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Abstract. When standing human subjects are exposed to 
a moving visual environment, the induced postural sway 
displays varying degrees of coherence with the visual 
information. In our experiment we varied the frequency 
of an oscillatory visual display and analysed the temporal 
relationship between visual motion and sway. We found 
that subjects maintain sizeable sway amplitudes even as 
temporal coherence with the display is lost. Postural 
sway tended to phase lead (for frequencies below 0.2 Hz) 
or phase lag (above 0.3 Hz). However, we also observed 

at a fixed frequency, highly variable phase relationships 
in which a preferred range of phase lags is prevalent, but 
phase jumps occur that return the system into the prefer- 
red range after phase has begun drifting out of the prefer- 
red regime. By comparing the results quantitatively with 
a dynamical model (the sine-circle map), we show that 
this effect can be understood as a form of relative coord- 
ination and arises through an instability of the dynamics 
of the action-perception cycle. Because such instabilities 
cannot arise in passively driven systems, we conclude 
that postural sway in this situation is actively generated 
as rhythmic movement which is coupled dynamically to 
the visual motion. 

1 Introduction 

The stabilisation of posture has been intensely studied 
over the last few decades, not only because of its clinical 
relevance, but also because it can serve as a model system 
for multisensory integration. A prominent approach has 
been to look at the contribution of various sensory sys- 
tems to the reduction of sway amplitude and to the 

temporal structure of sway. In particular, the role of 
visual information has thus been analysed, and it was 
found that visual information stabilises posture under 
normal conditions (Dichgans and Brandt 1978), but may 
destabilise posture if brought into conflict with the 
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stationary environment as sensed by other sensory chan- 
nels (Lee and Lishman 1975; Lestienne et al. 1977). By 
varying the spatiotemporal structure of visual informa- 
tion, the response properties of the postural system have 
been identified (van Asten et al. 1988a, b). 

In recent theoretical and experimental work (Sch6ner 
1991; Dijkstra et al. 1994) we showed that the postural 
control system can be characterised by a dynamical 

model based on variables that express the functional 
state of the complete system, in our case the position of 
the eye in the inertial world. From the point of view of the 
nervous system, such variables belong to a highly integ- 
rated level of description because no single sensory or 
motor system provides information on these variables 
directly. However, the postural control system can be 

described by such variables by mapping observed behav- 
iour (upright standing) onto attractor solutions of dy- 
namical systems. The experimental work, in which the 
distance of a moving visual scene from the observer was 
varied, confirmed predictions from a dynamical model 
based on this approach. However, important deviations 
from the mathematical form of the model (linear driven 

oscillator) were observed, which were interpreted as in- 
dicative of an active contribution of the postural control 
system in response to visual motion. 

In this article we report experimental and modelling 

work that aimed to look afresh at the problem of how 
visual information is integrated into posture behaviour. 
We went back to the paradigm of characterising the 
properties of the postural system to visual stimulation 
by varying the frequency of sinusoidal visual motion 
(Lestienne et al. 1977; Talbott 1980; van Asten et al. 
1988a). Based on concepts from linear systems theory, 

these studies aimed to characterise the response proper- 
ties of the postural control system. Linear systems theory 
was critically evaluated by Talbott and coworkers study- 
ing postural stability in dogs (Schuster and Talbott 1980; 
Talbott 1980; Talbott and Brookhart 1980). From 
a series of experiments in which dogs stand on a movable 
table and are exposed to a moving visual environment, 
these authors concluded that the influence of vision on 
posture is strongly task-dependent, a conclusion in line 
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with our present concerns. However, while gain was 
shown to be strongly non-linear in response to both table 
motion and visual motion, no clear non-linearities in 
response to visual motion alone were found. Also, they 
never found any significant response at frequencies other 
than those used for input. Our aim is to challenge the 
view in these studies that the postural system is passively 

driven by visual motion. Another way to put this is to ask 
if the influence of visual motion on posture relies on the 

existence of a coherent temporal relationship between 
postural sway and visual motion. If posture is essentially 
a passive control system driven by visual motion (or 
other sensory channels), then postural sway must reflect 
the time structure of sensory input whenever such input 

affects posture. If, on the other hand, postural sway is 
actively generated based on perceived conditions, then 
input may affect posture even as temporal coherence is 
lost. Specifically, in the active case, periodic visual 
motion may induce periodic sway of adequate amplitude 
even if sway and visual motion are not phase-locked. 

To answer this question, we have developed tech- 
niques which enable us to analyse the system in a regime 
where coherence between visual information and pos- 

tural sway is lost. These techniques rely on the extraction 
of a relative phase time series as a measure of the tem- 

poral structure of the action-perception cycle. These time 
series are analysed with respect to stability and dynamic 
properties through return maps and histogram tech- 
niques. Furthermore, a concrete model (stochastic sine- 
circle map) is fitted to the relative phase data in various 
ways. The stochastic sine-circle map has a dynamics 

which is rich enough to capture both phase-locked 
(linear) and not locked (non-linear) behaviour. We will 
show that we can reliably fit the stochastic sine-circle 
map to our relative phase data. In addition, more com- 
mon frequency domain methods are applied as well. 

We exposed standing subjects to a simulated fronto- 
parallel wall, which was moved in forward-backward 

direction at different frequencies (0.05-0.5Hz). We 
covaried the amplitude of the movement with frequency 
in order to keep the wall velocity constant. We kept the 
amplitudes small (and thereby visual motion roughly at 
detection threshold) because we believe these amplitudes 
to be relevant for posture. This should be compared with 

Lestienne et al. (1977) and van Asten et al. (1988a) who 
generally employed larger amplitudes, which are more 

relevant for walking or running. We found that in an 
intermediate frequency regime, the action-perception 
cycle displays the typical phase-locked characteristics 

observed earlier (van Asten et al. 1988a). However, out- 
side this regime coherence sometimes breaks down, and 
other types of coordination between postural sway and 
visual motion were observed. We observed both relative 
coordination, where there is a clear preferred phase 
relationship without stimulus and response being 
phase-locked, and absence of any coordination. These 
phenomena can be explained by an instability of the 
underlying phase dynamics, and observing it represents 
clear evidence for an effect of visual motion on the tem- 
poral structure of postural sway in the absence of phase- 
locking. A stable linear system that is passively driven by 

an additive force cannot display relative coordination 
(because the amplitude goes to zero when the system 
approaches the instability). 

The paper is structured as follows. In the next section 

we provide a survey of the relevant theoretical backdrop 
by reviewing the linear dynamic model of postural con- 
trol in a moving visual field and by presenting a discrete 

time dynamical model for the relative phase between 
sway and visual motion. In the Methods section we 
describe the experimental set-up employed, the nature of 
the measures taken, and we describe how the dynamical 
model is fitted to experimental data. In the Results sec- 
tion we present examples from the data illustrating the 
rich dynamics, and we report quantitatively the main 

results at the level of relative phase. Our conclusions are 
detailed in the Discussion section. 

2 Dynamic models of the action-perception cycle 

2.1 The linear oscillator model  f o r  pos tural  control 

in a moving visual environment  

As a point of reference, we review the model of Sch6ner 

(1991). It is based on the following assumptions. (1) The 
state of the postural control system can be described by 
the position, x, of the eye in the inertial frame, measured 
in forward-backward direction. (2) For a resting visual 
surround, the posture control system generates a stable 
fixed point of this variable at x = 0 by choice of coordi- 
nates. (3) Visual information couples into this dynamics 
through the expansion rate, e(x, t), of the visual surround. 

Mathematically, 

5~ + o~ + o)2x - ~ x x ~ t  = - Cenve(X,t) (1) 

with damping coefficient ~, eigenfrequency O)o and noise 
strength, Qx, where ~.t is gaussian white noise (zero mean, 

unit variance). The expansion rate: 

- D(t) 
e(x, t) - - -  

x - D(t) 

couples with strength Cenv such as to stabilise posture 
where D(t) is the movement of the visual surround. 

For a sinusoidally moving surround, D ( t ) = D o +  

Dr sin(mot), moving at a mean distance Do with an ampli- 
tude Dr and frequency 090, the postural response (asymp- 
totic solution of the deterministic part): 

x(t)  = rosin(o)ot  + 0o) 

is harmonic with the same frequency as the visual 
motion. Amplitude and relative phase are given by: 

Cenv(DoOr 
(2) 

ro ,/(~og ,2,2 m co.v)2 ~og -- ~'DI ~'o + (aDo + 

o)g - o)g (3) 
tan ~o = (~ + C~v/Do)~oD 

The dynamics of the action-perception cycle can be 
studied by looking at solutions of the form 
x(t)  = r(t)sin(coot + 4~(t)) so that the relative phase, qS(t), 



expresses the temporal relationship between sway and 
visual motion. A dynamics of relative phase can be de- 
rived by transforming (1) into polar coordinates and 

applying the averaging method (Guckenheimer and 

Holmes 1983): 

= A - Bsin q5 + x /~ ,~ ,  (4) 

with A = (co 2 - o92)/2cod and B = Ce,vD,/2roDo. For the 
averaging method to apply, one has to assume that the 
changes in relative phase and in amplitude (6 and f) are 
slow compared with the driving frequency. This is a rea- 
sonable assumption for weakly perturbed oscillators. The 
noise in the relative phase dynamics is modelled in an 
ad-hoc fashion by additive gaussian white noise of 

strength Q,. The stationary relative phase of(3) is a stable 
fixed point of the relative phase dynamics. If the driving 
frequency, ogD, is significantly detuned from the eigen- 
frequency, (o o, this attractor could become unstable. This 
instability occurs at A/B = 1, but is never reached in the 
linear model for which IA/BI < 1 holds. The reason for 

this is that as the frequency difference increases (IAI 
increases), the amplitude, ro, vanishes (and hence IBI 
increases). Therefore, solutions with finite amplitude but 
unstable relative phase do not exist in this linear model. 

In light of the outcome of our experiment, we note 
that a very similar equation for the relative phase can be 
derived by averaging for driven non-linear oscillator 

models (Guckenheimer and Holmes 1983, Sect. 4.2). In 
this case, the instability of the fixed point for relative 
phase can be reached, however, by detuning the driving 
frequency from the eigenfrequency, because the ampli- 

tude of the oscillator does not necessarily go to zero when 
the stability limit for relative phase is reached. 

2.2 The stochastic sine-circle map 

For quantitative comparison with our experimental data, 
we use a generalisation of the dynamics of relative phase 
(4) which covers both the case in which such dynamics 
arise from a passively driven system as well as the case in 

which such dynamics arise from a driven active (non- 
linear) oscillator. Because we estimate relative phase 

at discrete points in time (e.g. at peaks or valleys of 
position), we use a discrete time dynamical model. The 
simplest model compatible with the circular nature of 
relative phase is the sine-circle map (Bohr et al. 1984): 

~,+1 = q), "~ a + b sin(~b, - ~bo) + x/-Q~, (5) 

where ~b, ~ S 1 is the relative phase at time n, and a, b and 

~bo are parameters to be explained below. For compari- 
son with noisy data, we have included a stochastic com- 
ponent through independent gaussian random forces r 
(zero mean, unit variance) acting with strength Q. 

Maps of this type arise through Poincar6 sections in 
models of driven non-linear oscillators (Bohr et al. 1984). 
In these cases the parameter a arises as the difference in 
frequency between the oscillator and the forcing function, 
and b reflects the coupling strength of the forcing func- 
tion and the oscillator. We employ the model in a phe- 
nomenological spirit by mapping the observed relative 

491 

phase series onto solutions of this dynamical system. In 
this case the parameters arise from numerical fits to 

experimental data (see Methods). The meaning of the 

parameters is best interpreted in terms of how the fixed 

points and their stability depend on the parameters. To 
discuss this, we first consider the deterministic dynamics 
by setting Q = 0. The parameter ~bo can be absorbed into 
a shift of coordinates and therefore does not affect the 
stability of the dynamics. In the Results section we show 
that 4)o can be approximated as zero. Therefore, we will 
set qSo = 0 for the purposes of this discussion. 

The circle map can be visualised by the return map, 
a plot of q~, + a versus ~b,. In Fig. 1 we show examples for 
different values of the parameters a and b. Note that 

when [al < [bl the system has two fixed points, only one 
of which is stable (which one depends on the sign of b). 

The stable fixed point is the one for which the derivative 
of the right-hand side of (5) is smaller than 1 in absolute 

value. More precisely, for [al < Ibl the two fixed points are: 

c~} = - arcsin(a/b) (6) 

c~} = rc + arcsin(a/b) (7) 

Stability of the fixed points is calculated by linearising 
the map in the neighbourhood of the fixed points. Take 

r = q~} + 3, and ~b, + 1 = q~} + 6, + 1  with 6, and 6,+1 
small perturbations. By substitution in (5) and expanding 

the sine function up to the second order, we obtain: 

6,+1 = (1 + bx/1 - (a/b) 2) 6, 

For b < 0 we find for an initial perturbation 6o: 

6. = 6 o ( 1  - - a 2 ) "  ( 8 )  

which converges to zero if I 1 - 2] < l, in which case 4)} is 
stable. Here we have defined the local stability parameter 

2 = ~/b 2 -  a 2. The other fixed point is unstable with 

6, = 60(1 + 2)" diverging. For b > 0, the roles of the fixed 
points q~l and q~2 f are reversed. Intuitively, large b, or in 
terms of underlying oscillators, strong coupling, implies 
large 2 inducing stable phase-locking. Stability is sim- 

ilarly enhanced by small a, i.e. good match of driving 
frequency and eigenfrequency. Equation (8) describes the 
decay of perturbations of relative phase in units of dis- 
crete time. Later in this article we compare relaxation 
processes across frequencies. Because the discrete time 

a0.3 b-0.5 a0.6 b-0.5 a0.6 b-0.1 

i ~ : 1 ~ ,4d" II 

-~2 0 r,./2 -rd2 0 rd2 -rd2 0 rd2 
phase n phase n phase n 

Fig. 1. Examples of return maps of the sine-circle map for several 

parameter values. Note that phase is a periodic variable, i.e. phases 

moving off at the top reappear at the bottom and phases moving off at 

the left reappear at the right. Left panel, absolute coordination; middle 
panel, relative coordination, right panel, no coordination 
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units are determined by the cycle time, this implies that 
the size of the relevant time units for measuring the 
relaxation process varies with frequency. To make com- 
parisons across frequency, we rescale the local stability as 

= 2/6t where 6t is the relevant time unit (quarter of 

a cycle). This rescaling converts the relaxation process to 
units of absolute time. For small 6t, (8) may be approxim- 

ated as: 

6, = 00 exp( - T/%el) 

with ~rel = 1/~ the relaxation time and T = n6t the time 
at which n/4 cycles have run past. 

At l al = I b[ the model exhibits a tangent bifurcation: 
the two fixed points collide at phase _+ ~z/2. When 
lal > ]bl, no fixed points exist. Note that when [al is 

slightly larger than [b[ (see Fig. 1), a narrow tunnel exists 
where the return map comes close to the diagonal. In this 
tunnel the relative phase takes small steps, whereas it 
takes large steps outside the tunnel. This means that the 
oscillator is not phase-locked to the forcing function but 
is still influenced by it so that the oscillator lingers for 

longer periods of time near a relative phase of +_ ~/2. 
When [al is much larger than ]b[ (see Fig. 1), the phase 
takes constant steps without any significant slowing 
down. This means that the oscillator is moving indepen- 

dently of the forcing function. We may define a global 
stability parameter, 7, which indicates how close the 

system is to one of the bifurcations: 7 = a/I b l (which one 
depends on the sign of 7). For I~'l < 1 one stable and one 
unstable fixed point exist; for [7[ > 1, no fixed point 
exists. This parameter characterises the dynamics overall, 
also where the local stability parameter does not exist. 

Three types of coordination frequently observed in 
rhythmic activity can be mapped onto the three regimes 

illustrated in Fig. 1. This classification of type of coord- 
ination goes back to von Holst (1937/1973). Absolute 
coordination in which relative phase is maintained with- 
in a narrow interval can be mapped onto the regime with 
a stable fixed point of relative phase corresponding to 

phase-locked behaviour. Relative coordination, in which 
all relative phase values occur but with unequal probabil- 

ity so that there is a preferred relative phase, can be 
mapped onto the regime just following the tangent bifur- 
cation. The preferred relative phases are the points in the 
tunnel, where the return map comes close to the diag- 

onal. Finally, no coordination, in which there is no regu- 
larity in the relative timing of two rhythmic signals, can 
be mapped onto the regime in which [al is much larger 
than [bl. Based on experimental data and fitted return 
maps, we shall discuss this mapping in more detail in the 
Results section. 

The model of (5) has a very rich dynamics, not all of 
which is relevant to our system. The model allows for 
non-l-1 locking, which we never observed. Further, when 
2 > 2, the stable fixed point becomes unstable again. 
Finally, when [b[ > 1, the map becomes non-invertible, 
and chaos may occur (Jensen et al. 1984). We have 
neither observed these two phenomena nor obtained 
reconstructions of return maps corresponding to these 
parameter regimes, so we will not discuss these cases. 

The discrete time dynamics of (5) can be related to 
continuous time dynamics of relative phase as discussed 
in the previous section. Clearly, in view of the richness of 
the discrete dynamics much exceeding that of a first- 
order differential equation, this relationship is not exact. 
However, in the limit of the time unit, fit, of the discrete 
dynamics beco.ming infinitesimally small, (0,+ 1 - 4~,)/6t 

approximates ~b. In this limit (5) becomes: 

= ~ + ~'sin(q~(t) - ~bo) + ~ , ~ t  

where the parameters have been rescaled according to 

= a/6t, b = b/6t, Q = Q/6t and it is gaussian white 
noise of unit variance. In our experiments, relative phase 
is obtained at four points in each cycle, so 6t equals 
a quarter cycle time. Even though this is not infinitesimal, 

we shall employ these rescaled parameters to compare 
relative phase dynamics across frequencies. 

Adding noise to the sine-circle map does not change 

the dynamics very much (unpublished observations; for 
low noise levels see Wiesenfeld and Satija 1987). When 

there is a stable fixed point, the noise causes the phase 
values to scatter around it. The width of the distribution 
of phase values, when the noise is not too large, can be 
characterised by the standard deviation of relative phase 
and is given by (Sch6ner 1991): 

SD~ = , ~  (9) 

Further, the bifurcation is softened by the noise: for I bi 
slightly larger than [a I, the fixed point has low stability, 
and due to the noise the system can escape easily from the 
attractor and wrap around. The stationary distribution 
cannot be calculated analytically. It can be solved numer- 
ically though by discretisation of the transition matrix 

and by calculation of the left and right eigenvectors with 
eigenvalue 1 (Reichl 1980). 

3 Methods 

3.1 Experimental set-up 

Red/green stereograms were generated by a SUN4 work- 
station and were projected onto a translucent screen (2.5 

by 2 m) by a video projector. The subject wore a pair of 
goggles that contained red/green filters and limited the 
field of view to approximately 120 deg wide by 100 deg 
high. Because of the restriction of the viewing range, the 
edge of the screen was not visible to the subject. The 
subject stood approximately 50 cm in front of the screen 
wearing a helmet on which six infrared light-emitting 
diodes were mounted. The positions of these diodes were 
measured with two cameras of a Watsmart system 
(Northern Digital Inc). 

The two-dimensional (2D) coordinates of the two 
cameras were converted real-time into 3D coordinates 
and sent to the workstation. This computer was pro- 
grammed to generate a new stereogram of the wall 
from the current viewpoint of each eye of the observer. 
With this set-up, every frame (15 ms) provided a new 
view of the simulated wall. The mean 3D position of the 



view points and the orientation of the head were stored 
together with the position of the stimulus for later analy- 

sis. These signals were sampled at a rate of 66 Hz. The 

details of the feedback loop are explained in Dijkstra et 
al. (1994) but are not so important here as the physical 
distance from subject to screen was equal to the sugges- 
ted distance. It should be noted that the orientation of 
the eyes in their sockets was not measured. 

3.2 Stimuli 

The stimuli simulated a fronto-parallel wall covered with 
140 stereo dots, each with a size of 0.2 deg by 0.2 deg. The 
density of dots was uniform per solid angle as seen from 

the position at which the experiment started. The dots lay 
in an annulus between 10 deg and 45 deg visual eccentri- 
city. The hole in the middle of the stimulus was made to 
suppress the visibility of aliasing effects, which were most 

visible in the foveal region. The spatial resolution of the 
system was 1152 by 900 pixels, and the frame rate was 
66 Hz. 

The wall was suggested at a mean distance of 50 cm. 
Distance was suggested both by stereo vision as well as 
by simulation of the appropriate displacement of the 
image on the screen, using feedback of the eye position of 

the observer. Stereo vision is not essential but makes 
prolonged viewing more comfortable. The wall was 
sinusoidally moved in the forward-backward direction 
with frequencies of 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 Hz. The 
amplitude was covaried with frequency so as to keep the 
mean absolute velocity of the wall constant. In this way 
we kept the perceptual strength roughly constant: all 
stimuli were near the threshold where stimulus motion 
could be consciously perceived. We took amplitudes of 
10, 5, 2.5, 1.67, 1.25 and 1 cm, respectively. All conditions 

except for 0.05 Hz had two perturbations of phase of 
180 deg at the point of maximum velocity (so there was 
no discontinuity in position, see Fig. 2, upper panel). The 
perturbations occurred at random moments in time but 

were separated by at least 35 s, thus ensuring that there 
were enough unperturbed cycles to estimate the relax- 
ation time. Because of the small number of cycles in the 
0.05 Hz condition, we had only one perturbation. 

Each condition was repeated six times, and the order 
of trials was balanced in a latin square design. With this 
design every condition followed every other condition 
precisely once. The experiment was conducted in two 
sessions of approximately 1 h each and always started 
with two trials at 0.2 Hz for adaptation of the subject. In 
all, there were 40 trials for each subject. Each trial lasted 
for 140 s, and the first 20 s were used for adaptation and 
were not stored. 

3.3 Data analysis 

Data analysis was done in two ways: a linear time invariant 
analysis and a dynamic approach based on the time series 
of relative phase, as described in Sch6ner and Kelso (1988). 
The data for both types of analysis were the sinusoidal 
motion of the wall and the postural response of the subject 
in fore/after direction sampled at 66 Hz for 2 min. 
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3.3.1 Linear systems theory. The linear time-invariant 

analysis comprised calculating Fourier transforms of the 

drive and the response of the subjects from which we 
determined the magnitude squared coherence (MSC), the 

phase and the gain at the driving frequency. All spectra 
were calculated with a Welch procedure (Marple 1987) in 
order to obtain consistent estimates. From each trial we 
excluded an 8-s period after each perturbation to assure 
stationarity, and for each of the remaining three parts we 
used 7 segments and a factor 3 zero padding. The MSC 
depends strongly, the phase and gain very weakly on the 
number of segments (Carter 1987). 

3.3.2 Time series of relative phase. The dynamic analysis 
involved calculating a discrete time series of relative 
phase (phase of response minus phase of stimulus; Kelso 
et al. 1990). This discrete estimate of relative phase has 
the advantage over continuous estimates that the signals 

need not be sinusoidal. From the input and response data 
the significant extremes both of position and velocity 
traces were picked using a peakpicker. Before peakpick- 
ing, the data were smoothed using a gaussian window 
with a standard deviation of 0.18 s (for the 0.05 Hz condi- 

tion this was 0.64 s, and for 0.1 Hz this was 0.36 s). The 
criterion for significance of an extremum was a fraction of 
the range (the difference between maximum and min- 
imum) in a segment of a cycle before and a cycle after the 
extremum. An extremum (e.g. a peak) in position was 

accepted as significant when it differed by more than 
20% of the range from the neighbouring extrema (e.g. 
two valleys). For an extremum in velocity, the criterion 
was 50%. We chose these percentages differently because 

velocity tended to be more peaked than position. The 
results depend weakly on these percentages. From the 
8 time series of extrema (maxima and minima, both 
position and velocity of both stimulus and response), 
relative phase was calculated with the stimulus as refer- 
ence and the response as target. This was done by match- 
ing each extremum in the reference signal to all extrema 
in the target signal of the same type and within half 
a cycle before and half a cycle after the extremum. A rela- 

tive phase value was calculated by taking the time differ- 
ence between two extrema of the same type and dividing 
this by the time difference between two extrema in the 

reference signal (this is the cycle time of the drive). To this 
phase value we added 27r times the number of wraps, i.e. 
the difference in number of cycles between reference and 
target. When there is no extremum in the target signal, 
the number of wraps is decreased by l. When there is 
more than one extremum in the target signal, the number 
of wraps is increased by 1 for each extremum except the 
first. As the time value of this relative phase in the time 

series we used the time of the target extremum. The result 
of these manipulations is four time series of relative 
phase: maxima and minima of position and of velocity. 
Because these four time series were not very different, we 
combined them in one overall time series of relative 
phase. 

3.3.3 Measures calculated from the time series of rela- 
tive phase. We determined mean phase and angular 



494 

deviation from the time series of relative phase, using 
circular statistics (Batschelet 1981): 

r exp(i~) = ~ exp(i~b,) 
n 

with n running over all phase values. The mean_phase is 

~, and the angular deviation is s = x / ~ -  r). Mean 

phase is a measure for the time delay between input and 

response, and angular deviation is a measure for the 

stability of the response. It should be noted that angular 

deviation is biased: it tends to be underestimated for 

small samples (Batschelet 1981, p 46). In our experiment 

the number of phase values depends on the mean fre- 

quency of the response and can vary by a factor 10. There 

are correction procedures for this bias (which assume 
specific distributions), but we will present the angular 

deviation as calculated above and not make strong con- 

clusions from it alone. The advantage of the angular 

deviation over most of the stability measures presented 

below is that it can be calculated for all trials, no matter 

how unstable. We excluded the phase values in a period of 

8 s after the perturbation, because mean phase and angu- 

lar deviation are measures for the stationary behaviour. 

As a further measure of the stability, we calculated the 

winding number defined as W = (qSN - ~bo)/(2~zN), with 
N the number of phase values. It measures the mean 

wrapping of the response relative to the drive. Negative 

winding number means that the response is slower than 

the drive (this occurs for high driving frequencies), and 

a positive one means that the drive is slower than the 

response (this occurs for low driving frequencies). 
A winding number near zero means that the response is 

phase-locked to the drive. 

3.3.4 Relaxation time. The relaxation time, the time it 

takes the system to regain its phase-locked behaviour 

after a perturbation, was estimated as follows: we defined 
a band around the local mean of relative phase of 1.5 

times the local angular deviation. Local mean phase and 

angular deviation were calculated from a segment start- 

ing 8 s after the perturbation and with a length of four 

cycles. After a perturbation the phase generally leaves 

this band. We calculated re-entry time as the time be- 

tween the perturbation and the time of re-entry into the 

band. From this we calculated the relaxation time by 

fitting an exponential to the points outside the band and 

the first six points inside the band (cf. Fig. 2, middle 

panel). The fit was implemented by a non-linear Leven- 

berg-Marquardt routine (Press et al. 1988). The points 
inside the band were given a larger weight because they 
were less prone to noise. We did not use linear regression 

on the logarithm of the phase values because the phase 

values are not necessarily all at the same side of the local 
mean phase. If the relative phase did not leave the band 

or if many wrappings occurred near the perturbation (cf. 
Fig. 4, middle panel), we excluded the perturbation. The 

relaxation time depends somewhat on the parameters 
used, but the trend with frequency does not. We cal- 
culated the relaxation time of a trial by averaging the 
relaxation times of the two perturbations within a trial. 

3.3.5 Fitting o f  the return map and histogram. We esti- 
mated directly the parameters a, b and Q of the stochastic 

sine-circle map. We did this both by fitting the return 

map and by fitting the histogram. The return map fit was 

a linear least squares fit of y = a + bx with 

y = ~b, + 1 - ~b, and x = sin ~b,, where 4), is the nth rela- 
tive phase. The unexplained variance of the fit gives an 

estimate of the noise strength Q. We included the phase 
values directly after a perturbation in the fit because these 

provide information about the relaxation towards the 

attractor. Further, we excluded 2.5% of the phase values 

from the return map fits. This was done because some of 

the phase values were outliers. Some of these outliers in the 
return map were caused by small (but fast) bumps in the 

response data, leading to an extra pair of extrema in the 

velocity and thus to a wrap in the time series of relative 

phase. Especially for the phase-locked trials, where all 

phases scatter around the attractor, these outliers changed 

the fitted parameters considerably. Excluding the outliers 

from the return map fit also led to better agreement of the 

parameters from the fit of the return map and of the 

histogram. As a measure of significance of the fit, we used 

its F value. We excluded the results of a fit when the 

corresponding significance level exceeded 10%. 

The histogram was constructed from the time series 

by grouping the phase values in bins. We calculated the 

stationary distribution of the stochastic sine-circle map 

(Reichl 1980) and used a non-linear least squares fit 

procedure (Levenberg-Marquardt) to fit the parameters 

of the stationary distribution to the experimentally ob- 

served histogram. The starting values of these fits were 

the parameters from the return map fit. When we found 

an attractor ([a[ < [hi) with the return map fit, we fitted 
a and Q, otherwise we fitted a and b. Fitting all three 

parameters led to unstable results, because the histogram 

has only two conspicuous features: a mean and a width. 

We fitted a and Q when we found an attractor with the 

return map fit, because b was fitted very accurately from 

the return map (it is mainly determined by the slope at 

the fixed point). We fitted a and b when we did not find 

an attractor with the return map fit because we wanted 

the stability measure 7 to be determined as accurately as 

possible. The number of bins was adapted to the number 

of phase values and the angular deviation of the phase 

values. The results of the fit depend weakly on the precise 

number of bins. As a measure of significance of the fit, we 

took the Z 2 value, which we used to test whether the 

histogram differed significantly from a uniform distribu- 

tion. We excluded the results of a fit when the histogram 

did not differ significantly (p > 1%) from a uniform dis- 

tribution. 
For comparison of the parameters a, b and Q with 

their counterparts in the continuous model (4), we 

rescaled the parameters with the sampling frequency of 
the time series of relative phase (four times the mean 

frequency of response). 

3.4 Subjects 

Six subjects with normal or corrected to normal vision 

were tested under all conditions. Three of the subjects 
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Fig. 2. Example of a data record at me- 
dium driving frequency (0.3 Hz). Upper 
panel, position traces of visual drive (shif- 
ted down for visibility) and postural re- 
sponse. The position of the short solid 
rertical lines denotes the extrema as 
picked by the peakpicker, their length 
denotes the criterion used in picking. The 
dashed vertical line denotes the time of 
perturbation and the dash-dot line, the 
re-entry time. Positive means movement 
towards the wall (standing more on your 
toes), negative means away from the wall. 
Middle panel, derived time series of rela- 
tive phase (solid line) with exponential fit 
of the relaxation (dashed line). Symbols 
denote the different types of phase 
values: x denotes peaks position, o de- 
notes valleys position, + denotes peak 
velocity, and * denotes valley velocity. 
Also indicated are the time of the per- 
turbation (dashed vertical line) and the 
re-entry time (dash-dot vertical line). The 
middle dashed horizontal line after a per- 
turbation denotes the zero level of the 
relaxation. The two outer dashed horizon- 
tal lines are plus and minus 1.5 times the 
angular deviation around the zero level. 
Lower left panel, derived difference re- 
turn map with scatterplot of the data 
(open dots are excluded from the fit) and 
the curve of the best fit. The parameters 
of the fit are indicated. Lower right panel, 
derived histogram of relative phase 
(staircase plot) with the best fit (solid line) 
and the stationary distribution as cal- 
culated with the parameters of return 
map (dashed line) 

were familiar with the purpose of the experiment. It 

should be noted that  some of  the results (especially rela- 

tive coordinat ion)  were not  expected at the time of  the 

experiment. Four  subjects had participated in a previous 

s tudy (Dijkstra et al. 1994). Subjects were instructed to 

look at the centre of  the stimulus and to stand relaxed. 

Subjects s tood on a firm stable support  in normal  

Romberg  posture. 

4 Results 

General ly the subjects responded to the sinusoidally 

moving wall with a sinusoidal postural  response in the 

fore/aft direction. They displayed a rich set of  dynamical  

behaviour:  tightly phase-locked (absolute coordinat ion)  

in the middle frequency range, both  absolute coordina-  

tion and no coordina t ion  at low frequencies, and all three 

coordina t ion  patterns at high frequencies. We used 

a rough classification based on the global stability para-  

meter ? to obtain an idea of the frequency of occurrence 

of  the various coordina t ion  patterns. When  ]7[ < 0.75, we 

classified a trial as absolutely coordinated;  when [7[ was 

between 0.75 and 1.25, we classified a trial as relatively 

coordinated;  and when ]?[ > 1.25, we classified it as un- 

coordinated.  Proceeding in this way we found 81% of the 

trials to be absolutely coordinated,  11% to be relatively 

coordinated  and 8% to be uncoordinated.  The ampli tude 

of sway reflected the ampli tude of  visual mot ion  at all 

frequencies: the gain was generally independent  of  fre- 

quency and was close to 1 for most  subjects. A more  

detailed analysis of the spat iotemporal  characteristics of 

sway will be reported elsewhere, as it exceeds the scope of  

this paper. To give the reader an idea of  the rich behav- 

iour, we discuss a few data  sets. 

4.1 Examples  o f  dynamic behaviour 

In Fig. 2 we present an example of  absolute coord ina t ion  

at a mid-range driving frequency. In the upper  panel we 

show the trajectories of  the stimulus and the response of  

the subject. The subject is in-phase with the stimulus and 

is phase-locked. In the middle panel we show the corres- 

ponding  time series of relative phase. The relative phase 

scatters a round  zero. The lower left panel shows the 

return map  of  relative phase in a slightly different format, 

which is handy  for fitting the parameters:  

~ n + l  - -  ( ~ n  = a + b sin(~b.) 

The dots are data  points, while the line represents the 

above function based on fitted parameter  values (only the 
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Fig. 3. Example  of a da ta  record at high 

driving frequency (0.4Hz). This  trial 

shows relative coordinat ion .  For  details, 

see legend of Fig. 2 

solid dots are included in the fit, the open dots are 

excluded, see the Method section). The existence of 

a stable fixed point is clear from the negative slope of the 

fitted return map at the intersection with the q5 axis, 

reflected also by the spread of the data points. This is 

corroborated in the lower right panel, where we show the 

histogram of relative phase indicating a clear peak cen- 

tred on the mean phase. Note that the predicted distribu- 

tion from the fit of the return map (dashed line) is close to 

the optimal fit of the histogram (solid line), just as in the 

following figures. 

In Fig. 3 we present an example of relative coordina- 

tion at a high driving frequency. In the middle panel in 

the stretch between the two perturbations one sees slow 

dynamics at a phase of roughly - ~/2 and fast dynamics 

at the other phases (cf. Fig. 1). The trajectories show that 

postural sway is still oscillatory in spite of the loss of 

phase locking. This indicates that sway motion is actively 

generated and not passively driven by visual motion. 

Because the stretches before the first perturbation and 

after the second are phase-locked, one does not see the 

relative coordination clearly reflected in the return map 
and the histogram. However, fitting the return map and 

the histogram only for the phase values between the two 

perturbations, we found a = - 0.53 and b = - 0.54. It is 

interesting to note that the perturbations seem to cause 
a switch from one type of dynamics to another. Also 
interesting is the finding that the two relaxation times are 

very different: the first is 4.0 s and the second, 1.4 s. This 
is consistent with the finding that the stretch after the first 
perturbation has a low local stability, whereas the stretch 

after the second has a high local stability. 

In Fig. 4 we present an example of the absence of 

coordination at a high driving frequency. In the middle 

panel one can see that the subject continuously wraps in 

phase, indicating that he oscillates at his own frequency, 
different from the driving frequency. Like relative coord- 

ination, this form of uncoordinated sway is indicative of 

active generation of sway motion. The relative phase is 

very variable, as can be seen from the return map, where 

the data points fill the lower part (with delta phase 

negative). The noise strength Q is very large. Note that 

the histogram is not a very useful tool in this case because 

it does not differ significantly from a uniform distribu- 

tion. 

4,2 Mean relative phase, stability and mean response 

frequency 

In this section we present the main findings. We tested all 

effects with a one-way ANOVA with independent factor 

frequency for each subject separately at a significance 

level of 5%. In general, most effects of frequency present- 

ed here were significant. 
In Fig. 5 we plotted the mean phase difference be- 

tween visual drive and postural response as calculated 
from the time series of relative phase. All subjects had 

a significant frequency effect for mean phase. From the 
figure we observe that subjects are advanced relative to 

the stimulus at frequencies below 0.2 Hz, are almost 
in-phase near 0.2 Hz and are delayed at high frequencies. 

This frequency dependence is predicted from (3) and 
Fig. 3 of Sch6ner (1991), in terms of which the mean 

eigenfrequency of the postural system is in all subjects 
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Fig. 4. Example of a data record at high 

driving frequency (0.5Hz). This trial 

shows no coordination.  Fo r  details, see 

legend of Fig. 2 

, ! ! ! , 

-- 0 

-2 

-3 i i i i 
0 0. I 0.2 0.3 0.4 0.5 0.6 

frequency in Hz 

Fig. 5. Mean phase as a function of driving frequency for all subjects. 

The curves for different subjects are horizontally displaced for better 

viewing. Error bars denote s tandard deviation 

approximately 0.2 Hz. Also note that there is a tendency 
for the error bars to be larger for the low and high 

frequencies. This enhanced variability across trials re- 

flects the reduced temporal stability at these frequencies 

(see below). The mean phase as calculated from the time 

series of relative phase correlates significantly with the 

mean delay as calculated from the spectrum: the correla- 
tions for each subject are in the range 0.62 to 0.82, mean 

0.76. The mean phase at a driving frequency of 0.2 Hz for 
the four subjects who also participated in a previous 

study (Dijkstra et al. 1994) matches very closely the 
results in that study for equivalent conditions (distance of 
50 cm): subject CG has a mean phase near 0.27 rad in 
both experiments, the other subjects have a mean phase 
close to zero in both experiments. 

In Fig. 6 we plotted the angular deviation. This 

measure for the temporal stability of the action-percep- 

tion coupling has a significant frequency effect for all but 

two subjects. The figure shows the stability to be higher 

!variability lower) in the range 0.2-0.3 Hz with a decrease 
in stability towards the low and high frequencies. The 

two subjects lacking significance can be seen to have 

higher variability throughout, which also increases to- 

wards the higher and lower frequencies. The linear dy- 

namical model does not predict any effect of frequency on 

stability (cf. (15) of Sch6ner 1991) so that the observed 

effect is evidence for non-linearities. Because of the bias of 

the angular deviation (see Methods), we cannot directly 

compare the stability of the low and high frequencies. 

The angular deviation correlates significantly with the 

magnitude squared coherence (MSC) calculated from the 

spectrum: the correlations for each subject are in the 

range - 0.66 to - 0.87, mean - 0.78. The correlations 
are negative because small angular deviation and high 
MSC both signify high stability. 

In Fig. 7 we plotted the relaxation time. There was no 
significant effect of frequency on relaxation time for all 

but one of the subjects. Excluding the relaxations at 

the low frequency of 0.05 Hz, where the sampling of 

the phase is problematic, the relaxation time is at a 

constant level between 2 and 3 s, except for some outliers. 
For the low and high frequencies many perturbations 

had to be excluded because the subject showed no 
clear locking after the perturbation. Subjects did not 

differ in relaxation time but did differ in the number of 
included relaxations (ranging from 97% to 45%, mean 

72%), especially at the low and high frequencies. These 



498 

~.4 F , - - - - r  ! 

o . 2 [ , 1  . . . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . .  

{ ~ .  ~ i i . . . . . . . . .  , ' . . . .  

0 0. I 0.2 0.3 0.4 0,5 0.6 
frequency in Hz 
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tally displaced for better viewing, Error bars denote standard deviation 
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Fig. 7. Relaxation time as a function of driving frequency for all 

subjects. The curves for different subjects are horizontally displaced for 
better viewing. Error bars denote standard deviation 

exclusions may lead to an underestimation of relaxation 
time at the low and high frequencies and therefore ob- 
scure an effect of frequency on relaxation time. In a pre- 

vious study (Dijkstra et al. 1994) we reported a significant 
correlation between angular variance and relaxation 
time. Here we found correlations ranging from 0.05 to 
0.62, mean 0.38. Half of these were significant at a level of 

5%, and all of them were lower than in the previous 
experiment. We cannot expect a strong correlation be- 
cause our frequency manipulation does not induce a sig- 
nificant effect in the relaxation time and because the 
angular deviation is biased. 

In Fig, 8 we plotted the difference between the mean 
frequency of the response and the driving frequency. The 

mean response frequency was calculated from the time 
series of relative phase. All subjects display a significant 
effect in this variable. For frequencies in the range 
0.1-0.2 Hz, we note that the mean response frequency 
equals the frequency of the input, except for two subjects. 
These subjects also showed a higher angular deviation at 
these frequencies. For other frequencies, especially at 
0.5 Hz, there are marked differences. Subjects have 
a tendency to respond with a higher frequency for the low 
driving frequency of 0.05 Hz and to respond with a lower 
frequency for the high driving frequencies. This type of 
behaviour cannot be exhibited by a purely linear system 
because for a linear system, the frequency of the response 
always equals the frequency of the input. Also note that 
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Fig, 8. Difference between mean frequency of response and driving 
frequency as a function of driving frequency for all subjects, The curves 

for different subjects are horizontally displaced for better viewing. Error 

bars denote standard deviation 
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Fig. 9. Parameter ~i of return map fit as a function of driving frequency 

for all subjects, The curves for different subjects are horizontally dis- 
placed for better viewing. Error bars denote standard deviation. Broken 

lines denote the best fit of the data using the first term on the right-hand 
side of (4) 

the variability across trials as denoted by the size of the 
error bars is higher at the extreme frequencies, especially 
0.5 Hz, than at the middle frequencies. 

4.3 Relative phase dynamics 

In Fig. 9 we plotted the scaled parameter ~ as calculated 
by fitting of the return map. All subjects have a signifi- 
cant frequency effect for this parameter. In Fig. 9 we also 
plotted (broken line) least squares fit using the first term 
on the right-hand side of (4). The fit resulted in an 
eigenfrequency (mean over all subjects) of 0.2 Hz, indi- 

vidual eigenfrequencies ranging from 0.15 to 0.28 Hz. 
However, the poor quality of the fit indicates deviations 
from the linear model which can be interpreted in terms 
of adaptation of eigenfrequency (this point will be elabor- 
ated in a subsequent paper). 

In Fig. 10 we plotted the scaled parameter b. All 
subjects except one have a significant frequency effect for 
this parameter. The parameter b can be interpreted as an 
indicator of the coupling strength between stimulus and 
response. The results indicate that the coupling strength 
is low in absolute value for 0.05 Hz and 0.1 Hz and 
higher for the range 02-0.5 Hz. There is considerable 
variation between subjects for this measure. 
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4. 4 Consistency of fit procedures 

We have calculated many characteristics of our data. 

Some of the characteristics can be calculated in different 

ways. An important point then is to show that the 

various ways of calculating a particular characteristic 

lead to the same values. 

First, we checked that ~bo in (5) can be put to zero. The 

proportional reduction in variance brought about by 

adding q5 o to the fit of the return map was larger than 5% 

only in exceptional cases. Adding q~o to the fit of the 

histogram was useless because only two parameters 

could be fitted to it reliably, as we argued in the Methods 

section. Further, as we will show below, the fit with ~b0 set 

to zero generally reproduced the other observed factors 

nicely. This agreement in parameter estimates between 

different procedures was less when we included q~o in the 

fit. 
Second, we showed that the results of the fit of the 

return map and the histogram were in agreement. Note 

that for the histogram we fix one of the parameters to the 

value from the return map fit (see Methods). For  the 

parameter a, agreement, was excellent, with correlations 

in the range 0.87-0.99. For  the parameter b, agreement 

was even better, with correlations in the range 0.9-0.99. 

For  the parameter Q we find lower correlations in the 

range 0.69-0.96. This is caused by an overestimation of 

the noise by the return map fit when the system is close to 

the bifurcation. In particular, phase values off the attrac- 

tor cause this high noise estimate. 

Having obtained a and b from the fit, we can calculate 

the mean phase with (6, 7), provided that lal < [bl (i.e. 

that there exists a fixed point). The correlations between 

this predicted mean phase and the measured mean phase 

for each subject are in the range 0.84-0.99. Likewise, 

based on a, b and Q, we can determine the angular devi- 

ation with (9), provided that l al <lbl. The correlation 

between predicted and measured angular deviation for 
each subject is in the range 0.82-0.94. 

A non-trivial result is that the inverse of the relax- 

ation time correlates significantly with the local stability 

measure ,~. We cannot expect these correlations to be 
very large because our frequency manipulation has no 
significant influence on relaxation time (see Fig. 7). We 
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find correlations ranging from 0.17 to 0.65, mean 0.38. 

Half of these correlations are significantly different from 

zero at a significance level of 5%. The connection be- 

tween ~[, obtained from a fit of the return map and hence 

incorporating only temporally contiguous phase values, 

and relaxation time, obtained on the decay of relative 

phase over multiple time units shows that the fitted 

dynamics reasonably characterises the dynamic proper- 

ties of the system. 

A final result is that the winding number correlates 

significantly with the global stability measure 7. We find 

correlations ranging from 0.58 to 0.92, mean 0.8. All of 

these correlations are significantly different from zero at 

a significance level of 5%. For  a graphical impression of 

this correlation, see Fig. 11, which contains scatterplots 

of the winding number versus 7 for all subjects. The high 

correlation is partly caused by the fact that the sign of 

a correlates highly with the sign of the winding number. 

One can also see from the plots that the winding number 

is usually zero for a range of global stability values 

around zero (especially clear for subjects CG and CK). 

The relation between winding number and the para- 

meters of the sine-circle map is not known for the noise 

levels we observed. From simulations we have the im- 

pression that the observed correlations are in the range of 

what can be expected. 

5 D i s c u s s i o n  

We reported the results of experiments on visually in- 
duced postural sway. Our focus was on the coordination 

patterns between stimulus movement and postural re- 
sponse. To characterise this relationship, we measured 

the relative phase between sway movement and the 
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sinusoidal movement of the scene. This provided us with 
a time series characterising the temporal evolution of this 
relationship. We manipulated the frequency of the stimu- 
lus with the purpose of exploring the limits of a linear 

model proposed by SchSner (1991). In a previous study 
(Dijkstra et al. 1994) we varied the distance to the moving 
wall to test a central prediction of the Sch6ner model, 
that temporal stability decreases with increasing visual 

distance. Generally, we found that the model captured 
the temporal aspects of the data quite well, but a discrep- 
ancy was obtained when the predicted strong decrease of 

response amplitude was not observed. Our conclusion 
was that postural sway may be actively generated, and 
the present experiment aimed to rigorously test this hy- 
pothesis. 

We obtained evidence for active generation of pos- 

tural sway at three levels of analysis: (1) the phenomenol- 
ogy of observed coordination patterns, (2) the frequency 

dependence of measures of temporal order, and (3) the 
estimated underlying dynamics of relative timing. 

In relation to the observed patterns of coordination 
of sway and visual motion, we found a rich variety of 
patterns, which can be described using the vocabulary of 

von Holst (1937/1973). For the middle frequencies 
(0.2 0.3 Hz) we observed almost exclusively absolute co- 
ordination, i.e. stimulus movement and postural response 

were phase-locked. This type of coordination was also 
observed for low (0.05-0.1 Hz) and high (0.4-0.5 Hz) 
frequencies. We found relative coordination, where the 
stimulus clearly influences the response, but the influence 

is not sufficiently strong to establish phase-locking, occa- 
sionally at higher frequencies. During relative coordina- 
tion, the system remains locked at relative phase values 
__ ~/2 for periods of time with little systematic change 

(slow dynamics). Occasionally, locking is lost, and phase 
wrapping is observed (fast dynamics), until the system is 
again caught into a locked state. Finally, we observed 

absence of coordination, where there is no observable 
influence of the stimulus on the response in terms of 
relative timing (but in terms of movement amplitude and 
frequency). This pattern was occasionally observed at 
low and high frequencies. Both relative coordination and 

absence of coordination cannot arise in a passively 
driven system. Such systems (in the stationary state) 
always respond with the driving frequency and thus are 
phase-locked. Observing these patterns is therefore evid- 

ence that the postural control system is actively generat- 
ing postural sway. 

The dependence of mean phase difference between 
stimulus and response on frequency was similar to that 
reported by Lestienne et al. (1977) and van Asten et al. 
(1988a). In contrast to these studies, much smaller am- 
plitudes of visual motion were used in the present study. 
Talbott's (1980) study on standing dogs used more com- 
parable amplitudes. These results have conventionally 
been interpreted as supportive of the notion that the 
posture control system can be described by a passively 
driven, second-order, linear system. Our results reveal 
that this might not be a valid conclusion. Mathemat- 
ically, driven non-linear oscillators may behave similar to 
a driven linear system in terms of the mean relative phase. 

Hints at non-linear behaviour are obtained from the 
dependence of the angular deviation of relative phase on 
frequency. Its increase towards higher and lower fre- 
quency points at a decrease of relative timing stability 
which is not predicted by the Sch6ner model. Relaxation 
time did not change with frequency. This would hint at 
constant stability of relative timing independent of fre- 
quency. However, this result as well as the weak correla- 
tion of the two stability measures, relaxation time and 

angular variance of relative phase, could be due to under- 
estimation of relaxation time for states of lower stability. 
Corroborating evidence for the decrease of stability at 

higher and lower frequencies comes from the increase in 
the number of non-locked trials at these frequencies. 

We investigated a dynamical model of the relative 

phase time series based on the sine-circle map. This 

model contains all observed coordination patterns as 
qualitatively different solutions: absolute coordination in 
terms of a stable fixed point, relative coordination when 
the fixed point attractor is close to a tangent bifurcation, 
and absence of coordination sufficiently far beyond the 
bifurcation. We were able to reliably fit the parameters 
(a, b and Q) of the sine-circle map both from the return 

map as well as from the relative phase histogram with 
convergent results. Moreover, we were able to predict 
further measurable factors from the estimated dynamics. 
We found, for instance, that the inverse of relaxation time 

could be predicted from the local stability measure ~ as 
obtained from a fit of the return map with reasonable 

accuracy. 
At the level of the estimated model parameters, the 

fact that these parameters indicate a bifurcation at in- 
creasing frequency is evidence for the active nature of the 
action-perception dynamics. Additional evidence comes 

from the details of the frequency dependence of the para- 
meters: the parameter a, which can be interpreted in 
terms of the difference between the eigenfrequency of the 
postural system and the driving frequency, shows rough- 
ly the same behaviour as the mean phase. Eigenfrequency 
is higher than driving frequency at low driving frequen- 
cies and the reverse at high driving frequencies. However, 
if the frequency difference predicted by the linear model is 

fitted to the model parameter a as obtained at each 
frequency, a poor fit (around a mean eigenfrequency of 
0.2 Hz) is obtained. This suggests that the eigenfrequency 
is not a constant, but that it is adapted to the driving 
frequency. The parameter b, which can be interpreted as 
the coupling strength between visual motion and pos- 
tural response, shows an increase in absolute value with 

frequency. 
We have accumulated evidence that there are impor- 

tant deviations from the theoretical picture that we refer- 
red to as 'passive' generation of sway. More precisely, 
passive generation of sway could be defined as a dynam- 
ics of sway in which visual motion occurs merely as an 
additive driving force. In other words, the parameters of 
the sway dynamics itself are independent of the para- 
meters of visual motion. In the simplest case, the sway 
dynamics is linear in this theoretical picture. Our evid- 
ence suggests instead 'active' generation of sway, in which 
the sway dynamics reflects the properties of visual 



motion other than through the driving force. This means 

that parameters such as the frequency and amplitude of 

visual motion have been built into the postural system 
(probably through adaptation) such that now the pos- 

tural system itself generates sway motion, matching 
properties of the visual motion. This might include non- 
linear sway dynamics, in which the linear part of the sway 
dynamics might be unstable. In this manner, sway can 
continue to reflect properties of the visual motion in the 

absence of temporal coherence between sway and visual 
motion. Active generation of sway in this sense is the only 

manner in which the posture system can produce 
a matching amplitude and frequency response over an 
entire range of frequencies and amplitudes of visual 

motion. Active generation of sway could thus be viewed 
as an instance of central nervous adaptation, in which as 
much information as available is built into the system so 
as to rely minimally on currently available sensory in- 

formation. 
An interesting open question is why subjects display 

such a great variety of dynamic behaviours at the ex- 

treme frequencies. Some subjects show all three types of 
coordination for different repetitions of the same fre- 
quency condition. We tried to relate the behaviour in 
a trial to the driving frequency of the preceding trial 
(testing for some kind of hysteresis) but never found an 
effect. Presumably, if there is such a form of adaptation at 
all, it has already taken place in the first 20 s of each trial 

which was not recorded. It would be an interesting ex- 
periment to switch frequency within a trial and see how 
subjects adapt. In view of our theoretical results, it is 
important to keep in mind that near the bifurcation, 

small changes in the parameters of the dynamics (which 
might occur spontaneously even at constant frequency in 

the form of parametric fluctuations) lead to large and 
even qualitative differences in the resulting solutions. In 
this respect it is remarkable that even as the types of 
solutions vary, the estimated model parameters change 

continuously (cf. Figs. 9 and 10). 
In summary, we conclude that temporally structured 

postural sway is actively generated. The largely periodic 
temporal structure of postural sway reflects perceived 

or adaptations to parameters of visual motion. Coup- 
ling to visual motion is used to generate phase-locked 

postural sway that minimises motion relative to the 
visual world. Phase-locking to visual motion is not, how- 
ever, a prerequisite to postural sway with a significant 

amplitude. 
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