Frequency and Duration of Thunderstorms in the Cape Kennedy Area

Charles J. Neumann
ESSA

Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings

Scholarly Commons Citation

Neumann, Charles J., "Frequency and Duration of Thunderstorms in the Cape Kennedy Area" (1969). The Space Congress ${ }^{\circledR}$ Proceedings. 4.
https://commons.erau.edu/space-congress-proceedings/proceedings-1969-6th-v1/session-16/4

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress ${ }^{\circledR}$ Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

EMBRY-RIDDLE
Aeronautical University.
SCHOLARLY COMMONS

Abstract

This report presents a detailed statistical anslysis of thumierstorn occurrence at or in the immediate vicinity of Gape Kennedy, Florida based on 13 years or record through the year 1967. Erpirical thunlerstorm probabilities are derived for any given tiue of the day, for any day of the year for time periods ranzing up to seven days duration. Presented also are data on multiple thunderstorm occurrence on single days, probability of thunderstorm nomoccurrence, thunderstorm duration, "runs" of thunderstorm days and conditional thunderstorm probabilities.

Introduction

The ESSA Woather Bureau's Spaceflight Meteorology Group (SMG), through funds tranai'erred from the NASA Office of Manned Spaceflight provides the primary meteorological support for the NAEA manned spaceflight program. This particular study, actually Part I of a larger scale study, was undertaken by SMG, Miami in order to make availabie to the operational forecaster and also to the mission plamer detailed atatistical information relative to the amual thunderstorm cycle at Cape Kennedy. Part II of this study is currently in preparation. The main purpose of Part II will be to enable the weather forecaster to determine meaningful thunderstorm probabilities for a given time or over an extended time period based largely on the observed $3000-\mathrm{ft}$ wind spood and direction at Cape Kennedy.

The Florida. Thunders torm Maximum

Portions of peninsular Florida observe nore seasonal thunderstorm activity than any other site over the United States (1); moreover, the area is one of the major thunderstorm genesis areas over the earth (2). It generally is agreed that the reason for this condition is related to the presence of rather unique physical-environmental conditions. There is virtually an inexhaustible supply of low-level molsture with attensant conditional instability. Furthermore, the land mass is large onough to allow vigorous afternoon convection with further lifting action supplied by the sea-breeze convergence (3) and in some cases by transitory synoptic or sub-synoptic scale phenomena.

There are, of course, marked temporal and spatial variations to the thunderstorm maximum. In general, the greater part of the activity occurs over the interior sections of the peninsula on sumper afternoons.

Figure 1 shows the relationship of Cape Kennedy to the rest of the area insofar as the spatial maximum is concerned during the peak two-month period July and August. The isolines on the figure are based on long period records for the stations concerned (4).

Although Figure 1 depicts a relative thunderstorm maximum over interior sections, synoptic forecasting experience has shown that the longitudinal position of the maximum during any given afternoon is a function ois the existing low tropospheric wina distribution. In general, with a substantial essteriy wind component, the maximum occurs farther westward while with the oppasite wind component, the thunderstorm maximan occurs farther eastward. Based on radar data alone, Frank, Moore, and F'isher(5) have documented this condition. The authors have shown further that light and variable winds tend to produce a double thunderstorm maxirum, that is, one just inland from both coasts. A westeriy component wind regine or a light and varlable wind regime normally will result in thunderstorms being advected into or building near Cape Kennedy. Only on rare occasions, apparently as a consequence of large-scale divergence as evidenced by mid-tropospheric dryness, do summertime thunderstorms fail to
materialize over the Florida peninsula. Indeed, then, the summertime forecsst problem at Cape Kennedy is primarily one of forecasting the velocity of the lowtropospheric wind field.

Purpose of Biudy

In the foregoing brief introduction, some of the basic factors relating to the Florida thunderstorm maximum wers aiscussed. However, the main purpose of this seport is to present a definttive reference on certain climatological parameters dealing with the duration and frequency of thunderstorms at Jape Kennedy itself. Standard available climatologieal sumnaries are deficient in several respects. In the first place, most operational problems require statistical information relating to the normal frequency of thunderstorma ovor an extended period, say three or six hours rather than at a spot time as given in standardized summaries. Secondiy, use of the sumnaries requires the normally invalid assumption that conditions at mid-month ars representative of the month as a whole, giving an unrealistic stepwise frequency distribution. Any attempt at simple interpolation between the mid-periods of adjaceat months may lead to errors because of non-l inearity of the data aistribution. Another shortcoming of s tandardized sumaries of non-continuous paramaters such as "observations with thunderstorms" is that they do not sample all the data. About 11% of the thunderstorm occurrenoes at Cape Kennedy begin and end between hourly observations and thus are not recorded on the hourly observations upon which the summaries are based.

Data Available for Anolyais

Coptes of the original WDAN Form toa and 103 (weather observation log sheet) for Cape Kennedy are avallable at BMG, Miam. for the eleven-year period 1957 through 1967. In addition, microfilm records were obtained for the preceding years back to May 1950. During this earlior period, however, records were not always maintained for the complete 24 -hour period and only 1951 and 1952 were complete in this respect. Accordingly, then, a total of thirteen years (1951,1952, and 1957 through 1967) were utilized.
The actual location of the observation site is about a mile inland from the easternmost point of Cape Kennedy. During the earlier years, the site was a mile or so farther south and somowhat closer to the ocean. This slight shift in the observation site is belleved to be insignificant insofar as overall thunderstorm frequency statistics are concerned.

Procedure

Initially, master data sheets were compiled from the WBan 10 A forms listing the beginning and enoing, time of all observations of thunder ($T, T R$, or m (W)
at Cape Kennedy during the thirteen-year period of record. In all, 1223 saparate thuyderstorn (see footnote 1) occurrences were recorded on 912 (see footnote 2) calenilar days with a total duration of 2071.8 hours. These data were transferred to computer data cardz and all data computations were dons on the University of Miami IBM 7040 computer. On a monthly and annual basis, thess data were initially summarized in three ways: (1) the number of individual thunderstorm occurrences, (2) the number of days with at least one thunderstorm, and (3) the total tima with thunderstorms. The annual thunderstorm cycle at Cape Kennedy appears somowhat alfferent depending whether one selects 1,2 , or 3 for further analysis. This can be seon by a study of Tables 1,2 , and 3 .

Table 1 presents monthly and anmal data based on the mean number of Individual thunderstorm occurrenoss. Note that a aistinct maximux occurs in mid-July with a secondary maximum in late March.
Table 2 presents montinly and annual data on the number of days with at least one thunserstorm. Note that the means of rable 2 ars less than those of Figure 1, dile, of course, to the fact that more than one thunderstorm can sceur on any given day. It is interesting to note that although more individual thunderstorms are observed in March than hyril (Table 1), a greater number of "lays with thunderstorms" occur in the latter month. The annual sumnertime maximum appoars from Table 2 to occur about 1 August. Table 3 presents data on the totel time with thunderstorms, (see footnote 3). In this summary, a walldefined maximitm appoars to oceur around the third week of July. A well-defined secondary maximum occurs in March.

Tables 1, 2, and 3 have presented simple statisties on the monthly frequency of thundorstorms without regara to diurnal variation. The mathod of presenting further data depends on the specific operational problea for which these data may be used. For most spaceflight applications, information relative to the oceurrence or non-occurrence or a thunderstorm during a given time span is a Hore meaningful statistic than the mean number of individual oecurrences of the mean duration of thunderstorms. Furthermore, in forecasting practice, no attempt is made to specify whether a single on mintiple thunderstorn occurrence is expected nor is the duration of a thunderstorm specified. Rather, the forecast will specify something like "probability of thundenstorms at launch tine, 10\%", or "probability of thunderstorms during the last 3 hours of countdown, 40%." For this reason, it was decided to investigate thuncerstorm occurrence on a probability scale at fixed times and over extended time intervals.

Data Smoothine Procedures

In order to establish the trend of the annual thunderstorm aycle, ${ }^{3} 15$-day moving average of "days with thunderstorm" wes computed for each of the 365 days according to formula (1):

[^0]$$
\mathrm{F}_{\mathrm{n}}=1 / \mathrm{N} \sum^{\mathrm{n}+7} \mathrm{~T}_{\mathbf{k}}
$$
\[

$$
\begin{equation*}
\mathrm{k}=\mathrm{n}-7 \tag{1}
\end{equation*}
$$

\]

where F_{n} is the moving average on day nimber n, T_{K} is the frequency of one or more thumderstorms on day k and N is the total number of days over the period of record. For example, suppose it is desired to determine the averagefrequency of at least one thinderstorm on July 19 (day number 200). The following data are fequired by formula (1):

	Day		Number of occurrences of at Lesst
Day	No.	Date	One TSTM

The decision to use a 15 -day smoothing period was made after an analysis of computer generated plots of the daily "thunderstorn-day" averages smoothed over several smoothing periods. The results of this smooting are shown in Figure 2. The 1-day values on Figure 2 are simply the number of thunderstorn days out of the 13 possible thunderstorm days expressad on a percentage basis. The remaining panels show the smoothing over periods of 5 -day, 15 -day and 31-days. The 5 -diay snoothing still show too much scatter; the 31-day smoothing period seems excessive in that some of the real seasongl variations (notably the mid-July minimum) aro filtered out. The 15-day smoothing period does not show excessive scatter and is still short enough to preserve cyclical veriations explainadle by known stmospheric processes. According, the 15-day perlod was selected and was used for all subsequent data suncaries contained within this report.

Figure 2. Plots of daily probability (\%) values of "thunderstormdays" smoothed over t, 5, 15, and 31 days.

The Anmual Thunderstorm Orele
The upper part of Figure 3 shows a computer plot of the $15-$ day moving average of the number of "iays with thumderstorm ${ }^{\prime \prime}$ sompiled according to formula (1). Since there is a relatively long period of record effectively increased by the moving average technique, the ordinate of this figure has been labeled in probability rathor than in frequency. However, it should be borne in mind that this is an astimate of the true probability. By lgnoring the slight day-to-day variations, the ganeral trend of the anrus. thunderstorm cycle plainly is discernable and, in genoral, can be subdivided into eight periods:

Period 1

(November through garly March). Thunderstoras are observed only about once per month and are confined, for the most part, to instability or convergence associated with synoptic-scale disturbances.

Perion 2

(Early March through early April.) There is a marked increase in thunderstorm activity associated primarily with pre-firontal squall lines.

Pariod 3

(MLd-April.) Slight declina in thunderstorm activity due to cessation of frontal activity and still insufficient diurnal heating.

Pertod 4

(Late April through June.) Almost linesr increase in thunderstorm antivity assoctated with increasing solar heating and attendant instability.

Pertod 5

(First half or July.) There 1 is a slight decline in thunderstorm activity. See Period 6 for explanation.

Pariod 5

(Latter half of July through early August.) There is a saconiary Increase in thunierstorm activity. The reason for the mid-July slump in thunderstorm activity is probably related to the fact that the rid-tropospheric ridge line is frequently directly over contral Florida in July. This results in warmer midtropospheric temperatures with attendant stability. By late July or early august, the mid-tropospheric ridge line retreats southward but the low-level ridge line continues to drift northeard. This lattor condition is a mechanism for greater instability.

Period 7

(Early August through the first third of September.) Gradual decline in afternoon thumderstorm activity with deoreasing solar heating. The rate of decline is pelatively slow during this period dus to the fact that nocturnal and early morning thunderstorm occurrence reaches a maximum at this time.

Period 8

(Latter two-thirds of September through october.) There is a rapid decline in thunderstorm antivity. The primary feason for this papid docline is, of course, associated with the decrease in solar radiation. Other contributing factors are the rapid decline OI roeturnal activity and the occasional presence of a recurving tropical cyclone off the coast of Florida. This latter condition fesults in larga scale divergence over Florida and of tentimea the intrusion of cooler and drier air.

Diurnal Variation of Thunderstorns

While the annual thunderstorm cycle is described adsquately in the top panel of Figure 3, little has boen sald concerning the diurnal variation of thunieratorms. In order to derine the diurnal variation, overlapping frequency listributions were compilod for 15-day periods centerer gvery five days starting on January 3 rd. The January 3 rid summary includes data for tile 15-day pericd December 27 through Jenuary 10; the January 3th summary contains data - or the 15 -day period January 1 through January 15, ste. By ignoring February 29 (which date occurred three times in the period of record under consideration) this moving average technique convenientiy contains exactly 73 15-day
overlapping periods. The soventy-third period itself is centered on December 29 and includes data from December 22 through January 5.
The diurnal frequency distributions were computed over nine differont tine periods ranging from instentaneous occurrencos to occurrences over elght-hour periods. The lower panel of Figure 3, and Figures 4, 5, 6, and 7 show computer print-outs for the various time periods. an isoline analysis was performed a1rectly onto the print-out for values of every 4%. Where the gradient was slight, this was increased to every 2%. A shading was used on the figures in the areas where the frequency was equal to or less than 2%.

Certain controls were used in making the analysis. In the first place, care was taken to insure that each isoline on a particular figure encompassed a greater area than on the preceding figure representing the next lower time interval. Also, the analysis was performed with consideration given to tenths of a percent rather than to the whole percent as printed out on the figures. This was completely insignificant when dealing with the larger percentages but was quite important in the case of the small percentages, It is for the above two reasons that the analysis of the shading may, in some casos, seen to violate the printed data. A third control was that the centers of msximum and minimum activity on Figures 3 (bottom) through 7 were positioned with cognizance of the positions of these centers as precisely defined in F1gure 3 (top). Finally, some slight smoothing of the data was accomplished where it seemed appropriate. Actually, very little smoothing was required and the data, for the most part, was analyzed exactly as indicated by the computer print-out. The isolines can be considered to bo good estimates of the true probability because of the relatively large amount of data inciuded, because of the moving-average technique, and bacause of the controls usod in making the analysis.
Figures 3 through 7 point out some rather significant features of the thunderstorm pattern at Cape Kennedy. Some of these are listed below:
Q. There is a rather well-defined double peak to the seasonal thunderstorm cycle. On the average, the first peak oceurs on June 30 th and the second peak on August 3rd.
b. Another sinall maximum occurs between early March and early April.
c. Thunderstorms can be expected on over 25% of the days between May 16 and September 22. This period can be considered as the main convective thunderstorm season.
d. Over the 13-year period of record, no thunderstorms ever oceurred between December 28 an ${ }^{\circ}$ January 12.
e. Most night and early morning thunderstorms oceur mid-August through mid-September.

One or fore Thunderstorm Qocurrences Over Extended Fime Periods

Figures 3 through 7 each presented data pertaining to the probability of thunderstorm occurrence on a particular day or over a time period of up to 8 hours duration. Cecasionally it becomes necessary to estimate the thunderstorm probability over a more extended time period. It may be required, for example, to estimate the probability of at least one thunderstorm occurring over a three-day consecutive period. Or, more specifically, it aay be necessary to estimate the probability of at least one afternoon thunderstorm during the 7 -day period, starting say, July 22.
The method used to estimate these extended probabilities was similar to the method used to determine the 24 hour probabilities specifiod on Figure $2 a$ as computed by formula (1). The formula can be restated using a slightiy different subseript notation:

$$
\begin{equation*}
F_{n}(j)=1 / N \sum_{k=n-7}^{n+7} T_{k(j)} \tag{2}
\end{equation*}
$$

Whare $\mathrm{F}_{\mathrm{n}}(j)$ refers to the 15 -day moving average dter a j-day period starting on day $n, 7_{k}(j)$ is the frequency of one or nore thunderstorms over a set of j consecutive days starting on day k and IN 15 the total number of i-day sets. For example, suppose it is aesired to determine the average frequency of at least one thunderstorm over the 3-day period starting on July 19 (Quy number 200). The following data are required by formula (2):

Day	Dey Numbers	$\begin{aligned} & \text { Dates } \\ & (J u 1 . y) \end{aligned}$	Oce. of at least Ono TSTM
$\mathrm{I}_{\mathrm{n}} \mathbf{7}$ (3)	193,194,195	12, 13, $1^{1 / 4}$	
$\mathrm{T}_{\mathrm{n}} \mathrm{6}$ (3)	194, 195,196		6
$\mathrm{Tn}-5(3)$ $\mathrm{Tn}-4(3)$	195,196,197	$\begin{aligned} & 14,15,16 \\ & 15,16,17 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$
$\mathrm{T}_{\mathrm{n}-3(3)}$	197,198,199	$16,17,18$	
$\mathrm{I}_{\mathrm{n}-2(3)}$	198,199,200	17,18,19	
$\mathrm{T}_{\mathrm{n}-1}$ (3)	199,200,201	18,19,20	
$\mathrm{T}_{\text {IT }}$ - ${ }^{\text {(}}$ (3)	200,201,202	19,20,21	8
$\mathrm{T}_{\mathrm{n}+\mathrm{t}+1}\left(\begin{array}{l}3 \\ 3\end{array}\right.$	202,203,204	21,22,23	8
$\mathrm{T}_{n}+3$ (3)	203,204,205	22,23,24	9
$\mathrm{T}_{\mathrm{n}+4}+(3)$	204,205,206	23,24,25	9
T $n+5(3)$	205,206,207	24,25,26	10
$\mathrm{T}_{n}+6$ (3)	206,207,208	25,26,27	
$\mathrm{T}_{\mathrm{n}+7}(3)$	207,208,209	26,27,28	$\frac{10}{130}$
Total 130			

Figure 3: (TOP) Identifiable periods in the annual thunderstorm cycle. (BOTTOM) Probability (\%) of a thunderstorm being in progress or in the immediate vicinity of Cape Kennedy at any given time (EST) on any given day.

Figure 4: Probability (\%) of at least one thunderstorm at or in the immediate vicinity of Cape Kennedy on any given day over a time span of (TOP) 1 hour, and (BOTTOM) 2 hours (EST).

Figure 5: Probability (\%) of at least one thunderstorm at or in the immediate vicinity of Cape Kennedy on any given day over a time span of (TOP) 3 hours, and (BOTTOM) 4 hours (EST).

Figure 6: Probability (\%) of at least one thunderstorm at or in the immediate vicinity of Cape Kennedy on any given day over a time span of (TOP) 5 hours, and (BOTTOM) 6 hours (EST).

Figure 7: Probability (\%) of at least one thunderstorm at or in the immediate vicinity of Cape Kennedy on any given day over a time span of (TOP) 7 hours, and (BOTTOM) 8 hours (EST).

The same technique was used to estimate the probability of at least one thunderstorm on $2,3,4,5,6$, and 7 days for any day of the year. Figure 8 is a computer plot of these data. Also included on Figure 8, for comparative purposes are the single day probabilities that appeared on Figure 2a.

Formuia (2) was also used to estimate the probability of at least one afternoon tyoe thunderstorm on j-consecutive days. To do this, the computer progran Was modified to fillter out all nonafternoon type thunderstorms; an afternoon type thunderstorm being defined as one which occurped between 1000 sST and 2200EBT. A plot of these data are shown in Figure 9. The data included in Figures 8 and 9 are considered to be good estimates of the true probabllities and accordingly the ordinate is labeled as probabllity.

Mul tipie Thunderstorm Occurrences on Single Days

Standard observational procedure requires that a thunderstorm be considered to have ended when at least 15 minutos passes without thunder. For this reasom more than one "thunderstorm" can occur on a single day. Of the 899 days upon which 1223 "thunderstorms" began, 638 (71.0\%) of the days had single occurrences; $204(22.7 \%)$ of the days had two occurrences; 51 (5.7%) of the days had three occurrences and the remaindor, 6 (0.6%) had four occurrences. There were no cases of 5 or more occurrences in a sfnele COOO-24005ST day. For a particular month, July, the breakdown is shown in Table 4 . Included also in Table 4 are the number of days without any occurrence.

Table 't. Actual and Theoretical Number of Thunderstorm Oecurrences on Single Days for the Month of July

Actual

Theo-
retical $210.4136 .6 \quad 4.7 \quad 9.7 \quad 7.20 .4$
Total number of "thunderstorm days" $=189$
Total number of occurrences $=261$
Total number of days $=403$
Mean of $x=261 / 403=0.65$

Shown also in the table are the theoretical number of occurrences computed according to the Poisson distribution function:

$$
\begin{equation*}
F(x)=e^{-m} m^{x} / x \mid \tag{3}
\end{equation*}
$$

closely approximated by the Poisson distribution function.

Days Wjithout Thunderstorms

Figures 3 through 9 presented data on the probability (p) of at least one thunderstorm over various time intervals. The probabllity of non-occurrence (q) 16 given by:

$$
\begin{equation*}
q=(100-p) \tag{4}
\end{equation*}
$$

where both q and p are expressed in percent. For example, from Figure 8, the probability of at least one thunderstorm ovor the seven-day period duly 19 through 25 is read as 89%. From formula (4) the probability of nonoccurrence of thunderstoms between the period July 19 through July 25 is computed to be 11%.

Duration of Trunderstorns

Table 4 presents data on thunderstorm duration.

Table 4. Mean Thunderstorm Duration Over Perlod of Record (Hours)

Jan	0.5	Jul	2.0
Feb	1.3	Aug	1.8
Mar	1.6	Sop	1.5
Apr	1.4	Oct	1.2
May	1.8	Nov	2.2
Jun	1.6	Dec	1.0
		ANN	1.7

With the exception of the month of Novenber, the general trend is for summer thunderstorms to last longer than those of winter and, according to Table 4, the average duration of July storms is four times greater than those of January. The 2.2 holm average duration of November storms seems excessive when compared to the adjacent months and is due to the fact that on one occasion contimuous thunder was recorded for 11 hours 10 minutea, and only 15 thunderstorms were recorded this month during the 13-year period of record.

Figure 10 presents the cumulative percentage frequency distribution of the duration of all 1223 thunderstorms. The mean duration is 1.7 hours. The median duration is considerably shorter, 1.3 hours, while the poorly defined modal duration is only about 36 minutes. The maximum duration of 11 hours 10 minutes occurped Noveaber 15-16 1951, in advance of a strong cold front approaching Cape Kennedy from the northwest.
where $F(x)$ is the probability distribu-
tion function, x is the number of
occurrences, o is the base of natural
logarithms and m is the expected (mean) value of x. The excellent agreement between the fitted and actual values indicates that the distribution is

Figure 8: Probability (\%) of at least one thunderstorm at or in the immediate vicinity of Cape Kennedy over periods ranging from 1 to 7 consecutive days (EST) starting on day Iisted along abscissa.

Figure 9: Probability (\%) of at least one afternoon-type (1000EST-2200EST) thunderstorm at or in the immediate vicinity of Cape Kennedy over periods ranging from 1 to 7 consecutive days (EST) starting on day listed along abscissa.

Figure 10. Cumulative percentage frequency aistribution of thunderstorm duration.

As mentioned in footnote 1 , a thunderstorm is considered ended when at least 15 minutos passes without thunder being heard by the weather observer. For operational requirements, a much longer period of waiting would normally bo required between individual thunderstorms before resuming normal out-of-doors activity. A thunderstora which ended say, 1500 and resumed again at 1520 would probably have the same effect on schedving outside activity as would one which continued uninterrupted between 1500 and 1520 . With this restriction in uind, the average thunderstorm duration was recomputed for a 75 -minute break and for a 135 -minute break before a thunderstorm was considered ended. This would have no effect on the single thunderstorm occurrences but would tend to merge certain of the multi-occurrences of thunderstorms on single days. The effect, as expected, was to lengthen the average duration the order of 15 or 20%. Specific valuos are shown on Figure 11 . If, for exmple, two hours between 1ndividual thunderstorms is required, the average duration is about 2.1 hours.

Figure 11. Average daration of thunderstorms at Cape Kennedy as a function of the time between individual thumders torms.

Runs of Consecutive Days with
Thunderetorms and Conditional Probabilities

Forecasting experience in Florida has shown that summertime daytime thunderstorms (as well as many other meteorological parameters) tend to be persistent froil one day to the next. the following sequence, where Y represents a thunderstoril ccourrenco day and N represents a non-occurrence day is more or less typical of mid-summer:
NYYYYYNN NYYYYYYNYNNY
YYNNNNNN.
In this sequence, there are four "runs" of thunderstorm occurrence where a "run" is defined as an unbroken sequence of a particular event. In order or occurrence, these runs were of absolute duration, $5,6,1$, and 3 days. Also, a run of say, 5 days contains two 4-day runs, three 3 -day runs, four 2-day runs and five 1 -day runs. For lack of any other qualifying information, the forocaster would have done quite well with a striple persistence forecast. He would, in fact, Zave verified 11 out of 15 "yes" forecasts and 8 out of 12 "no" forecasts.

A 15-day moving average of the observed frequency of runs of afternoon thunderstorms from one to ten days durstion was computed for each day of the year. These data are too lengthy to be included in this report but can be found in reference 7. Selected run dsta, however, are shown in Figure 12. This figure depicts, for two different dates, 1 May and 1 August, the probability of specific-length runs of afternoon thumderstorm days. Also included on the f1gure are the probability of at least one afternoon thunderstorm over time periods ranging from two through ten days duration. These latter data are derived from Figure 9.

Attention is directed to the fact that these rum deta are cumulative. on 1 August, for example, the probability of runs of at least one-day duration is 50.8% while the probability of runs of at least two days duration is 35.4%. The probability of duration exactly one day A^{5} therefore 50.8-35.4\% or only 15.4%. The cumulative nature of these run data facilitates the computation of conditional probabilities. In the precise mathemetical sonso, a conditional probability can be steted as:

$$
\begin{equation*}
P\left(A_{2} \mid A_{1}\right)=P\left(A_{1} A_{2}\right) / P\left(A_{1}\right) \quad P\left(A_{1}\right)>0 \tag{5}
\end{equation*}
$$

That is to say, the probability of A_{2} oceurring under the condition that $A 1$ has already oceurred (conditional probability) is equal to the probability of the joint occurrence of both A_{2} and A_{1} divided by the probability of A_{1} alone. Formula (5) can be restated as:

$$
\begin{equation*}
P_{c}(k+j, k)=P(k+j) / P(k) \quad P(k)>0 \tag{6}
\end{equation*}
$$

where $P_{c}(k+j, k)$ is the probability of a run lasting j-additional days under the condition of having already lasted $k-$ days, $P(k+j)$ is the cumulative probability on day $k+j$, and $P(k)$ is the eumzative probability on day k , the latter having already occurred.
Properly used, these conditional probsbilities can be quite usoful to the operational forecaster. For most operational forecasting requirements, j will equal 1. That is, thunderstorms vill have occurred the last k afternoons and the forecaster needs to know the probability of at least one additional occumrence. Formula (6) then becomes:

$$
\begin{equation*}
P_{e}(k+1, k)=P(x+1) / P(k) \quad P(k)>0 \tag{7}
\end{equation*}
$$

For convenience, these "one-additionalday" probabilities have been computed for the months May through September. Agein, these data are too lengthy to be included in this report but can be founs in reference 7. Sslected data, however, are shown in Figure 13. This Iigure shows the increase in probability of afternoon thunderstorm accurrence one would expect on the second day onse an afternoon thunderstorm has initially occurred on the first day. The figure suggests that, once a thunderstorm has initially occurred, a simple persistence forecast of re-oecurrense on the second day would work nore than half the time from late May through late August and again (for some apparent synoptic-scale reason) in late September.

There are, of course, thany types of conditional probabilities which might be calculatod depending on particular operationsl requirement. One might need to know, for example, the probability of thunderstorms occurring on both August 5
and August 6 if they have occurred each afternoon of August 2; 3rd, and 4th. These specific conditional probabilities can be calculated from data given in reference 7.

Summary

It is recommended that the thanderstom data contained within this report be used for planning purposes for all spaceflight missions at Cape Komedy for prognostic periods of beyond 5 days. For shorter range periods, forecests of the low-tropospheric wind flow at launch time should enabie the forecaster to refine the probabilities. In general, with westerly or with light and variable low-tropospherie winds higher probabilities should be forecast whereas, with easterly winds, lower values should be forecast. Such a probability study based on the $3000-\mathrm{f}^{\prime} t$. Winds is currently being prepared and will be issued as a subsequent part of this study.

References

1. United States Weather Buresu, 1952: Mean Number of Thunderstorm Days in the United States, Technical Paper No. 19, Washington, D.C.
2. Landsberg, H., 1958: Physical Climatology, Second Edition, Gray Printing Company, DuBois, Peansyivania, page 257.
3. Byers, H. R. and H. R. Rodebush, 1948: Causes of Thunderstorms of the Florida Feninsula, J. Neteor, 275-280.
4. ESSA Weather Bureau, 1966: Local. Climatological Data with Anmual Sumary and Comparative Data, Asheville, N.G.
5. Erank, J. L., P. I. Moore, and G. E. Fisher, 1967: Simmer Shower Dis tribution over the Florida Peninsula as Deduced from Digitized Radar Data, Journal of Applied Meteorology, 309, 316.
6. Hoel, P. G., 1956: Introduction to Mathematical Statistics, Second EAition, John Wiley and Sons, Inc., New York, pp. 8, 9, and 10.
7. Neumann, C. J., 1968: Frequency and Duration of Thunderstorms at Cape Kermedy, Part I, ESBA Weather Bureau Technical Merorandum Sos-2.

Figure 12: Probability (\%) of "runs" of thunderstorm days of
specified duration for 1 May and 1 August.

Figure 13: Probability (\%) of at least one additional afternoon thunderstorm day having initially occurred preceding afternoon.

[^0]: 3 Fifteen minutes were subtracted from the ending time of all thunderstorms see footnote 1. Thus, a thunderstorm which started at, say 1600 E and enied at 1620 p produced sudible thunder at the observing site from 1600 E to 1605 E . Accordingly, in this case, only 5 minutes would be recorded in Table 3.

