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Abstract 

The frequency dependence of the second-harmonic generation in Lamb waves 

is studied theoretically and numerically in order to examine the role of phase 

matching for sensitive evaluation of material nonlinearity. Nonlinear Lamb wave 

propagation in an isotropic plate is analyzed using the perturbation technique and 

the modal decomposition in the neighborhood of a typical frequency satisfying the 

phase matching. The results show that the ratio of the amplitude of 

second-harmonic Lamb mode to the squared amplitude of fundamental Lamb mode 

grows cumulatively in a certain range of fundamental frequency for a finite 

propagation distance. It is also shown that the frequency for which this ratio 

reaches maximum is close but not equal to the phase-matching frequency when the 

propagation distance is finite. This feature is confirmed numerically using the 

finite-difference time-domain method incorporating material and geometrical 

nonlinearities. The fact that the amplitude of second-harmonic mode becomes high 

in a finite range of fundamental frequency proves robustness of the material 

evaluation method using second harmonics in Lamb waves. 
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1. INTRODUCTION 

It is an important issue to ensure safety of structures used for industrial plants, transportation, 

etc., by evaluating material degradation due to creep, fatigue and plastic deformation. Ultrasonic 

waves are widely utilized for nondestructive evaluation (NDE) of such material damage. 

Foregoing studies have revealed that acoustic nonlinearity of materials, commonly manifested as 

higher harmonic generation, has enhanced sensitivity to material damage [1-3]. A number of 

studies have been carried out to explore higher harmonic generation in Lamb wave propagation to 

assess early stage of damage in plate-like structures [4-20]. In particular, Deng [4] experimentally 

observed cumulative growth of harmonic amplitude with propagation distance, i.e. cumulative 

harmonic generation, which is only possible under certain conditions. A perturbation 

approximation and modal analysis was used by de Lima and Hamilton [5] and Deng [6] to obtain 

the wave field of second harmonics in Lamb waves. They clarified that the conditions for 

cumulative growth of harmonic amplitude are (1) the phase-matching condition, and (2) non-zero 

power flux from the primary to the higher-harmonic Lamb wave. Deng and Pei [7] used the 

cumulative second-harmonic Lamb wave to evaluate fatigue damage in plates. Pruell et al. [8] 

examined the correlation between the acoustic nonlinearity measured with Lamb waves and the 

level of plastic strain in aluminum and aluminum alloy plates. Xiang et al. [9] measured thermal 

degradation in ferric Cr-Ni alloy steel plates using nonlinear Lamb waves. Bermes et al. [10] used 

a laser interferometric detection system to develop a procedure to measure material nonlinearity. 

Harmonic generation in Lamb waves of higher orders was analyzed theoretically by Srivastava 

and Lanza di Scalea [11]. Müller et al. [13] found five Lamb mode types which satisfy 

requirements for the cumulative second-harmonic generation, including three types in an 

asymptotic sense. Matsuda and Biwa [14] showed that the Lamb modes which satisfy the exact 

phase-matching condition are classified into four mode types including two types discussed by 

Müller et al. [13].  

The phase-matching condition plays an important role in selecting the frequency of the 

fundamental mode to carry out sensitive evaluation of material nonlinearity. As demonstrated in 

foregoing theoretical works [6, 20] the generation and accumulation behavior of the 

second-harmonic Lamb mode can be qualitatively different depending on whether the fundamental 

frequency meets the phase matching or not. Experimentally [7, 16-18], the observed 

second-harmonic components have a peak at the fundamental frequency satisfying the phase 

matching. In practical situations, it is though difficult to tune the fundamental frequency to meet 

the phase matching exactly, due to the lack of precise acoustic properties of the plate or 

experimental setting errors. At a finite propagation distance, however, substantial growth of the 

second-harmonic mode, if not ideally cumulative, may be expected when the fundamental 

frequency meets the phase matching approximately. Therefore, it is of practical interest to explore 

the fundamental frequency dependence of harmonic generation in Lamb waves in a neighborhood 

of the phase-matching frequency. 

In this paper, we present a theoretical and numerical analysis of the frequency dependence of 

the second-harmonic generation in Lamb waves. Nonlinear Lamb wave propagation in an isotropic 

plate is analyzed using the perturbation technique and the modal decomposition. The frequency 

dependence of surface displacement amplitude of the generated second-harmonic Lamb waves is 

examined in the neighborhood of a typical frequency satisfying the phase matching. The frequency 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



depen

incorp

 

2. FO

2.1 G

C

with 

1X 
stress







where

refere

vecto

quant

t . In 

const

 

2.2 L

T

decom



where

ndence is als

porating mat

ORMULATI

Governing equ

Consider a p

the quadrati

2X  plane a

s-strain relati

e jX  deno

ence configur

or, ijH  the 

tities ijP , U

Eq. (2), λ  

tants [23] and

Linearization b

The nonlinea

mposition. Th

e 
L

iU  is the

so analyzed 

terial and geo

ON 

uations for an

late of thickn

ic nonlinearit

as shown in 

on and the bo

ρ

HλP kkij











ote the comp

ration, ijP  t

displacemen

iU  and ijH a

and μ are L

d 
ijδ  is Kron

by perturbati

ar equations 

he solution U

e primary sol

Fig.1 G

numerically 

ometrical non

n isotropic pl

ness h2  wh

ty. The plate

Fig. 1. In th

oundary cond

2

2

0 





 i

Xt

Uρ





,

(

(
4
1

δHCH

HHB

HHA

HHμ
Hμδ

ijllkk

ijkk

ik

jkik

ijijk









3 iP

ponents of t

the first Piola

nt gradient te

are considere

Lamé’s elasti

necker’s delt

ion analysis

(1)-(3) are so

iU  is assum

iU

lution and U

Geometry of an

3 

 

by the finit

nlinearities.

late 

hich is made 

e has two st

he absence o

ditions [21-2

,0




j

ij

X

P


 

,

)

)(

2
1 HH

HHH

HHH

HλH

ji

kjki

kjik

ji











,0  3X 

the referenc

a-Kirchhoff s

ensor with re

ed as functio

ic constants,

ta. 

olved by usi

med to be a su

NL

ii UU 
NL

iU  is the se

n elastic plate 

te-difference 

of an isotrop

tress-free sur

of body force

4] are given 

,3 hXh 



,

(

)

3

2
1

hXh

HHH

H

HH

HHH

klkl

jk

kjki

ijkk







,h 

e position v

stress tensor, 

espect to the

ns of the ref

A , B  and

ng the pertur

um of two ter

,NL 

econdary sol

with free boun

time-domain

pic and lossle

rfaces S, whi

es, the equati

by  





)δ

δHH

ijlk

ijklkl



vector, 0ρ  th

iU  the par

e reference c

ference positi

d C  are the 

rbation analy

ms:  

ution. When 

 
ndaries 

n (FDTD) m

ess elastic m

ich are para

ion of motio

the density i

rticle displac

configuration

ion jX  and

 third-order e

ysis and the 

 weak nonlin

method 

edium 

llel to 

on, the 







in the 

ement 

n. The 

d time 

elastic 

modal 



nearity 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



4 

 

is assumed, the nonlinear equations (1)-(3) are divided into a linear homogenous and a linear 

non-homogeneous differential equations, which are given by 
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3. ANALYSIS OF HARMONIC GENERATION IN LAMB WAVES 

3.1 Modal Expansion of Lamb waves 

While Eqs. (5) and (6) have Lamb mode solutions and the horizontally polarized shear mode 

solutions, we consider only the Lamb mode solutions as primary solutions. Here we consider the 

l th Lamb mode with frequency 0ω  as a solution of Eqs. (5) and (6). The primary solution is 

given by 

   c.c.,)(exp)(
2

1
013

),(
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L 0  tωXκiXA l

ωκlUU  

where c.c. stands for complex conjugate, and )( 3

),( 0 X
ωκlU  denotes the displacement profile of 

the l th Lamb mode whose wavenumber and angular frequency are lκ  and 0ω , respectively. 

The displacement profile, )( 3

),( 0 X
ωκlU , is normalized so that the displacement field 

   c.c.exp)(
2

1
013

),( 0  tωXκiX l

ωκlU  has the unit energy flux density in the 1X  direction. 

The secondary solution 
NL

U  can be divided into second-harmonic term 
ω2

U  and DC term 
ω0

U . Now we consider only the second-harmonic term 
ω2

U , which is written as a linear 

combination of Lamb modes: 
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)2,( 0ωκmU  denotes the displacement profile of the m th Lamb mode whose wave number 

and frequency are mκ  and 02ω , respectively. Suppose that the m th Lamb mode is a 
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where 1e  is the unit vector in the 1X  direction, )( 3
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ωκmσ  the stress profile of the m th Lamb mode. The superscripts of an asterisk denote 

the complex conjugate. In Eqs. (15) and (16), 
ω2

p  and 
ω2

f  are the second-harmonic terms of 

NL
P  and 

NL
F , which are defined as 

   

c.c.,])(exp[)(
2

1

)(2exp)(
2

1
),,(

1

*

3

0

013

2

31

LNL





XκκiX

tωXκiXtXX

ll

ω

l

ω

p

pHP

 

   

 c.c.])(exp[)(
2

1

)(2exp)(
2

1
),,(

1

*

3

0

013

2

31

LNL





XκκiX

tωXκiXtXX

ll

ω

l

ω

f

fHF

 

Note that mmP  is 2/h  regardless of m , since the energy flux density of )( 3

)2,( 0 X
ωκmU  is 

normalized. Let )( 1XRm  be the ratio of the in-plane displacement amplitude of the 

second-harmonic Lamb mode to the squared in-plane displacement amplitude of the fundamental 

Lamb mode on the surface ( hX 3 ), i.e., 
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grid size. The displacements and the stresses ( 1U , 3U , 11P , 33P , 13P , 31P ) are updated when 

the time step index is integer and the velocities ( 1V , 3V ) are updated when it is half-integer. The 

updated displacements are given as follows, 

 ),,2/1(Δ),2/1(),2/1(
2/1

1

1

11 jitVjiUjiU
nnn    

 ),2/1,(Δ)2/1,()2/1,(
2/1

3

1

33  
jitVjiUjiU

nnn  

where i  and j  are the indices of a grid point in the 1X  and 3X  direction, respectively. The 

superscript index n  denotes the time step and tΔ  is its increment. The components of the first 

Piola-Kirchhoff stress tensor are given by 



 
 
    

),,(),(

),(),(

),(),(),(2

),(

),(),(),(

1,33,14

2

1,3

2

3,13

3,33,31,12

2

1,11

3,3131,11111

jiUjiUd

jiUjiUd

jiUjiUjiUd

jiUd

jiUcjiUcjiP

nn

nn

nnn

n

nnn











 



 
 
    

),,(),(

),(),(

),(),(2),(

),(

),(),(),(

1,33,14

2
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2
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2
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jiUjiUjiUd

jiUd

jiUcjiUcjiP

nn

nn

nnn

n

nnn








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  
 
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3,31,1

1,33,15513







jiUdjiUd

jiUjiU

jiUjiUcjiP

nn

nn

nnn

 

  
 
 ,)21,21()21,21(2
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)21,21()21,21()21,21(

3,141,33

3,31,1

1,33,15531







jiUdjiUd

jiUjiU
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nn

nn

nnn

 

where the subscripts following a comma denote the partial derivatives with respect to the material 

coordinate. The coefficients 11c , 13c , 55c , 1d , 2d , 3d  and 4d  are the linear combinations of 

the second- and third-order elastic constants of isotropic media defined as follows, 
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This fact shows robustness of the material evaluation method using second harmonics in Lamb 

waves. It should be noted, however, that the linear dependence of the second-harmonic amplitude 

on the propagation distance can be violated when the fundamental frequency is off the phase 

matching: the frequency bandwidth in which the linear dependence holds is determined by the 

propagation distance as shown in Fig. 3(c) for aluminum and Fig. 3 (f) for steel. This needs to be 

accounted for when material nonlinearity is to be quantitatively evaluated from the measurement. 

It is finally commented that in contrast to the monochromatic excitation simulated here, 

practical measurements are more often performed using a tone-burst excitation of the fundamental 

Lamb wave which has a finite frequency bandwidth. As far as weak nonlinearity holds, it is 

expected that the dependence of the observed second-harmonic amplitude on the center frequency 

of the tone-burst is given by a (kind of) average of the results shown here for monochromatic 

excitation over the frequency bandwidth. As a result, peaks of the second-harmonic amplitude for 

varying center frequency will be less sharp than those shown here, and the null points of the 

second-harmonic amplitude (as seen at 1.64 MHz and 1.96 MHz for 150 mm in Fig. 9) will 

disappear. 

 

5. CONCLUSION 

An analysis of the fundamental frequency dependence of the second-harmonic generation in 

Lamb waves has been shown in this paper. The ratio of the amplitude of the second-harmonic 

Lamb mode to the squared amplitude of the fundamental Lamb mode has been calculated by the 

perturbation analysis and modal decomposition. The second-harmonic amplitude can grow 

cumulatively in a certain range of fundamental frequency when the propagation length is finite. 

The analysis reveals that the frequency for which the second harmonic Lamb mode reaches 

maximum is close but not equal to the phase-matching frequency in a precise sense. This feature 

has been confirmed numerically using the finite-difference time-domain method incorporating the 

material and geometrical nonlinearities. The fact that the second-harmonic amplitude becomes 

high in a certain fundamental frequency range proves robustness of the material evaluation method 

using second harmonics in Lamb waves. 
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