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Frequency and intensity noise in an
injection-locked, solid-state laser
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We have calculated transfer functions for frequency and intensity fluctuations in an injection-locked solid-
state laser. At modulation frequencies well below the locking frequency we find significant frequency-noise
reduction, and at modulation frequencies above the locking frequency we find that the frequency noise is
that of the free-running slave laser. Our intensity-noise theory predicts substantial damping of relaxation
oscillations in the slave laser. To verify these results we have measured the frequency and intensity noise
of a 5-W, injection-locked Nd:YAG laser.
1. INTRODUCTION
There are three approaches to obtaining narrow-
linewidth, high-power laser radiation: stabilize a high-
power oscillator, amplify a stable low-power oscillator,
or injection lock a high-power oscillator with a stable
low-power oscillator. Stabilizing a high-power oscillator
requires intracavity elements to ensure single-axial-mode
operation1 and active noise suppression to reduce fre-
quency noise. The intracavity elements increase the
loss of the high-power oscillator and thereby lead to a
reduction in efficiency and output power. Furthermore,
the large linewidths typical of high-power oscillators
require complex actuators to reduce the spectral density
of frequency noise.2 For these reasons, intracavity and
active stabilization of high-power oscillators is often an
unattractive approach.

Low-power Nd:YAG oscillators are less susceptible to
the aforementioned difficulties. In particular, the mono-
lithic nonplanar ring oscillator,3 because of its monolithic
design, has very low noise. Amplifying this radiation to
high power levels is impractical at this time because of the
low gain of currently available cw amplifiers. The third
option is to injection lock a high-power oscillator with a
stable, low-noise oscillator.4 As applied to lasers, injec-
tion locking consists of injecting the output of a stable
laser, the master oscillator, into the optical resonator of
the laser to be stabilized, the slave oscillator. Typically
the master-laser output power is a small fraction of the
slave-laser output power. If the frequency difference be-
tween the master and slave oscillators is sufficiently small
the free-running mode of the slave laser is extinguished,
and the slave laser is frequency locked to the master laser.
This frequency stabilization is accomplished without in-
troduction of optical elements into the slave-laser cavity
and requires a relatively simple feedback loop.

In our laboratory we have injection locked a lamp-
pumped Nd:YAG laser5 to produce up to 24 W of
cw, single-frequency output power for nonlinear-optics
experiments.6 We have injection locked a laser-diode-
pumped Nd:YAG miniature-slab laser7 to explore laser
design approaches that could meet the laser require-
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ments of interferometric gravitational-wave detectors.8

In this paper we present a small-signal theory of fre-
quency and intensity modulation in an injection-locked
laser. We measure the spectral density of frequency and
intensity noise of the laser-diode-pumped miniature-slab
laser and compare the experimental results with theory.
The advantages of frequency-noise reduction by injection
locking are demonstrated.

2. THEORY

A. Injection-Locking Model
Our injection-locking model is based on the laser equa-
tions described by Siegman.9 We assume fields that vary
slowly compared with the optical frequency and apply
the slowly varying envelope approximation. Following
the notation of Siegman, the equations describing the
time evolution of the laser field, atomic polarization, and
population inversion are given by
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where j ;
p

21, e is the dielectric permeability of the gain
medium, Ẽ is the complex cavity mode amplitude with
frequency v, Ẽe is the amplitude of an external signal,
P̃ is the atomic polarization, DN is the atomic population
difference, and Rp is the pumping rate. The laser gain is
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centered at va and has a linewidth of Dva. The cavity-
signal-to-atomic-polarization coupling coefficient is k, and
the population decay rate is g2. The optical cavity is
resonant at frequency vc, with cavity decay rate gc ;
dcyt, where dc is the total cavity loss and t is the cavity
roundtrip time. The external decay rate ge ; deyt 
2lnsRocdyt is the portion of the cavity decay rate that is
due to output coupling Roc. The fields occupy an effective
mode volume Vc that we assume to be the same for both
the cavity and the externally applied fields. The master
laser is therefore assumed to be perfectly mode matched
into the slave-laser’s cavity.

We assume that the atomic polarization relaxes much
faster than the electric fields or the atomic population
difference, which is a good approximation for solid-state
lasers. In this linear susceptibility approximation, P̃ is
replaced by the steady-state solution of Eq. (1b):

P̃ std ø 2j
k

vDvaVc

1
1 1 2jsv 2 vadyDva

DNstdẼstd . (2)

In Subsections 2.B and 2.C we analyze the frequency
and intensity noise in an injection-locked laser, using
Eq. (1) and relation (2). We assume uncorrelated fre-
quency and intensity noise, which permits us to consider
the two effects independently. Although this assumption
ignores frequency- and intensity-noise coupling (for exam-
ple through the Lorentzian line shape dependence of the
rate-equation coupling coefficient, K), it is reasonable to
use for small frequency and intensity modulation near
line center.

B. Frequency Noise Analysis
Following the analysis presented by Siegman,10 we ex-
pand the cavity and externally injected electric fields of
Eq. (1) in phase-amplitude form, Ẽstd ; Estdexpf jfstdg,
and redefine the cavity-wave amplitude in the units of
the external signal. We also assume the approximate
value of the atomic polarization given in relation (2) and
no change in the pumping rate. In this case Eq. (1) and
relation (2) reduce to an equation for the time-varying am-
plitude of the cavity electric field:

dEstd
dt

1
gc 2 g0

2
Estd  geEmstdcosffstd 2 fmstdg , (3)

where the subscript m refers to the master (externally
injected) laser and g0 represents the growth rate of the
cavity field that is due to the (saturated) gain of the slave
laser, and to an equation for the time-varying phase of
the cavity electric field:

dfstd
dt

1 vm 2 vsstd  2ge
Emstd
Estd

sinffstd 2 fmstdg , (4)

where the subscript s refers to the free-running slave
laser.

When the injected signal is small sEm ,, Esd we can
assume that E ø Es, where Es is the slave laser’s free-
running oscillation amplitude. In the limit of a small
injected signal and no time variation in signal amplitudes,
Eq. (4) reduces to

dfstd
dt

1 vm 2 vsstd  2vlock sinffstd 2 fmstdg , (5)
where vlock ; geEmyEs. Equation (5), known as the
Adler equation, was derived by Adler to describe injection
locking of radio-frequency oscillators.4 In steady state
the Adler equation reduces to vm 2 vs 1 vlock sin Df  0,
where we assume that the slave-laser frequency is con-
stant and Df is the steady-state phase difference be-
tween the injection-locked slave laser and the master
laser. This equation can be solved for real Df only
when 2vlock # vs 2 vm # vlock. Therefore for the lasers
to remain injection locked the difference in their free-
running frequencies must be less than vlock, which can
be written as

vlock ; ge
Em

Es
ø TocDfax

q
PmyPs , (6)

where Toc is the slave laser’s output coupler transmission,
Dfax is the slave laser’s axial mode spacing, and Pm and
Ps are the output power of the master laser and the
free-running slave laser, respectively. The approximate
expression is valid not only for small output coupling,
Roc ø 1, and perfect mode matching of the external signal.
For typical laser parameters the locking width is given by
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Inside this frequency range the steady-state output phase
difference is given by

Df ; f 2 fm  sin21
µ

vs 2 vm

vlock

∂
. (8)

To obtain the output frequency noise we first calculate
the response of the output phase to small sinusoidal per-
turbations about the steady-state solution. Following an
analysis performed for microwave oscillators11 we calcu-
late the response to changes in the master-laser and slave-
laser phases separately and use superposition to obtain
the response to multiple excitations.

We begin by considering a noisy master laser and a
noise-free slave. Here vs 2 vm is constant, and we as-
sume a small perturbation on the master-laser phase,
fmstd  fm cossvmodtd. The output phase is assumed to
vary as fstd  Df 1 Reff̂ exps jvmodtdg, where f̂ is the
small, complex amplitude of phase deviation from steady
state. Substituting into the Adler equation and simplify-
ing by expanding the sin term around Df gives the phase-
modulation transfer function

Hmsvmodd ;
f̂

fm


1

1 1 j
vmod

vlock cos Df

. (9)

Figure 1 shows the magnitude of the phase-modulation
transfer function plotted versus normalized angular fre-
quency (solid curve). We see that frequency or phase
fluctuations in the master laser are reproduced in the
slave output at modulation frequencies well below the
locking width, vlock. At modulation frequencies much
greater than the locking width the phase perturbations
of the master laser have no effect on the output phase of
the injection-locked slave laser.

The second case is that of a noisy slave laser with a
noise-free master laser. We assume that the master-
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Fig. 1. Magnitude of the phase-modulation transfer functions.
Response of the injection-locked laser to phase variation in the
master laser, Hmsvmodd, and phase variation in the free-running
slave laser, Hssvmodd, plotted versus normalized frequency.

laser phase is zero, and the slave-laser phase is given
by fsstd  fs cossvmodtd. Therefore the time-varying
frequency of the slave laser is given by vsstd  vs 1

dfsstdydt  vs 2 fsvmod sinsvmodtd. Again the solution
is of the form fstd  Df 1 Reff̂ exps jvmodtdg. The
Adler equation now gives the phase-modulation transfer
function

Hssvmodd ;
f̂

fs


j
vmod

vlock cos Df

1 1 j
vmod

vlock cos Df

. (10)

In this case frequency, or phase, fluctuations of the slave
laser are reproduced in the slave-laser output for mod-
ulation frequencies above the locking width, as shown
in Fig. 1 (dashed curve). Free-running slave-laser phase
perturbations well below the locking width are substan-
tially attenuated. These equations are similar to those
previously derived for microwave oscillators.11

These transfer functions can be used to predict the fre-
quency noise of an injection-locked laser. If a master
laser with a spectral density of frequency noise Sf ,m is
used to injection lock a slave with spectral density of fre-
quency noise Sf ,s, and the noise sources are uncorrelated,
the resultant spectral density of frequency noise of the
injection-locked laser is given by

Sf ,ilsvmodd  fjHmsvmoddSf ,msvmoddj2

1 jHssvmoddSf ,ssvmoddj2g1/2 . (11)

Equation (11) predicts that the crossover point at which
the output noise is no longer dominated by the master-
laser noise is a function of several parameters, including
the locking width and the relative magnitudes of the free-
running noise spectral densities. This analysis becomes
more complicated when, as is usually required, an elec-
tronic servo loop is used to stabilize the slave laser to
keep it within the locking range. In this case, the out-
put spectral density of frequency noise is also affected by
the noise reduction in the electronic servo loop.12

Perhaps a more important consequence of the master-
laser noise transfer function is that it limits the extent
to which modulating the master laser affects the output
of the injection-locked slave laser. Suppose, for example,
that the output of the injection-locked laser is to be fre-
quency locked to an external reference. In this situation
the master laser would be the most logical place to apply
the control signal. The phase-modulation transfer func-
tion given by Eq. (9) predicts a pole in the response of
the system’s output to this actuator. This pole must be
considered when one is designing the control loop.

C. Intensity Noise Analysis
Intensity noise in solid-state lasers is dominated by relax-
ation oscillations and is typically analyzed by the use of
rate equations.13 As these rate equations do not include
an external signal term, we rederive them. Following
Siegman’s analysis,9 we define the cavity photon number
nstd ; eVcjẼstdj2ys2h̄vd and differentiate it with respect
to time to obtain dnstdydt  eVcy2h̄vfẼstddẼ pstdydt 1

Ẽ pstddẼstdydtg. Substituting the results of Eq. (1a) and
relation (2) into this equation, we obtain

dnstd
dt
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3 fẼestdẼ pstd 1 Ẽe
pstdẼstdg . (12)

Equation (12) is equal to the usual photon-number equa-
tion when Ẽe  0. We can simplify the cross product of
the external signal field and the cavity electric field by
assuming that the two signals are at the same frequency.
When the laser is injection locked, the two fields differ
only by the steady-state phase shift Df, which is typi-
cally kept near zero by the electronic feedback loop used to
keep the lasers within the injection-locking range. With
this assumption, the photon-number equation can be ex-
pressed as

dnstd
dt

 KNstdnstd 2 gcnstd 1 2Dfax cos Dffnstdnestdg1/2 ,

(13)

where nestd  TocjẼestdj2ysDfaxh̄vd is the number of exter-
nal signal photons inside the cavity. The atomic popula-
tion equation remains

dN std
dt

 Rpstd 2 g2Nstd 2 KNstdnstd . (14)

First we obtain the steady-state solutions to the rate
equations, treating the external signal as a small pertur-
bation sne ,, nd. In steady state with no external signal,
the population inversion is clamped at the threshold value
Nth  gcyK, and the photon number is nss  sr 2 1dg2yK,
where r ; Rpyg2Nth is the number of times above thresh-
old. Adding a small external signal yields

N0  Nth 2 2
Dfax

K
cos Df

q
neynss (15)

for the steady-state population and

n0  nss 1 2r
g2

gc

Dfax

K
cos Df

q
neynss (16)

for the steady-state photon number. Addition of the ex-
ternal signal reduces the population inversion and in-
creases the photon number, as expected.
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As in Subsection 2.B, the responses of the injection-
locked laser to modulations of the pumping rate and of
the external signal amplitude are calculated separately.
First we consider pump modulation; hence the external
signal amplitude is assumed to be constant and the
pumping rate is assumed to vary sinusoidally as
Rpstd ; Rp 1 Rp1 cossvmodtd. The solutions take
the form of a time-varying photon number nstd  n0 1

Refn̂ exps jvmodtdg and population inversion Nstd 
N0 1 RefN̂ exps jvmodtdg. Substituting these expres-
sions into Eqs. (13) and (14) and dropping second-order
small quantities gives the pump-modulation transfer
function
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where the spiking frequency is given by
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which is essentially unchanged by the injected signal,
while the spiking decay rate is given by
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and is a strong function of the injected signal value.
This classic damped second-order transfer function is re-
sponsible for the relaxation-oscillation peak observed in
solid-state lasers. Figure 2 shows the pump-modulation
transfer function plotted for three values of the master–
slave power ratio, assuming a Nd:YAG laser pumped
three times above threshold, with total cavity losses of
17% and a 750-MHz axial mode spacing. The effect of
the externally injected signal is to damp the relaxation-
oscillation peak. The damping ratio, z  gsp

0yvsp, is plot-
ted in Fig. 3 for a wide range of injection-locking power
ratios. The relaxation oscillations are at least critically
damped, z $ 1, for all practical power ratios.

Next we consider the effect of intensity noise in the
master laser. The pumping rate is now assumed to
be constant and the injection signal to vary as nestd ;
ne 1 ne1 cossvmodtd. The time-dependent cavity photon-
number and population-inversion equations are identical
to those defined in the preceding case. Substituting
these quantities into Eqs. (13) and (14) yields the master-
laser modulation transfer function
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DPmyPm
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which includes the same resonant denominator as the
pump modulation transfer function. Figure 4 shows
this transfer function plotted for two power ratios for
the Nd:YAG laser already mentioned. Although the ef-
fects of pump modulation are always strongest near the
relaxation-oscillation frequency, the damping effect of the
injected signal keeps this noise contribution small.

As with the frequency-noise transfer functions derived
in Subsection 2.C, the pump-modulation and the master-
laser modulation transfer functions can be used to pre-
dict the intensity noise of the injection-locked laser. The
spectral density of relative intensity noise of the injection-
locked laser is given by

SRIN,ilsvmodd  fjGpsvmoddSN ,psvmoddj2

1 jGmsvmoddSRIN,msvmoddj2g1/2 , (21)

where SN ,psvmodd is the spectral density of the pumping
rate fluctuation, SRIN,m is the spectral density of the rela-
tive intensity noise of the master laser, and we assume
that all the relative intensity noise of the free-running
slave laser is due to pump power fluctuations.

Fig. 2. Magnitude of the pump modulation transfer function
Gpsvmodd plotted for three master–slave power ratios, assuming
a Nd:YAG laser pumped three times above threshold, with total
cavity losses of 17% and 750-MHz axial mode spacing. The
presence of the injected signal damps the relaxation-oscillation
peak.

Fig. 3. Damping ratio z of the relaxation oscillations plotted
versus the injection-locking power ratio. The system is over-
damped for all practical injection-locking power ratios.
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Fig. 4. Magnitude of the master-laser modulation transfer func-
tion Gmsvmodd plotted for two master–slave power ratios. The
effect of intensity noise in the master laser is greatest near the
slave laser’s relaxation-oscillation frequency but is kept small by
the damping effect of the injected signal.

3. MEASUREMENTS

A. Frequency Noise
We have experimentally tested the predictions of the
frequency-modulation transfer-function theory, using
the injection-locked Nd:YAG laser shown in Fig. 5.
The laser-diode-pumped miniature-slab laser7 is in-
jection locked by a 300-mW single-frequency Nd:YAG
laser (Lightwave Electronics Model 122-1064-300-F).
The phase modulator and Detector 1 are used in a
Pound–Drever–Hall locking scheme14 to generate Error
Signal 1. This error signal is a function of the frequency
difference between the master laser and an axial mode
of the slave laser. A servo actuator generates Control
Signal 1, which keeps the two lasers inside the locking
range. This feedback loop has a unity-gain frequency of
30 kHz. In this system the master-laser power at the
output coupler is 150 mW, the slave-laser power is 5 W,
the output coupling is 12.5%, and the cavity path length
is 40 cm; therefore the locking width is 2p 3 2.7 MHz.

To measure the frequency noise of the injection-locked
laser we have built an optical phase-locked loop.15 As
shown in Fig. 6, a portion of the output of the injection-
locked laser is combined with the output of a 40-mW
single-frequency Nd:YAG laser (Lightwave Electronics
Model 120), the local oscillator. The lasers are mode
matched and attenuated to produce a beat signal with a
contrast ratio of 30% on Detector 2. This phase detector
signal is used by a servo controller to generate Control
Signal 2, which is applied to the fast frequency (piezo-
electric) actuator on the local oscillator. If the open-loop
gain is much greater than 1, this control signal is an accu-
rate measure of the frequency noise of the injection-locked
laser.12 The unity-gain frequency of our type II phase-
locked loop16 is 300 kHz, which permits accurate mea-
surement of frequency noise below 30 kHz. Similarly,
the frequency noise of the free-running slave laser can
be measured at control point 1.

We have measured the spectral density of the frequency
noise of the 300-mW master laser as well as that of the
5-W slave oscillator in both free-running and injection-
locked operation. Figure 7 shows the spectral density
of the frequency noise, Sf svmodd, measured in Hzy

p
Hz,

Fig. 5. Schematic of the injection-locked laser. The 300-mW
nonplanar ring oscillator (NPRO) is used to injection lock the
5-W laser-diode-pumped ring laser. The optical isolator pre-
vents perturbation of the master laser by the slave laser. A
piezoelectric transducer (PZT) is used to vary the free-running
frequency of the slave laser.

Fig. 6. Schematic of the laser diagnostics. The laser diagnos-
tic output is used as the transmitter in a phase-locked loop.
The control signal applied to the local oscillator, the 40-mW
nonplanar ring oscillator (NPRO), is a measure of the frequency
noise of the transmitter.

Fig. 7. Measured spectral density of frequency noise. The fre-
quency noise of the master laser is reproduced in the injection-
locked output below 1 kHz. The frequency noise of the local
oscillator, which sets a resolution limit on the experiment, dom-
inates above 1 kHz.
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Fig. 8. Calculated spectral density of frequency noise.
Phase-modulation transfer functions are used to model the
spectral density of frequency noise of the injection-locked
slave laser, given the measured master-laser and free-running
slave-laser frequency noise. Low frequency noise in the
free-running slave laser is suppressed.

Fig. 9. Measured relative intensity noise, RIN, in the master,
the free-running slave, and the injection-locked slave lasers.
The free-running slave laser’s intensity-noise peak (near
100 kHz) is eliminated in the injection-locked slave laser.

together with an independent measurement12 of the fre-
quency noise of the 40-mW local oscillator. These re-
sults show that the frequency noise of the injection-locked
laser is the same as that of the master laser below 1 kHz.
Above 1 kHz the measured frequency noise is comparable
with that measured for the local oscillator, which sets the
sensitivity limit for this experiment. Injection locking
leads to a hundredfold reduction in the frequency noise of
the power oscillator over the measured frequency range.

The measured spectral density of frequency noise
can be compared with that predicted by the theory of
Subsection 2.B. Equation (11) predicts the spectral den-
sity of frequency noise of the injection-locked laser given
the measured noise in the master laser and the free-
running slave laser. Figure 8 shows the value of the
analytical expressions used to estimate the measured
spectral density of frequency noise of the master and the
free-running slave lasers as well as the calculated and
measured frequency noise in the injection-locked slave
laser. The low frequency noise in the free-running slave
laser is reduced by injection locking and ultimately lim-
ited by the frequency noise of the master laser.

B. Intensity Noise
The predictions of the intensity-modulation theory were
tested in the same apparatus shown in Fig. 6. By shut-
ting off the local oscillator, we use Detector 2 to measure
the intensity noise of the master, the free-running slave,
or the injection-locked slave lasers. Figure 9 shows the
spectral density of relative intensity noise, SRIN svmodd,
measured in 1y

p
Hz. The measurement reveals a large

noise peak in the free-running slave laser, owing to its
relaxation oscillations. Absence of a similar peak in the
master laser is due to an electronic feedback system17

built into the device. Relaxation oscillations in the
injection-locked slave laser are not observed. Excess
intensity noise in the injection-locked slave laser near 10
and 50 kHz is due to the action of the slave’s intracavity
piezoelectric transducer, imperfections of which lead to
frequency-noise-to-amplitude-noise conversion.

The measured spectral density of relative intensity
noise can be compared with that predicted by the theory
of Subsection 2.C. Equation (21) predicts the spectral
density of relative intensity noise of the injection-locked
laser, given the measured noise in the master laser and
the free-running slave laser. Figure 10 shows the value
of the analytical expressions used to estimate the mea-
sured spectral density of the relative intensity noise of the
master and the free-running slave lasers as well as the
calculated and measured frequency noise in the injection-
locked slave laser. The slave laser’s intensity noise is
relatively unchanged by injection locking, but its
relaxation-oscillation noise peak is eliminated.

4. SUMMARY
Injection locking is a powerful technique for reducing
the frequency noise of a high-power laser oscillator. We
have derived transfer functions for frequency and inten-
sity modulation in an injection-locked laser. The phase-

Fig. 10. Calculated relative intensity noise, RIN, in the three
lasers. Intensity-noise transfer functions are used to model
the intensity noise in the injection-locked slave laser, given the
measured intensity noise in the master and the free-running
slave lasers.
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modulation transfer functions predict that the frequency
noise of the master laser will dominate the frequency
noise of the injection-locked laser at modulation frequen-
cies below the injection-locking frequency. A stable mas-
ter laser makes possible large reductions in the frequency
noise of the slave laser with a simple feedback loop and no
intracavity elements. The free-running frequency noise
of the slave laser dominates at high frequencies; hence
the lower Schawlow–Townes noise18 of the higher-power
slave laser is not affected by the presence of the master
laser. Our measurements of the spectral density of fre-
quency noise of an injection-locked miniature-slab laser
show that the frequency noise of the injection-locked
laser is dominated by master-laser noise below 1 kHz,
as predicted. The intensity-modulation theory predicts
damping of the relaxation oscillations in the slave laser
and sensitivity to master-laser intensity noise in a broad
band near the relaxation-oscillation frequency. Our
intensity-noise measurements confirm this prediction.
Relaxation-oscillation damping combined with electronic
feedback of the master laser’s pump produces a high-
power laser with no characteristic relaxation-oscillation
intensity-noise peak. The predictions of our analysis
can be applied to optimizing cavity parameters to mini-
mize frequency and intensity noise in injection-locked
solid-state lasers.
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