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Oded Cats1 and Stefan Glück1

Abstract

We integrate for the first time, to our knowledge, a dynamic transit assignment model into the tactical planning phase. The
settings of service frequencies and vehicle capacities determine line capacity and have significant consequences for level-of-

service and operational costs. The objective of this study is to determine frequency and vehicle capacity at the network level

while accounting for the impact of service variations on users and operator costs. To this end, we propose a simulation-based
optimization approach. The proposed model allows accounting for variations in service headways and crowding as well as

their consequences for passenger flows distribution, all of which have not been accounted for in the tactical planning so far.

Practical benefits of the model are demonstrated by an application to a bus network in the Amsterdam metropolitan area.
This study contributes to the development of a new generation of methods that integrate reliability into the tactical planning

phase to improve service quality.

Line capacity – that is, the number of passengers that

can be transported within a certain time interval – is

largely determined by the product of line frequency and

the capacity of the vehicles assigned for operating it. The

determination of frequencies and vehicle capacities is

thus a crucial service design decision when planning

public transport services. These decisions are considered

both at the strategic and tactical levels. At the strategic

level, frequency setting interacts with passengers’ route

choices and the designated line capacity has

consequences for the choice of public transport

technology (e.g., metro, light rail, train, or bus). At the

tactical level, both service frequencies and vehicle

capacity (e.g., number of train cars, ordinary or

articulated bus) can be altered on a seasonal basis and

vary by time of day and day of the week. Service

unreliability can severely affect line capacity by reducing

the effective frequency. However, deviations from

planning are only handled at the operational level by

deploying real-time management strategies. In this study,

we propose to integrate the impact of service reliability

on both service provider and service users into the

service dimensioning decisions.

Service providers can amend service frequency or vehi-

cle capacity in response to service utilization levels, for

example if passenger loads exceed the desired on-board

occupancy. While both increased frequency and

deploying larger vehicles inflict additional costs, the for-

mer requires the reallocation of drivers and rolling stock,

whereas the latter requires changes in rolling stock com-

position. From the passengers’ perspective, higher fre-

quency is preferred over larger vehicles. While they both

solve the on-board crowding problem, higher frequency

also yields shorter waiting times, leading to a lower gen-

eralized travel cost.

The consideration of consequences of service uncer-

tainty for resource allocation requirements has so far

been confined to vehicle and crew schedule, that is

the operational planning phase, in the public transport

planning literature. Desaulniers and Hickman (1) and

Ibarra-Rojas et al. (2) provide exhaustive reviews of the

considerable scientific efforts that have been devoted to

solving the large range of public transport planning opti-

mization problems. Frequency and vehicle size were typi-

cally either solved separately or jointly for a single line,

neglecting their interplay when distributing a limited

amount of resources under uncertainty across the service

network. Service variability is inherent to (urban) public
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transport services and stems from the stochasticity of

traffic conditions, operations and passenger demand and

their interactions. Recently, Gkiotsalitis and Cats (3)

integrated travel time, headway, and demand variability

into an exact optimization of service headways where the

expected passenger flows are assumed exogenous. In

practice, authorities or operators typically use predefined

service standards such as maximum vehicle occupancy

rates along with local experience and expert judgment as

the basis for setting frequencies and vehicle capacities.

Early studies formulated rule-based decision criteria

for determining the service frequency on a line given pas-

senger arrival rates, potential fleet size constraints and a

desired maximum vehicle load factor (e.g., 4, 5). Starting

from the 1990s, the problem was often solved in combi-

nation with assignment models that can forecast passen-

gers’ behavior in response to a potential supply setting

(6, 7). Public transport supply optimization is then

solved using bi-level optimization models: a supply opti-

mization model at the upper level and an assignment

model at the lower level which computes passenger flows

under equilibrium conditions which result from a certain

supply given by the upper level model. More recent

developments involve the consideration of additional

decision variables and the use of metaheuristics (8–10).

Several studies develop approaches for determining

both frequencies and vehicle capacities simultaneously

(11–13). These methods enable a more anticipatory plan-

ning and dimensioning of supply than if service was

merely adjusted to prevailing demand distribution

conditions.

All the methods developed hitherto have used static

assignment models for distributing passenger demand on

the service network, assuming perfectly reliable supply

conditions. Travelers are thus assumed to make decisions

based on average supply conditions. Performance indica-

tors are, therefore, computed based on the given supply

and passenger flows without taking into account the

dynamic interaction between demand and supply.

However, especially in the context of dense metropolitan

systems, the dynamic and stochastic interaction between

demand and supply may lead to significant reliability

and crowding issues that are not accounted for in static

assignment models.

The objective of this study is to determine frequency

and vehicle capacity at the network level while account-

ing for the impact of service variations on users and oper-

ator costs. To this end, we propose a simulation-based

optimization approach consisting of a metaheuristic tech-

nique which iteratively evaluates the consequences of

selected solutions using an agent-based dynamic transit

assignment model. The latter explicitly models passenger

flow distributions which are dependent on the respective

supply specifications. To the best of the authors’

knowledge, this is the first study to use a dynamic transit

assignment in solving a tactical planning problem, allow-

ing the capture of the impacts of stochastic variations in

system supply and demand on the desired service dimen-

sioning. The practical applicability and implications of

the proposed model are demonstrated using data from a

case study in Amsterdam, the Netherlands.

The paper is structured as follows: the next section

provides a review and synthesis of the literature on head-

way and vehicle size determination. We then present a

modeling framework along with a description of its for-

mulation and implementation. The model is examined

and verified using a test network and is thereafter applied

for a real-world bus network, the set-up and results of

which are detailed in the subsequent section. We con-

clude with the key findings and implications for public

transport planning and point out directions for further

research in the final section.

Methodology

The conceptual modeling framework is presented first

and followed by the details of the three key modules.

Modeling Framework

The modeling framework for setting headways and vehi-

cle size for each of the network services is depicted in

Figure 1, including the sub-models, inputs and outputs

parameters. The model consists of three sub-modules

that are performed in an iterative process. The search

process generates new solutions while enforcing fleet

availability and operational budget limitations as well as

upper and lower frequency bounds. In each iteration of

the optimization algorithm, a potential supply setting in

terms of line frequencies and vehicle capacities is gener-

ated and provided as an input to a dynamic transit

assignment model. External inputs include the underly-

ing network and demand-specific parameters such as the

specification of the route choice model and an OD-

matrix. Outputs produced by the assignment model

related to passenger and vehicle costs are evaluated by

another sub-model which evaluates the performance of

the solution. The performance is measured based on the

objective function specification for the supply condition

under consideration. The search algorithm computes

new solutions which are then provided again to the

assignment model as an input. The algorithm proceeds

by selecting a random neighbor using the relative perfor-

mance of potential solutions and computing the objective

function value using the output of the dynamic assign-

ment model. The procedure is repeated until a user-

specified stopping criterion (e.g., consistently negligible

change in objective function value) that is checked in
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each iteration is fulfilled, obtaining the final solution. In

the following sections we describe the search algorithm,

dynamic assignment model and performance evaluation

modules, respectively.

Search Algorithm

Solution Generation Process. Simulated Annealing (SA), a

probabilistic metaheuristic for searching for the global

optimum in large solution spaces, is employed as the

search algorithm. The name and inspiration of SA per-

tains to the physical annealing of solids, which is the pro-

cess of finding low energy states of a solid by initially

melting the substance, and then lowering the temperature

slowly and in a controlled way. Kirckpatrick et al. (14)

and Cerny (15) showed that a stochastic Monte Carlo

method for simulating the annealing of solids could be

used for solving large combinatorial optimization prob-

lems such as the traveling salesman problem. The algo-

rithm is designed to avoid local optima by occasionally

accepting a solution positioned in another neighborhood

of the solution space even though it is attributed with a

higher cost function value. In the public transport con-

text, it has been demonstrated that SA can efficiently

search through a large solution space and that it outper-

forms genetic algorithms in solving the transit network

design problem (16).

The SA is incorporated in the proposed headway and

vehicle size determination model. The algorithm is

initialized by a feasible initial solution that is generated

either manually or at random. Subsequently, a

Neighborhood Generator finds all feasible solutions that

can be generated by altering a single decision variable

value of one of the service lines by increasing or decreas-

ing its value to the next possible integer. This is done by

changing either the headway or the vehicle capacity of a

selected line to the next smaller or larger values of the

predefined discrete sets of allowed values, while keeping

all other variables unchanged and satisfying the feasibil-

ity constraints. The algorithm proceeds by selecting at

random a neighbor from the set of all feasible neighbor-

ing solutions. The solution is then specified and tested in

the dynamic assignment model and thereafter evaluated.

If the solution performs better than the current objective

function value, then it is accepted as the new solution.

Otherwise, it is accepted as the new solution using an

acceptance function which computes the probability,

p kð Þ, of selecting a new (worse) solution at iteration k

given a certain cost difference between the two solutions

and the current temperature value t kð Þ:

p kð Þ= e
�

f kð Þ�f k�1ð Þ
t kð Þ

h i

ð1Þ

Equation 1 implies that the smaller the difference

between the old (better) solution and the new (worse)

solution is, the greater the likelihood that the new solu-

tion is accepted. The temperature is set at each iteration

Figure 1. Basic framework of the headway and vehicle size determination model.
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following an exponentially decreasing cooling function

as follows:

t k+ 1ð Þ=a � t kð Þ ð2Þ

where the decreasing factor a= 0:9 is set based on val-

ues commonly set in practice (17). Equation 1 implies

that when the temperature is high, most moves will be

accepted, but as t ! 0, most uphill moves will be

rejected. The SA algorithm starts with a relatively high

value of t to avoid getting prematurely trapped in a local

optimum followed by a gradual cooling. The algorithm

is terminated once the number of successively rejected

solutions exceeds a predefined threshold criterion. The

best performing solution obtained in the course of run-

ning the algorithm is then considered to be the final

solution.

Feasibility Constraints. The feasibility of any solution gener-

ated by the search process needs to be checked. Each

solution specifies the set of headways and vehicle sizes

assigned to each line l 2 L which is subject to design. Let

H and K denote the sets of service headways and vehicle

capacities permitted or available to the service provider.

The solution is then expressed as matrices, D and G,

where each entry dl, h and gl, k is a dummy variable that

equals 1 if a certain line is assigned with a certain head-

way h 2 H and k 2 K, respectively, and 0 otherwise. By

considering a discrete set of potential headways to be

used in a solution, lower and upper bounds for headways

are introduced. Each line can be served by only one

headway and one vehicle size during the analysis period

for operational reasons, therefore:

X

h2H
dl, h = 1 8l 2 L ð3Þ

X

k2K
gl, k = 1 8l 2 L ð4Þ

Furthermore, a solution may not be feasible because it

violates fleet availability or operational budget con-

straints. Upper bounds of fleet size availability per vehi-

cle type are specified as follows:

X

l2L

tl
P

h2H dl, h � h
gl, k łNk8k 2 K ð5Þ

where Nk is the number of vehicles of size (passenger

capacity) k that are available to the service provider. The

total fleet size is thus expressed as
P

k2K Nk, where K is

the set of all allowable vehicle sizes. Here tl is the cycle

time of a given line and the denominator corresponds to

the selected line headway.

Service providers may also wish to impose a constraint

on the operational budget as follows:

X

l2L

X

k2K
dl �

60
P

h2H dl, h � h
� bd

k � gl, k łu ð6Þ

where dl is the distance covered by line l, bd
k is a

parameter corresponding to the operational cost per

vehicle-km for a given vehicle size and u is a user-defined

maximum total vehicle kilometers traveled. Equation 6

can also be expressed for the total fleet by setting bk = 1

and defining u in terms of a total vehicle-kilometers bud-

get. Similarly, it can be adjusted to express the opera-

tional budget as a function of vehicle-hours.

When generating random initial or neighboring solu-

tions, an immediate feasibility check is performed by

applying Equations 3 to 6. Infeasible candidate solutions

are excluded. Depending on the specification of H , K, Nk

and u, and the service attributes (tl, dl and bk), the size

of the solution space may be significantly reduced.

Dynamic Assignment Model

Solutions are specified as inputs to BusMezzo, a dynamic

public transport operations and assignment model

designed to support the analysis and evaluation of public

transport planning, operation, and control. The reader is

referred to previous studies for details on the supply side

representation (18), model validation in relation to service

reliability (19), within-day demand side phenomena (20)

and day-to-day learning (21). Only a brief presentation of

the most relevant model features is thus given here.

The model considers the interaction between demand

and supply and its implications for service reliability and

bus bunching in particular (18, 19). The mutual interac-

tions of vehicles and passengers in BusMezzo are expli-

citly modeled using an agent-based simulation approach

consisting of within-day and day-to-day dynamics. The

latter is performed iteratively through passengers’ learn-

ing processes and adaptions until the assignment results

converge in terms of the generalized passenger travel

cost. This iterative network loading procedure yields

network-wide steady-state conditions which can be seen

as an equivalent to the congested user equilibrium in

conventional static assignment models.

The model captures the three passenger congestion

effects in public transport networks: (1) deteriorating

comfort on board a crowded vehicle; (2) denied boarding

in case of insufficient vehicle capacity; (3) service head-

way fluctuations resulting from flow-dependent dwell

time variations. The dynamic and stochastic transit

assignment simulation has been used in the past for

simulating the evolution of network reliability and on-

board crowding and quantifying passenger benefits as

part of project investment appraisals (20).

Network supply and demand are given as inputs to the

assignment model. The supply input includes network

4 Transportation Research Record 00(0)



topology including information about the service layer

such as line configuration, timetables, travel time distribu-

tions and dwell time functions. The planned headway and

the vehicle type assigned to each line are specified based

on the D and G solution matrices assessed in a given itera-

tion of the search algorithm. BusMezzo simulates the

movements of each individual vehicle through the net-

work based on mesoscopic traffic simulation principles.

Passenger demand is represented as an Origin-

Destination matrix. The overall demand for public trans-

port is assumed here to be inelastic, neglecting potential

modal shift. However, travel demand levels are time-

dependent and the number of travelers during the time

interval may be stochastic to represent day-to-day varia-

tions. During the simulation, passengers are generated

following a Poisson arrival process, assuming that ser-

vices are frequent enough so that passengers do not coor-

dinate their arrival with scheduled vehicle arrival times.

An initial choice-set generation phase is followed by a

dynamic path choice model consisting of a sequence of

en-route travel decisions determining how passengers

progress in the network (22). A day-to-day learning and

adaption process iteratively updates the accumulated

experience of each individual passenger with respect to

waiting times, in-vehicle times, and on-board crowding

(21). Model running time, critical for iterative evalua-

tions, is for instance approximately 500 times faster than

the simulated period for a network of ;50,000 passen-

gers and ;250 transit vehicles.

Performance Evaluation

Alternative solutions are evaluated in terms of the total

system cost, consisting of transport user costs, cu, and

transport operator costs, co. In this process, the simula-

tion outputs are post-processed by transforming the dis-

aggregate passenger and vehicle trajectories and travel

time components into key performance indicators based

on the objective function specification. The objective is

minimizing the total system costs:

z=Mincu + co ð7Þ

The cost functions of users and operators, cu and co, are

based on value of time coefficients for each passenger

travel time component and the fixed and variable cost

parameters, respectively, as detailed below.

Total costs to be borne by the set of service users, J ,

are calculated based on the total generalized travel cost

per passenger and the value of time, bVOT :

cu =bVOT �
X

jeJ
binitial waittinital wait

j +bextra waittextra wait
j +bivttivtj +bwalktwalkj +btransxj

h i

ð8Þ

where the the generalized travel cost per passenger j e J is

the weighted sum of travel attributes with b’s as the cor-

responding parameters that reflect the perceived travel

time which are applied as multipliers of the nominal

travel values (bivt is commonly set to 1). Equation 8

reflects therefore the total passenger welfare which can

be used for economic analysis of user benefits (e.g., 20).

A distinction is made between waiting time for the first

arriving vehicle, tinital wait
j , and additional waiting time in

case the passenger experiences denied boarding, textra wait
j .

Here tivtj and twalkj are the total time a passenger spends

in-vehicle and walking, respectively. xj is the number of

transfers the passenger undertakes along the journey. All

these passenger travel experience attributes are deduced

per passenger by BusMezzo based on individual route

choices.

The operational costs, co, associated with a certain

supply setting consist of four components:

co = cf + cd + ct + cs ð9Þ

First, fixed costs, cf , include insurance fees, vehicle-

related taxes, a supplement for carriage reserves and

depreciation of investment costs. These costs depend on

the fleet size and composition since some of these costs

may depend on the vehicle type. The fleet size per vehicle

type (Equation 5) is then multiplied by the corresponding

fixed cost parameter for vehicle type k, bf
k:

c f =
X

l2L

X

k2K

tl
P

h2H dl, h � h

� �

� b f
k � gl, k ð10Þ

Second, distance-dependent costs, cd , refer to costs such

as fuel, lubricating oil, tires and spare parts. Also the cost

parameter per distance unit, bd
k, may vary for different

vehicle sizes. The distance-based costs are, therefore,

obtained by accounting for the distance traversed by each

vehicle type multiplied by the corresponding cost:

cd =
X

l2L

X

k2K
dl �

60
P

h2H dl, h � h
� bd

k � gl, k ð11Þ

Third, time-dependent costs, ct, include personnel costs

including administration costs:

ct =bt �
X

l2L

tl
P

h2H dl, h � h

� �

ð12Þ
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The cost parameter per time unit, bt, is not expected to

vary for different vehicle types.

Fourth, standing still costs, cs, stem from the costs

related to the fuel/energy consumption of vehicles while

they are idle (i.e., dwell and layover times). The total

time lines serving line l is an output of the simulation

model and is denoted by tidlel :

cs=
X

k2K

X

l2L

tl
P

h2H dl, h � h
gl, k � t

idle
l � bs

k

� �

ð13Þ

where bs
k is the corresponding cost parameter per time

unit.

Application

The model presented in the previous section is applied to

a real-world case study network to investigate and

demonstrate its practical applicability and performance.

We first present the case study, followed by the scenario

design.

Case Study

The case study bus network is located to the north of

Amsterdam, the Netherlands. Figure 2 shows a geogra-

phical as well as a schematic representation of the case

study network. The network consists of 5 high-frequency

lines connecting central locations in the ‘Zaanstreek’ area

surrounding the city of Zaandam with key locations and

transfer hubs in Amsterdam.

The high-frequency lines – 391, 392, 394, 395 and 398 –

serve 62 stops and are part of the R-net (or

‘Randstadnet’), which is a cooperation of local authorities

and operators in the urban core of the Netherlands aiming

at providing high-quality public transport services.

Multiple travel alternatives are available for the majority

of Origin-Destination pairs, allowing passengers to adjust

their route choice in response to differences in service

intensity, service reliability and passenger congestion.

Passenger demand is analyzed based on passenger

smartcard transaction data from February 2017 consist-

ing of more than 400,000 records. The two busiest hours

during an average working day are 8 to 9 a.m. and 5 to

6 p.m. which are selected for further analysis (;1,300

during each). OD-matrices and link running times are

specified based on an empirical smartcard and vehicle

positioning data.

During the morning peak, service frequencies are cur-

rently set to 4 vehicles per hour on all lines and route

variants except for line 398, which has 3 departures per

hour (only southbound direction). During the afternoon

peak, the same supply setting is provided on most lines,

whereas an asymmetric service frequency is offered on

line 392 (the northbound direction is operated with an

increased frequency of 8 vehicles per hour).

Figure 2. Geographical (left) and schematic representation (right) of the case study network.
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Scenario Design and Model Specification

The performance and implications of the proposed

model are tested for various scenarios that differ in the

degrees of freedom given in terms of vehicle fleet compo-

sition and frequency setting. The experimental design

includes scenarios permitting (or not) for a heteroge-

neous fleet and allowing (or not) asymmetrical frequency

setting. This design allows testing whether using small

vehicles on lines with low demand can, for instance, save

operational costs that can instead be used to increase

capacity on highly-utilized lines. Furthermore, it also

allows investigating whether asymmetric frequency set-

tings can be advantageous given the asymmetric distribu-

tion of demand within the network. Moreover, two

different objective functions are considered:

� The minimization of total costs (TC) as formu-

lated in Equation 7
� The minimization of user costs (UC) costs

(Equation 8) subject to a budget constraint as

defined in Equation 6. This budget limit was set

to 907 vehicle-kilometers which correspond to the

current maximum supply offered during the anal-

ysis period. In this case, the goal is to find what is

the fleet size required and therefore the fleet size

constraint formulated in Equation 5 was relaxed,

that is, on the assumption that a sufficiently large

number of vehicles per type is available.

In addition, scenarios with either morning or afternoon

peak demand is included, as summarized in Table 1. The

corresponding current supply settings (denoted by

a.m._base and p.m._base) were also simulated for bench-

marking purposes.

Table 2 reports the vehicle type-specific input para-

meter values used in the case study for three different

vehicle types: mini, normal (currently the only bus

deployed) and articulated buses. The operational unit

cost values for the normal and the articulated bus are

based on Swedish recommendations for cost-benefit

analyses (23) and the values for minibuses are based on a

German study into the determination of operational

costs for bus services (24). Based on the existing head-

ways, cyclic timetable considerations and the observed

passenger loads, seven possible headways were

specified for each line: H= 5, 6, 7:5, 10, 12, 15, 20f g, in

minutes.

The weights in the generalized travel cost function

(Equation 8) are specified as follows: binitial wait = 2;

bextra wait = 7;bwalk = 2 and btrans= 5 [min/trans] and

bivt varies between 0.95 and 2.69 to reflect on-board

crowding as a function of whether the passenger sits or

stands and the load factors (i.e., ratio between on-board

volume and number of seats), see Cats et al. (20) for fur-

ther details on the specification of the travel cost weights.

The in-vehicle crowding multipliers are based on meta-

study of stated preference estimations. Those have been

Table 1. Scenario Design by Formulation of the Objective Function, Passenger Demand Input and Assumptions on the Decision Variables

Frequency and Vehicle Capacity

Vehicle fleet Homogeneous Heterogeneous

Frequency setting Symmetrical Asymmetrical Symmetrical

Objective Min UC Min TC Min UC Min TC Min UC Min TC

a.m. peak demand AM_UC_SYM AM_TC_SYM AM_UC_ASYM AM_TC_ASYM AM_UC_VEHCAP AM_TC_VEHCAP
p.m. peak demand PM_UC_SYM PM_TC_SYM PM_UC_ASYM PM_TC_ASYM PM_UC_VEHCAP PM_TC_VEHCAP

Table 2. Vehicle-Specific Characteristics and Operational Cost Components for the Three Different Vehicle Types Considered

Variable Minibus Normal bus Articulated bus

Seats capacity [passengers] 20 42 53
Total capacity [passengers] 35 83 158
Length [meters] 8 12 18
Number of front/rear doors 1/1 1/1 1/2
Boarding time per passenger [seconds] 2.5 2 2
Alighting time per passenger [seconds] 1.5 1 0.5
Time-dependent cost, bt[e/vehicle-hour] 48 48 48
Additional time-dependent cost when vehicle stands idle, bs

k [e/vehicle-hour] 2 2 2
Fixed costs, bf

k [e/vehicle-hour] 4.46 4.91 6.62
Distance-dependent cost, bd

k [e/vehicle-km] 0.37 0.58 0.93

Cats and Glück 7



found to be higher than the values recently found in a

revealed preference study performed based on observed

smartcard data in the Netherlands (25), while the trans-

fer penalty is in agreement with the value specified in this

study. The coefficient values are specified as input to the

simulation model and are used in calculating utility func-

tions of the route choice model in BusMezzo as well as

in the performance evaluation. The value of time is set to

bVOT = 6:75 [e/pass-hour] based on the value for urban

public transport in the Netherlands.

The total running time of the search algorithm

depends on the number of day-to-day iterations to reach

convergence, the number of assignment replications

needed to obtain statistically robust results, the number

of iterations of the SA algorithm and the runtime of one

simulation instance in BusMezzo (\10 seconds). The

number of replications for evaluating each solution was

set to 10 (each of which including day-to-day learning),

yielding a maximum allowable error of 1% of the aver-

age objective function value. Model running time

amounted to a total of 40–240minutes on a standard

PC, depending on the scenario.

Results and Analysis

Figure 3 shows the utilization of each link in the network

given the current service provision based on the

BusMezzo assignment results. Average occupancy levels

are visibly higher in the morning than in the afternoon

peak with the southbound direction of line 392 reaching

an average load factor of 1. While the load factor of indi-

vidual vehicle trips varies and occasionally exceeds 1,

vehicle capacity limitations (including standees) are never

binding in the base case scenarios. A clear directionality

in passenger volumes and supply utilization can be

observed in Figure 3 with substantial discrepancies

between the two directions of service segments within a

given time period.

Table 3 reports the decision variable values and the

corresponding user and operator costs for each of the

scenarios. Operator costs are shown also for scenarios

that seek to minimize only user costs while fulfilling the

fleet kilometers driven constraint. As expected, this value

approaches the budget limit in all of the UC scenarios as

the model attempts to minimize the user costs with the

available resources, confining the problem to a resource

allocation problem.

The solutions in terms of frequency settings exhibit

considerable differences between the two peak periods.

Especially in the ASYM scenarios, resulting from the

directionality in passenger flows. The results of the UC

scenarios suggest that a redistribution of the existing ser-

vice intensity can yield passenger travel time savings by

attaining a more balanced allocation of resources in the

Figure 3. Passenger volumes and service utilization in the case study network.
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morning peak. In addition, service frequency on the

trunk lines 391, 392, and 394 should be increased in the

afternoon peak.

When different vehicle types can be deployed, the

final solution of the UC scenario is to allocate minibuses

and articulated buses on certain lines, sometimes accom-

panied by a higher frequency (392 and 394). The passen-

ger volume over capacity ratio can be either addressed

by changing the service frequency or the vehicle capacity.

Which of these tactical design decisions will yield lower

costs depends on the dynamic interplay between supply

and demand and its consequences for service reliability

and crowding. Moreover, the passenger volume may

change as well in response to changes in travel

experience.

Interestingly, the results of the UC scenarios exhibit

overall fewer discrepancies from the base case scenario

than the TC scenarios. This suggests that the current

supply provision is steered toward minimizing user costs,

presumably due to the set-up of the procurement process

and concession contracting conditions. The final solu-

tions of the TC scenarios tend to deploy smaller vehicles

than the corresponding UC scenarios. No systematic

trend is observed for service headways.

To systematically analyze the performance of all the

scenarios in terms of user and operator costs, their results

are plotted in Figure 4. All points lying on the dashed line

traversing one of the points marking the base scenarios

(a.m._base and p.m._base) yield equal total costs (i.e.,

total system costs are currently higher in the morning than

in the afternoon peak, mainly due to higher user costs).

Overall, the performance of solutions obtained by the

TC scenarios indicates that current supply level and

allocation is close to system optimum conditions in the

afternoon peak. Conversely, user as well as total costs

can be reduced in the morning peak by increasing the

supply offered. In both morning and afternoon peak

periods, user cost savings can be attained in the UC sce-

narios by increasing the operational cost by about 20%

and 9% in the morning and afternoon, respectively, uti-

lizing the allowable budget limit (horizontal dashed line

in Figure 4). As mentioned, the budget limit was set to

u= 907 vehicle kilometers (about 2,540 e/hour) which

corresponds to the current maximum supply offered dur-

ing the peak hour analysis periods. User cost savings

stem from shorter waiting times (18.5% and 10.6% in

the morning and afternoon peaks, respectively), while

weighted in-vehicle times (1.8% in the morning peak),

the number of transfers and walking times remain largely

unaffected.

In both morning and afternoon peak periods, the

VEHCAP solutions perform significantly better than all

other corresponding scenarios with respect to user bene-

fits based on t-tests with a confidence level of 95%. Since

the deployment of smaller types of vehicles can decrease

the average operational costs per bus compared with the

current situation, a larger number of buses can be

deployed while maintaining the same operational

expenses and while reducing passenger waiting times.

The solutions obtained for the TC scenarios exhibit a

significantly different trend for the two periods regarding

their performances relative to the respective base cases.

In the morning peak, service can better cater for the pre-

vailing demand with user costs reductions of about 12%

whereas in the afternoon peak no significant improve-

ment is yielded. As in the UC scenarios, most of the

Figure 4. Overview of the performance of all solutions found for the different scenarios in terms of associated passenger-related and

operational costs.
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savings in user costs can be attributed to reductions in

waiting times, yet in-vehicle times can also be slightly

reduced by up to 2.5% (morning peak). Note that the

best performing solutions with respect to user costs are

always obtained in the VEHCAP scenarios. A heteroge-

neous fleet composition yields a reduction in overall sys-

tem costs, concurring with the results reported by

Dell’Olio et al. (11). A statistically significant reduction

in total costs is only attained in the morning peak for the

VEHCAP scenario (1.1%). In contrast, in the afternoon,

none of the solutions found can significantly reduce the

total costs. Therefore, during this period, a change in

supply provision cannot yield significant benefits in

terms of total costs, yet, significant passenger cost sav-

ings can be attained by increasing supply up to the avail-

able budget limit.

Conclusion

The dimensioning of line capacity across the network is

one of the most important decisions made by public

transport planners. While the effective capacity, passen-

ger waiting times and on-board crowding and fleet size

requirements depend on service reliability, models for

setting line frequencies and vehicle capacities were either

confined to single-line operations or neglected the uncer-

tainty inherent to service operations. We propose a

method for addressing this gap in the literature by con-

tributing to a new generation of models that integrate

reliability into the tactical planning phase. The proposed

method allows for the simultaneous determination of line

frequencies and vehicle capacities based on the iterative

assessment of candidate solutions using a dynamic and

stochastic transit assignment model. This enables the

consideration of the dynamic interaction between

demand and a potential supply setting and the resulting

consequences on overall system performance at the net-

work level.

The application of the model demonstrates its practi-

cal applicability and yielded solutions that can improve

upon the current situation. The results suggest a consid-

erable improvement potential in the morning peak hour,

where significant travel cost savings can be made, sug-

gesting that overall supply provision should be increased.

In contrast, in the afternoon peak, changing the current

situation is not necessary from a total system cost point

of view. This result confirms the adequacy of the current

situation given the prevailing demand conditions.

Furthermore, our findings clearly highlight the advan-

tages of an asymmetric service provision during periods

of directed passenger demand. Moreover, a simultaneous

determination of vehicle capacities and line frequencies

attests to the benefits of deploying a mixed vehicle fleet

in the case study network.

The proposed model has several limitations which

suggest avenues for future research. The consequences of

line capacity decisions on subsequent planning decisions

– namely, timetable design, vehicle and crew scheduling –

can be assessed by accounting for drivers and rolling

stock circulation constraints. The estimated fleet size

required and the respective operational costs may need

to be adjusted based on the exact vehicle scheduling.

Future research may thus seek to integrate vehicle sche-

duling constraints into the frequency and vehicle capacity

determination problem. Another potential development

is demand elasticity to line capacity and in particular to

service frequency. The societal value of ridership growth

needs then to be incorporated in the objective function.

The supply setting problem is formulated in this study

as a system cost minimization problem consisting of ser-

vice users (generalized travel) costs and service providers

(fixed and variable) costs. The objective function can

also consider only user costs or only operator costs. The

former was investigated in this study and requires the

specification of operational constraints in terms of an

available vehicle fleet or budget constraint so that the

maximum quantity of supply provided is bounded. This

exemplifies the potential value of adjustments in service

frequencies and vehicle allocation for transit quality and

level of service, even when assuring that no additional

resources are required. In the latter case, where only

operator costs are minimized, a constraint ensuring that

demand is served satisfactorily needs to be introduced.

This could for instance be the condition that a certain

minimum level of service is provisioned and that the

maximum vehicle occupancy rate should not be exceeded

on any line segment. In other words, the capacity offered

is always sufficient.

Potential applications of the proposed model extend

beyond the tactical level and include strategic network

design and supply setting during special events. The

model can be used for network design by specifying all

candidate lines (i.e., line pool) and those lines resulting in

zero or very low frequencies could then be removed from

the set of attractive lines. Running the model on a modi-

fied network or special demand configurations in case of

special circumstances such as construction works or

large-scale events can create valuable outputs which can

be used as a tactical basis for predefined service plans.

Finally, we intend to extend the model to investigate the

breakeven point for deploying automated public trans-

port services by testing it for a range of fixed and vari-

able costs.
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