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Frequency Coupling Matrix of a
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Abstract—When a power-electronic converter is introduced into
a linear network, voltage and current harmonics of differing orders
become coupled (through the modulation effect of the converter).
The interharmonic coupling introduced by the modulation effect
of a converter may be mathematically represented through a fre-
quency coupling matrix (FCM). Given that the source of the cou-
pling is a modulation process, researchers have, in the past, focused
on deriving the FCM in the frequency domain—a process that re-
quires the truncation of the harmonic representation of signals.
This paper presents an alternate approach to evaluate the FCM
based on a time-domain derivation. In contrast to frequency-do-
main-based methods, it is shown that the time-domain approach
avoids truncation. Furthermore, the time-domain approach does
not require system linearization about an operating point; thus,
the FCM is not limited by small-signal assumptions.

Index Terms—Admittance matrix, frequency coupling matrix
(FCM), harmonics, steady-state analysis, voltage-source converter
(VSC).

I. INTRODUCTION

THE detrimental effects caused by harmonics include over-
heating of components, mechanical oscillations in genera-

tors and motors, insulation or capacitor failure, and induced in-
terference in communication circuits. It is therefore essential to
predict how harmonic sources, such as power-electronic equip-
ment, interact with power systems and to quantify the distor-
tion in voltage and current waveforms at various locations in the
power network. Brute-force time-domain simulations can pro-
vide accurate harmonic analysis results if the simulation step
is chosen appropriately; however, computation times are exces-
sively long when the power network contains switching circuits.
Consequently, most harmonic studies are done in the frequency
(or harmonic) domain. A detailed summary on frequency-do-
main analysis can be found in [1]–[3].

In general, most of the frequency-domain algorithms rely on
the relation [1], [3]

or (1)
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where is the vector containing voltage harmonics at each
node, is the vector of current harmonics, and is the har-
monic admittance matrix. To employ the formulation of (1), a
harmonic admittance matrix must be found. For linear time in-
variant (LTI) components such as resistors (R), inductors (L),
and capacitors (C), these admittance matrices are easily ob-
tained by phasor analysis. The admittance matrices are diag-
onal, which means that there is no interaction between harmonic
voltages and currents of different orders. For power electronic
components, which are linear time varying (LTV), offdiagonal
elements exist in the admittance matrix, indicating that voltage
and current harmonics with different orders are “cross-coupled”
[4]–[7], making the modeling a challenging task.

Previous work dealing with LTV system can be generally
classified into two types. The first type is the “transfer func-
tion” method [8]–[16]. The transfer function method leads to a
model useful for both dynamic and steady-state analysis. How-
ever, transfer function methods model only the low-frequency
or small-signal behavior of the VSC and they typically neglect
switching harmonics as shown in [10]–[12], [14], [15].

The second type of model employs a “harmonic admittance
matrix” [4]–[7], also known as the l“frequency coupling matrix”
(FCM) [17], [18]. These methods focus on finding the steady-
state relation between the voltage and current harmonics of a
converter while accounting for the harmonics generated by the
converter’s switching action.

Typically, the FCM is determined via frequency-domain anal-
ysis [3]–[6], [17]–[20] based on the modulation of the converter.
The spectra of the switching functions [21] are described as a
function of the switching instants [18], [19], as defined by the
modulation theory [22]. All converter harmonics are theoreti-
cally accounted for in this analysis, however, since the spectra
of the switching function are not bandlimited, the computation
process requires repeated truncation of harmonic spectra.

The focus of this paper is to determine the FCM via time-
domain analysis. The proposed method is compared with ex-
isting frequency-domain methods. It is shown that carrying out
the analysis in the time domain allows truncation errors to be
avoided.

II. PROBLEM OF STATEMENT

Advances in the voltage and current ratings of self-commu-
tated semiconductor switches, such as insulated-gate bipolar
transistors (IGBTs) and gate turnoff thyristors (GTOs), have re-
sulted in widespread use of VSC throughout the utility network.
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Fig. 1. (a) Generation level: for example, squirrel-cage induction generator
(SCIG) wind energy conversion system. (b) Transmission level: for example,
UPFC and (c) distribution level, for example, shunt active filter.

Fig. 2. Equivalent VSC’s external networks.

At the generation level, back-to-back VSCs are needed as inter-
faces for distributed energy sources such as those used in wind
energy conversion systems Fig. 1(a). At the transmission level,
converter-based flexible ac transmission system (FACTS) con-
trollers are employed to improve system stability and control
power flow. A good example is the unified power-flow con-
troller (UPFC) as shown in Fig. 1(b). At the distribution level,
converter-based custom power controllers, such as shunt active
filters Fig. 1(c), are used to improve power quality.

In terms of formulating the FCM of the VSC, the harmonic
injections caused by external networks in Fig. 1 can all be mod-
eled as ac-side voltage, and dc-side current harmonic sources
at the points of common coupling. Fig. 2 shows the equivalent
system.

Fig. 3. Schematic diagram of a VSC with its ac and dc stimuli.

For a given set of switching times, the input ac voltage and
dc current harmonics are linked to the output ac current and dc
voltage harmonics via a frequency coupling matrix

(2)

In the frequency domain, the FCM of the VSC [3], [12],
[17]–[19] is obtained via the following equations:

(3)

(4)

(5)

(6)

where represents the convolution operation, and , ,
are the switching functions of phase a, b, and c, respec-

tively. Due to the nature of convolution process, the frequency-
domain method inevitably suffers from truncation errors.

Therefore, the objective of this paper is to accurately and effi-
ciently obtain the FCM in (2) from first principles (i.e., solving
for piecewise LTI differential equations) in the time domain.

III. VSC DIFFERENTIAL EQUATIONS

To construct an FCM of the VSC, Fig. 3 is considered. In the
figure, there are ac voltage and dc current
stimuli applied to the VSC. The stimuli are assumed to take the
form , where
and .

If the IGBT or GTO switches are assumed to be ideal, only the
switching functions , , and of the upper legs are needed
for modeling the VSC. Consequently, the differential equations
(see Appendix A for derivations) describing (3) are

(7)

where
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In the formulation just shown, the amplitudes ( ) and phase
angles ( ) of the ac and dc stimuli are uniquely related to
the initial conditions . In addition, although the switching
functions , , and are time varying, they are periodic
with frequency . Hence, Fourier series coefficients exist for
the steady-state solutions of (7).

IV. AUGMENTING HARMONIC STATES

TO DIFFERENTIAL EQUATIONS

The Fourier coefficients of any periodic signal can be
obtained by solving

(8)

Consider the following differential equation:

(9)

whose solution is

(10)

Comparing (4) and (6), one can immediately conclude that

provided that .
Therefore, one can represent the harmonics of the interest by

differential equation (9) [26]. Augmenting (9) to (7) yields

(11)

where
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V. STEADY-STATE ANALYSIS

Fig. 4 shows the typical pulse width modulated (PWM)
switching functions of a VSC over one period .
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Fig. 4. Typical PWM switching function waveform.

For the given switching times (as in Fig. 4), the solutions of
the states, , , and over is given by (12)

(12)

where , and
represents between and . Fig. 5 shows the sparsity
pattern of matrix . As can be clearly noted, the matrix is very
sparse, and is dominantly diagonal. Therefore, very little com-
putation power is required to obtain .

Central to the development of the FCM is that invariably
has the following unique structure (see Appendix B for proof):

(13)

Several important relations may be extracted from (13). The
first row of (13) contains the state trajectory over one period as
a function of the initial conditions

(14)

By assigning , the third row of (13) yields the solu-
tion to the Fourier integrals

(15)

Applying the constraint to (14) yields the
steady-state solution of the states, for given initial conditions

(16)

Finally, the steady-state output harmonics are related to the
initial conditions according to

(17)

VI. FREQUENCY COUPLING MATRIX

Due to the fact that (17) relates the output harmonics to input
initial conditions, a one-to-one relation between an input har-
monic phasor and input initial conditions needs to be obtained
in order to derive the FCM in (2).

As stated, stimuli take the form of . Therefore,
the initial condition for the stimulus’ differential equations is
simply equal to the harmonic phasor of that stimulus

...

...

...

...

Consequently, (17) directly relates input to output harmonics.
This is explicitly shown in (18)

...

...

...

...

...

...

...

...

(18)

where

The following should be noted.
1) Equation (18) is a large-signal relation between input and

output harmonics, as no linearization is required for its
derivation.

2) The proposed method will be referred to as the “fast time-
domain” method to distinguish from brute-force time-do-
main simulation.

3) Analytic expressions for , , , and are not re-
quired as these matrices may be extracted from the calcu-
lated matrix (see Appendix C for a sample Matlab code).

4) The proposed method only requires switching times to be
known. Consequently, the FCMs of line-commutated con-
verters can be found by the proposed method if the turnoff
times of the diodes or thyristors are known. Usually,
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Fig. 5. Typical sparsity pattern of matrix Â.

Fig. 6. FCM of a VSC with m = 1 based on frequency-domain analysis
under a balanced system parameter condition.

the turnoff times can be solved by a Newton–Raphson’s
method [23].

5) Since the stimuli have the form of , it takes
both positive and negative harmonics to constitute one si-
nusoid. This complex Fourier frequency domain is widely
employed [3], [13], [14], [24], [25], [27] to analyze LTV
systems because it only involves the multiplication of two
infinite series to represent harmonic phasor convolution in
the frequency domain [3]. Due to its popularity, this paper
derives the FCM based on complex Fourier series.

6) An equivalent FCM may be derived based on the trigono-
metric Fourier series. In this case, the FCM needs to be ex-
pressed in terms of real numbers [18], [28] to relate input
and output harmonics as in

...

...

...

...

...

...

...

...

(19)

Two approaches to derive the real-valued FCM are listed
in Appendix D.

VII. EXAMPLE 1: VERY LARGE AND

BALANCED SYSTEM PARAMETERS

The main limitation of frequency-domain analysis is that it
suffers from truncation errors if insufficient harmonic terms are
included in the calculation. The only case that the frequency do-
main does not suffer from this problem is when the ratio between
switching and modulating frequency is set to . In this case,
balanced switching functions can be simply represented as [29]

(20)

This case can serve as a benchmark to validate the derived FCM
in the fast time-domain method when of the fast time do-
main is set sufficiently large.

Figs. 6 and 7 show the absolute values of the FCM based on
frequency domain (for ) and fast time-domain analysis
(for ) for harmonic numbers from to 10. As
can be seen, there is hardly any distinction between these two
figures.
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Fig. 7. FCM of a VSC with m = 111 based on fast time-domain analysis
under a balanced system parameter condition.

TABLE I
TABLE OF PARAMETER LIST

TABLE II
TABLE OF INPUT STIMULI

Table I lists the normalized parameters being used in the
simulation.

A sample set of the input stimuli, as given in Table II, is ap-
plied to the two FCMs. This allows the low-order harmonic volt-
ages and currents produced by the two methods to be compared.

Fig. 8 shows the resulting ac current and dc voltage har-
monics for frequency, fast time, and brute force time-domain
(PSCAD/EMTDC) simulations. Good agreement among these
three exists.

VIII. EXAMPLE 2: AND

BALANCED SYSTEM PARAMETERS

When is reduced to 3, the errors due to harmonic trun-
cation are apparent. Table III shows phase A current under the
excitations of Table II when only harmonic numbers from
to 3 are included in the calculation. The discrepancies between

Fig. 8. Harmonic spectra under balanced system parameters and m is very
large.

TABLE III
FIRST FOUR CURRENT HARMONICS FOR PHASE A WHEN

h = �3 TO 3 UNDER BALANCED SYSTEM PARAMETER CONDITION

frequency domain and fast time domain are quite significant.
As more harmonics are included in the frequency-domain cal-
culation, frequency-domain results approach those of the fast
time-domain solution. This fact can be observed from Table IV
when harmonic numbers from to 20 are included in the
harmonic domain calculation. No truncation phenomenon ex-
ists with the fast time-domain solution.
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TABLE IV
FIRST FOUR CURRENT HARMONICS FOR PHASE A WHEN h = �20 TO 20

UNDER BALANCED SYSTEM PARAMETER CONDITION

Fig. 9. FCM of a VSC with m = 3 based on frequency-domain analysis
under an unbalanced system parameter condition.

IX. EXAMPLE 3: AND UNBALANCED

SYSTEM PARAMETERS

In this case, , , and , are kept the same as those
used in the previous examples; however, and are in-
creased by 10% to make the system unbalanced. In addition,
the dc capacitance is reduced to 0.05 F. The FCMs in the
two domains are shown in Figs. 9 and 10, respectively, when
harmonic numbers from to 10 are included in the calcula-
tion. As can be noted in the figures, the FCMs differ because
insufficient harmonic terms are included in the frequency do-
main. Consequently, when the sample set of input stimuli (see
Table II) are applied to the resulting FCMs, the output currents
differ significantly (Table V). Tables V–VII show the resulting
phase A current for the first four harmonics. Once again, as the
number of included harmonics increases, the frequency-domain
results approach those of the fast time domain. However, 50 har-
monic terms are needed in this case to obtain the same degree
of accuracy as in the balanced case.

X. CONCLUSION

A time-domain-based method for calculating FCMs of
power-electronic converters is presented. As an example, the
method is employed to find the FCM of a VSC. The method
is highly efficient compared with brute force time-domain
simulation due to the sparse and mainly diagonal structure
of the state matrix. In contrast to frequency-domain methods,

Fig. 10. FCM of a VSC with m = 3 based on fast time-domain analysis
under an unbalanced system parameter condition.

TABLE V
FIRST FOUR CURRENT HARMONICS FOR PHASE A WHEN h = �10 TO 10

UNDER THE UNBALANCED SYSTEM PARAMETER CONDITION

TABLE VI
FIRST FOUR CURRENT HARMONICS FOR PHASE A WHEN h = �25 TO 25

UNDER THE UNBALANCED SYSTEM PARAMETER CONDITION

TABLE VII
FIRST FOUR CURRENT HARMONICS FOR PHASE A WHEN h = �50 TO 50

UNDER UNBALANCED SYSTEM PARAMETER CONDITION

the time-domain approach offers improved accuracy as it
does not suffer from truncation errors. The derived FCM re-
mains accurate regardless of the number of harmonic terms
included during the calculation process. Therefore, the output
of low-order harmonics will not be changed or “improved”
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Fig. 11. Equivalent VSC’s external networks.

when more high-order harmonic terms are included, as in the
case of the frequency-domain methods.

APPENDIX A
DERIVATIONS OF VSC DIFFERENTIAL EQUATIONS

Fig. 11 shows the VSC circuit diagram where the floating dc
node is denoted by , and ground is denoted by .

On the dc side

(21)

On the ac side

(22)

(23)

(24)

Noting , (25) can be obtained by eliminating
in (22)–(24) via algebraic manipulation

(25)

where , ,
, , ,

, , ,
, ,

, ,
.

Note that (25) is not unique because one phase current is im-
mediately known once the other two phase currents are known.
Therefore, other legitimate representations exist. However,
these representations all lead to one unique FCM.

APPENDIX B
PROOF OF MATRIX STRUCTURE OF

The product of the two matrices and

(26)

Hence, also has the form of (26) because of the fact that

APPENDIX C
SAMPLE MATLAB CODE FOR OBTAINING FCM

User Input:
Switching times

Period .
Switching sequences

Matlab codes starts here

; .

%code the seq to integer number

.

%8 possibilities

.

.
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; .

; ; ; ; ;
; .

.

; .

; .

; .

%construct submatrices

.

.

,
.

.

.

.

.

.

for .

.

.

.

,

.

,
.

end

for %construct A hat

.

.

,
.

,
.

;
.

.

end

.

.

for .

.

end

; %access to submatrices to get FCM.

;
.

.

; %Get the
resulting FCM.

APPENDIX D
REAL-VALUED FCM

First Approach: The real-valued FCM can be directly de-
rived from the complex FCM of (18). To demonstrate this fact,
consider the following complex FCM:

(27)

Thus, can be expressed as

(28)

where , ,
, and .

Noting that , one can turn the complex FCM into
the real-valued FCM [28]

(29)

Apply (29) to each harmonic coupling term in (18), one can
convert (18) into (19).

Note that due to the phase dependence of the converters [28],
in general, the FCM in (29) does not have the form of

as is the case for LTI components.
Second Approach: If one chooses the input stimuli to have

the form of or where
, then the stimuli can be easily augmented to the

state matrix by modeling them as harmonic oscillators [30] as

(30)
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However, the FCM in this case can only take real values be-
cause an one-to-one relation exists between input harmonics
(complex numbers) and input initial conditions (real numbers)
only when input harmonics are broken into real and imaginary
parts.

For instance, if

(31)
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