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ABSTRACT Transit network design problem (TNDP) usually needs a recursive solution to successive transit 

assignment problems. Interestingly, the transit assignment problem is complicated with several unique crite-

ria. In this study, we comprehensively review two well-known graphical transit assignment models from the 

literature. The first model is based on the hypergraph theory by Spiess and Florian (1989), and the second is 

the section transit network representation of De Cea and Fernandez (1993). The two assignment approaches 

are formulated in a single mathematical notation framework for the first time in the literature to understand 

the inherent differences better. We aim to bring attention again to these approaches for the upcoming TNDP 

studies since the most used transit assignment models in the TNDP are deficient in their basic assumptions 

compared with the considered models.  

INDEX TERMS Hyperpath; Transit Assignment; Section assignment; Network equilibrium

NOMENCLATURE 
 
𝑜 Origin node 

𝑑 Destination node 

i, j Generic nodes in V 
s Start bus stop 

r End bus stop 

m Bus line index 

𝑤  Demand pair index 

h Reference time 

k Elementary path index 

R Path R is composed of a set of k paths 

𝑑𝑤  The number of transit trips from o to d 

𝑂𝑢  The number of total trips for users of class (u) and purpose (z) 

𝑝𝑢  Distriubiton share based on d, m, and h 

𝜏𝑖  Waiting time at node i 

eij edge of an ordered pair of indexes (i, j) 

cij Aggregate impedance on link eij 

𝑓𝑖𝑗 Link 𝑖𝑗 flow 

𝑓�̅�𝑗 The competing flow of other sections that contain common lines 

of section 𝑖𝑗 
ℎ𝑅  Path 𝑅 flow 

𝜑𝑚  Line m frequency 

lcm Line m  nominal capacity 

vm Line m vehicle capacity, including the loading factor 

𝑈𝐶𝑚  User total equivalent travel time cost  

ʎ𝑘  The conditional probability of choosing k 

𝛼𝑖
𝑘  Incident symbol equals 1 if path k traverses i, 0 otherwise. 

𝛽𝑖/𝑅  The conditional probability of passing the node i given the con-

figuration R 

 Ω𝑅
𝑤  Path 𝑅 choice proportion for 𝑤 

𝑔𝑅
𝑤  The average cost of 𝑅 

𝛿𝑖𝑗
𝑘𝑤  Incident symbol equals 1 if the 𝑒𝑖𝑗 is part of k, 0 otherwise 

𝑛𝑅
𝑤  None-additive path R cost  

ℐ Graph of V and E  

𝐴𝑇 Access time 

𝑊𝑇  Waiting time 

ℬ/Ã Boarding/alighting time 
IVT In-vehicle time 

TS Transfer number 

£ Weight factor 

𝒷, 𝒫 Calibrated factors 

V Set of vertices (nodes) 
E Set of edges 

L Set of lines defines the transit system 

Φ Bus lines frequencies set 
LC Bus lines capacities set 

W Node pairs set 

H Path flow set 
F Link Flow set 

C Link cost set 

G Path cost set 
A(i+) Set of arcs directed out of node i 

A(i-) Set of arcs directed to node i 

BPR Bureau of Public Roads 
FIFO First In First Out order 

IIA Independence of Irrelevant Alternatives 

MSA Method of Successive Averages 
SE Socie economic 

T The existing transport system 

TNDP Transit network design problem 

 
 
I. INTRODUCTION  

Transit assignment models are fundamental tools in the eval-

uation process of transit network design problems (TNDP). 

TNDP is one of the most intractable problems to be solved 
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in the transportation research field. This is due to its high de-

gree of complexity. The sources that often hinder finding a 

unique optimal solution are; non-linearity & non-convexity, 

Bi-level problem formulation, combinatorial/NP hard com-

plexity, and the multi-objective nature of the problem. The 

quality measure of a TNDP solution relies on the use of those 

models for predicting how each transit user selects a route 

from the origin to the destination [1, 2]. Also, in the design 

process, TNDP could be formulated as a bi-level program-

ming model in which a transit assignment model is the lower 

model. Therefore, the TNDP solution methodology needs a 

recursive solution to successive transit assignment problems 

[3].  

The reason for the transit assignment models expansion is 

the fact that there are many assumptions regarding users' 

strategies and information for transit line selection at the 

stops level where both users and vehicles arrive at different 

probability distributions, in addition to the level of aggrega-

tion, which is undertaken by each model [4]. The core differ-

ence between conventional traffic assignment models and 

transit ones is that transit users, in almost all cases, have to 

deal with overlapping transit routes where some routes share 

sections and stops, see Fig. 1. Interestingly, this turns the 

problem into a multi-path assignment even in its uncon-

gested cases [5]. 

The small transit network example in Fig. 1 depicts the 

core that shapes the outcome of transit assignment models. 

In real-life action, a transit user always seeks a cost-efficient 

path to reach his/her destination. Rationally, passengers 

would consider line 1 (L1) in their route choice when board-

ing at Stop (A) destining to Stop (B). In other words, the di-

rect service between their origin-destination. However, L2 

(with transfer at x or y) would be considered in their attrac-

tive choice set only if they recognized it minimizes the total 

travel time. In that case, passengers would board the first in-

coming bus of the two lines. 

Provided that the remaining waiting time for L2 is availa-

ble with additional information on the expected waiting time 

at both stops (x) and (y), L1 could become no longer attrac-

tive to passengers. In other words, all passengers would 

board L2 then either L3 or L3 & L4 leaving L1 even if the 

first arrival bus is from L1. This problem is known as the 

common lines problem [6], where passengers will always 

choose to board the firstly arriving bus of predefined alterna-

tive services if the main/target service is absent. The com-

mon lines are determined as; whether to board the coming 

bus of a line or stay at the station waiting for the next bus of 

another line or walk to another station seeking better choices. 

It all depends on how much information would be available 

at the stops during the decision-making process. 

More dimensions are added when the line's capacity is in-

volved. Even if L1 became the only attractive choice, some 

passengers might fail to board the first incoming bus of L1 

due to insufficient capacity. The choice would be to keep 

waiting for a space in L1 or change totally to L2 or consider 

both decisions. Also, L2 passengers may not be able to know 

precisely that choice cost (i.e., travel time). When they are 

traveling onboard, they need to decide whether to stay 

onboard to the stop (y) and then choose from L3 or both L3 

& L4 or alight-to-transfer at the stop (x) [4]. 

These concepts of rational users are considered the basis 

of all transit assignment models. Users minimize the sum of 

waiting times and in-vehicle times in their boarding strate-

gies, where the strategy is a set of rules (i.e., consecutive line 

selection) defined by the user to reach the destination. In a 

nutshell, if more than one route serves an origin node (o) and 

destination node (d), this would lead the users who wish to 

travel from (o) to (d), to determine a subset of the routes (at-

tractive lines) boarding the first incoming bus of these routes 

taking into consideration that some or all lines may be in-

volving transfers (i.e., strategy). 

As a result of the assignment models, the analyst could 

predict the volume of the lines in addition to the crucial fac-

tor of the design of total time spent by the users in the sup-

plied system. Operators make necessary decisions on the 

transit planning aspects to balance the total operation cost 

and users' cost to achieve an aimed level of service. Gener-

ally speaking, the product of the assignment model is ex-

pressed as; 

UCm = £1 AT + £2 WT + £3 ℬ/Ã +£4 IVT+ £5 TS (1) 

where; UCm is the user of mode (m) cost associated with the 

total travel time. The Eq. (1) four terms are access time (AT), 

waiting time (WT), boarding/alighting time (ℬ/Ã), in-vehi-

cle time (IVT), and transfer number (TS). £ is a weight factor 

representing each term's relative significance in the user's 

route choice [7-9]. WT and TS, for example, are more signif-

icantly valued as the discomfort of travel compared with IVT 

[10]. While the UCm is predicted from the assignment model, 

each of its terms is controlled by a corresponding aspect of 

the TNDP. For example, the IVT and TS depend on designing 

the itinerary of the routes. Transit vehicles' frequency setting 

(headways inverse) determines the average WT values. AT is 

controlled by the location and spacing of the stops. ℬ/Ã 

times directly reflect the demand/supply ratio [2].  

Generally speaking, the transit assignment models could 

be classified into three main categories, namely; frequency-

based, schedule-based, and simulation-based. The fre-

quency-based models consider the aggregated frequencies 

FIGURE 1. Illustrative transit network reproduced from [5]  
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on transit lines where they are interested in calculating the 

ridership share percentage of each line. In contrast, the 

schedule-based deals with each vehicle trip independently in 

which its modeling scheme is capable of representing each 

vehicle departure time through a diachronic graph. In simu-

lation models, transit users' real-time route choice is tracked. 

Vehicles and users are denoted as separated individuals in 

the models, which gives much more realistic modeling capa-

bility.  

Theoretically, the TNDP solution algorithms would appre-

ciate the frequency-based models due to their capability of 

performing assignments on real-size networks with tractable 

execution time. This would help in the solution process, 

which, as mentioned before, requires multiple transit assign-

ments to be performed and mitigate the inherent complexity 

within the TNDP. 

Technically speaking, there is no study until now that has 

calibrated any of the existing frequency-based models on 

real-world data. In addition, most TNDP studies have relied 

on simplistic (i.e., unrealistic) assumptions of their used 

transit assignment models (this will be discussed in detail in 

the next section). The reason for resorting to such deficient 

models is two-fold; first, the complexity of the TNDP and 

the need mentioned above to run several assignments before 

reaching a solution. Second, the missing reliable calibrated 

model to base all the TNDP solutions on.  

Thus, this article discusses transit assignment frequency-

based models using two popular literature graph equilibrium-

based models from a graph formulation perspective. The 

study assumes that users decide according to the concept of 

optimal strategies from a static perspective that suits the 

TNDP solution's strategic stage. The remainder of this article 

is organized structure as follows. Section II draws a concise 

state of the art for the frequency-based models, whereas sec-

tion III provides the basic adopted concepts in the selected 

models, whereas section IV gives the graphical representa-

tion of each model. The algorithms for reaching equilibrium 

are reported in section V. Finally, section VI presents the con-

clusion and discussion. 

 
II. STATE OF THE ART 

Transit assignment models based on frequency distribution 

have been the subject of many articles in the last five dec-

ades. While various models have been proposed to predict 

the users’ behavior in selecting their routes, the concept 

known as attractive/common lines at the stops remains the 

main assumption in such models. Initially, the concept is first 

introduced by Chriqui and Robillard (1975) [6], where each 

user selects a set of lines to minimize the sum of average 

waiting time and in vehicles time (i.e., total expected travel 

time) in his/her strategy of reaching the destination. In [11], 

the focus is given to modeling the waiting time for that prob-

lem considering different user and vehicle arrival probability 

distributions. Interestingly, Spiess and Florian [12, 13] intro-

duced the notion of optimal strategies in their work as a set 

of pre-determined rules taken by the user from the origin to 

the destination. They incorporated the common lines prob-

lem in a single mathematical formulation for the whole 

transit network assignment problem resulting in a non-linear 

mixed-integer programming model. Fortunately, the model 

has a relaxed linear version which eases finding a solution. 

Also, the presented formulation could be extended to incor-

porate the congestion effect as in the equilibrium models of 

the traditional transportation assignment models. The opti-

mal strategies approach is transformed into a graph-theoretic 

representation by Nguyen and Pallottino [14], where the con-

cept of hyper-paths is introduced. For each o/d, a hyper-path 

is generated in which some elementary paths are included. 

At each stop, there are outgoing links that include passen-

gers' distribution across the elementary paths. The distribu-

tion portions are determined by the frequencies at the stop 

while being summed up to the unity. Each hyper-path has a 

total travel cost where the shortest hyper-path is equivalent 

to the optimal strategies obtained by the Spiess and Florian 

formulation. To easily adapt Bellman equation of optimality 

[15], the bus headways are assumed to follow the exponen-

tial distribution with random passengers’ arrival. However, 

finding optimal hyperpaths in large transit networks with 

other headway distributions using label-setting or label-cor-

recting algorithm is found to be more challenging task in 

[16]. 

De Cea and Fernandez [5] presented another graph repre-

sentation that depends on what is called line sections. In that 

representation, the common lines problem is inherently im-

plemented in the graph framework. The hyperbolic equation 

presented by Chriqui and Robillard [6] is recalled at every 

section formulation to select the attractive line set corre-

sponding to that section. Interestingly the hyperbolic equa-

tion can be solved efficiently by heuristics presented in [5]. 

The congestion effect has become an exciting topic in fre-

quency models studies [17]. It is an indispensable problem 

in many transit networks worldwide [18]. Passengers usually 

encounter fully congested stops that change their line selec-

tion due to either an increase in travel time impedance (mild 

capacity) or incapability of boarding the desired line due to 

capacity insufficiency (strict capacity). Passenger choice 

modeling becomes a more complicated task since it depends 

on not only individual preferences but also the congestion 

levels in the network [19].  

The usefulness of congestion modeling is apparent in 

adapting Wardrop principles of equilibrium [20]. For exam-

ple, in [12] and [5], the transit network assignment is solved 

under the deterministic user equilibrium principles, while 

Lam et al. [21] used the stochastic user equilibrium under the 

multinomial logit assumption for the route choice. Alterna-

tively, Nielsen [22] used the probit-based model to model the 

route selection to escape from the Independence of Irrelevant 

Alternatives (IIA) property found in the multinomial logit 

model [23, 24].  
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Formulating a congested equilibrium assignment model 

requires a well-defined congestion-cost formula. Some con-

gestion models may lead to transit assignment models that 

are difficult to study or use. To help overcome this, the con-

gestion model should have nice mathematical properties 

(e.g., monotone increasing function) [25]. 

The cost is usually a function of the flow by presenting the 

link costs as flow-dependent. It reflects the disutility/discom-

fort corresponding to the crowded vehicles [12]. It can also 

be reflected by longer waiting times due to the possibility of 

not being able to board the first vehicle (i.e., full vehicles) or 

the bunching phenomenon (i.e., onboard travel time in-

crease). The increase in waiting times could be formulated 

by reducing the nominal line frequency to attain the effective 

line frequency [5]. Whereas the two previous models are 

closely related to the well-known Bureau of Public Roads 

(BPR) model [26], Cominetti and Correa [27] presented a 

new model for congested transit assignment based on the hy-

perpath graph representation that incorporates queuing mod-

els. 

The inclusion of lines' strict capacity has also been tackled 

in the transit assignment models. Cepeda et al. [28] extended 

the same model presented in [27] to incorporate the strict ca-

pacities while the primary concern is to prove the model con-

ditions for solution existence and uniqueness. Then, they 

solved the model heuristically through the method of succes-

sive averages (MSA) by minimizing a newly developed gap 

function. Alternatively, Karauchi et al.  [29] developed a dif-

ferent approach for considering the congestion. Their formu-

lation included users’ risk aversion of failing to board the 

next vehicle. In their graph representation, failure to board 

nodes and arcs are added to each bus stop. They assigned the 

probability of failing to board depending on the residual ca-

pacity of the vehicle and used Markov chains to obtain the 

line flows. Schmhocker et al.  [30] extended the work in [29] 

by considering seat availability. Instead of the “failing to 

board” term, they used “fail to sit” to reflect the route choice 

according to the discomfort of standing.  

All the aforementioned models did not pay attention to the 

queuing phenomena of First In First Out (FIFO), where they 

assumed users mingle at the stops. In [31], a frequency-based 

capacitated model is formulated by considering the FIFO 

discipline. The hyperpath graph is extended to the dynamic 

scenario while the common lines problem is embedded ex-

plicitly in the route choice modeling. Congestion is modeled 

as a bottleneck queue model with time-varying exit capacity 

[32]. The model allows overtaking among users with differ-

ent attractive sets while queuing at a single stop. 

Recently, none equilibrium assignment models have be-

come a hot research topic due to the spread of online travel 

information. That makes users more aware of the operational 

conditions of the transit network and has suggested routes to 

follow. Cheung and Shalaby [33] proposed a heuristic as-

signment model to find the optimum system framework. It 

aims to minimize the total congestion in the transit network. 

Oliker and Bekhor [34] developed a heuristic assignment to 

consider online information that would lead to none equili-

brated line flows. They extended their work in [35] to con-

sider lines' strict capacity. 

On the other hand, in the TNDP literature, the reviewed 

transit assignment models have received little attention as an 

evaluation tool. In [36-38], an analysis procedure called 

TRUST is used to evaluate the set of route configurations 

produced by a route generation algorithm. TRUST uses sim-

ple rules to assign the demand between o/d pairs in the transit 

network where the common lines problem is tackled differ-

ently. Users prioritize direct routes (i.e., without transfers) 

even if they are longer. The passenger is always assumed to 

attempt to reach his/her destination by following a set of 

routes that are within a prespecified range of the shortest path 

and has the fewest possible number of transfers. Many stud-

ies like [1, 39-41] followed the same rules: users would 

choose the path group with the least possible number of 

transfers and then select the first vehicle that arrived among 

that group. 

Similarly, [42-47] used all or nothing assignment tech-

niques to capture line flows where each user is assigned to 

the shortest path in total time. More relaxed assumptions are 

used in [48-52], in which only in-vehicle times are consid-

ered to determine served passengers' choices. Waiting times 

are not tackled in their objective functions.  

On the contrary, in [53, 54], multiple path assignment was 

done when performing passenger assignment, and the fre-

quency share method was used. It is assumed that all users 

would use, at maximum, two lines if available. The fre-

quency share method was incorporated with the multinomial 

logit model in [55].  For each o/d pair, it was assumed that 

the passenger initially searches for direct route alternatives, 

where the frequency share is applied. If no direct options 

were found, the passengers were distributed among routes 

with transfers (up to two transfers) with the multinomial logit 

share function.  
Some studies focused on the route network configuration 

without considering the assignment problem. The criteria of 

evaluation could be route directness (i.e., route length com-

pared with the shortest path) [56], the number of transfers 

[57-60], and the network demand coverage [61]. Also, the 

construction cost values could be considered where the sys-

tem is designated to be underground [58, 62]. Alternatively, 

in [63, 64], non-equilibrium assignment models were inte-

grated into mathematical programming objective functions 

to optimize the transit line configuration simultaneously with 

the passengers' line assignment. 

It should be noted that most of the none equilibrium based 

TNDP studies used the capacity-free assignment [65]. They 

would argue that the transit network design aims to identify 

the routes' capabilities through the total number of potential 

boarding users without any restriction. Besides, capacity-

free assignment models are proved to be efficient and fast in 

large-scale networks [66]. 
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A few numbers of TNDP studies have used equilibrium 

assignment models. In [67, 68], the conventional Wardrop’s 

user equilibrium principle [69] is tackled without consider-

ing the common lines problem. Although [70-72] used all or 

nothing assignment in the lower level of their hierarchical 

design system, they used the EMME transit planning soft-

ware in their final design evaluation stage. In that stage, they 

based their evaluation on Spiess and Florian's formulation. 

Also, in [73, 74], they used the original Spiess and Florian 

model in their lower level of design of a bi-level design ap-

proach. Similarly, in [3, 75], the De Cea and Fernandez 

model is used instead in the lower level of design. It is ap-

parent in most of the TNDP literature that the conditions for 

the existence and uniqueness of equilibrium-based frequency 

models stand as a hindrance for being used in proposed so-

lution algorithms. Finding plausible and quick solution 

methods for these two graph representations becomes neces-

sary. 

To this end, we could demonstrate the motivation of this 

study. For all reviewed frequency-based models, there are 

two basic graph representations; the hyper-path representa-

tion in [12-14] and the section-based representation in [5], 

where the different research achievements are built up based 

on them. Until now, there has been no study that reviewed 

the two model formulations simultaneously.  

This study would stand alone in the literature by the fol-

lowing salient contributions; 

• It presents a comprehensive review and analysis of 

the two most well-known transit assignment models 

in the literature. 

• For the first time, the two assignment approaches are 

formulated in a single mathematical notation frame-

work to deliver a better understanding of the inherent 

differences.  

• The graphics representation and solution algorithms 

for the two models are illustrated in detail. 

• The limitations of the models to be incorporated in 

the TNDP solution methodologies are described. 

• The possible directions for upcoming studies are 

drawn at the manuscript's end. 

We aim to bring attention again to these approaches for the 

upcoming TNDP studies since, as has been reviewed above, 

they are rarely used in the TNDP solution frameworks. In 

addition, the most used transit assignment models are defi-

cient in their basic assumptions compared with the consid-

ered models. 
 
III.  PROBLEM FORMULATION 

A.  SUPPLY MODEL 

A set of lines defines the transit system; L={ l1 , l2 ,…ln} with 

corresponding lines frequency set Φ = {𝜑1, 𝜑2, …….𝜑𝑛 }. 

The frequency of each line, in addition to vehicle loading ca-

pabilities, determine the line capacity set, LC = {lcm : m ∈ L , 

lcm = 𝜑𝑚 vm }since vm is the capacity of the vehicle running 

on line m, including the loading factor. The transit network 

is constructed by assembling these lines and then is repre-

sented under an augmented graph framework. Passenger 

flows are transmitted between decision nodes via different 

functional arcs/edges (i.e., walking, accessing, waiting, haul-

ing, and egressing arcs). The graph is denoted as ℐ = (V, E), 

where V is the set of vertices (nodes) that are connected by the 

set of edges (E = {(i, j): i, j ∈V, cij≠ ∞}). The symbols i, j will 

represent generic nodes in V, and the index 𝑒𝑖𝑗 represents an 

edge as a shorthand for an ordered pair of indexes (i, j) where 

cij is the aggregate impedance to pass this link through the aug-

mented network, which depends on the link functionality. 

A(i+) = {(i, j) | (i, j) ∈E} set of the arcs emanating directly with 

from node i, whereas A(i-) is the set of arcs directed to node i. 

Each edge (i, j) ≡ 𝑒𝑖𝑗  corresponds to a transit line segment or 

certain function which defines its attributes (i.e., cost and ca-

pacity). The generic path (i.e., hyperpath or segment path) R 

cost could be defined as follows: 

𝑔𝑅
𝑤=∑ ʎ𝑘𝑘∈𝑅  ∑ 𝑐𝑖𝑗𝛿𝑖𝑗

𝑘𝑤
𝑖𝑗∈𝐸 +  𝑛𝑅

𝑤  (2) 

where; 𝑔𝑅
𝑤 is the average cost of the set of elementary paths 

(k) that constitute user pre-trip/en-route choice (according to 

the common line assumption). ʎ𝑘 is conditional probability of 

choosing the elementary path k , if R ∈  ℜ  is the choice set for 

the users of 𝑤. It should be differentiated between two terms; 

path and elementary path. In each time we refer to a path (R), 

it would be considered the collective of elementary paths (k) 

constitute user pre-trip/en-route choice set. Although it is com-

mon in the literature to call this path a hyperpath, we could not 

do that in this study since another equivalent graph represen-

tation is presented (i.e., segment path). So, it would suffice to 

call it a path R. 𝛿𝑖𝑗
𝑘𝑤is an incident symbol equals one if the 𝑒𝑖𝑗 

is part of the elementary path k, 0 otherwise. 𝑛𝑅
𝑤 is the none-

additive path R cost which cannot be obtained as sum of links 

specific costs. In other words, it cannot be defined except af-

ter the complete configuration of the path. In transit network 

terminology, the non-additive performance variables are the 

waiting time at different stops. Interestingly, any edge 𝑒𝑖𝑗 
could be selected by more than one elementary path within the 

same collective path. Therefore, we could obtain the condi-

tional probability of 𝑒𝑖𝑗 being selected given the path R. 

 

𝛼𝑖𝑗/𝑅=∑ ʎ𝑘𝛿𝑖𝑗
𝑘𝑤

𝑘∈𝑅      (3) 

 

B. DEMAND MODEL 

Transit demand is the product of the transport activity sys-

tem and the current transit supply system, where complex re-

lationships between both associated by users' socio-economic 

characteristics result in the number of transit trips from o to d 

(𝑑𝑤). Note that a subscript is not required to define the demand 
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mode since transit is the only tackled mode in this research. 

The set of none zero origin-destination pairs W ={ 𝑤 ≜ (o, 

d), 𝑤 ⸦ V × V |𝑑𝑤 > 0}.  

𝑑𝑤 (SE, T)= 

 ∑ ∑ 𝑂𝑢𝑢 (𝑥/𝑜, 𝑧𝑠 , ℎ) 𝑝𝑢(𝑑/𝑜, 𝑧, ℎ) 𝑝𝑢(𝑚/𝑜, 𝑑, 𝑧, ℎ) (4) 

 

The trip demand model in Eq. (4) estimates the average 

number 𝑑𝑤, which is a function of the socie economic (SE) 

characteristics and the existing transport system (T). 𝑂𝑢 is the 

number of total trips for users of class (u) and purpose (z). 𝑝𝑢 

is the distriubiton share based on the destination (d), mode (m), 

and reference time (h).  

As transit planning is targeted in the strategic stage, it would 

be appropriate to consider the rigid demand type with respect 

to the destination, mode (transit only), and enough reference 

period (i.e., hour) to construct static traffic equilibrium in the 

network. The only considered elasticity for the demand is path 

choice (R). It is assumed to result from a sequence of decisions 

made at different nodes in the network to have mixed pre-

trip/en-route behavior. It corresponds to the basic common-

lines problem where each 𝑑𝑤 is assigned to start bus stop (s) 

and end bus stop (r). 

C. NETWORK LOADING ASSUMPTIONS 

To describe transit network loading assumptions, we need 

to define the set of feasible paths flow and links flows as fol-

lows: 

ℎ𝑅= ∑ ℎ𝑤∈𝑊 𝑅

𝑤 
= ∑ 𝑑𝑤  Ω𝑅

𝑤
𝑤∈𝑊  (𝑔𝑅

𝑤),∀ 𝑅 ∈ ℜ  (5) 

 

𝑓𝑖𝑗 = ∑ 𝛼𝑖𝑗/𝑅𝑅∈ℜ ℎ𝑅  ∀ 𝑖𝑗 ∈ 𝐸  (6) 

 

where;  Ω𝑅
𝑤  is the path choice proportion for demand pair (𝑤), 

which is a function of the path cost 𝑔𝑅
𝑤 and consequently, both 

paths flow (ℎ𝑅) and links flow (𝑓𝑖𝑗) are conditioned to it. Eq.s 

(5) & (6) define the two sets Sh and  Sf  for which any feasible 

solution to the assignment problem should satisfy. To compare 

the two suggested transit graph representations, the determin-

istic equilibrium assignment model would be only considered 

in this research. The considered model results in paths or 

links flow correspond to the equilibrium conditions ex-

pressed by the Wardrop principle, which states "for each O-

D pair, the path cost used is equal, and is less than or equal 

to the cost of each unused path".  

Due to the asymmetric property of the transit assignment 

model, the network loading model cannot be reduced to an 

equivalent mathematical optimization problem. Therefore, it 

is solved using a stated variational inequality in terms of path 

flows as follows; 

𝐺𝑡 (H – HD) ≥ 0,   ∀  H ∈ Sh (7) 

 

s.t. 

HD ∈ Sh 

 

or in terms of link flows: 

 

𝐶𝑡 (F – FD)+ 𝑁𝑡(H – HD) ≥ 0, ∀F ∈ Sf & H ∈ Sh (8) 

 

s.t. 

FD ∈ Sf  & HD ∈ Sh 

 

where; the capital notation is the vector of all corresponding 

small notation variables, the superscript 𝑡 is for vector trans-

pose, and the subscript D is for the deterministic equilibrium 

solution. If the costs of the links are independent of the flow, 

the equilibrium would simply turn into all-or-nothing assign-

ment. 
 
IV. TRANSIT NETWORK REPRESENTATIONS   

A. COMMON LINES PROBLEM 

The transit stop problem, which consists of estimating the 

passenger distribution between the attractive lines and the ex-

pected passenger waiting times at bus stops, is usually called 

the common lines problem. As mentioned before, it is the core 

sub-problem in any transit assignment formulation. As it 

would turn out, it forms the basis of the two considered mod-

els. The assumptions considered in that level of the general 

assignment problem control mainly the way of network load-

ing stage. Let us consider the basic transit network of single 

start/end stops connecting by n lines. Now a passenger at the 

stop can choose between several lines that differ in their “in-

vehicle” travel times. Intuitively, the passenger would take 

the least IVT line. However, the arisen question, would 

he/her change his choice if the first arriving vehicle was from 

a longer IVT line. Normally, each passenger is thought to 

determine a set of attractive lines which he/she would board 

the first arriving vehicle of this set. 

To determine this set, we need to make some assumptions 

about lines' headway, passengers arrival rates, and lines’ IVT 

probability distributions besides passengers’ choice model 

and their real-time information. To build up the mathemati-

cal formulation, let us assume that the headway of the differ-

ent lines is an independent random variable with exponential 

distribution. The passengers arrive randomly following the 

Poisson distribution “they do not adjust the arrival time” 

while the IVT times are deterministic. The passengers would 

choose the set of lines that minimize their total travel time 

(WT+IVT in that case) while they are fully aware of lines’ 

IVT and expecting WT. 

The solution to the following hyperbolic problem will de-

fine the set of attractive lines �̅�s,r  ⸦ 𝐿s, r: 

arg𝑚𝑖𝑛𝑥𝑙  UC = 
ᴪ

∑ 𝜑𝑙𝑥𝑙
𝑛
𝑙=1

 + 
∑ 𝐼𝑉𝑇𝑙 𝜑𝑙 𝑥𝑙 
𝑛
𝑙=1

∑ 𝜑𝑙 𝑥𝑙 
𝑛
𝑙=1

   (9) 

s.t. 

𝑥𝑙 ∈ {0, 1}   ∀  l ∈ 𝐿𝑠,𝑟 

£2 & £4 = 1 

£1 & £3 & £5 = 0 
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The set of lines with 𝑥𝑙 = 1 would be added to the �̅�s,r set. ᴪ 

is a parameter that captures the variability of both passen-

gers’ and vehicles’ arrival processes (e.g., for that study ᴪ = 

1) [4]. Interestingly, Eq. (9) could be solved with efficient 

heuristics in which the lines are ordered in an increasing 

manner according to their IVT, and then each line is in-

spected sequentially to be added in the �̅�s,r  if they would 

contribute to no increase/decrease in the UC value.   

The users are distributed among the lines according to each 

line frequency: 

 

𝑓𝑙 = 𝑑𝑤 
𝜑𝑙 

∑ 𝜑𝑙𝑙 ∈�̅�s,r 
  ∀  𝑙 ∈ �̅�s,r      (10) 

 

Note that more complexity is added to Eq. (9) when lines 

capacity is considered. Even if lines in 𝐿𝑠,𝑟̅̅ ̅̅̅  are the only at-

tractive choice, some passengers may fail to board the first 

incoming bus of them due to insufficient capacity. Logically, 

they would change to choose out of the set. However, they 

may find it is more profitable to wait for more until they 

board in a vacant bus of the set �̅�s,r. Therefore, lines may ex-

ceed their nominal capacity (lcm). This assumption is called 

a mild capacity constraint which is the chosen congestion to 

be dealt with in the larger framework of the assignment mod-

els in the next sections. 

B. HYPERNETWORK  

In the conventional formulation of the hyperpath method, 

it is assumed that the strategy is chosen before the trip starts 

and, beginning from the origin, it involves a sequence of 

walking to the stop/the destination, selecting the optimal 

lines to board and, for each of them, the stop where to alight.  

To represent the graph ℐ in hypernetwork terminology 

context, consider the urban transit network consisting of a set 

of transit lines where each line is defined by a set of stops 

(Nl). The distinct stops in all these lines are set as the basic 

stop set (S). Therefore, each line itinerary is associated with 

a subset of S where it would be connected by boarding arcs 

and alighting arcs. See the transformation of the transit net-

work in Fig. 1 to the auxiliary network in Fig. 2 for the sake 

of hyperpath assignm  ent. As we assumed that the demand 

A x y B 

B3 

B4 

y3 

y4 

x3 

x2 A2 

A1 B1 

y2 

 

 

Line edge 

Boarding arc 

Alighting arc 

Line node 

Station node 

 

FIGURE 2. Hypernetwork graph representation for the small, reported transit network 
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the 𝑑𝑤 is assigned to (s, r) ∈ S, we would not incorporate 

walking links for compact representation.  

Now the graph nodes V = (∪𝑙=1
𝑛  Nl ) ∪ S and E =  (∪𝑙=1

𝑛   

𝐴𝑙) ∪ 𝐴𝑏 ∪ 𝐴𝑎 where 𝐴𝑙, 𝐴𝑏, 𝐴𝑎 are the lines, boarding, and 

alighting arcs, respectively.  The core of this representation 

is the ability to define subsets of graphs; each one is called a 

hypergraph (i.e., path R). 𝑅𝑤 in this representation is associ-

ated with one start and end stop to carry certain 𝑑𝑤 with a 

combination of different elementary paths, k. Every combina-

tion of paths k connecting s & r would constitute a distinct R 

identity 휀 (i.e., 𝑅𝜀𝑤), in other words, the set size |휀| = (2k-1) 

for the k paths connecting 𝑤. 

ℐR (VR, ER) ⸦ ℐ is an acyclic graph associated with the 

hyperpath 𝑅𝜀𝑤 in which each arc and node is defined with 

selection probability as follows: 

 

𝜋𝑖𝑗/𝑅 =
𝜑𝑖𝑗 

∑ 𝜑𝑖𝑗 𝑖𝑗∈𝐴(𝑖+)

 ∀ ij ∈ ER   (11) 

 

∑ 𝜋𝑖𝑗/𝑅𝑖𝑗∈𝐴(𝑖+)  = 1     ∀ i ∈ VR – {r}  (12) 

 

𝜋𝑖𝑗/𝑅 ≥ 0 ∀ 𝑖𝑗 ∈ ER    (13) 

Now ʎ𝑘 (the probability of choosing path k in R as in Eq. 

(3)) is defined as follows: 

ʎ𝑘 = ∏ 𝜋𝑖𝑗/𝑅𝑖𝑗 ∈𝐸𝑅 𝛿𝑖𝑗
𝑘 ,   ∀ k ∈ R  (14) 

 

∑ ʎk𝑘 ∈ 𝑅  = 1       (15) 

Let 𝛽𝑖/𝑅 is the conditional probability of passing the node i 

given the configuration R and 𝛼𝑖
𝑘 is the incident symbol 

which is equal 1 if path k traverses i, 0 otherwise. 

 

𝛽𝑖/𝑅 = ∑ ʎ𝑘𝑘 ∈ 𝑅 𝛼𝑖
𝑘  ∀ 𝑖 ∈ VR  (16) 

 

It is clearly: 

 

𝛽𝑠/𝑅 = 𝛽𝑟/𝑅 = 1     (17) 

 

Now Eq. (2) could be used to estimate a hyperpath (R) cost 

contains a set of elementary paths (k) as follows: 

 

𝑔𝑅
𝑤=∑ ʎ𝑘𝑘∈𝑅  ∑ 𝑐𝑖𝑗𝛿𝑖𝑗

𝑘𝑤
𝑖𝑗∈𝐸 + ∑ 𝛽𝑖/𝑅𝑖∈𝑉  𝜏𝑖/𝑅 (18) 

 

s.t. 

𝑐𝑖𝑗  = {

𝐼𝑉𝑇𝑙 , 𝑖𝑓 𝑖 𝑗 ∈  𝐴𝑙  
𝑏𝑙    𝑖𝑓 𝑖 𝑗 ∈  𝐴𝑏
𝑎𝑙    𝑖𝑓 𝑖 𝑗 ∈  𝐴𝑎

 

𝜏𝑖/𝑅  =  {

1

∑ 𝜑𝑖𝑗 𝑖𝑗∈𝐴(𝑖+)

, 𝑖𝑓 𝑖 ∈  𝑆 − {𝑟}

0                        𝑖𝑓 𝑖 ∈  𝑁𝑙  ∪ {𝑟}

 

 

where; 𝜏𝑖 is the waiting time at node i, if it is a stop in the 

hypergraph connected to boarding links. Each boarding/ 

alighting link is connected to a single transit line from which 

their impedances (𝑏𝑙  & 𝑎𝑙) could be estimated as a function of 

boarding flow to that line. Also, 𝜑𝑖𝑗 for the boarding link (ij ∈

𝐴𝑎) is equal to the frequency of the connected line while the 

line links themselves are associated with large frequencies 

(𝜑𝑖𝑗 ≈ +∞ ∀ ij ∈ 𝐴𝑙). 

Now the transit loading parameters in Eq.s (5 & 6) are de-

fined as follows:  

 

 Ω𝑅
𝑤  = {

1 , 𝑖𝑓 𝑔𝑅
𝑤 = min{𝑅𝜀𝑤} 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (19) 

 

𝛼𝑖𝑗/𝑅 = ∑ ʎ𝑘𝑘 𝛿𝑖𝑗
𝑘  ∀ ij ∈ ER   (20) 

 

Eq. (19) states the optimal strategies assignment defined in 

[12]. Also, it matches the path choice assumed in this study, 

where passengers use the shortest hyperpath. 

C. SEGMENT NETWORK 

The second model is first presented in [5], which is thought 

to be much simpler than the hypernetwork context. It aims to 

represent the transit assignment exactly as the ordinary traf-

fic assignment problem by a new graph representation where 

the common lines are dealt with inherently. For the set of 

lines L, we identify the distinct stops in all these lines. Then 

we pick each pair of stops and their corresponding lines and 

solve the hyperbolic problem at Eq. (9) to get the set of at-

tractive lines connecting this pair of stops (�̅�ij). This set is 

considered as link (i.e., segment/section) in the graph ℐ = (V, 

E). Since V≡S and E = {�̅�ij : i, j ∈S, cij≠ ∞}. The transfor-

mation of lines to the segment network representation is illus-

trated in Fig 3. Each segment cost could be defined as follows: 

 

cij = 
1 + ∑ 𝐼𝑉𝑇𝑙 𝜑𝑙 𝑙∈�̅�𝑖𝑗

∑  𝜑𝑙 𝑙∈�̅�𝑖𝑗
  ∀ 𝑒𝑖𝑗 ∈ E (21) 

 

Interestingly the collective/hyperpath R is collapsed in this 

representation to an elementary path k where the path cost 

from Eq. (2) is estimated as follows: 

 

𝑔𝑅
𝑤= ∑ 𝑐𝑖𝑗𝛿𝑖𝑗

𝑘𝑤
𝑖𝑗∈𝐸 + 𝑛𝑅

𝑤   (22) 

 

s.t. 

S4 (l2, l3) 
A x y B 

S1 (l1)  

S2 (l2) 

S3 (l2) S5 (l3) 

S6 (l3, l4) 

FIGURE 3. Segment network graph representation for the small, reported 

transit network 
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R = {k} 

𝑛𝑅
𝑤=0 

 

In other words, any sequence of connected links (segments) 

is equivalent to a hyperpath in the hypernetwork context of 

this representation. 

Now the transit loading parameters in Eq.s (5 & 6) are 

defined as follows:  

 

𝛼𝑖𝑗/𝑅 =  Ω𝑅
𝑤  = {

1 , 𝑖𝑓 𝑔𝑅
𝑤 = min{𝑅𝑘𝑤} 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (23) 

 
 
V. TRANSIT ASSIGNMENT 

The ultimate purpose of a transit assignment model is to pro-

duce both  Ω𝑅
𝑤& 𝛼𝑖𝑗/𝑅 values which would define transit lines 

ridership. This section gives the steps and the assumptions 

needed to conduct the passengers' assignment over the two 

stated network models. Before going deep into the compo-

nents of the transit assignment model using the presented for-

mulations, Fig. 3 provides a graphical representation of the 

considered system models. 

A. PATH CHOICE 

As stated before, the path choice of transit users is a mix 

between pre-trip decisions and en-route decisions. Fortu-

nately, this behavior could be modeled implicitly in both de-

scribed models in the previous section in defining the path R. 

Even when we consider single path R for certain demand 

(dw), it will incorporate a multi-line selection. Modeling path 

choice has two approaches, namely; deterministic and sto-

chastic. In the deterministic approach, users are assumed to 

be accurately aware of paths’ generalized costs, so they 

would choose the least cost path. If the cost of the paths is 

flow-independent, they will choose the least cost path (i.e., 

the shortest path). 

On the contrary, the stochastic approach distributes the us-

ers among the several paths, considering the perceived path 

cost as a random variable. This assumption directs most ran-

dom utility choice models to assign no zero-selection proba-

bility for each path. The selection probably of each path 

would depend on the systematic (actual) cost, error distribu-

tion assumption, and cost-flow dependence assumption [21, 

76]. 

 This study would consider the deterministic (flow – cost 

dependent) approach to present the two assignment algo-

rithms. However, extending the comparison to other path 

choice models is a straightforward task on the same network 

representations. 

For the considered deterministic model, calculating short-

est path R (for each s and r) would be recalled recursively, 

and it can be stated under Generalized Bellman's equation: 

 

For hypernetwork representation 

qi =

{
 
 

 
 

0                                    𝑖𝑓 𝑖 = 𝑟

𝑚𝑖𝑛𝑖𝑗∈𝐴(𝑖+)  { 𝑞𝑗 + 𝑐𝑖𝑗}     𝑖𝑓 𝑖 ∈ 𝑉 − {𝑆} − {𝑟}

𝑚𝑖𝑛 𝐴𝑖 ⸦ 𝐴(𝑖+) {
(∑ 𝜑𝑖𝑗 𝑞𝑗+1𝑖𝑗∈𝐴𝑖

)

∑ 𝜑𝑖𝑗 𝑖𝑗∈𝐴𝑖

}  𝑖𝑓 𝑖 ∈ {𝑆} − {𝑟}

  (24) 

 

For segment representation 

qi= {
0                                    𝑖𝑓 𝑖 = 𝑟

𝑚𝑖𝑛𝑖𝑗∈𝐴(𝑖+)  { 𝑞𝑗 + 𝑐𝑖𝑗}     𝑖𝑓 𝑖 ∈ 𝑆 − {𝑟}
 (25) 

 

where qi is set to be the length of a shortest �̅� (⸦ R) path 

from an intermediate node i to the destination r. The follow-

ing iterative procedure could be used for computing the 

shortest R for both representations: 

 

Algorithm (1): Shortest transit path R  

Pre-condition  : connected ℐ 

Post-condition : shortest ℜ set 

1. For each s & r ∈ W 

2. Initialization: Set qr ∶= 0; qi ∶= +∞ ∀ i ∈ V  

3. (updating label step) 

3.1. If qi > qj + 𝑐𝑖𝑗           

then qi ∶= qj + 𝑐𝑖𝑗  

in hypernetwork representation update qi ∀ i ∈ S  as follows: 

3.2. If qi > 𝑞𝑖
∗ =  𝑚𝑖𝑛 𝐴𝑖 ⸦ 𝐴(𝑖+) {

(∑ 𝜑𝑖𝑗 𝑞𝑗+1𝑖𝑗∈𝐴𝑖
)

∑ 𝜑𝑖𝑗 𝑖𝑗∈𝐴𝑖

} 

then qi = 𝑞𝑖
∗ 

4. Repeat step 3 until no label can be further improved. 

5. Return path R connecting s and r by backtracking qi 

6. Add R to ℜ 

7. End for 

8. End algorithm 

In the hypernetwork representation, to update qi at stops, it 

is needed to find the optimal subset links outgoing form i 

(i.e., 𝐴𝑖) to minimize the following: 

 

𝑞𝑖
∗  = 𝑚𝑖𝑛𝑥𝑖𝑗  {

(∑ 𝜑𝑖𝑗 𝑞𝑗𝑥𝑖𝑗 +1𝑖𝑗∈𝐴(𝑖+) )

∑ 𝜑𝑖𝑗 𝑥𝑖𝑗 𝑖𝑗∈𝐴(𝑖+)

}   (26) 

s.t. 

𝑥𝑖𝑗 ∈ {0, 1}   ∀  ij∈ 𝐴(𝑖+) 

𝑥𝑖𝑗 = 1 ∀  ij∈ 𝐴𝑖 

 

Note that solving the subset 𝐴𝑖 would be repeated at each 

stop label update iteration. Therefore, using the same heuris-

tic defined for the hyperbolic problem at Eq. (9), replacing 

lines in-vehicle time by node labels, would be efficient. Also, 

one may notice that segment representation does not need spe-

cial treatment to update the stop labels by removing step 3.2. 

the algorithm would convert to the conventional shortest path 

algorithm. 
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B. PERFORMANCE FUNCTIONS 

It is crucial to incorporate volume-delay functions in the as-

signment process to reproduce the effects of increasing wait-

ing times due to the inability (or inconvenience) to board the 

first arriv  ed vehicle(s). This evaluation would help the ana-

lyst figure out the sufficiency of examined design of a transit 

network more effectively in the strategic stage as the proposed 

function may not represent the actual waiting times. However, 

it could reflect the relative efficiency among different evalu-

ated solutions. 

In this study, the effect of the increased cost would be rep-

resented by resembling the well-known Bureau of Public 

Roads (BPR) formula for the two models as follows: 

For hypernetwork representation 

Lines itineraries 

Lines frequencies 
Transit Demand 

Hypernetwork 

model  

Segment network 

model 

Auxiliary 

network 

Network Loading on shortest paths 

Update links travel time using cost functions 

Find auxiliary flows then update existing flows 

Are the flows 

converged with 

the previous 

values? 

End the assignment with 

last flows 

Yes No 

Model Decision step 

Transit network input data 

Algorithm 1 

Algorithm 2 

FIGURE 3. A graphical representation of the considered system models 
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𝑐𝑖𝑗  = {

𝐼𝑉𝑇𝑙 ,                         𝑖𝑓 𝑖 𝑗 ∈  𝐴𝑙  

𝒷 (
𝑓𝑖𝑗

𝜑𝑙 𝑣𝑙 
)
𝒫

             𝑖𝑓 𝑖 𝑗 ∈  𝐴𝑏

𝑎𝑙 = 0                     𝑖𝑓 𝑖 𝑗 ∈  𝐴𝑎

  (27) 

 

For segment representation 

 

𝑐𝑖𝑗  = 
1+ ∑ 𝐼𝑉𝑇𝑙 𝜑𝑙 𝑙∈�̅�𝑖𝑗

∑  𝜑𝑙 𝑙∈�̅�𝑖 𝑗
 + 𝒷(

𝑓𝑖𝑗+ ∑ 𝑓̅𝑖𝑗𝑖𝑗∈𝐸 

∑ 𝑙𝑐𝑚 𝑚∈ �̅�𝑖𝑗 
)
𝒫

 (28) 

 

where; 𝒷 and 𝒫 are factors that to be calibrated to determine 

how the flow affects the travel time. 𝑓�̅�𝑗 is the competing flow 

of other sections that contain common lines of section 𝑖𝑗.  In 

both models, the increase in the impedance is assumed due to 

the increase in waiting times. In hypernetwork representation, 

the waiting times are calculated separately as additive costs, 

see Eq. (18). 

The solution flows for these cost functions may override the 

lines' physical bounds (i.e., capacities). This may be the case 

when using volume-delay functions directly from calibration. 

The adoption of these formulas could be argued in two ways. 

First, the line's physical capacity could be over exceeded in 

real life by increasing the waiting time until getting a vacant 

place in that line. Second, these formulas have the required 

criteria to ensure convergence and uniqueness for most assign-

ment models [23, 24]. Therefore, they are the most appropriate 

way to convey the supply-demand interaction in the strategic 

stage of the design. 

 

C. ASSIGNMENT ALGORITHM 

The assignment algorithm aims to solve the variational ine-

qualities presented in Eq.s (7 or 8). While it is proved that the 

solution in terms of paths - as in Eq. (7) - is not unique, Eq. (8) 

could provide a unique solution in terms of links flow. This 

uniqueness is guaranteed by the monotonicity assumption of 

the performance function in Eq. (27 & 28), and the assumption 

of the non-additive cost is independent of the flow. 

The two representations could be solved by either a varia-

tional inequality problem or a fixed-point problem using the 

maximum successive average (MSA). As the segment repre-

sentation, a has a nonseparable cost function structure with an 

asymmetric  Jacobian matrix. It would need a diagonalization 

step in which the Jacobian matrix would be approximate to a 

diagonal one considering only the variation of the link cost at 

each diagonal cell. Also, we would apply the streamlined 

method suggested by Sheffi [77] to reduce the number of re-

quired iterations in the whole algorithm. 

 

Algorithm (2): Transit Assignment equilibrium 

Pre-condition  : connected ℐ 

Post-condition : set of link flows (F) 
 

1. Initialization:  

1.1. u ∶= 0 

1.2. compute a feasible arc flow 𝐹𝑢 through all or 

nothing using Algorithm (1) and the costs as-

sociated with none flow on the links, then com-

pute the associated non-additive costs (𝑁𝑢) if 

any. 

2. Auxiliary flow estimation step: 

diagonalize the C vector (Sheffi [77]) to compute 

the auxiliary arc flow �̅�u by using one iteration for 

the diagonalized C associated with 𝐹𝑢 and 𝑁𝑢 (if 

any). 

3. Set u ∶= u +1 

4. Find the updated flow vector (MSA): 

𝐹𝑢:=𝐹𝑖 + 1/(u)[ 𝐹𝑢-�̅�u] 

5.  Check the stopping criterion: 

Test the current flow: If  
∑ (𝑓𝑖𝑗 

𝑢
𝑖𝑗∈𝐸  − 𝑓𝑖𝑗 

𝑢−1)2

|𝐸|
≤ κ 

then stop and return 𝐹𝑢  as the solution, otherwise 

go to step 2. 

6. End algorithm 

It is worth noting that in step 4, computation of an improv-

ing direction and optimal step length would be required for 

better convergence performance. However, if the assign-

ment's target is to evaluate the transit network with respect 

to the TNDP solution algorithms, it would be sufficient to 

use the MSA method.  
 
VI. CONCLUSION AND DISCUSSION 

This study presents a comprehensive review of two well-

known transit assignment models; Spiess and Florian (1989) 

and De Cea and Fernandez (1993), to give a profound under-

standing of them. Many studies come after adding modifica-

tions to either the user’s behavior assumptions or equilibrium 

solution algorithms. To the best of our knowledge, no study 

reviews the two models simultaneously under one single 

framework from a TNDP analyst perspective. Despite the 

profound logic in their user choice behavior, they are used 

rarely in the TNDP literature. This may return for many rea-

sons, where the two revised graph formulations suffer from 

major complexity issues.  

First, both models require an augmented/auxiliary net-

work representation. Hypernetwork duplicates bus stops 

nodes as many as lines passing the stops with additional 

boarding/ alighting arcs in addition to walking arcs connect-

ing these nodes. Even for one O/D pair, the network will 

have at least a number of hyperpaths = 2n –1. While the seg-

ment network representation is more concise with the origi-

nal V nodes, the number of links does not exceed 

[∣V∣(∣V∣+1)]/2. It would imply considerable CPU time while 

yielding more practical travel choices [19, 78]. In terms of 

running time, the best-reported CPU time for a hypernetwork 

representation was 6.59 min using a network of 571 stops 

and 35 lines [78], whereas [19] reported 0.25 min for a net-

work consisting of 24 nodes and 5 lines only. These running 

times still put limits on using the presented models as sub-

routines in the TNDP solution frameworks. Obviously, 
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TNDP solutions algorithms that need several consecutive as-

signments would counter running time explosion using the 

newest contributions.  

Second, they do not restrict the number of transfers made 

to reach the destination. According to equilibrium condi-

tions, the user would make the trip if there were capacity, and 

the time impedance is plausible regardless of any number of 

transfers. Transfers could be included only as an addition im-

pedance in the cost function. Consequently, these types of 

models do not allow the planner to control or track the num-

ber of transfers on the final TNDP solution. In a survey done 

by [79] in the United States, about 60% of the respondents 

of several transit agencies believed that transit users are will-

ing to make only one transfer per trip.  

Third, as ordinary assignment problems on road networks, 

they can be formulated as path-based or link-based models 

depending on the required transit flow information (i.e., path 

flow or link flow). Equilibrium models are mainly link-based 

to achieve relatively quick solutions, which obviates the 

combinatorial process of complete path enumeration. Unfor-

tunately, link-based techniques do not enable the analyst to 

track users' trajectories within the network. In contrast, path-

based models provide path flow information, enabling the 

analyst to evaluate the presented TNDP design effect on a 

specific group of users. 

Fourth, the uniqueness of the UE solution further requires 

special conditions on the assumed cost function and the stops 

modeling stage. The mapping cost function should be strictly 

monotonic, which needs to be proved. In addition, cost func-

tions are asymmetric in nature, and therefore, an equivalent 

optimization problem cannot be formulated. It is usually ex-

pressed implicitly, which makes the implementation of a di-

agonalization algorithm a challenging problem. At the level 

of transit stops, it assumes that the flow split between attrac-

tive services would be according to the nominal frequencies 

of the services instead of the effective ones. Also, distin-

guishing users aboard arriving lines at a stop from passengers 

waiting on the platform at the same stop causes a high com-

plexity at the modeling stage. 

Moreover, there is no study has calibrated any of the as-

signment models with the actual user's flow on a transit net-

work. This makes the real benefit of using a more compli-

cated/sophisticated assignment model questionable. Devel-

oping a transit assignment model would still be challenging 

with an open gate for new contributions. 

For further studies, the focus should be given to investi-

gating; 

• Much simpler representations of the two models re-

garding as much as possible how users choose the 

services to reach their destination.  

• The inclusion of new concepts to reduce the time 

complexity of the solutions algorithms to reach few 

seconds while tracking users’ travel routes.  

• Developing a method to stipulate the constraints on 

the maximal number of transfers. 

• The capability of incorporating variable demand 

without an excessive increase in the computational 

time complexity.  

 
REFERENCES 
 

[1] M. Owais, M. K. Osman, and G. Moussa, "Multi-objective transit 

route network design as set covering problem," IEEE Transactions on 
Intelligent Transportation Systems, vol. 17, no. 3, pp. 670-679, 2015. 

[2] M. Owais and M. K. Osman, "Complete hierarchical multi-objective 

genetic algorithm for transit network design problem," Expert Systems 
with Applications, vol. 114, pp. 143-154, 2018. 

[3] Z. Gao, H. Sun, and L. Shan, "A Continuous Equilibrium Network 

Design Model and Algorithm for Transit Systems," Transportation 
Research Part B: Methodological, vol. 38, no. 3, pp. 235-250, 2004. 

[4] M. Owais and T. Hassan, "Incorporating dynamic bus stop simulation 

into static transit assignment models," International Journal of Civil 
Engineering, vol. 16, no. 1, pp. 67-77, 2018. 

[5] J. D. Cea and E.Fernandez, "Transit assignment for congested public 

transport system: An equilibrium model," Transportation Science, vol. 
27, no. 133–147, 1993. 

[6] C. Chriqui and P.Robillard, "Common Bus Lines," Hautes Eludes 

Commercials, Montréal, Québec, Canada, Transportation, vol. 9, no. 
2, pp. 115–121, 1975. 

[7] Á. Ibeas, L. dell’Olio, B. Alonso, and O. Sainz, "Optimizing bus stop 

spacing in urban areas," Transportation Research Part E, vol. 46, pp. 
446-458, 2010. 

[8] L. dell'Olio, J. L. Moura, and A. Ibeas, "Bi-level mathematical 

programming model for locating bus stops and optimizing 
frequencies," Transportation Research Record: Journal of the 

Transportation Research Board, vol. 1971, no. 1, pp. 23-31, 2006. 

[9] L. dell’Olio, A. Ibeas, and F. R. Díaz, "Assigning vehicles types to a 
bus transit network," TRB 2009 Annual Meeting CD-ROM, 2008. 

[10] M. Wardman, "Public transport values of time," Transport policy, vol. 

11, no. 4, pp. 363-377, 2004. 
[11] P. Marguier and A. Ceder, "Passenger Waiting Strategies for 

Overlapping Bus Routes," Massachusetts Institute of Technology, 
Cambridge, Massachusetts, Transportation Science, vol. 18, no. 3, pp. 

207-230, 1984. 

[12] H. Spiess and M. Florian, "Optimal strategies: a new assignment 
model for transit networks," Transportation research part b: 

methodological, vol. 23, no. 2, pp. 83-102, 1989. 

[13] H. Spiess, "On optimal route choice strategies in transit networks," 
Publication 285, Centre de Recherche sur les Transports, Université 

de Montréal, 1983. 

[14] S. Nguyen and S. Pallottino, "Equilibrium traffic assignment for large 
scale transit networks," European journal of operational research, 

vol. 37, no. 2, pp. 176-186, 1988. 

[15] R. Bellman, "On a routing problem," Quarterly of applied 
mathematics, vol. 16, no. 1, pp. 87-90, 1958. 

[16] Q. Li, P. W. Chen, and Y. M. Nie, "Finding optimal hyperpaths in 

large transit networks with realistic headway distributions," European 
Journal of Operational Research, vol. 240, no. 1, pp. 98-108, 2015. 

[17] M. Owais, "Issues related to transit network design problem," 

International Journal of Computer Applications, vol. 120, no. 8, 2015. 
[18] A. De Bona, M. Rosa, K. Fonseca, R. Lüders, and N. Kozievitch, 

"Congestion Potential–A New Way to Analyze Public Transportation 

based on Complex Networks," in 2018 IEEE International Smart 
Cities Conference (ISC2), 2018, pp. 1-8: IEEE. 

[19] H. Larrain, H. K. Suman, and J. C. Muñoz, "Route based equilibrium 

assignment in congested transit networks," Transportation Research 
Part C: Emerging Technologies, vol. 127, p. 103125, 2021. 

[20] S. Sun and W. Szeto, "Logit-based transit assignment: Approach-

based formulation and paradox revisit," Transportation Research Part 
B: Methodological, vol. 112, pp. 191-215, 2018. 

[21] W. H.-K. Lam, Z. Gao, K. Chan, and H. Yang, "A stochastic user 

equilibrium assignment model for congested transit networks," 
Transportation Research Part B: Methodological, vol. 33, no. 5, pp. 

351-368, 1999. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182046

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

 
VOLUME XX, 2022 13 

 

[22] O. A. Nielsen, "A stochastic transit assignment model considering 

differences in passengers utility functions," Transportation Research 

Part B: Methodological, vol. 34, no. 5, pp. 377-402, 2000. 
[23] Y. Sheffi and W. B. Powell, "An algorithm for the equilibrium 

assignment problem with random link times," Networks, vol. 12, no. 

2, pp. 191-207, 1982. 
[24] Y. Sheffi and W. Powell, "A comparison of stochastic and 

deterministic traffic assignment over congested networks," 

Transportation Research Part B: Methodological, vol. 15, no. 1, pp. 
53-64, 1981. 

[25] B. Bouzaïene-Ayari, M. Gendreau, and S. Nguyen, "Modeling bus 

stops in transit networks: A survey and new formulations," 
Transportation Science, vol. 35, no. 3, pp. 304-321, 2001. 

[26] H. Spiess, "Technical note—Conical volume-delay functions," 

Transportation Science, vol. 24, no. 2, pp. 153-158, 1990. 
[27] R. Cominetti and J. Correa, "Common-lines and passenger assignment 

in congested transit networks," Transportation science, vol. 35, no. 3, 

pp. 250-267, 2001. 
[28] M. Cepeda, R. Cominetti, and M. Florian, "A frequency-based 

assignment model for congested transit networks with strict capacity 

constraints: characterization and computation of equilibria," 
Transportation research part B: Methodological, vol. 40, no. 6, pp. 

437-459, 2006. 

[29] F. Kurauchi, M. G. Bell, and J.-D. Schmöcker, "Capacity constrained 
transit assignment with common lines," Journal of Mathematical 

modelling and algorithms, vol. 2, no. 4, pp. 309-327, 2003. 
[30] J.-D. Schmöcker, A. Fonzone, H. Shimamoto, F. Kurauchi, and M. G. 

Bell, "Frequency-based transit assignment considering seat 

capacities," Transportation Research Part B: Methodological, vol. 45, 
no. 2, pp. 392-408, 2011. 

[31] V. Trozzi, G. Gentile, M. G. Bell, and I. Kaparias, "Dynamic user 

equilibrium in public transport networks with passenger congestion 
and hyperpaths," Transportation Research Part B: Methodological, 

vol. 57, pp. 266-285, 2013. 

[32] G. Gentile, L. Meschini, and N. Papola, "Spillback congestion in 
dynamic traffic assignment: a macroscopic flow model with time-

varying bottlenecks," Transportation Research Part B: 

Methodological, vol. 41, no. 10, pp. 1114-1138, 2007. 

[33] L. L. Cheung and A. S. Shalaby, "System optimal re-routing transit 

assignment heuristic: a theoretical framework and large-scale case 

study," International Journal of Transportation Science and 
Technology, vol. 6, no. 4, pp. 287-300, 2017. 

[34] N. Oliker and S. Bekhor, "A frequency based transit assignment model 

that considers online information," Transportation Research Part C: 
Emerging Technologies, vol. 88, pp. 17-30, 2018. 

[35] N. Oliker and S. Bekhor, "A frequency based transit assignment model 

that considers online information and strict capacity constraints," 
EURO Journal on Transportation and Logistics, p. 100005, 2020. 

[36] M. H. Baaj and H.Mahmassani, "An AI-Based Approach for Transit 

Route System Planning and Design," Journal of Advance 
Transportation, vol. 25, no. 2, pp. 187-210, 1991. 

[37] M.-C. Shih and H.Mahmassani, "A design methodology for bus transit 

networks with coordinated operation," Ph.D, SWUTC/94/60016-1, 
Center for Transportation, Bureau of Engineering Research, the 

University of Texas at Austin, Austin, Texas, 1994. 

[38] M. H. Baaj and H.Mahmassani, "Hybrid Route Generation Heuristic 

Algorithm for the Design of Transit Networks," Transportation 

Research Part C: Emerging Technologies, vol. 3, no. 1, pp. 31-50, 

1995. 
[39] V. Tom and S. Mohan, "Transit route network design using frequency 

coded genetic algorithm," Journal of transportation engineering, vol. 

129, no. 2, pp. 186-195, 2003. 
[40] W. Y. Szeto and Y. Wu, "A simultaneous bus route design and 

frequency setting problem for Tin Shui Wai, Hong Kong," European 

Journal of Operational Research, vol. 209, no. 2, pp. 141-155, 2011. 
[41] Y. Liu, X. Feng, L. Zhang, W. Hua, and K. Li, "A Pareto Artificial 

Fish Swarm Algorithm for Solving a Multi-Objective Electric Transit 

Network Design Problem," Transportmetrica A: Transport Science, 
no. just-accepted, p. 1, 2020. 

[42] S. Ngamchai and D. J. Lovell, "Optimal time transfer in bus transit 

route network design using a genetic algorithm," Journal of 
Transportation Engineering, vol. 129, no. 5, pp. 510-521, 2003. 

[43] J. Agrawal and T. V. Mathew, "Transit route network design using 

parallel genetic algorithm," Journal of Computing in Civil 

Engineering, vol. 18, no. 3, pp. 248-256, 2004. 
[44] L. Fan and C. L. Mumford, "A metaheuristic approach to the urban 

transit routing problem," Journal of Heuristics, vol. 16, no. 3, pp. 353-

372, 2010. 
[45] G. Gutiérrez-Jarpa, G. Laporte, V. Marianov, and L. Moccia, "Multi-

objective rapid transit network design with modal competition: The 

case of Concepción, Chile," Computers & Operations Research, vol. 
78, pp. 27-43, 2017. 

[46] C. Iliopoulou and K. Kepaptsoglou, "Integrated transit route network 

design and infrastructure planning for online electric vehicles," 
Transportation Research Part D: Transport and Environment, vol. 77, 

pp. 178-197, 2019. 

[47] L. Ahmed, C. Mumford, and A. Kheiri, "Solving urban transit route 
design problem using selection hyper-heuristics," European Journal 

of Operational Research, vol. 274, no. 2, pp. 545-559, 2019. 

[48] W. Fan and R. B. Machemehl, "Tabu search strategies for the public 
transportation network optimizations with variable transit demand," 

Computer‐Aided Civil and Infrastructure Engineering, vol. 23, no. 7, 

pp. 502-520, 2008. 
[49] M. Nikolić and D. Teodorović, "Transit network design by bee colony 

optimization," Expert Systems with Applications, vol. 40, no. 15, pp. 

5945-5955, 2013. 
[50] P. N. Kechagiopoulos and G. N. Beligiannis, "Solving the urban transit 

routing problem using a particle swarm optimization based algorithm," 
Applied Soft Computing, vol. 21, pp. 654-676, 2014. 

[51] M. A. Nayeem, M. K. Rahman, and M. S. Rahman, "Transit network 

design by genetic algorithm with elitism," Transportation Research 
Part C: Emerging Technologies, vol. 46, pp. 30-45, 2014. 

[52] K. A. Islam, I. M. Moosa, J. Mobin, M. A. Nayeem, and M. S. 

Rahman, "A heuristic aided Stochastic Beam Search algorithm for 
solving the transit network design problem," Swarm and Evolutionary 

Computation, vol. 46, pp. 154-170, 2019. 

[53] M. Nikolić and D. Teodorović, "A simultaneous transit network 
design and frequency setting: Computing with bees," Expert Systems 

with Applications, vol. 41, no. 16, pp. 7200-7209, 2014. 

[54] M. Owais, G. Moussa, Y. Abbas, and M. El-Shabrawy, "Simple and 

effective solution methodology for transit network design problem," 

International Journal of Computer Applications, vol. 89, no. 14, pp. 

32-40, 2014. 
[55] R. O. Arbex and C. B. da Cunha, "Efficient transit network design and 

frequencies setting multi-objective optimization by alternating 

objective genetic algorithm," Transportation Research Part B: 
Methodological, vol. 81, pp. 355-376, 2015. 

[56] F. Zhao and I. Ubaka, "Transit network optimization-minimizing 

transfers and optimizing route directness," Journal of Public 
Transportation, vol. 7, no. 1, p. 4, 2004. 

[57] F. Zhao, I. Ubaka, and A. Gan, "Transit network optimization: 

minimizing transfers and maximizing service coverage with an 
integrated simulated annealing and tabu search method," 

Transportation research record, vol. 1923, no. 1, pp. 180-188, 2005. 

[58] M. Owais, A. S. Ahmed, G. S. Moussa, and A. A. Khalil, "An optimal 
metro design for transit networks in existing square cities based on 

non-demand criterion," Sustainability, vol. 12, no. 22, p. 9566, 2020. 

[59] M. Owais, A. S. Ahmed, G. S. Moussa, and A. A. Khalil, "Integrating 

underground line design with existing public transportation systems to 

increase transit network connectivity: case study in greater cairo," 

Expert Systems with Applications, vol. 167, p. 114183, 2021. 
[60] M. Owais, A. S. Ahmed, G. S. Moussa, and A. A. Khalil, "Design 

scheme of multiple-subway lines for minimizing passengers transfers 

in mega-cities transit networks," International Journal of Rail 
Transportation, vol. 9, no. 6, pp. 540-563, 2021. 

[61] A. Mauttonw and M. Urquhart, "A route set construction algorithm for 

the transit network design problem," Computers and Operations 
Research, vol. 36, no. 8, pp. 2440-2449, 2009. 

[62] Á. Marín, "An extension to rapid transit network design problem," 

Top, vol. 15, no. 2, pp. 231-241, 2007. 
[63] J. Guan, H. Yang, and S. C. Wirasinghe, "Simultaneous optimization 

of transit line configuration and passenger line assignment," 

Transportation Research Part B: Methodological, vol. 40, no. 10, pp. 
885-902, 2006. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182046

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

 
VOLUME XX, 2022 14 

 

[64] M. Goerigk and M. Schmidt, "Line planning with user-optimal route 

choice," European Journal of Operational Research, vol. 259, no. 2, 

pp. 424-436, 2017. 
[65] S. A. Bagloee and A. A. Ceder, "Transit-network design methodology 

for actual-size road networks," Transportation Research Part B: 

Methodological, vol. 45, no. 10, pp. 1787-1804, 2011. 
[66] Y. Liu, X. Feng, L. Zhang, W. Hua, and K. Li, "A pareto artificial fish 

swarm algorithm for solving a multi-objective electric transit network 

design problem," Transportmetrica A: Transport Science, vol. 16, no. 
3, pp. 1648-1670, 2020. 

[67] W. Fan, Y. Mei, and W. Gu, "Optimal design of intersecting bimodal 

transit networks in a grid city," Transportation Research Part B: 
Methodological, vol. 111, pp. 203-226, 2018. 

[68] K. An and H. K. Lo, "Two-phase stochastic program for transit 

network design under demand uncertainty," Transportation Research 
Part B: Methodological, vol. 84, pp. 157-181, 2016. 

[69] J. G. Wardrop, "Road paper. some theoretical aspects of road traffic 

research," Proceedings of the institution of civil engineers, vol. 1, no. 
3, pp. 325-362, 1952. 

[70] E. Cipriani, S. Gori, and M. Petrelli, "A bus network design procedure 

with elastic demand for large urban areas," Public transport, vol. 4, 
no. 1, pp. 57-76, 2012. 

[71] F. Ciaffi, E. Cipriani, and M. Petrelli, "Feeder bus network design 

problem: A new metaheuristic procedure and real size applications," 
Procedia-Social and Behavioral Sciences, vol. 54, pp. 798-807, 2012. 

[72] E. Cipriani, S. Gori, and M. Petrelli, "Transit network design: A 

procedure and an application to a large urban area," Transportation 

Research Part C: Emerging Technologies, vol. 20, no. 1, pp. 3-14, 
2012. 

[73] W. Y. Szeto and Y. Jiang, "Transit route and frequency design: Bi-

level modeling and hybrid artificial bee colony algorithm approach," 
Transportation Research Part B: Methodological, vol. 67, pp. 235-

263, 2014. 

[74] H. Cancela, A. Mauttone, and M. E. Urquhart, "Mathematical 
programming formulations for transit network design," 

Transportation Research Part B: Methodological, vol. 77, pp. 17-37, 

2015. 
[75] Z. Gao, J. Wu, and H. Sun, "Solution algorithm for the bi-level discrete 

network design problem," Transportation Research Part B: 

Methodological, vol. 39, no. 6, pp. 479-495, 2005. 
[76] F. Teklu, "A stochastic process approach for frequency-based transit 

assignment with strict capacity constraints," Networks and Spatial 

Economics, vol. 8, no. 2, pp. 225-240, 2008. 
[77] Y. Sheffi, Urban transportation networks. Prentice-Hall, Englewood 

Cliffs, NJ, 1985. 

[78] H. Ren, Y. Song, J. Long, and B. Si, "A new transit assignment model 
based on line and node strategies," Transportation Research Part B: 

Methodological, vol. 150, pp. 121-142, 2021. 

[79] R. Stern, Passenger transfer system review. Transportation Research 
Board, 1996.

 
 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182046

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


