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ABSTRACT: We have obtained uniform frequency scaling
factors λharm (for harmonic frequencies), λfund (for fundamen-
tals), and λZPVE (for zero-point vibrational energies (ZPVEs))
for the Weigend−Ahlrichs and other selected basis sets for
MP2, SCS-MP2, and a variety of DFT functionals including
double hybrids. For selected levels of theory, we have also
obtained scaling factors for true anharmonic fundamentals
and ZPVEs obtained from quartic force fields. For harmonic
frequencies, the double hybrids B2PLYP, B2GP-PLYP, and
DSD-PBEP86 clearly yield the best performance at RMSD =
10−12 cm−1 for def2-TZVP and larger basis sets, compared to
5 cm−1 at the CCSD(T) basis set limit. For ZPVEs, again, the
double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even
mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more
accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.

■ INTRODUCTION AND THEORETICAL
BACKGROUND

Recently, remarkable progress has been made in the area of high-
accuracy computational thermochemistry on small molecules, as
witnessed by W4 theory,1−3 the HEAT approach,4,5 the focal
point approximation,6 and the Feller−Peterson−Dixon (FPD)
approach.7−11 Likewise, a number of options now exist for chem-
ical accuracy (generally defined as ±1 kcal/mol) on medium-
sized molecules, such as Gn theory (reviewed in ref 12), CBS-
QB3,13,14 and the ccCA approach,15−17 as well as W1-F12 and
W2-F12 theory.18 As such, approaches are extended to larger
organic and biomolecules, such as benzene5 and the amino
acids;19 it is becoming increasingly clear20 that the limiting factor
for thermochemical accuracy in such systems may well be the
nuclear motion rather than the electronic structure. By far, the
largest nuclear motion term is the zero-point vibrational energy
(ZPVE); for instance, it reaches 62.14 kcal/mol for benzene5 and
goes up to about 138.2 kcal/mol for arginine.19 This situation will
only get worse as applications move to larger systems.
For small molecules, the calculation of accurate anharmonic

force fields is a practical option (see, e.g., refs 1 and 21−23). For
systems the size of arginine, however, other options clearly need
to be sought.
Traditionally, one approximation has been to multiply one-

half of the sum of harmonic frequencies by a scaling factor
appropriate for the level of theory and basis set.24−29 Some
theoretical background may be appropriate here.
Limiting ourselves for the moment to asymmetric tops and

neglecting higher-order anharmonicity and vibrational resonances,

the vibrational energy levels of a polyatomic molecule are given by
the expression
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where G0 is the polyatomic equivalent of the Dunham Y00
constant,30 while the ni, ωi, and Xij have their usual meanings
(e.g., ref 31) of vibrational quantum numbers, harmonic fre-
quencies, and first-order anharmonicity constants, respectively.
For simplicity, we will henceforth drop the remainder term cubic
in the vibrational quantum numbers, O(n3).
Eliminating the cumbersome restricted summation from eq 1,

we obtain
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The anharmonic ZPVE trivially becomes
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In experimental vibrational spectroscopy of polyatomics, vi-
brational energy levels are often fitted to Dunham-style power
series in the vibrational quantum numbers
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where the linear polyatomic Dunham coefficients are given by
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and obviously the vibrational fundamentals νi (in the absence of
resonances) are νi = ωi

0 + Xii. If we now define
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Then it is easily shown that27
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The anharmonicity constants can be compactly expressed in
terms of the quartic force field in reduced normal coordinates
(cm−1 units) as

∑ ∑

∑

ϕ ϕ ϕ
ω

ϕ

ς ω
ω

ω
ω

= − −

+ − − + − + −

+ +
α

α
α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

X D k i j

D k i j D k i j D k i j

B

4 4 8
[ ( , , )

( , , ) ( , , ) ( , , )]

( )

ij
iijj

k

iik jjk

k k

ijk

ij
i

j

j

i

2

( )

(9)

where the ωi, ϕijk, and ϕijkl, have their customary meanings (e.g.,
ref 31) of harmonic frequencies, cubic, and quartic force con-
stants, respectively, the Bα are the rotational constants about the
three principal axes of inertia, and the ζij

(α) are the Coriolis
coupling constants. The inverse denominators D are defined
by32,33

ω ω ω± ± ± = ± ± ±D i j k( , , ) 1

i j k (10)

The D array can be precomputed; Fermi resonances will
correspond to very large D elements [e.g., 2ωi ≈ ωk corresponds
to a very large D(k,−i,−i)], and the anharmonicity constants
can be easily deperturbed by simply zeroing the affected D
element.32,33

Note that typically, the negative cubic terms outweigh the
positive quartic term, making the Xij negative overall. If we take
this into account, then the following inequality will generally be
obeyed

> ≈ +

> >

ZPVE ZPVE
ZPVE ZPVE

2
ZPVE ZPVE

harm anhar
harm linear

linear fund (11)

While the Xij are not invariant under deperturbation for Fermi
interactions (and neither isG0), it can be shown

22 that the invari-
ances cancel each other in eq 3, and thus, ZPVEanhar is invariant.
Allen and co-workers derived the following expression22
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where the typically small kinetic energy term is
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Equivalent expressions were derived by Vaźquez and Stanton (cf.
ref 30 in ref 34) as well as by Barone,35 the latter of which is
implemented36 in Gaussian 09, revision D.
(Explicit evaluation of eq 12 requires the full cubic force field

and a semidiagonal quartic force field. For methods where ana-
lytical second derivatives are available, numerical central differ-
ences of the Hessian in normal coordinates permit evaluation
of all required force constants in at most 2N + 1 Hessian evalu-
ations.37)
The relatively high computational cost of determining har-

monic force fields early on led to approximations in which force
constants determined at a low level of theory were rescaled.
While the SQM (scaled quantummechanical) approach of Pulay
and co-workers38,39 employs different scaling factors for different
types of force constants and different functional groups, by far,
the most popular approach has been the use of a single global
scaling factor λ.25,29,40,41

When using a simple scaling factor to fit harmonic frequencies
ωtrue ≈ ωcalc(level)λharm(level), one seeks to compensate for the
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intrinsic biases of the theoretical level. For instance, it has been
well-known since the 1970s (see, for example, ref 41) that at the
HF level with small basis sets, bonds are too short and stretching
frequencies thus (as a special case of Badger’s rule42,43) intrin-
sically too high. (In fact, it was found empirically that such low-
level harmonic frequencies could be brought much closer to
experiment by evaluating them at the [nonstationary] exper-
imental geometry.44−46)
The common use of scaled harmonic frequencies to predict

approximate fundamental frequencies νtrue ≈ ωcalc(level)-
λfund(level) goes a step further in that it also attempts to subsume
the generally negative anharmonicity into the scaling factor. In
practice, it is indeed seen in the near-IR range that vibrational
anharmonicities are roughly proportional to harmonic frequen-
cies, which is why such a crude correction as a scaling factor “has
any prayer of working at all”.
Grev et al.27 first showed that ZPVEharm > ZPVEanhar > ZPVEfund

as well as deriving an expression equivalent to eq 8, and it has been
argued27 on that basis that the average of λharm(level) and
λfund(level) would be a good approximation to λZPVE(level).
Large compendia of scale factors were published by Radom

and co-workers25,40 as well as by Truhlar and co-workers;28

additional sets of scale factors have been published for the
correlation-consistent basis sets,47 the polarization-consistent
basis sets,48 and the Sadlej49−52 electrical properties basis set;53

the rationale behind this latter study was the performance of
these basis sets for Raman activities.
No discussion would be complete without mentioning the

more elaborate SQM or SQMFF (scaled quantum mechanical
force field) approach38 pioneered by Boggs, Pulay, and co-workers.
To the best of our knowledge, no consistent set of scale factors

for harmonics, fundamentals, or ZPVEs has ever been proposed
for the Weigend−Ahlrichs54 def2 basis sets. The def2 family of
basis sets not only covers most of the periodic table (presently
H−Rn) but holds a middle ground between ab initio optimized
basis sets like the correlation-consistent family55−58 and DFT-
specific basis sets like Jensen’s polarization-consistent59−63

family. (For two recent reviews on Gaussian basis sets, see
Hill64 and Jensen.65) As such, they are especially well-suited for
application in conjunction with double-hybrid functionals,66,67

where the correlation energy is a hybrid of DFT correlation and
MP2 correlation in the basis of Kohn−Sham orbitals.68 One
purpose of the present paper is to report appropriate frequency
(λharm, λfund) and ZPVE (λZPVE) scaling factors for the def2 family
and a variety of ab initio and DFT methods.
Second, while it has been reported38,39 that double-

hybrid66,67,69,70 and particularly DSD71−73 density functionals
perform quite well (between CCSD and CCSD(T) in quality)
for calculated vibrational frequencies, no systematic set of scale
factors has been proposed (aside from some ad hoc values71,73 for
λharm with polarization-consistent basis sets). A consistent set of
λharm,λfund,λZPVE for a variety of basis sets will be derived and
reported in the present paper.
Third, we will address the question as to whether quartic force

fields (perhaps enhanced by appropriate scaling factors) offer an
actual advantage over scaled harmonic frequencies. We will show
that the answer is generally affirmative for fundamentals, espe-
cially if the quartic force field is augmented with higher-level
harmonic frequencies, but that for ZPVEs of at least semirigid
molecules, ZPVEharmλZPVE works almost as well. The reason for
the different behaviors is obvious from comparing the
coefficients of the anharmonicities in eqs 3 and 4.

A number of basis set correlation methods or basis set−DFT
functional combinations overlap with previous studies in the
literature; our values for those are not intended to supersede
the earlier work but to serve as a “sanity check” on the values
obtained for the previously uncovered combinations. The
principal resources for comparison are the large compilations
of Radom and co-workers25 and of Alecu et al.;28 additionally,
scale factors obtained using a different fitting procedure
are available for HF, B3LYP, and MP2 with the correlation-
consistent basis sets47 and for various DFT functionals (includ-
ing the B2GP-PLYP double hybrid69) with Jensen’s polarization-
consistent basis sets.48

■ COMPUTATIONAL DETAILS
Most calculations were performed using the Gaussian 09, revi-
sion D01 program system36 running on the Faculty of Chemistry
computing cluster at the Weizmann Institute of Science. Some
CCSD(T) frequency calculations were carried out usingMOLPRO
2012.174 running on the same hardware platform.
Aside from conventional CCSD(T),75 we considered the

following levels of theory:
• regular MP2 and spin-component-scaled SCS-MP276,77

• on rung two of the “Jacob’s Ladder of DFT”,78 the GGA
functionals BP8679 and PBE80

• on rung three, the meta-GGA functionals TPSS81 and
M06L82

• on rung four, the hybrid GGAs B3LYP,83,84 PBE0,85 and
B97-186,87 and hybridmeta-GGAsTPSS0,88,89M06,82 andM06-2X82

• on rung five, the double hybrids (see Grimme67 for a very
recent review) B2PLYP,66 B2GP-PLYP,69 and the spin-
component-scaled double-hybrid DSD-PBEP86-D290

• the range-separated hybrid ωB97X-D91

As the “training set”, we considered a slight modification of the
HFREQ2014 data set,92 which was compiled by two of us in a
paper on explicitly correlated harmonic frequencies; for details of
the experimental and “semi-experimental” reference data, the
reader is referred to p 2086 of that paper. The modifications
consist of deleting F2 (which is a statistical outlier for all DFT and
lower-level ab initio methods owing to severe static correlation),
HNO (which has an anomalously high anharmonicity in the
H−N stretch), and CF2 and compensating by adding the open-
shell diatomics S2 and SO (reference data taken from Huber and
Herzberg93).
In ref 92, we found that the valence CCSD(T) limit still has a

root-mean-square deviation (RMSD) of 4.7 cm−1 from the
reference data, which actually increases to 7.0 cm−1 if inner-shell
correlation is accounted for; the remaining error is primarily due
to neglect of higher-order correlation effects (particularly con-
nected quadruples). This means in practice that a RMSD of
7 cm−1 represents the lower limit of what we can reasonably
expect.
The following basis sets have been considered:
(a) From the correlation-consistent family,55−58 cc-pVDZ,

cc-pV(T+d)Z, cc-pV(Q+d)Z, and the latter two’s augmented
counterparts aug′-cc-pV(T+d)Z and aug′-cc-pV(Q+d)Z, where
the “+d” refers to the addition of a high-exponent d function on
second-row elements; this has repeatedly been found58,94,95 to be
essential for the description of the 3d orbital, which in high oxi-
dation states lies low enough to become a back-donation
acceptor from oxygen and fluorine.
(b) From the Weigend−Ahlrichs family, the def2-SVP, def2-

TZVP, def2-TZVPP, and def2-QZVP basis sets,54 as well as
their diffuse-augmented variants96 def2-SVPD, def2-TZVPD,
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def2-TZVPPD, and def2-QZVPD, respectively. (We note that
def2-QZVPP is equivalent to def2-QZVP for the elements
presently under consideration.)
(c) From the Jensen polarization-consistent family, the

aug′-pc2+2d and aug′-pc3+d basis sets, which consist of pc-2
and pc-3, respectively, on hydrogen combined with aug-pc2
and aug-pc3, respectively, on nonhydrogen atoms and where
second-row basis sets have been augmented with two and
one set of high-exponent d functions, respectively, the ex-
ponent being obtained by successively multiplying the highest
d exponent already present by a factor of 2.5. These basis
set combinations should be close to the basis set limit for
DFT calculations and were employed in previous DFT bench-
marking papers by our group (see, for example, refs 69, 71, 73, 90,
97, and 98).
(d) Several Pople-family basis sets that are routinely used for

zero-point and thermal corrections in various composite ab initio
thermochemistry schemes, such as 6-31G(d) in G2 and G3
theory, GTBas3 (effectively 6-31G(2df,p)) in G4 and G4MP2
theory, and CBSB7 (effectively 6-311G(d) on first row and
6-311G(2d) on second row) in CBS-QB3. In addition, we also
considered the N07D basis set, which has been advocated
by Barone and co-workers99 as a good compromise between

accuracy and computational cost for DFT anharmonic force
fields.
Finally, the scaling factors were obtained by regression

through the origin according to eqs (6.1.5) through (6.1.8) in
ref 100, as implemented in the LINEST function of Microsoft
Excel.

■ RESULTS AND DISCUSSION
Approximate Harmonic Frequencies to Exact Harmon-

ic Frequencies. RMSDs from the HFREQ2014 reference
values92 for unscaled harmonic frequencies can be found in the
Supporting Information; optimal scaling factors λharm(level) for
ωtrue ≈ ωcalc(level)λharm(level) are given in Table 1, while the
corresponding RMSD values are given in Table 2.
First of all, the largest basis sets of each of the three families,

that is, aug-cc-pV(Q+d)Z, aug′-pc3+d, and def2-QZVPD, all
yield similar error statistics for both raw and scaled harmonic
frequencies. As a probe for performance near the basis set limit of
a given method, we shall single out def2-QZVPD on the grounds
of not being specifically biased toward either ab initio or DFT
methods.
Of the DFT functionals considered, M06, M06-2X, and

(barely)ωB97X-D have RMSDs larger than the 30 cm−1 ofMP2;

Table 1. Optimal Scale Factors for Harmonic Frequencies

aug-cc-pV(Q
+d)Z

aug-cc-pV(T
+d)Z

cc-pV(Q
+d)Z

cc-pV(T
+d)Z aug′-pc3+d

aug′-pc2 +
2d CBSB7

6-31G
(2df,p)

cc-
pVDZ

cc-pVQZ-
F12

CCSD(T)-F12c 0.9999
CCSD(T) 1.0012 1.0002 1.0007
SCS-MP2 0.9933 0.9957 0.9920 0.9926 0.9915 0.9894 0.9915 0.9843 0.9955
MP2 0.9930 0.9952 0.9916 0.9919 0.9913 0.9891 0.9896 0.9831 0.9934
B2GP-PLYP 0.9906 0.9916 0.9899 0.9897 0.9898 0.9885 0.9887 0.9835 0.9924
B2PLYP 0.9991 0.9999 0.9985 0.9983 0.9985 0.9973 0.9976 0.9925 1.0018
DSD-PBEP86-D2 0.9982 0.9993 0.9973 0.9973 0.9972 0.9957 0.9959 0.9904 0.9992
M06-2X 0.9874 0.9877 0.9873 0.9870 0.9873 0.9871 0.9863 0.9837 0.9911
M06 0.9957 0.9990 0.9959 0.9979 0.9951 0.9962 0.9985 0.9938 1.0027
TPSS0 0.9875 0.9875 0.9874 0.9871 0.9870 0.9864 0.9863 0.9871 0.9894
B3LYP 1.0041 1.0043 1.0040 1.0038 1.0039 1.0034 1.0042 1.0004 1.0096
PBE0 0.9947 0.9948 0.9945 0.9942 0.9944 0.9938 0.9931 0.9895 0.9962
B97-1 1.0033 1.0039 1.0032 1.0033 1.0031 1.0026 1.0027 0.9992 1.0075
TPSS 1.0198 1.0198 1.0197 1.0194 1.0192 1.0188 1.0193 1.0158 1.0248
M06L 0.9944 0.9981 0.9947 0.9971 0.9934 0.9951 0.9980 0.9925 1.0002
BP86 1.0339 1.0340 1.0338 1.0334 1.0337 1.0332 1.0338 1.0299 1.0393
PBE 1.0309 1.0310 1.0308 1.0305 1.0308 1.0302 1.0300 1.0260 1.0353
ωB97X-D 0.9913 0.9917 0.9912 0.9909 0.9910 0.9900 0.9912 0.9874 0.9942

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-TZVPP def2-TZVPPD def2-QZVP def2-QZVPD 6-31G(d) N07D

SCS-MP2 0.9854 0.9938 0.9960 0.9987 0.9920 0.9936 0.9919 0.9923 0.9896 0.9864
MP2 0.9835 0.9928 0.9946 0.9976 0.9913 0.9931 0.9915 0.9920 0.9869 0.9856
B2GP-PLYP 0.9854 0.9901 0.9911 0.9926 0.9892 0.9900 0.9897 0.9900 0.9841 0.9865
B2PLYP 0.9952 0.9989 0.9995 1.0008 0.9977 0.9985 0.9983 0.9987 0.9932 0.9957
DSD-PBEP86-D2 0.9917 0.9972 0.9989 1.0007 0.9967 0.9977 0.9971 0.9975 0.9918 0.9931
M06-2X 0.9855 0.9873 0.9871 0.9876 0.9865 0.9867 0.9869 0.9870 0.9827 0.9862
M06 0.9992 1.0007 0.9980 0.9985 0.9959 0.9961 0.9959 0.9960 0.9955 0.9978
TPSS0 0.9842 0.9860 0.9871 0.9876 0.9865 0.9867 0.9869 0.9871 0.9810 0.9855
B3LYP 1.0044 1.0045 1.0044 1.0047 1.0029 1.0030 1.0037 1.0039 1.0008 1.0032
PBE0 0.9915 0.9930 0.9944 0.9949 0.9935 0.9937 0.9942 0.9944 0.9885 0.9919
B97-1 1.0023 1.0031 1.0034 1.0038 1.0023 1.0025 1.0029 1.0031 0.9993 1.0021
TPSS 1.0190 1.0193 1.0194 1.0198 1.0188 1.0190 1.0192 1.0194 1.0153 1.0188
M06L 0.9958 0.9978 0.9965 0.9970 0.9949 0.9954 0.9945 0.9946 0.9959 0.9967
BP86 1.0340 1.0341 1.0337 1.0342 1.0325 1.0327 1.0336 1.0338 1.0316 1.0329
PBE 1.0303 1.0302 1.0306 1.0311 1.0295 1.0297 1.0306 1.0308 1.0273 1.0288
ωB97X-D 0.9891 0.9910 0.9914 0.9920 0.9901 0.9903 0.9910 0.9911 0.9867 0.9903
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SCS-MP2 outperforms not just MP2 itself but all non-double-
hybrid DFT functionals. Somewhat surprising, perhaps, are the
low RMSDs for the simple GGAs BP86 and PBE. DSD-PBEP86,
at 9.9 cm−1, is the best performer in the table short of CCSD(T)
itself.
Not surprisingly, RMSDs for (meta)GGA and hybrid DFT

functionals display much less basis set sensitivity than the corre-
lated ab initio methods. The double hybrids take an intermediate
position but are apparently closer to the ab initio than to the DFT
end of the spectrum.
Among the small basis set DFT results, N07D appears to be

clearly superior to def2-SVP, 6-31G(d), and even CBSB7.
With the double hybrids, on the other hand, 6-31G(d) and

N07D are clearly inferior to def2-SVP and CBSB7. Here, how-
ever, the extra computational effort for a larger basis set clearly
pays off; for instance, for B2PLYP, replacing def2-SVP by def2-
TZVP nearly cuts RMSD in half, and def2-TZVPP actually does
better still. Still larger basis sets appear to be past the point of
diminishing returns. Comparing def2-TZVPP to similar-sized
basis sets from the other families, it would seem that the pc-n
family is less suited to double-hybrid frequency calculations than
the other options.

After scaling, B2PLYP, B2GP-PLYP, and DSD-PBEP86 de-
liver similar performances, with a slight edge for DSD-PBEP86.
For unscaled harmonic frequencies, B2GP-PLYP is clearly
inferior to the two other double hybrids.
What about the scaling factors themselves? Unsurprisingly,

those for CCSD(T) are effectively within statistical uncertainty
from unity; near the basis set limit, the pure (meta)GGAs BP86,
PBE, and TPSS all have scaling factors significantly greater than
unity, while B3LYP, B97-1, B2PLYP, DSD-PBEP86-D2, and
M06 have scale factors close to unity, and a number of other
functionals (such as TPSS0) appear to overestimate frequencies
on average.
Optimal scaling factors for the DFTmethods are rather weakly

dependent on the basis set, to the point that scaling factors can be
considered transferable to similar-sized basis sets not listed in the
table. Obviously, there is more variation for MP2, with smaller
basis sets corresponding to smaller optimum scaling factors
(i.e., blue-shifted frequencies on average), while again the double
hybrids take a middle position in terms of basis set sensitivity.
By way of a “sanity check” for our procedure, for the M06

family and the def2-TZVPP basis sets, the Truhlar group,28

fitting against the F38/06 database,82 found scaling factors of
0.992 for M06, 0.983 for M06-2X, and 0.995 for M06L. These

Table 2. RMSD (cm−1) for Harmonic Frequencies after Scaling

aug-cc-pV(Q
+d)Z

aug-cc-pV(T
+d)Z

cc-pV(Q
+d)Z

cc-pV(T
+d)Z aug′-pc3+d

aug′-pc2 +
2d CBSB7

6-31G
(2df,p)

cc-
pVDZ

cc-pVQZ-
F12

CCSD(T)-F12c 4.63
CCSD(T) 4.22 7.13 11.51
SCS-MP2 21.97 24.35 21.24 22.81 21.45 26.04 30.29 31.37 34.96
MP2 30.48 32.44 29.40 30.22 30.13 34.50 37.47 38.41 42.57
B2GP-PLYP 11.20 11.26 9.88 10.06 10.93 12.70 18.19 19.59 25.13
B2PLYP 12.10 12.78 10.89 11.51 11.87 14.07 20.26 22.50 28.82
DSD-PBEP86-D2 10.25 10.50 9.66 10.54 9.95 12.04 18.89 20.65 26.52
M06-2X 37.09 36.25 37.12 36.98 36.82 36.55 36.39 39.10 41.88
M06 39.47 41.97 39.56 43.47 38.55 40.72 44.84 43.88 44.31
TPSS0 27.76 27.41 28.15 28.97 27.86 27.18 29.43 28.08 34.51
B3LYP 25.43 25.10 25.62 26.63 25.44 25.55 29.70 31.92 37.03
PBE0 32.03 31.57 32.22 32.90 32.21 31.67 33.42 33.94 38.35
B97-1 23.48 23.26 24.06 25.45 23.76 23.15 27.81 28.71 32.23
TPSS 24.25 24.30 25.31 26.49 24.12 24.58 30.91 36.34 44.02
M06L 28.88 31.23 28.92 32.88 27.99 30.51 34.65 36.58 38.91
BP86 22.60 22.87 23.30 24.67 22.65 23.66 29.57 34.91 41.29
PBE 23.33 23.51 24.17 25.46 23.45 24.28 30.27 35.45 42.80
ωB97X-D 33.52 32.40 33.73 33.63 33.63 32.65 34.74 34.17 35.15

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-TZVPP def2-TZVPPD def2-QZVP def2-QZVPD 6-31G(d) N07D

SCS-MP2 28.58 30.91 24.64 23.61 22.84 23.89 21.13 21.37 53.72 48.34
MP2 35.87 39.28 31.78 31.02 30.78 32.05 29.73 30.03 60.08 55.70
B2GP-PLYP 21.70 23.83 12.29 12.57 10.45 11.17 10.46 10.71 37.54 29.41
B2PLYP 23.07 25.52 14.04 14.03 11.71 12.53 11.30 11.58 40.78 31.99
DSD-PBEP86-D2 22.53 23.81 12.24 11.57 10.20 10.56 9.78 9.93 38.33 31.02
M06-2X 49.57 47.76 37.26 37.59 37.46 37.17 36.84 36.85 40.34 35.75
M06 51.30 51.25 41.71 41.52 42.32 41.85 39.71 39.28 36.34 40.33
TPSS0 37.02 33.64 28.08 28.12 28.27 27.90 27.65 27.62 38.75 28.47
B3LYP 38.89 36.10 26.76 26.66 25.96 25.58 25.34 25.37 41.58 30.31
PBE0 43.87 42.28 32.22 32.29 32.53 32.30 32.05 32.08 36.25 32.54
B97−1 35.75 34.25 23.96 23.33 24.10 23.57 23.75 23.65 35.22 27.25
TPSS 37.54 31.64 26.33 25.13 24.76 24.10 24.19 24.07 52.92 33.74
M06L 42.58 41.21 32.38 32.77 31.50 31.00 28.76 27.98 39.86 33.38
BP86 38.38 36.03 25.64 24.63 23.74 23.31 22.69 22.69 46.92 32.63
PBE 40.70 38.49 26.68 25.14 24.64 24.14 23.44 23.48 46.75 33.03
ωB97X-D 43.10 41.64 33.33 33.21 33.91 33.49 33.59 33.52 33.61 32.50
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agree to within overlapping uncertainties with the values ob-
tained presently of 0.9959, 0.9865, and 0.9949, respectively.
Approximate Harmonic Frequencies to Exact Funda-

mental Frequencies. The compiled experimental fundamen-
tals can be found in the Supporting Information. For the di-
atomics Cl2, ClF, CO, CS, S2, HCl, HF, N2, SiO, and SO, the data
were taken from Huber and Herzberg,93 while detailed source
references are as follows: C2H2,

101,102 C2H4,
103−107 CH3OH,

108

H2CS,
109,110 CH4,

111 ClCN,112,113 CO2,
114 H2CO,115−117

H2O,
118 H2S,

119,120 HCN,121 HOCl,122 N2O,
123 NH3,

124−127

OCS,128 PH3,
129,130 SO2,

131 CS2,
132 BH3,

22 and CCl2.
133

Scaling factors are given in Table 3, while RMSDs are given in
Table 4. As a sanity check, we may attempt to fit experimental(ly
extracted) harmonics to experimentally observed fundamentals.
For the data set71 considered in the present paper, we find
λfund(expt.) = 0.9627(11), where the number in parentheses
refers to the standard deviation in the fit parameter. The RMSD
in the scaled frequencies is 24.9 cm−1 (compared to 79.8 cm−1

unscaled, i.e., “RMS anharmonicity” in this special case), the
max + D and max − D (maximum positive and negative errors)
being 56.9 and −59.2 cm−1, respectively.
A very similar RMSD is obtained if the experimental har-

monics are replaced by CCSD(T)-F12c harmonic frequencies

taken from ref 92. For CCSD(T) with smaller basis sets, RMSD
slightly rises to reach 28.8 cm−1 for cc-pV(T+d)Z.
Interestingly, a number of functional/basis set combinations

have RMSDs considerably lower than 24.9 cm−1, for example,
B3LYP, TPSS0, and B97-1 with def2-TZVP or larger basis sets.
Clearly a “better answer for the wrong reasons” is obtained here.
SCS-MP2 is now clearly inferior to most DFT functionals, unlike
the case for harmonic frequencies.
For the double hybrids, error statistics with sufficiently large

basis sets are comparable to those of CCSD(T) and about 2.5
times worse than can be achieved for harmonic frequencies.
Clearly, uniformly scaling harmonics to reproduce fundamentals
erases any advantage that such functionals have for harmonic
frequencies.
Interestingly, the scaling factors for the simple BP86 and PBE

functionals are close to unity, and again, RMSDs in the 25 cm−1

range can be obtained with def2-TZVP or better basis sets. (We
note that the corresponding scaling factors for harmonic
frequencies are in the 1.03−1.04 range.) The low cost of these
methods (if density fitting134−138 is employed) obviously makes
them a viable option for large systems.
The scale factors for the PBE, PBE0, B97-1, BP86, TPSS,

B3LYP, and MP2 methods with the 6-31G(2df,p) basis set

Table 3. Optimal Scale Factors for Fundamentals

aug-cc-pV(Q
+d)Z

aug-cc-pV(T
+d)Z

cc-pV(Q
+d)Z

cc-pV(T
+d)Z aug′-pc3+d

aug′-pc2 +
2d CBSB7

6-31G
(2df,p)

cc-
pVDZ

cc-pVQZ-
F12

CCSD(T)-F12c 0.9627
CCSD(T) 0.9639 0.9629 0.9635
SCS-MP2 0.9563 0.9586 0.9550 0.9556 0.9545 0.9525 0.9545 0.9476 0.9584
MP2 0.9559 0.9581 0.9546 0.9548 0.9543 0.9521 0.9527 0.9464 0.9563
B2GP-PLYP 0.9537 0.9547 0.9530 0.9529 0.9529 0.9517 0.9518 0.9469 0.9554
B2PLYP 0.9619 0.9627 0.9613 0.9611 0.9613 0.9602 0.9604 0.9555 0.9645
DSD-PBEP86-D2 0.9610 0.9621 0.9602 0.9602 0.9600 0.9586 0.9588 0.9535 0.9620
M06-2X 0.9508 0.9510 0.9507 0.9503 0.9506 0.9505 0.9497 0.9472 0.9543
M06 0.9588 0.9619 0.9589 0.9609 0.9581 0.9592 0.9615 0.9569 0.9655
TPSS0 0.9508 0.9509 0.9507 0.9504 0.9504 0.9498 0.9497 0.9505 0.9527
B3LYP 0.9668 0.9670 0.9667 0.9665 0.9666 0.9661 0.9669 0.9633 0.9721
PBE0 0.9577 0.9579 0.9576 0.9573 0.9575 0.9569 0.9562 0.9528 0.9592
B97-1 0.9661 0.9666 0.9659 0.9661 0.9658 0.9654 0.9654 0.9621 0.9700
TPSS 0.9819 0.9819 0.9818 0.9816 0.9813 0.9809 0.9814 0.9780 0.9867
M06L 0.9574 0.9611 0.9577 0.9601 0.9565 0.9582 0.9609 0.9556 0.9630
BP86 0.9954 0.9955 0.9954 0.9950 0.9953 0.9948 0.9954 0.9916 1.0006
PBE 0.9926 0.9927 0.9925 0.9922 0.9925 0.9919 0.9917 0.9879 0.9968
ωB97X-D 0.9545 0.9549 0.9544 0.9542 0.9542 0.9533 0.9544 0.9508 0.9573

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-TZVPP def2-TZVPPD def2-QZVP def2-QZVPD 6-31G(d) N07D

SCS-MP2 0.9487 0.9567 0.9589 0.9615 0.9550 0.9565 0.9549 0.9553 0.9527 0.9495
MP2 0.9468 0.9557 0.9575 0.9604 0.9543 0.9560 0.9545 0.9550 0.9501 0.9488
B2GP-PLYP 0.9487 0.9532 0.9542 0.9557 0.9523 0.9532 0.9529 0.9532 0.9474 0.9497
B2PLYP 0.9581 0.9617 0.9623 0.9636 0.9605 0.9613 0.9612 0.9615 0.9563 0.9586
DSD-PBEP86-D2 0.9548 0.9601 0.9617 0.9634 0.9596 0.9606 0.9600 0.9604 0.9549 0.9561
M06-2X 0.9490 0.9507 0.9505 0.9510 0.9499 0.9501 0.9503 0.9504 0.9463 0.9496
M06 0.9621 0.9636 0.9610 0.9614 0.9589 0.9591 0.9589 0.9590 0.9585 0.9607
TPSS0 0.9477 0.9494 0.9505 0.9509 0.9499 0.9501 0.9503 0.9504 0.9446 0.9489
B3LYP 0.9671 0.9671 0.9671 0.9674 0.9657 0.9658 0.9665 0.9666 0.9636 0.9659
PBE0 0.9547 0.9561 0.9575 0.9580 0.9566 0.9568 0.9573 0.9575 0.9518 0.9550
B97-1 0.9651 0.9658 0.9661 0.9665 0.9651 0.9652 0.9657 0.9658 0.9622 0.9648
TPSS 0.9811 0.9814 0.9815 0.9819 0.9810 0.9811 0.9814 0.9815 0.9776 0.9809
M06L 0.9588 0.9607 0.9595 0.9599 0.9580 0.9584 0.9575 0.9576 0.9589 0.9596
BP86 0.9956 0.9956 0.9953 0.9958 0.9941 0.9943 0.9951 0.9953 0.9932 0.9945
PBE 0.9920 0.9919 0.9923 0.9928 0.9912 0.9914 0.9922 0.9925 0.9891 0.9905
ωB97X-D 0.9524 0.9542 0.9546 0.9552 0.9533 0.9536 0.9542 0.9543 0.9501 0.9535
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suggested early on by Radom and co-workers25 are close enough
to our fitted values, the greatest difference being 0.003. However,
with the 6-31G(d) basis set, the differences are 0.004 and 0.006
for the TPSS and MP2 methods, respectively.
The wave number linear scaling fit proposed in ref 139 was

found not to yield better results.
Approximate Harmonic Frequencies to Exact Anhar-

monic ZPVEs.Detailed values are again given in the Supporting
Information. The values for the diatomics are simply obtained
as (ωe/2) − (ωexe/4) + (ωeye/8) + Y00 from the Huber and
Herzberg93 spectroscopic constants; the small Y00 can be
obtained as (see Herzberg140 or eq 5 in ref 141)

ω α ω α ω≅ − + +Y
B x

B B4 4 12 14400
e e e e e

e

e
2

e
2

e
3

(14)

Anharmonic ZPVEs for the polyatomic molecules were
compiled from a variety of experimental and “semi-experimental”
source, the latter referring to fitting of an adjustable anharmonic
force field for best reproduction of experimental vibrational levels
using either a variational or high-order perturbative vibrational
Hamiltonian. The specific literature references are C2H2,

142

C2H4,
143 CH3OH,

108 CH4,
144,145 ClCN,146 CO2,

147 H2CO,
148

H2O,
149 H2S,

150 HCN,151 HOCl,152 N2O,
153 NH3,

154 OCS,146

PH3,
155,156 SO2,

149 CS2 (from spectroscopic constants in ref 157),
H2CS (ref 158 adjusted for the difference between calculated
and more recent fundamentals110), BH3,

22 and CCl2.
133 Some

additional details are given as footnotes to the Supporting
Information.
Scaling factors are given in Table 5, while RMSDs are given in

Table 6. In light of the greatly reduced dependence (compared to
the fundamentals) of the ZPVEanhar on the Xij, it is presumably
not surprising that not only are scaling factors λZPVE(expt.) closer
to unity, but the uncertainty on them is much smaller. For
instance, fitting ZPVEanhar ≈ ωexptλZPVE(expt.) over our training
set, we found λZPVE(expt.) = 0.9856(5), with a RMSD of just 0.04
kcal/mol (compared to 0.20 kcal/mol unscaled), a max + D of
0.08 kcal/mol, and a max−D of−0.07 kcal/mol. Considering eq
12, we can expect for the scaling factors that

λ λ λ λ λ λ λ λ> ≈ + > + > >
2 2harm ZPVE

harm linear harm fund
linear fund

(15)

Obviously, for the experimental frequencies λharm(expt.) = 1 by
definition, and we found λfund(expt.) = 0.9627 earlier; therefore,
λZPVE(expt.) = 0.9856 is, as we may expect, somewhat larger
than (λharm + λfund)/2 = 0.9814. Our λZPVE(expt.) is very close to
the value of 0.9863 found by Perdew and co-workers159 for a

Table 4. RMSD (cm−1) for Fundamentals after Scaling

aug-cc-pV(Q
+d)Z

aug-cc-pV(T
+d)Z

cc-pV(Q
+d)Z

cc-pV(T
+d)Z aug′-pc3+d

aug′-pc2 +
2d CBSB7

6-31G
(2df,p)

cc-
pVDZ

cc-pVQZ-
F12

CCSD(T)-F12c 24.14
CCSD(T) 25.67 26.55 28.79
SCS-MP2 37.12 39.27 36.77 37.86 37.07 41.30 45.31 44.31 49.40
MP2 45.94 47.88 45.32 46.05 45.86 49.95 53.48 52.36 57.89
B2GP-PLYP 25.32 26.31 24.72 24.67 25.32 27.74 32.11 30.88 37.99
B2PLYP 26.30 27.52 25.66 25.70 26.32 28.77 33.44 32.94 40.35
DSD-PBEP86-D2 26.57 27.59 26.32 26.59 26.63 29.02 33.88 33.10 40.07
M06-2X 27.81 27.67 27.73 27.60 27.87 28.21 28.26 29.61 35.42
M06 33.88 35.10 33.86 36.02 32.87 35.68 40.02 40.09 42.04
TPSS0 18.45 18.91 18.60 19.29 18.67 19.14 22.50 18.39 30.21
B3LYP 19.34 19.95 19.13 19.61 19.51 20.99 25.72 26.63 34.54
PBE0 26.30 26.42 26.29 26.56 26.59 26.93 29.25 29.10 36.04
B97-1 20.63 20.93 20.87 21.40 20.91 21.70 26.56 26.52 32.32
TPSS 23.32 24.21 23.86 24.50 23.38 24.76 30.73 34.78 43.17
M06L 25.74 26.13 25.49 27.15 24.77 26.80 32.60 35.95 40.34
BP86 24.50 25.49 24.75 25.40 24.70 26.41 31.68 35.37 42.74
PBE 25.85 26.69 26.17 26.50 26.12 27.67 32.66 36.37 44.13
ωB97X-D 26.51 25.52 26.54 25.71 26.63 26.85 28.89 27.64 31.32

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-TZVPP def2-TZVPPD def2-QZVP def2-QZVPD 6-31G(d) N07D

SCS-MP2 41.77 45.91 36.61 35.98 38.04 39.18 37.03 37.08 59.88 61.61
MP2 50.17 54.51 45.35 44.79 46.46 47.68 45.77 45.88 67.61 69.24
B2GP-PLYP 31.27 36.50 24.35 24.52 25.46 26.36 25.43 25.43 42.95 42.82
B2PLYP 32.21 37.99 25.98 26.07 26.51 27.49 26.35 26.37 45.87 44.74
DSD-PBEP86-D2 33.48 37.63 25.79 25.52 26.96 27.69 26.79 26.74 44.37 45.08
M06-2X 40.63 42.07 27.72 28.37 28.22 28.37 27.99 28.01 30.24 30.29
M06 46.39 49.16 34.42 34.41 36.56 36.43 34.10 33.76 30.62 40.25
TPSS0 29.11 29.61 18.39 18.79 19.22 19.52 18.67 18.65 31.61 25.87
B3LYP 32.39 35.13 19.65 20.11 20.11 20.69 19.63 19.64 36.18 31.74
PBE0 38.49 40.42 25.84 26.24 26.91 27.29 26.61 26.62 29.86 32.21
B97-1 32.00 35.38 20.30 20.10 21.46 21.79 21.21 21.07 31.52 30.84
TPSS 33.85 33.31 25.07 24.26 23.72 23.98 23.57 23.51 50.23 37.02
M06L 40.85 41.99 26.65 26.95 27.69 27.05 25.49 25.03 37.13 36.52
BP86 37.02 39.72 26.44 25.87 25.55 26.01 24.87 24.84 45.20 38.51
PBE 39.33 42.13 28.00 27.07 26.82 27.32 26.27 26.28 45.18 39.14
ωB97X-D 36.32 38.35 25.38 25.50 27.20 27.31 26.64 26.60 25.26 30.75
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different set of mostly diatomic molecules; those authors
proposed determining ZPVEanhar ≈ (5/8)ZPVEharm,calc + (3/8)-
ZPVEfund,expt, which works out to be 0.9861 in this case.
Using yet another set of small molecules, Alecu et al.28

surveyed scaling factors for harmonic frequencies and ZPVEs for
a very large number of levels of theory and proposed a “universal
scaling factor ratio” of λharm/λZPVE = 1.014 ± 0.002, which would
lead to 0.9862 ± 0.0019 for ZPVEtrue(expt.)/ZPVEharm(expt.),
essentially the same as Perdew et al.159 and the present authors.
(As an aside, Irikura et al.160 found 0.9949 ± 0.0124 for the same
ratio, using a very different reference set that contains many
second and third row diatomics, and pessimistic error bars on the
reference data.)
If we were to use CCSD(T)-F12c/cc-pVQZ-F12 harmonic

frequencies, which effectively represent the valence CCSD(T)
basis set limit, we would have a fitted scale factor of 0.9859
(essentially the same as that for experimental frequencies) and an
associated RMSD = 0.037 kcal/mol. Using conventional
CCSD(T), we reach RMSD = 0.043 kcal/mol with the aug′-
cc-pV(Q+d)Z basis set, which increases to 0.059 kcal/mol with
the cc-pV(T+d)Z basis set.
For the lower-level methods, let us turn again to the def2-

QZVPD basis set for performance near the basis set limit. Two of

the double hybrids reach RMSDs as low as 0.049 (DSD-PBEP86-
D2) and 0.052 (B2GP-PLYP) kcal/mol, followed by 0.065
kcal/mol for B2PLYP. Especially the former two numbers are
gratifyingly close to the much more expensive values for
CCSD(T); we note that B2GP-PLYP has a noticeably smaller
scaling factor than the two other double hybrids, that is, there is
more overestimation in the harmonic frequencies that needs to
be compensated for by scaling down.
SCS-MP2 performs somewhat better than straight MP2, but

both have twice the RMSD of the double hybrids. Still, with the
def2-QZVPD basis set, many conventional DFT functionals
outperform MP2 and yield performances similar to SCS-MP2;
the exceptions are M06, M06-2X, PBE0, and ωB97X-D.
Unsurprisingly perhaps, many of the smaller basis sets are

wholly inadequate for MP2 and SCS-MP2; for the double
hybrids, def2-TZVP appears to be a good compromise between
RMSD and computational cost. Basis set sensitivity is weaker for
the conventional DFT functionals, but still, one would like
something better than 6-31G(d) or even N07D; again, def2-
TZVP appears to be an attractive choice.
The CBS-QB3 thermochemistry protocol13 specifies a

B3LYP/CBSB7 ZPVE scaled by 0.9900, which is basically iden-
tical to the 0.9894 obtained in the present work. Likewise, the

Table 5. Optimal Scale Factors for ZPVEs

aug-cc-pV(Q
+d)Z

aug-cc-pV(T
+d)Z

cc-pV(Q
+d)Z

cc-pV(T
+d)Z aug′-pc3+d

aug′-pc2 +
2d CBSB7

6-31G
(2df,p)

cc-
pVDZ

cc-pVQZ-
F12

CCSD(T)-F12c 0.9859
CCSD(T) 0.9871 0.9862 0.9868
SCS-MP2 0.9772 0.9792 0.9763 0.9767 0.9756 0.9727 0.9759 0.9684 0.9794
MP2 0.9774 0.9792 0.9764 0.9765 0.9760 0.9730 0.9746 0.9676 0.9778
B2GP-PLYP 0.9750 0.9758 0.9744 0.9742 0.9743 0.9727 0.9733 0.9683 0.9768
B2PLYP 0.9830 0.9837 0.9825 0.9822 0.9824 0.9811 0.9817 0.9769 0.9856
DSD-PBEP86-D2 0.9831 0.9840 0.9824 0.9823 0.9822 0.9803 0.9811 0.9756 0.9841
M06-2X 0.9756 0.9760 0.9756 0.9752 0.9756 0.9754 0.9744 0.9724 0.9797
M06 0.9853 0.9891 0.9856 0.9879 0.9844 0.9865 0.9891 0.9850 0.9932
TPSS0 0.9730 0.9732 0.9729 0.9726 0.9725 0.9719 0.9715 0.9729 0.9745
B3LYP 0.9893 0.9896 0.9892 0.9889 0.9891 0.9887 0.9894 0.9862 0.9945
PBE0 0.9832 0.9834 0.9830 0.9827 0.9830 0.9823 0.9814 0.9783 0.9845
B97-1 0.9899 0.9905 0.9897 0.9898 0.9897 0.9892 0.9891 0.9861 0.9938
TPSS 1.0021 1.0022 1.0019 1.0016 1.0015 1.0012 1.0011 0.9984 1.0059
M06L 0.9812 0.9849 0.9815 0.9837 0.9797 0.9818 0.9853 0.9812 0.9876
BP86 1.0192 1.0195 1.0191 1.0187 1.0192 1.0188 1.0190 1.0159 1.0240
PBE 1.0172 1.0175 1.0172 1.0167 1.0172 1.0167 1.0160 1.0128 1.0210
ωB97X-D 0.9791 0.9793 0.9790 0.9784 0.9787 0.9778 0.9789 0.9756 0.9819

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-TZVPP def2-TZVPPD def2-QZVP def2-QZVPD 6-31G(d) N07D

SCS-MP2 0.9710 0.9798 0.9791 0.9818 0.9760 0.9775 0.9762 0.9766 0.9700 0.9705
MP2 0.9697 0.9791 0.9784 0.9812 0.9760 0.9775 0.9764 0.9769 0.9672 0.9701
B2GP-PLYP 0.9716 0.9773 0.9752 0.9766 0.9737 0.9746 0.9743 0.9746 0.9649 0.9707
B2PLYP 0.9808 0.9859 0.9832 0.9844 0.9818 0.9825 0.9824 0.9827 0.9735 0.9794
DSD-PBEP86-D2 0.9784 0.9848 0.9834 0.9852 0.9818 0.9827 0.9823 0.9827 0.9731 0.9779
M06-2X 0.9762 0.9795 0.9754 0.9760 0.9748 0.9751 0.9753 0.9754 0.9678 0.9745
M06 0.9916 0.9951 0.9876 0.9881 0.9860 0.9863 0.9856 0.9858 0.9829 0.9886
TPSS0 0.9710 0.9741 0.9729 0.9733 0.9723 0.9725 0.9725 0.9727 0.9632 0.9706
B3LYP 0.9912 0.9935 0.9896 0.9898 0.9883 0.9885 0.9891 0.9892 0.9825 0.9883
PBE0 0.9817 0.9848 0.9830 0.9834 0.9821 0.9824 0.9828 0.9830 0.9733 0.9802
B97-1 0.9903 0.9929 0.9900 0.9903 0.9890 0.9892 0.9896 0.9897 0.9822 0.9884
TPSS 1.0019 1.0041 1.0020 1.0023 1.0013 1.0016 1.0015 1.0017 0.9941 1.0005
M06L 0.9858 0.9893 0.9824 0.9829 0.9817 0.9823 0.9813 0.9814 0.9812 0.9850
BP86 1.0207 1.0232 1.0192 1.0196 1.0181 1.0193 1.0191 1.0193 1.0131 1.0181
PBE 1.0179 1.0203 1.0171 1.0175 1.0160 1.0163 1.0171 1.0173 1.0095 1.0149
ωB97X-D 0.9788 0.9821 0.9791 0.9796 0.9779 0.9782 0.9788 0.9789 0.9709 0.9777
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0.9854 scale factor for B3LYP/6-31G(2df,p) specified in G4 and
G4MP2 theory agrees almost perfectly with 0.9862. The 0.985
scaling factor for B3LYP/cc-pV(T+d)Z in W1 theory, however,
should be increased to about 0.989, as previously concluded19 in
our study on the amino acids. The scale factor for MP2/
6-31G(d) advocated early on by Pople et al.29 (0.9646) is also
close to our fitted value (0.9672). As an additional sanity check,
we can compare with the Radom database25 for the PBE, PBE0,
B97-1, BP86, TPSS, B3LYP, and MP2 methods with the
6-31G(2df,p) basis set; our scaling factors agree to one unit on
the third decimal place, several of them to 1−2 units in the fourth
decimal place.
Approximate Anharmonic ZPVE to Exact Anharmonic

ZPVE. Would calculating actual anharmonic force fields yield
materially better ZPVEs than simply scaling ZPVEharm by an
appropriate factor? We decided to investigate this for the def2-
TZVP basis set and various methods (Table 7). The acetylene
molecule had to be removed from the sample on account of its
well-known pathological basis set dependence for the bending
anharmonic corrections.161 The Allen ZPVEanharm expression,22

being free of resonance denominators, is independent of any
operator decisions concerning which anharmonic resonances to
include or exclude.

Particularly for the meta-GGA functionals, the results display a
surprising degree of grid sensitivity, as was found previously162

for vibrational anharmonicities. Consequently, we used the
“superfine” pruned (150,974) grid combination throughout.
Somewhat expectedly, the scaling factors λZPVE,anharm are gen-

erally found to be quite close to λharm, typically slightly smaller.
For semirigid molecules like (aside from internal rotations

and the NH3 inversion) the molecules in the present set, the
performance benefit of anharmonic over scaled harmonic ZPVEs
appears to be quite small. We may, however, expect the situation
to be different for less rigid molecules, where the quartic force
field calculation may be preferable.

Approximate Fundamentals to Observed Fundamen-
tals. Finally, we consider, for just the def2-TZVP basis set (see
however below), the case of fundamental frequencies calculated
using second-order rotation−vibration perturbation theory
(Table 8).
In the fundamentals, the anharmonic contribution is of course

much larger than that in the ZPVE, and here, at least for some
levels of theory, we do see a significant improvement over
harmonic frequencies uniformly scaled by λfund. For instance, for
B2PLYP, RMSD goes down from 26 cm−1 for uniformly scaled
harmonics to 16 cm−1 for an anharmonic force field, and for

Table 6. RMSD (kcal/mol) for ZPVEs after Scaling

aug-cc-pV(Q
+d)Z

aug-cc-pV(T
+d)Z

cc-pV(Q
+d)Z

cc-pV(T
+d)Z aug′-pc3+d

aug′-pc2 +
2d CBSB7

6-31G
(2df,p)

cc-
pVDZ

cc-pVQZ-
F12

CCSD(T)-F12c 0.0374
CCSD(T) 0.043 0.051 0.059
SCS-MP2 0.100 0.114 0.099 0.102 0.098 0.114 0.137 0.118 0.144
MP2 0.121 0.134 0.119 0.122 0.119 0.134 0.158 0.141 0.168
B2GP-PLYP 0.056 0.060 0.048 0.048 0.054 0.062 0.082 0.056 0.101
B2PLYP 0.068 0.072 0.060 0.060 0.066 0.075 0.091 0.068 0.116
DSD-PBEP86-D2 0.051 0.056 0.047 0.047 0.049 0.058 0.085 0.061 0.101
M06-2X 0.133 0.130 0.132 0.134 0.132 0.134 0.130 0.153 0.154
M06 0.155 0.163 0.152 0.170 0.147 0.156 0.168 0.176 0.175
TPSS0 0.097 0.099 0.095 0.100 0.098 0.100 0.107 0.094 0.125
B3LYP 0.095 0.096 0.091 0.096 0.094 0.099 0.109 0.099 0.140
PBE0 0.123 0.123 0.123 0.127 0.123 0.124 0.131 0.127 0.145
B97-1 0.079 0.078 0.078 0.082 0.079 0.080 0.096 0.084 0.112
TPSS 0.100 0.101 0.095 0.099 0.100 0.107 0.119 0.103 0.160
M06L 0.109 0.113 0.100 0.116 0.096 0.112 0.115 0.133 0.125
BP86 0.090 0.091 0.087 0.091 0.088 0.095 0.108 0.097 0.142
PBE 0.091 0.092 0.086 0.091 0.090 0.096 0.111 0.099 0.146
ωB97X-D 0.122 0.120 0.122 0.125 0.123 0.120 0.129 0.129 0.133

def2-SVP def2-SVPD def2-TZVP def2-TZVPD def2-TZVPP def2-TZVPPD def2-QZVP def2-QZVPD 6-31G(d) N07D

SCS-MP2 0.119 0.138 0.110 0.104 0.103 0.108 0.097 0.097 0.223 0.222
MP2 0.140 0.159 0.132 0.125 0.123 0.128 0.117 0.118 0.256 0.245
B2GP-PLYP 0.079 0.089 0.053 0.061 0.052 0.057 0.052 0.053 0.144 0.133
B2PLYP 0.087 0.098 0.065 0.073 0.063 0.069 0.064 0.065 0.155 0.144
DSD-PBEP86-D2 0.079 0.088 0.051 0.053 0.050 0.053 0.049 0.049 0.147 0.142
M06-2X 0.179 0.162 0.134 0.139 0.139 0.137 0.132 0.132 0.116 0.130
M06 0.193 0.178 0.155 0.159 0.165 0.163 0.152 0.148 0.112 0.147
TPSS0 0.127 0.112 0.094 0.100 0.101 0.101 0.097 0.097 0.108 0.110
B3LYP 0.143 0.123 0.092 0.102 0.099 0.099 0.094 0.094 0.113 0.122
PBE0 0.161 0.142 0.119 0.124 0.127 0.127 0.123 0.123 0.102 0.129
B97-1 0.119 0.105 0.070 0.078 0.082 0.083 0.080 0.079 0.085 0.101
TPSS 0.131 0.121 0.096 0.101 0.098 0.100 0.098 0.099 0.170 0.142
M06L 0.142 0.137 0.110 0.117 0.116 0.113 0.102 0.095 0.116 0.118
BP86 0.128 0.112 0.087 0.094 0.094 0.092 0.088 0.088 0.134 0.131
PBE 0.137 0.115 0.086 0.094 0.094 0.096 0.090 0.090 0.132 0.131
ωB97X-D 0.154 0.138 0.120 0.122 0.127 0.125 0.122 0.122 0.092 0.123
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DSD-PBEP86, it goes from 26 to 15 cm−1. For functionals
like B3LYP and PBE0, no great improvement is seen, but that
can be attributed to deficiencies in the harmonic frequencies.
If CCSD(T)-F12c/cc-pVQZ-F12 harmonic frequencies are
combined with the B3LYP anharmonicities, RMSD drops to just
12.5 cm−1; if DSD-PBEP86 anharmonicities are used instead,
RMSD drops to 9 cm−1.
Most of the meta-GGAs turn out to be quite problematic

for anharmonicities owing to excessive grid sensitivity. Fitted
scaling factors, once again, are quite close to the “harmonic-to-
harmonic” ones.

■ CONCLUSIONS
We have obtained a collection of uniform frequency scaling
factors λharm (approximate to true harmonic frequencies), λZPVE
(ZPVEharm to ZPVEtrue), and λfund (calculated harmonics to true
fundamentals) for the Weigend−Ahlrichs and other selected
basis sets for MP2, SCS-MP2, and a variety of DFT functionals
including double hybrids. In addition, we have obtained, for
selected levels of theory, scaling factors for true anharmonic
ZPVEs and fundamental frequencies obtained from quartic force
fields.
Where comparison is possible, our scaling factors generally

agree well with those previously obtained by the Radom and
Truhlar groups.
For “harmonic to harmonic” scaling, the double hybrids

B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best
performance at RMSDs of around 10−12 cm−1 for sufficiently

large basis sets. For comparison, the valence CCSD(T) basis set
limit represents a RMSD of 4.6 cm−1.
For “harmonic to ZPVEanharm” scaling, again the double hy-

brids are the best performers (reaching a RMSD of 0.05 kcal/mol
with large basis sets, compared to 0.04 kcal/mol for valence
CCSD(T) at the basis set limit), but functionals like B3LYP and
B97-1 can still reach RMSDs in the 0.10 and 0.08 kcal/mol range,
respectively. The use of explicit anharmonic ZPVEs from quartic
force fields yields only a fairly marginal further improvement.
For “harmonic to fundamental” scaling, simple uniform scaling

factors leave something to be desired in terms of performance;
here, explicit calculation of anharmonicities does offer consid-
erably better RMSDs. This becomes especially true if, in addition,
the harmonic frequencies are replaced by basis set limit
CCSD(T) values.
Among the various basis sets considered, def2-TZVP appears

to offer the best compromise between quality and computational
cost.

■ ASSOCIATED CONTENT

*S Supporting Information
Unabridged refs 36, 74, and 107; (quasi-)experimental harmonic
frequencies, fundamentals, and ZPVEs for the test molecules,
and computed harmonic frequencies, ZPVEharm, anharmonic
frequencies, and ZPVEanharm for the studied molecules at the
levels of theory considered in this article. Tables containing
unscaled RMSDs, standard deviations, and sum of the max+ and

Table 8. Scale Factorsa, Standard Deviations, RMSDs, and Sum of Maximum Positive and Negative Errors for Anharmonic
Frequencies

SCS-MP2 MP2 B2GP-PLYP B2PLYP DSD-PBEP86-D2 M06-2Xb M06b TPSS0

scale factor 0.9945 0.9930 0.9903 0.9992 0.9981 0.9840 0.9946 0.9870
standard deviation 0.0012 0.0017 0.0008 0.0008 0.0007 0.0021 0.0022 0.0019
RMSD(unscaled) 28.05 37.18 25.02 16.01 15.48 54.24 45.54 46.67
RMSD(scaled) 25.90 34.53 16.18 15.94 15.00 43.88 44.27 38.88
(max +D) + (max −D) 180.18 246.17 88.74 83.70 101.39 294.28 244.31 343.61

B3LYP PBE0 B97-1 TPSS M06Lb BP86 PBE ωB97X-D

scale factor 1.0050 0.9937 1.0040 1.0240 0.9992 1.0370 1.0343 0.9881
standard deviation 0.0014 0.0018 0.0017 0.0021 0.0037 0.0014 0.0018 0.0018
RMSD(unscaled) 29.38 38.60 35.71 62.60 74.82 75.11 73.71 44.10
RMSD(scaled) 27.70 36.52 34.83 42.55 74.80 27.63 34.92 37.25
(max +D) + (max −D) 200.87 251.11 263.72 336.03 866.83 197.07 230.88 230.21

aCalculations were performed using def2-TZVP basis sets. bThe PH3 molecule was omitted owing to insurmountable integration grid convergence
issues with this functional.

Table 7. Scale Factorsa, Standard Deviations, RMSDs, and Sum of Maximum Positive and Negative Errors for ZPVEanharm

SCS-MP2 MP2 B2GP-PLYP B2PLYP DSD-PBEP86-D2 M06-2Xb M06b TPSS0

scale factor 0.9917 0.9907 0.9886 0.9968 0.9968 0.9753 1.0059 0.9875
standard deviation 0.0014 0.0017 0.0007 0.0008 0.0006 0.0097 0.0061 0.0018
RMSD(unscaled) 0.15 0.17 0.16 0.07 0.06 0.76 0.43 0.21
RMSD(scaled) 0.10 0.12 0.05 0.06 0.04 0.69 0.42 0.12
(max +D) + (max −D) 0.46 0.54 0.25 0.27 0.20 4.06 2.59 0.64

B3LYP PBE0 B97-1 TPSS M06Lb BP86 PBE ωB97X-D

scale factor 1.0040 0.9974 1.0048 1.0177 0.9864 1.0346 1.0328 0.9921
standard deviation 0.0015 0.0021 0.0017 0.0018 0.0073 0.0014 0.0018 0.0017
RMSD(unscaled) 0.11 0.15 0.13 0.26 0.54 0.45 0.43 0.16
RMSD(scaled) 0.10 0.14 0.11 0.12 0.51 0.09 0.12 0.12
(max +D) + (max −D) 0.40 0.72 0.66 0.58 3.11 0.38 0.62 0.51

aCalculations were performed using def2-TZVP basis sets. bThe PH3 molecule was omitted owing to insurmountable integration grid convergence
issues with this functional.
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max− deviations are also given. This material is available free of
charge via the Internet at http://pubs.acs.org.
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