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Frequency dependence of second-harmonic generation
in Lamb waves

Naoki Matsuda and Shiro Biwa"

Department of Aeronautics and Astronautics, Graduate School of Engineering,
Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

Abstract

The frequency dependence of the second-harmonic generation in Lamb waves
is studied theoretically and numerically in order to examine the role of phase
matching for sensitive evaluation of material nonlinearity. Nonlinear Lamb wave
propagation in an isotropic plate is analyzed using the perturbation technique and
the modal decomposition in the neighborhood of a typical frequency satisfying the
phase matching. The results show that the ratio of the amplitude of
second-harmonic Lamb mode to the squared amplitude of fundamental Lamb mode
grows cumulatively in a certain range of fundamental frequency for a finite
propagation distance. It is also shown that the frequency for which this ratio
reaches maximum is close but not equal to the phase-matching frequency when the
propagation distance is finite. This feature is confirmed numerically using the
finite-difference time-domain method incorporating material and geometrical
nonlinearities. The fact that the amplitude of second-harmonic mode becomes high
in a finite range of fundamental frequency proves robustness of the material
evaluation method using second harmonics in Lamb waves.

Keywords: Nonlinear ultrasonics; Higher harmonic generation, Lamb wave;
Perturbation analysis; Finite-Difference Time-Domain method
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1. INTRODUCTION

It is an important issue to ensure safety of structures used for industrial plants, transportation,
etc., by evaluating material degradation due to creep, fatigue and plastic deformation. Ultrasonic
waves are widely utilized for nondestructive evaluation (NDE) of such material damage.
Foregoing studies have revealed that acoustic nonlinearity of materials, commonly manifested as
higher harmonic generation, has enhanced sensitivity to material damage [1-3]. A number of
studies have been carried out to explore higher harmonic generation in Lamb wave propagation to
assess ecarly stage of damage in plate-like structures [4-20]. In particular, Deng [4] experimentally
observed cumulative growth of harmonic amplitude with propagation distance, i.e. cumulative
harmonic generation, which is only possible under certain conditions. A perturbation
approximation and modal analysis was used by de Lima and Hamilton [5] and Deng [6] to obtain
the wave field of second harmonics in Lamb waves. They clarified that the conditions for
cumulative growth of harmonic amplitude are (1) the phase-matching condition, and (2) non-zero
power flux from the primary to the higher-harmonic Lamb wave. Deng and Pei [7] used the
cumulative second-harmonic Lamb wave to evaluate fatigue damage in plates. Pruell et al. [8]
examined the correlation between the acoustic nonlinearity measured with Lamb waves and the
level of plastic strain in aluminum and aluminum alloy plates. Xiang et al. [9] measured thermal
degradation in ferric Cr-Ni alloy steel plates using nonlinear Lamb waves. Bermes et al. [10] used
a laser interferometric detection system to develop a procedure to measure material nonlinearity.
Harmonic generation in Lamb waves of higher orders was analyzed theoretically by Srivastava
and Lanza di Scalea [11]. Miiller et al. [13] found five Lamb mode types which satisfy
requirements for the cumulative second-harmonic generation, including three types in an
asymptotic sense. Matsuda and Biwa [14] showed that the Lamb modes which satisfy the exact
phase-matching condition are classified into four mode types including two types discussed by
Miiller et al. [13].

The phase-matching condition plays an important role in selecting the frequency of the
fundamental mode to carry out sensitive evaluation of material nonlinearity. As demonstrated in
foregoing theoretical works [6, 20] the generation and accumulation behavior of the
second-harmonic Lamb mode can be qualitatively different depending on whether the fundamental
frequency meets the phase matching or not. Experimentally [7, 16-18], the observed
second-harmonic components have a peak at the fundamental frequency satisfying the phase
matching. In practical situations, it is though difficult to tune the fundamental frequency to meet
the phase matching exactly, due to the lack of precise acoustic properties of the plate or
experimental setting errors. At a finite propagation distance, however, substantial growth of the
second-harmonic mode, if not ideally cumulative, may be expected when the fundamental
frequency meets the phase matching approximately. Therefore, it is of practical interest to explore
the fundamental frequency dependence of harmonic generation in Lamb waves in a neighborhood
of the phase-matching frequency.

In this paper, we present a theoretical and numerical analysis of the frequency dependence of
the second-harmonic generation in Lamb waves. Nonlinear Lamb wave propagation in an isotropic
plate is analyzed using the perturbation technique and the modal decomposition. The frequency
dependence of surface displacement amplitude of the generated second-harmonic Lamb waves is
examined in the neighborhood of a typical frequency satisfying the phase matching. The frequency
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Fig.1 Geometry of an elastic plate with free boundaries
dependence is also analyzed numerically by the finite-difference time-domain (FDTD) method
incorporating material and geometrical nonlinearities.

2. FORMULATION
2.1 Governing equations for an isotropic plate

Consider a plate of thickness 2% which is made of an isotropic and lossless elastic medium
with the quadratic nonlinearity. The plate has two stress-free surfaces S, which are parallel to
X, =X, plane as shown in Fig. 1. In the absence of body forces, the equation of motion, the

stress-strain relation and the boundary conditions [21-24] are given by
o'U, OF,

"o ax,

Pij = /lHkkéij + :“(Hij + Hji )+ ’I(HkkHij +%Hk1Hk15ij )

+:u(Hikij +H,H, +Hkinj)

=0, —h<X3<h, (1)

+%A(Hik+Hki)(ij+ij) 2)
BUH  (H, + H )+ 3 H (H,, + H,)S, |
+CH  H,9;, ~h<X,<h,

Py=0, X,=th, (3)

where X ; denote the components of the reference position vector, p, the density in the

reference configuration, E] the first Piola-Kirchhoff stress tensor, U, the particle displacement

vector, H i the displacement gradient tensor with respect to the reference configuration. The

quantities Pij, U, and H ; are considered as functions of the reference position X ; and time

t.In Eq. (2), 4 and u are Lamé’s elastic constants, 4, B and C are the third-order elastic
constants [23] and g, is Kronecker’s delta.

2.2 Linearization by perturbation analysis
The nonlinear equations (1)-(3) are solved by using the perturbation analysis and the modal
decomposition. The solution U, is assumed to be a sum of two terms:

U, = UiL + UtNLs “)

where U." is the primary solution and UiNL is the secondary solution. When weak nonlinearity

1

RBAFFHER)FD bV

Kyoto University Research Information Ref

il



A Self-archived copy in

Kyoto University Research Information Repositon ATt ?,I
Iversity Yy
https://repository.kulib.kyoto-u.ac.jp ﬁgﬁgm‘,ﬁlkimw

)
KYOTO UNIVERSITY

is assumed, the nonlinear equations (1)-(3) are divided into a linear homogenous and a linear
non-homogeneous differential equations, which are given by

o’'us 0

——— P"H"“Y=0, —-h<X,<h,
P o T ax, y (H0) 3 ®
P (HY)=0, X, =th, ©)
and
82U.NL 0 L NL NL L
L — P (HM=F (H"), —-h<X,<h,
P02 ox, y (HT)=F " (H") 3 (7
P,"(H™)=-p""(H"), X,=1h, ()

where H"and H™" are the displacement gradients as to the primary solution Ul.L and the

secondary  solution Ul.NL , respectively. In Egs. (5)-(8), ENL is defined as
ENL(HL) = 8RJNL(HL)/an and Py,L and BjNL are the linear and the quadratic terms of
the first Piola-Kirchhoff stress tensor:

PU.L(H):/IHkkél.j +/‘(sz +Hj,.), %)

Pg,-NL (H) = j’(Hkng/' + %Hlekléy )

+ulH H o, +H H, +HH,)

+%A(Hik+Hk,.)(ij+ij) (10)

+B{H, (H,+H ) ++H, (H, +H,)3,)

+CH H ,,5,.1.

3. ANALYSIS OF HARMONIC GENERATION IN LAMB WAVES
3.1 Modal Expansion of Lamb waves

While Egs. (5) and (6) have Lamb mode solutions and the horizontally polarized shear mode
solutions, we consider only the Lamb mode solutions as primary solutions. Here we consider the
/th Lamb mode with frequency @, as a solution of Eqgs. (5) and (6). The primary solution is
given by

I —o .
Ut :EAOU( ) (X, )expli(i, X, — wt)]+c.c., (11)

where c.c. stands for complex conjugate, and U ’wO)(X ;) denotes the displacement profile of
the /th Lamb mode whose wavenumber and angular frequency are k; and @, , respectively.

The displacement profile, ﬁ(K/’wO)(X ,) , is normalized so that the displacement field
1 —
EU(K”(‘)O)()(})exp[i(KlX1 —a)ot)]+ c.c. has the unit energy flux density in the X, direction.

The secondary solution U™ can be divided into second-harmonic term U* and DC term

0w . . 20 . . . .
U™ . Now we consider only the second-harmonic term U™, which is written as a linear
combination of Lamb modes:
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A, (XU (X,)exp[- i t]+c.c.,

U“:%Z

where UY"*™) denotes the displacement profile of the m th Lamb mode whose wave number

(12)

and frequency are Kk, and 2w,, respectively. Suppose that the m th Lamb mode is a

propagating mode. The modal amplitude A, (X,) is given by [5, 25],

surf vol i(x,,—21;) X
+ i e m 1) _1
fm fm 'ez 1X1, - —, Km¢2}€1’
4P i(x, —2kK,)
A4 (X)) = (13)
surf vol
+ "
fm fm .eZZ 1X1.X1’ Km=2Kl7
4P
where
(K 220) V(’C 200 )* E(Km’2w0)* V(’anzw())
=— - -e,dX;,
'[ ( 5 5 B ] 144 3 (14)
X3=h
—20 Yr(k,.2m))* 3
sur P v
S f:—{ —}-el ) (15)
2 2 .
VO wa V()c 200 )*
= I ———ax,. (16)

where €, is the unit vector in the X, dlrectlon, VU2 (X)) the velocity profile and
E(K’"’Z‘UO)(X ;) the stress profile of the m th Lamb mode. The superscripts of an asterisk denote

the complex conjugate. In Egs. (15) and (16), ﬁzw and f2” are the second-harmonic terms of

P" and F"", which are defined as
PNL(HL(Xl,Xpt))—E_z”"(X Yexp[2i(x, X, — w,t)]
1, . 17)
+Ep “(X;)expli(k, —k,)X,]+c.c.,
P (000, X0) = T2 00 expl2i( X, = 0]
12 x (1%)
+Ef°“’(X3)exp[i(zcl —x,)X,]+c.c.
Note that P is h/2 regardless of m , since the energy flux density of ﬁ(K"”ZwO)()Q) is

normalized. Let R (X|) be the ratio of the in-plane displacement amplitude of the

second-harmonic Lamb mode to the squared in-plane displacement amplitude of the fundamental
Lamb mode on the surface (X3 = h),ie.,

R, (X))="—"2 19
‘AOGZK,X]U(K,,(UO)(h) .el‘z ( )

This ratio can be decomposed as

Rm(Xl):XSm m(X) (20)

RBAFFHER)FD bV

Kyoto University Research Information Repx



K 5

KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

10 T 1T T
| | ===~ Symmetric
Antisymmetric
%)
22
&
25
=
Q
o
[}
=
[1h]
w
2
o 2 .
fo 2fo
0 | L /| | / | 1

0 1 2 3 4 5
Frequency [MHz]
Fig. 2 Dispersion curves of Lamb waves for an aluminum plate with a thickness of 2.0 mm and the
mode pair which satisfies the phase-matching condition

where
|fsurf + fvol ‘ﬁ(’fm»zwo)(h) .el‘
Sm = = = ’ J— 279 (21)
| 4Pmm | ‘AOU(kz,wo)(h) . el‘
sinc [sz’) Xl} , K, # 2K,
T (X,)= (22)
1, K, = 2K,.

In the above expression, Sm contains a factor representing the power flux from the fundamental

Lamb mode to the second-harmonic Lamb mode as discussed by e.g., de Lima and Hamilton [5].

The factor 7, (X,) determines the deviation from the linear dependence on the propagation

distance.

3.2 Example and Discussion
The first-order symmetric (S1) Lamb mode with frequency @, and the second-order

symmetric (S2) Lamb mode with frequency 2, are selected as the fundamental and the
second-harmonic Lamb modes. For this pair, R , S, and 7, ina?2 mm-thick aluminum plate
are calculated for the fundamental frequency f0 =, /(27) from 1.6 to 2.0 MHz. Note that the

mode pair of 1.8 MHz S1 mode and 3.6 MHz S2 mode satisfies the phase-matching condition as
shown in the phase velocity-frequency diagram in Fig. 2 (symmetric modes with dominant
longitudinal displacements [13, 14]). This is also the pair of Lamb modes which has been used in
foregoing experimental investigations [8, 10, 19, 20]. The material parameters of aluminum are
shown in Table 1 [26]. In Fig. 3, R, S, and I, are shown as functions of the fundamental

frequency f,. Figures 3(a) and 3(c) show the results when the propagation distance is varied

from 50 to 150 mm. The vertical line in Fig. 3(a) shows the exact phase-matching frequency.
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Table 1 Physical properties of aluminum and steel

po lkgm’l A [GPa] & [GPa] 4 [GPa] B [GPa] C [GPa]
Aluminum 2700 56.0 -408 -197 -114
Steel 7874 111 -708 -282 -179
(@) (d)
[x10% 8 ' T T T [x10°] 8 T T T T T T T
. — 50mm
R 1 s 100mm
,_/’ '\,\ . [ 150mm i |
E il ! B A A
Q:E - ‘.‘.\\\‘ - &:-:- 4F . S nl_‘.“ =
ok
Exact phase o
-~ matching l". 17 matching
1 1 g ¥ 0 / 1 1

1.6 1.7 1.8 1.9 2

Frequency [MHz]
(b)

T:lrr

0-‘- L5 L L L 1 L
1.6 1.7 1.8 1.9 2

Frequency [MHz]

15 16 17 18 19 2 21 22 23
Frequency [MHz]

(e)

1 L L L 1
15 16 1.7 18 19 2 21 22 23
Frequency [MHz]

15 16 17 18 19 2 21 22 23
Frequency [MHz]

Fig. 3 (a) Variation of the ratio of the in-plane displacement amplitude of the second-harmonic Lamb
mode to the squared in-plane displacement amplitude of the fundamental Lamb mode on the surface

Rm and its components (b) Sm and (c) Tm with the fundamental frequency of Lamb wave for an

aluminum plate, and (d), (e), (f) those for a steel plate, respectively.
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Fig. 4 The FDTD grid for the nonlinear simulation

Considering T » as a function of the fundamental frequency, it acts as a bandpass filter with a flat

passband at the phase-matching frequency 1.8 MHz as shown in Fig. 3(c). The width of the
passband is determined by the propagation distance of Lamb waves. Therefore, when the
fundamental frequency is within the passband, R, grows in proportion with the propagation

distance X, and its fundamental frequency dependence is mainly determined by that of S,
since T, is almost constant in the passband. Therefore, the frequency for which R, has the

maximum value is determined not only by the phase-matching condition but also by other factors
represented by S, given in Eq. (21), i.e., the power flux from the fundamental Lamb mode to

the second-harmonic Lamb mode.
To examine the influence of the difference of material on the harmonic generation, Rm,

S, and T, in a2 mm-thick steel plate are also calculated for the fundamental frequency from

1.5 to 2.3 MHz and shown in Fig. 3 (d), (e) and (f), respectively. The material parameters of steel
are shown in Table 1 [26]. Note that the mode pair of 1.93 MHz S1 mode and 3.86 MHz S2 mode
satisfies the phase-matching condition in a steel plate with 2mm thickness. We see from Fig. 3 (c)
and (f) that the passband for a steel plate is about twice as wide as that for an aluminum plate,
which indicates that the tuning of the fundamental frequency for cumulative second-harmonic
measurements is less severe for steel.

4. NUMERICAL SIMULATION
4.1 Finite Difference Formulation for Nonlinear Elastic Media

To confirm the results of the perturbation analysis, we also conduct numerical simulations.
Recently, Matsuda and Biwa [27] have extended the elastodynamic finite-difference time-domain
(FDTD) scheme [28] to incorporate the stress-strain nonlinearity as well as the kinematical
nonlinearity. Assuming two-dimensional plane-strain motion in the X, —X, plane, the

second-order differential equation in Eq. (1) is rewritten into a set of first-order differential
equations. Nodes of the particle displacements, the velocities and the first Piola-Kirchoff stresses
are arranged in the grid for the nonlinear simulations as shown in Fig. 4 where Ad denotes the
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grid size. The displacements and the stresses (U,, U5, B,, P;, B;, P,) are updated when
the time step index is integer and the velocities (¥}, V;) are updated when it is half-integer. The

updated displacements are given as follows,

U'(+1/2,)=U,""G(+1/2, )+ AtV," " (i +1/2, )), 23)
UG, j+1/2)=U,"" (i, j +1/2)+ AV, (i, j +1/2), 24)
where i and j are the indices of a grid point in the X, and X direction, respectively. The

superscript index »n denotes the time step and A¢ is its increment. The components of the first

Piola-Kirchhoff stress tensor are given by
B\, ))=c,U,," (i, ) +c,3Us 5" (0, ))
va v apf
+d, UG )+ UL G DU G ) 05)
va o @l ot ail)
LU, G U G ),
Py (i, j) =, Uy, " (4, ) +e3U, " (0, )
vd|u,, G )l
v U, )+ 20, G DU ) (6)
td, {[Uw” a.H| +v,ran }
+d,U, 5" (i, DU, " (0, ),
By (i+1/2,j+1/2) =y |U, ) (+1/2,j +1/2)+ Uy, (i +1/2, j +1/2) ]
+ [Ul,l"(z'+1/2,j+l/2)+U3,3"(i+1/2,j+1/2)] 27
<d U, (+1/2,+ 1) +d,U, G +1)2,+12)]
Py +1/2, ) +1/2) =y |U, ) (1 +1/2,  +1/2) + Uy, " (i+1/2, j +1/2)]
+ [Ul,l"(i +1/2,j+1/2) +U3’3"(i+1/2,j+1/2)] (28)
< Rd,U G412, YD) +d,U, L G412, +1/2)]

where the subscripts following a comma denote the partial derivatives with respect to the material
coordinate. The coefficients ¢, €3, Css, d,, d,, d; and d, are the linear combinations of

the second- and third-order elastic constants of isotropic media defined as follows,
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X N .
XE/E‘ ! — * Simulated area
g
Excited area

Fig. 5 The configuration of the model for numerical calculation

c,=A+2u, c3=4, Ci =0,

d, :%/1+3,u+A+3B+C,

d, :1/1+B+C,
2 (29)

1 1 1
dy=—A+u+—A+—B,
TR

d, =,u+%A+B.

The equation of motion gives the velocities of the next time step,

n+ . . n— . . At n . . n . .
v 1/2(1_’_1/2’]):1/1 1/2(l+1/2,])+—[P”,1 (i+1/2,))+ B4 (z+1/2,])], (30)

0
VY2 =1 Gy B D)+ P G YD)
0
Explicit expressions for the spatial gradients of the displacements in Egs. (25) to (28) and the first
Piola-Kirchhoff stress tensor in Egs. (30) and (31) are lengthy, and hence they will not be
presented here (the details are described by Matsuda and Biwa [27]). Using Eqgs. (23)-(31), we
alternately calculate the displacements/stresses and the velocities according to when the time step
index is integer or half-integer, respectively. The stress-free boundaries are incorporated using the

zero-stress formulation [28].

4.2 Numerical Analysis of Nonlinear Lamb Wave Propagation
Specification of the model used for the numerical analysis is shown in Fig. 5. The length and
the thickness of the plate are 400 mm and 2 mm, respectively. The upper and lower surfaces

(X, =%h) are assumed traction-free. The plate is assumed to be made of aluminum and its

material properties are listed in Table 1. The time step increment and grid size are Af= 3.15 ns
and Ad =50 pm, respectively.
The fundamental Lamb wave is excited from the left end (X, = 0) of the plate, by prescribed

tractions given as
B0, 1) = AJV (1) Re[ 7 (X ) exp(~2xif,1)),

(k1 00) ) (32)
PL(0,X,,1)= AW (1) Re[5 (X,) exp(~2if, 1)),

where

10
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Fig. 6 Time domain waveform of excitation
t—t ’
0
exp| — , 0<r<t,,
W) = ( f j ’ (33)

1 ty <t,
where #, = 14 [ps] and ¢, = 4.7 [us] in this study. The thickness profiles Eflk I’wO)(X3) and

51(3% ! ’wO)(X ,) are given as the S1 mode stress profiles by the linear theory of Lamb waves. Figure

where P

l1max 1S the maximum value of

6 illustrates the input waveform F,(0,0,7)/ B,

1 max >
B,(0,0,¢) with respect to ¢. The amplitude of the prescribed traction rises gradually with time

and achieves a constant level, which enables the simulation of the response of the plate to a
steady-state monochromatic excitation. The simulation is performed by increasing the fundamental
frequency fo from 1.6 MHz to 2.0 MHz in steps of 0.01 MHz. In each simulation, the

fundamental Lamb mode amplitude A, is set so that the energy flux density of the excited

fundamental Lamb mode is equal to that of the longitudinal wave with frequency 1.8 MHz and
displacement amplitude 1.0 nm. Collecting the computed in-plane displacement waveforms at the
upper surface of the plate, we obtain the time domain waveforms at different distances from the
excitation point. These waveforms can be considered as a spatial-temporal distribution of the
in-plane displacement U,(X,,?). This distribution is windowed by a temporal and spatial

window function and analyzed by the two-dimensional Fourier transform. The transform

Fy, (K f ) is calculated as
F (K, [)= j‘” j“’ Gy (X, DU (X, 0™ X dr, (34)

where K and [ are the wavenumber (inverse of wave length) and the frequency, respectively,

and Gy, (X,,f) isa Gaussian window function:

—\2 N2
X, -X t—t
G, (X)) = exp —( r j—( ) : (35)

T

11
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Fig. 7 f — K distribution of logm [FUl (K, f)] at the propagation distance of 100 mm

The window function has four parameters which determine their shape and position, including the
spatial position of the window function X , corresponding to the propagation distance of the

wave.

4.3 Results and discussion

Figure 7 shows the result of the two-dimensional Fourier transform when the excitation
frequency is 1.8 MHz. The window parameters are [ =180 [us], T =3.3 [us] and & = 6.7
[mm], and the spatial position of the window function X is 100 mm. It is noted that the peaks in
Fig. 7 are not sharp but show some spread because of the finite temporal and spatial widths of the
window function. The solid and dashed lines in Fig. 7 denote the dispersion curves of the linear
theory of Lamb waves. The amplitude of the second-harmonic Lamb wave (S2 mode, 3.6 MHz)
and that of the fundamental mode (S1 mode, 1.8 MHz) can be obtained from Fig. 7. We calculate
the ratio of the second harmonic amplitude and the squared fundamental wave amplitude as R

m>
and shown in Fig. 8 as functions of the spatial position of the window function X , for different
fundamental frequencies. The symbols in Fig. 8 show the results of the FDTD simulations, while

the lines are calculated by the perturbation analysis. The amplitude ratio R, grows

proportionally with propagation distance when the frequency of fundamental Lamb mode is 1.8
MHz, but cumulative growth can also be seen at the neighboring frequencies. In particular, for 1.9
MHz Rm can be even higher at finite distances. This shows that second-harmonic Lamb waves

can be generated cumulatively when the phase-matching condition is satisfied in an approximate
sense.

In Fig. 9 the plotted symbols denote R, as functions of the fundamental Lamb mode

frequency when the spatial position of the window function X is 50, 100, and 150 mm. The
curves denote the results of the perturbation analysis shown in Fig. 3(a), and the vertical line

12
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Fig. 9 Variation of the amplitude ratio Rm with fundamental frequency of Lamb waves

shows the phase-matching frequency. In Figs. 8 and 9, the numerical results by the FDTD method
show fair agreement with those of the perturbation analysis, although there are some discrepancies
probably due to the numerical dispersion inherent in the FDTD method. As shown above by the
perturbation analysis, the results of FDTD simulations also show that R, reaches its maximum

when the fundamental frequency is close but not equal to the phase-matching frequency.
Practically, it is an important issue to select the fundamental frequency of Lamb mode which

generates a high R to assess the material nonlinearity sensitively in the early stage of
degradation. This study has revealed that R, can become relatively high even when the

fundamental frequency is not exactly equal to the phase-matching frequency. This is a useful fact
in practical situations. For example, even if the acoustic properties or the thickness of the plate are
not exactly known and the fundamental frequency chosen in the measurement is different from the
true phase-matching frequency, nearly cumulative growth of second harmonic can be expected.
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This fact shows robustness of the material evaluation method using second harmonics in Lamb
waves. It should be noted, however, that the linear dependence of the second-harmonic amplitude
on the propagation distance can be violated when the fundamental frequency is off the phase
matching: the frequency bandwidth in which the linear dependence holds is determined by the
propagation distance as shown in Fig. 3(c) for aluminum and Fig. 3 (f) for steel. This needs to be
accounted for when material nonlinearity is to be quantitatively evaluated from the measurement.

It is finally commented that in contrast to the monochromatic excitation simulated here,
practical measurements are more often performed using a tone-burst excitation of the fundamental
Lamb wave which has a finite frequency bandwidth. As far as weak nonlinearity holds, it is
expected that the dependence of the observed second-harmonic amplitude on the center frequency
of the tone-burst is given by a (kind of) average of the results shown here for monochromatic
excitation over the frequency bandwidth. As a result, peaks of the second-harmonic amplitude for
varying center frequency will be less sharp than those shown here, and the null points of the
second-harmonic amplitude (as seen at 1.64 MHz and 1.96 MHz for 150 mm in Fig. 9) will
disappear.

5. CONCLUSION

An analysis of the fundamental frequency dependence of the second-harmonic generation in
Lamb waves has been shown in this paper. The ratio of the amplitude of the second-harmonic
Lamb mode to the squared amplitude of the fundamental Lamb mode has been calculated by the
perturbation analysis and modal decomposition. The second-harmonic amplitude can grow
cumulatively in a certain range of fundamental frequency when the propagation length is finite.
The analysis reveals that the frequency for which the second harmonic Lamb mode reaches
maximum is close but not equal to the phase-matching frequency in a precise sense. This feature
has been confirmed numerically using the finite-difference time-domain method incorporating the
material and geometrical nonlinearities. The fact that the second-harmonic amplitude becomes
high in a certain fundamental frequency range proves robustness of the material evaluation method
using second harmonics in Lamb waves.

6. ACKNOWLEDGEMENTS
This work has been supported by JSPS KAKENHI Grant Numbers 24:2517 and 25289005.

REFERENCES

[1] Cantrell JH, Yost WT (2001) Nonlinear ultrasonic characterization of fatigue microstructures.
Int J Fatig 23:487-490. doi: 10.1016/S0142-1123(01)00162-1

[2] Herrmann J, Kim J-Y, Jacobs LJ, Qu J, Littles JW, Savage MF (2006) Assessment of material
damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J Appl Phys
99:124913. doi: 10.1063/1.2204807

[3] Kim J-Y, Jacobs LJ, Qu J, Littles JW (2006) Experimental characterization of fatigue damage
in a nickel-base superalloy using nonlinear ultrasonic waves. J Acoust Soc Am
120:1266-1273. doi: 10.1121/1.2221557

[4] Deng M (1999) Cumulative second-harmonic generation of Lamb-mode propagation in a
solid plate. J Appl Phys 85:3051-3058. doi: 10.1063/1.369642

14

RBAFFHER)FD bV

Kyoto University Research Information Ref

il



)
KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

[5] de Lima WIN, Hamilton MF (2003) Finite-amplitude waves in isotropic elastic plates. J
Sound Vib 265:819-839. doi: 10.1016/S0022-460X(02)01260-9

[6] Deng M (2003) Analysis of second-harmonic generation of Lamb modes using a modal
analysis approach. J Appl Phys 94:4152-4159. doi: 10.1063/1.1601312

[71 Deng M, Pei J (2007) Assessment of accumulated fatigue damage in solid plates using
nonlinear Lamb wave approach. Appl Phys Lett 90:121902. doi: 10.1063/1.2714333

[8] Pruell C, Kim J-Y, Qu J, Jacobs LJ (2007) Evaluation of plasticity driven material damage
using Lamb waves. Appl Phys Lett 91:231911. doi: 10.1063/1.2811954

[9] Xiang Y, Deng M, Xuan F-Z, Liu C-J (2011) Experimental study of thermal degradation in
ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT&E Int 44:768-774. doi:
10.1016/j.ndteint.2011.08.005

[10] Bermes C, Kim J-Y, Qu J, Jacobs LJ (2007) Experimental characterization of material
nonlinearity using Lamb waves. Appl Phys Lett 90:021901. doi: 10.1063/1/2431467

[11] Srivastava A, Lanza di Scalea F (2009) On the existence of antisymmetric or symmetric
Lamb waves at nonlinear higher harmonics. J Sound Vib 323:932-943. doi:
10.1117/12.815448

[12] Xiang Y, Deng M, Xuan F-Z (2009) Analysis of second-harmonic generation of Lamb waves
using a combined method in a two-layered solid waveguide. J Appl Phys 106:024902. doi:
10.1063/1.3171942

[13] Miiller MF, Kim J-Y, Qu J, Jacobs LJ (2010) Characteristics of second harmonic generation
of Lamb waves in nonlinear elastic plates. J Acoust Soc Am 127:2141-2152. doi:
10.1121/1.3294714

[14] Matsuda N, Biwa S (2011) Phase and group velocity matching for cumulative harmonic
generation in Lamb waves. J Appl Phys 109:094903. doi: 10.1063/1.3569864

[15] Xiang Y, Deng M. Xuan F-Z, Liu C-J (2011) Cumulative second-harmonic analysis of
ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel. Ultrasonics
51:974-981. doi: 10.1016/j.ultras.2011.05.013

[16] Deng M, Wang P, Lv X (2005) Experimental observation of cumulative second-harmonic
generation of Lamb-wave propagation in an elastic plate. J Phys D: Appl Phys 38:344-353.
doi: 10.1088/0022-3727/38/2/020

[17] Deng M, Yang J (2007) Characterization of elastic anisotropy of a solid plate using nonlinear
Lamb wave approach. J Sound Vib 308:201-211. doi: 10.1016/].jsv.2007.07.029

[18] Deng M, Xiang Y, Liu L (2011) Time-domain analysis and experimental examination of
cumulative second-harmonic generation by primary Lamb wave propagation. J Appl Phys
109:113525. doi: 10.1063/1.3592672

[19] Matlack KH, Kim J-Y, Jacobs LJ, Qu J (2011) Experimental characterization of efficient
second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J
Appl Phys 109:014905. doi: 10.1063/1.3527959

[20] Liu Y, Chillara VK, Lissenden CJ (2013) On selection of primary modes for generation of
strong internally resonant second harmonics in plate. J Sound Vib 332:4517-4528. doi:
10.1016/j.jsv.2013.03.021

[21] Gol’dberg ZA (1960) Interaction of plane longitudinal and transverse elastic waves. Sov Phys
Acoust 6:307-310.

15

RBAFFHER)FD bV

Kyoto University Research Information Ref

il



)
KYOTO UNIVERSITY

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp

[22] Jones GL, Kobett DR (1963) Interaction of elastic waves in an isotropic solid. J Acoust Soc
Am 35:5-10. doi: 10.1103/PhysRev.136.A411

[23] Landau LD, Lifshitz EM (1959) Theory of Elasticity. Pergamon Press, New York

[24] Norris AN (1998) Finite-amplitude waves in solids. In: Hamilton MF, Blackstock DT (eds.)
Nonlinear Acoustics, Academic Press, New York, pp 263-277

[25] Auld BA (1973) Acoustic field and waves in solids, Wiley, London

[26] Smith RT, Stern R, Stephens RWB (1966) Third-order elastic moduli of polycrystalline
metals from ultrasonic velocity measurements. J Acoust Soc Am 40:1002-1008. doi:
10.1121/1.1910179

[27] Matsuda N, Biwa S (2012) A finite-difference time-domain technique for nonlinear elastic
media and its application to nonlinear Lamb wave propagation. Jpn J Appl Phys 51:07GB14.
doi: 10.1143/JJAP.51.07GB14

[28] Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using
staggered-grid finite differences. Bull Seismol Soc Am 86:1091-1106.

16

RBAFFHER)FD bV

Kyoto University Research Information Ref

il



