆s)

=
(

J0 (kcaD) − J2 (kcaD)

J1 (kcaD)
+

J1 (kcaD)

(kcaD) J1 (kcaD) ∆s

)

×
K0

(

a
√

−2∆e

C2
Ae

)

K1

(

a
√

−2∆e

C2
Ae

) . (49)

The first term on the RHS of Equation (49) disappears because
ωAe = kcCAe is a zero for J0 as explained in Section 2.1. We
proceed in a similar manner as for the leaky regime and neglect
higher order terms and substitute the limiting expressions for
the Bessel functions. We keep in mind that the argument of the
second order modified Bessel function is small, and we obtain

C2
AeD

2k2
c ∆s = 2∆e ln

(

1

2
a

√

−2∆e

C2
Ae

)

, (50)

where we have used (Abramowitz et al. 1988)

K0(mea) = −ln

(

1

2
mea

)

+

[

−
1

4
ln

(

1

2
mea

)

+
1

4

]

m2
ea

2 . . .

K1(mea) =
1

mea
+

1

2
ln

(

1

2
mea −

1

4

)

mea + · · · . (51)

By substituting expressions for ∆s and ∆e and rearranging the
terms, we obtain

[

C2
Ae

C2
Ai

− ln

(

k2
ca

2

2

∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

)]

∆ω

= CAe

[

1 − ln

(

k2
ca

2

2

∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

)]

∆k. (52)

Hence, the frequency as a function of the wave number in the
non-leaky regime and close to the cut-off frequency would be

∆ω

∆k
= C2

AiCAe

[

1 − ln

(

k2
ca

2

2

∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

)]

×
[

C2
Ae − C2

Ai ln

(

k2
ca

2

2

∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

)]−1

. (53)

In the low density contrast limit (i.e., terms with ρi/ρe

are neglected in comparison with the logarithmic term, see
Section 2.2.1), we again obtain a similar result as Equation (23):

∆ω

∆k
= CAe, (54)

where we now find that the imaginary part of the frequency is (of
course) exactly equal to 0. In the non-leaky regime, the sausage
mode is not damped. This was already known before.

If we once again consider the limit ρe/ρi ≪ 1, the term with
C2

Ai in the denominator could be neglected

∆ω

∆k
≈ −

C2
Ai

CAe

ln

(

k2
ca

2

2

∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

)

. (55)

Note that the condition on ∆ω and ∆k must be

2

k2
ca

2
exp

(

−
C2

Ae

C2
Ai

)

≪
∣

∣

∣

∣

∆ω

ωAe

−
∆k

kc

∣

∣

∣

∣

≪
2

k2
ca

2
exp (−1), (56)

to allow the neglection of the logarithmic term in Equation (53).
As in Section 2.2.2, these expressions are only valid far enough
away from the cut-off wavelength.

2.5. Numerical Solutions and Discussions

The approximations for the expressions for the phase speed
both for the leaky and non-leaky regimes have been plotted
in Figure 2 and compared to numerical solutions of the one-
dimensional wave equation. This wave equation was obtained
from the linearized ideal MHD equations for a zero-β plasma
cylinder, then a Fourier transform was taken in the longitudinal
direction, and azimuthal symmetry was assumed. The evolution
of an initial perturbation was then studied using a standard (2nd
order) numerical solver. More details on the solution method
can be found in Nakariakov et al. (2012).

For a density contrast of ρi/ρe = C2
Ae/C2

Ai = 25, the numeri-
cal results are in agreement with our theoretical expressions. For
a clearer illustration, the phase speed variation of the sausage
wave around the cut-off wave number is plotted using the ap-
proximation obtained in Equation (35); see Figure 3. The solid

7
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Figure 5. Ratio of the damping time and period is plotted for various density
ratios with the wavelength fixed at ka = 0.

(A color version of this figure is available in the online journal.)

line approximates very well the numerical solution to the initial
value problem for the sausage wave phase speed. In Figure 4,
the damping rate of the leaky sausage wave has been plotted us-
ing Equation (31) and compared with the numerical results. In
the regimes of applicability, the analytical formulae agree very
well with the numerically obtained results. The results from
Section 2.2.1 are not visible in the numerical results since the
used density contrast is very high. It can be easily seen from
Figure 4 that the damping rate becomes independent of the
wave number as the wave number decreases.

An important quantity to study is the ratio of the damping
time τ to the period P, which can be calculated by τ/P =
ℜ(ω)/2πℑ(ω). Of course, it is only useful to study this quantity
in the leaky regime. When considering wave numbers greater
than the cut-off wave number kc, the sausage mode is confined to
the cylinder and has infinite damping time. No MHD radiation
takes place in this case.

For wave numbers smaller than the cut-off wave number kc

(i.e., longer wavelengths), the MHD mode gradually leaks away
introducing an imaginary part of the frequency, and thus a finite
damping time τ . For the density contrast of ρi/ρe = 25, the
values for τ/P can be readily calculated by taking the ratio
of the data in Figures 2 and 4 (and dividing by 2π ). In the
long wavelength limit (ka → 0 and ρi/ρe = 25), the damping
time takes an approximate value of τ/P ≈ 3, meaning that the
amplitude of the sausage wave decreases by a factor e in three
periods. When going to shorter wavelengths (higher ka), the
mode is better confined and the damping time τ/P increases,
approaching infinity when the wave number approaches the
cut-off wave number (ka → kca ⇒ τ/P → ∞). This means
that, for the high density contrast flux tube we have studied,
the sausage waves survive long enough to be observable in
principle (subject to the limitations outlined in Antolin &
Van Doorsselaere 2013).

In Figure 5, we have displayed the damping times as a function
of density contrast, for a fixed value of ka = 0 (strongest
leakage, lowest τ/P ). It is clear that the statement that the
sausage mode is observed for at least some periods is not always
true. For low density contrasts, the sausage mode is heavily
damped, as can be seen from the values of τ/P that drop below
1. In such a case, the energy leaks rapidly away from the cylinder
by MHD radiation, resulting in a decrease of the wave amplitude
by a factor 3 in just one period.

From Figure 5, we can predict that sausage modes can only
be observed in very dense loops with a density contrast of a

least ρi/ρe = 20, when the damping time is higher than three
periods. The effects of finite spatial and temporal resolution
should be taken into account when searching for sausage mode
events (Antolin & Van Doorsselaere 2013).

3. CONCLUSIONS

We have performed an analytical study accompanied by
numerical simulations in order to explain the behavior of the
sausage wave in linear ideal MHD close to the cut-off frequency
in the zero-β regime. We have obtained analytical expressions
for the frequency, phase speed, and damping of the sausage
waves (m = 0) around the cut-off frequency in addition to
expressions for the sausage wave frequency and damping in
the long wavelength limit. The model studied here is a straight
untwisted and non-rotating magnetic cylinder embedded in a
magnetic medium which resembles a coronal jet or loop, etc.

Analytic expressions have been obtained using various
asymptotic techniques emphasizing behavior of the sausage
wave just around the cut-off frequency both in the leaky and non-
leaky regime (Equations (53) and (30)). The obtained equations
show a very good agreement with the numerical results with
similar coronal parameters. In addition to the frequency, the
phase speed of the leaky sausage wave was also studied and an
analytical expression was obtained (Equation (35)). The curves
plotted with the use of the analytical expressions fitted well
with the numerical results. In addition, analytical expressions
for the damping of the sausage wave in the leaky regime around
the cut-off wave number and in the long wavelength limit have
been obtained (Equations (31) and (46)). Comparison of the
damping curves plotted using Equation (31) and the numerical
solution of the initial value problem showed good agreement.

The analytical expressions for the frequency and damping rate
show how they are controlled by the density ratio of the internal
and external media. In the long wavelength limit, the damping
rate eventually becomes independent of the wave number. As
the wave number tends to zero, the damping rate tends to a
limiting value. This study of wave leakage by sausage modes
has applications in coronal seismology. Morton et al. (2012)
recently measured the cut-off frequency. The equations in this
work could be used to obtain information about the density
ratios and hence the Alfvén speed ratios of the coronal loops or
jets and their exterior may be obtained.

For flux tubes of low density contrasts, the sausage mode
cannot be observed, because the wave energy rapidly leaks
away in less than a period. However, we have found that MHD
radiation does not operate strongly on sausage modes if the
density contrast is high enough. For loops or jets with a density
contrast of ρi/ρe � 20, the damping time is at least three
periods. In principle, the sausage mode could be observed for
some periods in such high-density contrast loops.
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