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Abstract Satellite data that are used to model the global
gravity field of the Earth are typically corrupted by correlated
noise, which can be related to a frequency dependence of the
data accuracy. We show an opportunity to take such noise into
account by using a proper noise covariance matrix in the esti-
mation procedure. If the dependence of noise on frequency
is not known a priori, it can be estimated on the basis of a
posteriori residuals. The methodology can be applied to data
with gaps. Non-stationarity of noise can also be dealt with,
provided that the necessary a priori information exists. The
proposed methodology is illustrated with CHAllenging Mini-
satellite Payload (CHAMP) data processing. It is shown, in
particular, that the usage of a proper noise model can make
the measurements of non-gravitational satellite accelerations
unnecessarily. This opens the door for high-quality mod-
eling of the Earth’s gravity field on the basis of observed
orbits of non-dedicated satellites (i.e., satellites without an
on-board accelerometer). Furthermore, the processing of data
from dedicated satellite missions – GRACE (Gravity Recov-
ery and Climate Experiment) and GOCE (Gravity field and
steady-state Ocean Circulation Explorer) – may also benefit
from the proposed methodology.
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1 Introduction

Thanks to new dedicated satellite gravimetry missions, our
knowledge of the Earth’s gravity field has significantly im-
proved in recent years. The CHAMP (CHAllenging Mini-
satellite Payload) mission (Reigber et al. 1996) has resulted
in models of 20-cm accuracy in terms of geoid heights up to
spherical harmonic degree and order 70 (Reigber et al. 2005a;
Wermuth et al. 2004; Mayer-Gürr et al. 2005; Ditmar et al.
2006b). The improvement with respect to earlier models, e.g.
EGM96 (Lemoine et al. 1998), is especially noticeable in
geographically remote areas, where terrestrial measurements
are (or were) not available.

The successive GRACE (Gravity Recovery and Climate
Experiment) satellite mission (Tapley 1997) allowed the accu-
racy of gravity field models to be increased further to a
3-cm geoid height error for a model complete to degree and
order 100 (Reigber et al. 2005b; Förste et al. 2005; Tapley
et al. 2005). Furthermore, GRACE is the first satellite mis-
sion ever that could observe temporal gravity field variations
at a regional scale (Tapley et al. 2004; Wahr et al. 2004).

It is expected that the upcoming GOCE (Gravity field
and steady-state Ocean Circulation Explorer) satellite mis-
sion (ESA 1999) will increase the accuracy of global gravity
field models to 1 cm up to degree 200 (ESA 1999; Bouman
2000; Sneeuw 2002; Ditmar et al. 2003).

A crucial aspect of high-precision gravity field modeling
is a proper data weighting, which requires an adequate noise
model. Such a model, in particular, may include a depen-
dence of noise on frequency. A number of different concepts
has been proposed on how to deal with colored (i.e. frequency
dependent) noise in satellite gravimetry data. Migliaccio et
al. (2004) proposed to apply a Wiener filter to the data. Since
such a filter influences both noise and signal, a number of
iterations are needed until the computed gravity field model
matches the observations. Alternatively, Schuh (1996) pro-
posed a decorrelation of the functional model with autore-
gressive moving average (ARMA) filters. Later, this idea
was realized in efficient computational algorithms suitable
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for solving huge systems of linear equations (Schuh 2003;
Klees et al. 2003). Furthermore, Klees and Broersen (2002)
and Klees et al. (2003) presented a statistically justified meth-
odology to derive ARMA-filter coefficients from a noise
power spectral density (PSD) or directly from a noise reali-
zation.

A potential pitfall of decorrelation by filtering is edge
effects, which may show up not only at the beginning and at
the end of the entire data series but also in the vicinity of each
data gap. According to Schuh (2003), this problem can be
solved by removing from the decorrelated functional model
a few epochs after each gap (“filter warming-up phase”). The
price to pay is an unnecessary loss of data, which can be sig-
nificant in the presence of multiple gaps. Another approach
is building up the noise covariance matrix explicitly (Reubelt
et al. 2003), which may of course be time consuming in the
case of a large data set.

An alternative solution to the problem of data gaps is a
low-level pre-conditioned conjugate gradient (PCCG) algo-
rithm based on ARMA filters, which does not introduce any
approximations in dealing with the noise covariance matrix,
even in the presence of gaps (Klees and Ditmar 2004). Fur-
thermore, Ditmar and van Eck van der Sluijs (2004) proposed
a modified technique for numerically efficient data weighting
by means of the low-level PCCG scheme; the pre-requisite
is that the noise dependence on frequency can be approxi-
mated by a certain analytic relationship. Ditmar et al. (2004b)
showed how this procedure can take non-stationary noise into
account. Ditmar et al. (2006b) exploited the proposed data
weighting scheme to produce the global gravity field model
DEOS_CHAMP-01C_70, which can compete with the best
CHAMP-based models produced by other methods and other
groups. Ditmar et al. (2006a) discussed how to define param-
eters of the analytic noise representation from the data them-
selves.

In the current publication, we summarize our previous
experience and generalize it yet further. It is now possible
to consider any dependence of noise on frequency in com-
bination with non-stationary noise. Furthermore, we discuss
how to determine the dependence of noise on frequency from
the data. The presented methodology is applied to CHAMP
accelerations derived from a kinematic satellite orbit. The
data are processed according to two different scenarios: (i) the
observed satellite accelerations are cleaned from non-gravi-
tational accelerations, which are measured by the on-board
accelerometer; and (ii) the non-gravitational accelerations are
completely ignored. The second scenario allows one to assess
the accuracy of gravity field modeling that can be expected
if data from a non-dedicated satellite (i.e. a satellite without
an accelerometer) are used.

The structure of the paper is as follows: Section 2 presents
the general principles of gravity field modeling on the basis
of satellite data. Section 3 discusses a noise model and a
way to derive its parameters from the data. Section 4 dem-
onstrates how the presented methodology can be applied to
real satellite data. Section 5 contains a discussion and some
conclusions.

2 Gravity field modeling

The most traditional representation of the global gravity field
of the Earth is the (fully normalized) spherical harmonic
expansion. As such, the aim of gravity field modeling is to
determine a set of spherical harmonic coefficients; they can
be arranged as an unknown vector m. Furthermore, addi-
tional unknown parameters can be included in the vector m,
e.g. data biases. The available satellite data can be repre-
sented as a vector y. Then, a certain functional model has to
be established that relates these two vectors to each other:

y = �(m). (1)

Depending on the actual definition of the vector y, the
relationship of Eq. 1 can be either linear or non-linear. For
example, satellite accelerations can be related to the vector m
linearly (Ditmar and van Eck van der Sluijs 2004), whereas
for an observed satellite orbit this relation is, generally speak-
ing, non-linear (see e.g. Reigber 1989). In any case, Eq. 1
allows a set of data to be simulated on the basis of a given set
of spherical harmonic coefficients. It is important to notice
that, in practice, the functional model of Eq. 1 may suggest
rather advanced computations. For example, it has to account
for not only the static gravity field but also for its temporal
variations, even if the latter are not estimated.

In a non-linear functional model, the determination of the
unknown vector m should start from a linearization. A certain
realistic reference model m0 should be specified and used to
compute the corresponding model response y0:

y0 = �(m0). (2)

The required accuracy of such a computation depends on
how accurate the data are. For example, in CHAMP data pro-
cessing, short-term temporal gravity field variations caused
by mass transport in the oceans and atmosphere are typi-
cally ignored; in GRACE data processing, taking them into
account is essential.

As long as the reference model is sufficiently close to the
true one, Eq. 1 can be approximated by the Taylor expansion
where only the zero- and first-order terms are retained:

y = y0 + A(m − m0), (3)

with A the matrix of partial derivatives (or the design matrix):

Ai j = ∂�i (m)

∂m j

∣
∣
∣
∣ m = m0

. (4)

The relationship of Eq. 3 yields a linear functional model

d = Ax, (5)

with x the model correction to be found: x = m − m0, and
d the residual observations: d = y − y0. Correspondingly,
the final model can be computed at the last stage of data
processing as m = m0 + x.

In fact, it is advisable to operate with residual observa-
tions even if the functional model is linear. This is because
the accuracy and resolution of any satellite data set are lim-
ited. For example, it will be always impossible to recover
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high-frequency components of the gravity field (say, above
degree 300 or slightly larger). Splitting observations into the
reference model response and the residual part allows one
to circumvent this problem. In this way, the final model is
assembled of two ingredients: m0, which may contain all the
knowledge about the gravity field collected prior to a satellite
mission, and x, which contains only such corrections that are
needed to make the final gravity field model fit to the newly
acquired satellite data.

Assuming that noise in observations is Gaussian, an esti-
mation of the unknown vector x can be obtained from the
linear functional model of Eq. 5 with the BLUE (best linear
unbiased estimator) concept (see, e.g.Teunissen 2000):

x̂ = N−1ATC−1
d d, (6)

where N is the normal matrix:

N = ATC−1
d A + C−1

mo
, (7)

Cd is the data covariance matrix, and Cmo is the covariance
matrix of the reference model.

If the covariance matrix of the reference model is not
available, a Tikhonov regularization matrix can be used in-
stead (Tikhonov and Arsenin 1977). The regularization ma-
trix must be supplied with an additional scaling factor – a
regularization parameter. A discussion on the optimal choice
of the regularization parameter in the context of global grav-
ity field modeling can be found in Koch and Kusche 2002;
Kusche and Klees 2002 and Ditmar et al. 2003. In this paper,
however, we will focus on the covariance matrix of data noise
Cd.

3 Noise model

3.1 Definition

To begin with, assume that the data form an uninterrupted
time series (e.g. a complete series of satellite accelerations
projected onto the radial direction). Later, we will make nec-
essary remarks regarding data with gaps. We will not con-
sider specially multi-component data sets. A generalization
of the proposed methodology to such data is straightforward
(at least, if different components can be considered uncorre-
lated with each other).

Data noise is usually time correlated. Even if correlations
are absent in raw measurements, they may be introduced in
the course of data pre-processing (e.g. noise in “observed”
satellite accelerations is correlated even if noise in the orbit
is not). A frequent assumption about noise is that it is sta-
tionary, i.e., loosely speaking, that its stochastic properties
do not change with time. Then, the data covariance matrix is
Toeplitz.

Such an assumption makes the stochastic description eas-
ier, but is not realistic in many cases. For example, orbits of
satellites dedicated to gravity field studies are derived from
data acquired by the on-board GPS receiver. Since the con-
stellation of visible GPS satellites changes quickly for a low-
Earth orbiter (LEO) in relation to ground-based GPS, the

LEO orbit accuracy may vary dramatically in time. Further-
more, a kinematic orbit may contain jumps or spikes (e.g.,
due to a change in the number of visible satellites). Obvi-
ously, satellite accelerations or other quantities derived from
such an orbit will contain highly non-stationary noise.

To combine non-stationarity of noise with possible cor-
relations in time, we propose to define the uninterrupted data
covariance matrix C(ui)

d as follows:

C(ui)
d

def= PC(nst)PT, (8)

where C(nst) is a diagonal matrix of size N ′
ui×N ′

ui; P is a rect-
angular matrix of size Nui×N ′

ui obtained from a band-limited
Toeplitz matrix by a corresponding “horizontal extension”
(see Fig. 1); Nui is the number of data, and N ′

ui is the number
of data plus the number of non-zero diagonals in P minus 1.

The matrix C(nst) is responsible for the non-stationarity
of the noise model, whereas the matrix P introduces correla-
tions. The definition of Eq. 8 resembles the noise propagation
formula and, therefore, can be interpreted as the assumption
that actual noise is produced from non-stationary, non-cor-
related noise (with the covariance matrix C(nst)) by means
of the linear transformation given by the matrix P. In the
absence of non-stationary noise (i.e. when the matrix C(nst)

is unit), the covariance matrix C(ui)
d becomes Toeplitz.

We would like to stress, however, that the matrix P is
introduced on a purely formal basis; in general, one should
not try to find a physical meaning of this matrix. In the next
section, we will discuss how entries of the matrix P can be
estimated.

As far as the non-stationary part C(nst) is concerned, we
will assume that it is given a priori. We believe that this
assumption is reasonable, because in most cases the mea-
surements are supplied with error estimates, which give an
idea of how the measurement accuracy changes with time.
The only elements of the matrix C(nst) that are not available
in this way are the elements at the edges, which have to be
included as the result of the extension of the matrix P and,
consequently, of the matrix C(nst). We propose to set these
elements equal to σ 2, the average value of the available diag-
onal elements of the matrix C(nst). Furthermore, the matrix
P still has to be defined. Therefore, we can assume – without
loss of generality – that σ 2 = 1: the necessary scaling can
be assigned to the matrix P. This means that the unavailable
diagonal elements of the matrix C(nst) can simply be set equal
to unity.

Now consider the case of data with gaps. A data set d with
gaps can be obtained from an uninterrupted data set d(ui) by
applying the “mask matrix” M:

d = Md(ui). (9)

The mask matrix is the matrix obtained from the unit matrix
by removing the rows that correspond to the missing data.
Then, the data covariance matrix Cd can be obtained from
the uninterrupted data covariance matrix by means of the law
of noise propagation:

Cd = MC(ui)
d MT. (10)
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Fig. 1 Horizontal extension of a Toeplitz matrix

Notice that a gap in the data series is, most probably,
accompanied by a gap in the time series of primary measure-
ment errors. This means that more elements of the matrix
C(nst) are not available a priori than in the case of uninter-
rupted data set. These elements can be filled in the same way
as the unavailable elements at the edges.

3.2 Estimation

To estimate the noise model, a noise realization is needed. In
practice, however, a noise realization is typically not available.
Therefore, we propose instead to use a posteriori residuals
(the differences between the original and adjusted observa-
tions). This means that the gravity field has to be computed
at least twice: the first model, produced without careful data
weighting, is preliminary, and serves only for an estimation
of a posteriori residuals; the second gravity field model that
exploits the proper noise model is the final product.

In general, such an approach may be somewhat danger-
ous because the estimation obtained this way is biased. In
the extreme case, where the number of unknown parameters
equals the number of observations, the a posteriori residu-
als may even vanish, independent of the actual noise level.
Our experience tells us, however, that in global gravity field
modeling, this approach leads to very reasonable results (Liu
et al. 2006). This can be explained by the fact that the num-
ber of observations typically exceeds the number of unknown
parameters by the orders of magnitude.

The practical objective of the estimation procedure is to
define the matrix P (cf. Eq. 8), which is the only ingredient
of the noise model that is not given a priori. To reach this
objective, two auxiliary steps are needed: (i) the estimation
of the noise auto-covariance, and (ii) the estimation of the
noise PSD.

3.2.1 Noise auto-covariance

First of all, let us neglect the non-stationarity of the noise. To
make this assumption more realistic, the epochs when errors
of primary measurements are large can be excluded from the

estimation procedure. Then, the data covariance matrix can
be approximated as

Cd ≈ MC(st)MT, (11)

where C(st) is a covariance matrix of stationary noise, i.e., a
Toeplitz matrix.

Let us denote the covariance between epochs j and j ± k
as ck , an element of the auto-covariance vector with index k.
By definition,

ck = E[n j n j±k], (12)

where E[·] is the expectation operator; n j and n j±k is noise
at two epochs separated by lag k.

Assuming that noise under consideration is a realization
of an ergodic process (i.e. that averaging over noise realiza-
tions can be replaced by averaging in the time domain), we
can turn Eq. 12 into a practical formula for the estimation of
the auto-covariance vector:

ck = 1

Nk

∑

j

n j n j±k (0 ≤ k ≤ Na), (13)

where Na is the maximum lag for which the auto-covariance
is estimated, and Nk is the number of pairs of elements that are
used in the estimation of the k-th auto-covariance element.
Notice that both elements of each pair should have indices
in the interval (1, N ), where N is the total length of a noise
realization. Furthermore, some pairs with proper indices may
be discarded if a noise realization is replaced by a posteri-
ori residuals because such a series may contain interruptions
related to gaps in the original data. In practice, it is advisable
to choose Na < N/10 (Klees and Broersen 2002).

As soon as the auto-covariance vector is estimated, (an
estimation of) the covariance matrix C(st) can be fully assem-
bled:
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C(st) =

⎛

⎜
⎜
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⎜
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⎜
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⎝

c0 c1 · · · cNa
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⎞

⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

3.2.2 Power spectral density

The next stage is to estimate the noise PSD u( f ), where f
is the frequency. We would like to remark that this step is
essential even if noise is stationary: it allows one to check
that the covariance matrix is positive definite. The presence
of the non-stationary part C(nst) is another reason to com-
pute the PSD. Finally, an efficient application of the inverse
covariance matrix to a vector is the third reason to do so.

In the discrete representation, elements of the PSD vector
are defined as

um = lim
N→∞

1

� f
E[sms̄m] (0 ≤ m < N ), (15)

where sm are the elements of a noise series spectrum: s =
1/NF∗n, with F being the matrix of the discrete Fourier trans-
form (see the Appendix) and F∗ the Hermitian conjugate
(transposed complex conjugate) of F; s̄m is the complex con-
jugate of sm ; and � f is the sampling interval in the frequency
domain: � f = 1/(N�t) with �t the sampling interval in
the time domain.

In practice, the direct utilization of Eq. 15 for the esti-
mation of the noise PSD may be problematic due to gaps in
the available noise series. Therefore, we advise to estimate
the PSD in an alternative way – on the basis of the Fourier
transform of the auto-covariance (Kay and Marple 1981):

u ≈ 1

� fa

1

2Na
F∗c, (16)

where � fa is the sampling interval in the Fourier domain
dictated by the length of the auto-covariance vector: � fa =
1/(2Na�t).

It is important to notice that Eq. 16 requires the elements
of the auto-covariance vector to form a periodic series (see
the Appendix). To this end, the auto-covariance vector esti-
mated according to Eq. 13 has to be supplied with Na − 1

additional elements that mirror the original ones: cNa+k
def=

cNa−k (k = 1, 2, . . . , Na − 1). Furthermore, Eq. 16 is suffi-
ciently accurate only when the correlation length is much less
than Na. Unfortunately, this condition can hardly be met in
practice. This is not only due to a slow decay of correlations
in time, but also due to the presence of systematic distor-
tions in the data (e.g. due to tidal effects that are not removed
entirely because of a limited accuracy of tide models). Then,

the PSD estimated with Eq. 16 may even become negative at
some frequencies. This, of course, contradicts the definition
of PSD (cf. Eq. 15).

The solution we propose is to truncate the original auto-
covariance vector by multiplying it with a function that rap-
idly decreases with time:

c̃k
def= ckwk (0 ≤ k ≤ Na). (17)

Such a truncation is equivalent in the Fourier domain to the
cyclic convolution of the PSD with the Fourier transform
of the vector w. As a result, the PSD becomes smoother.
Thus, the situation is fully analogous to low-pass filtering of
a signal, which can be achieved by a truncation of the sig-
nal spectrum (see the Appendix). In practice, we define the
truncation function wk as a Gaussian:

wk = e
− (k�t)2

2Q2 . (18)

Of course, other definitions can also be used.
The maximum possible half-width Q of the truncation

function is determined by trial and error. The procedure starts
from a very large Q and gradually decreases it until the PSD
becomes positive at all the frequencies. Obviously, a suffi-
ciently small Q will always lead to a positive PSD. Indeed,
a small Q will make all the elements of the auto-covariance
vector small except for the element with index zero: it will
remain unchanged (in other words, the PSD will resemble the
δ-function). Since the zero element is positive by definition,
application of the Fourier transform to such an auto-covari-
ance vector will result in a positive, nearly constant spectrum.

3.2.3 Matrix P

Equation 16 holds for an arbitrary long auto-covariance vector.
The only effect of an increasing vector length is shorten-
ing the PSD sampling rate in the Fourier domain. Suppose
that the PSD is re-sampled such that the new length N ′

ui
of the estimated vector u exceeds the number of data N :
N ′

ui = Nui + 2Ne, where Ne is an arbitrary number equal to
or exceeding the maximum index of a non-zero element in
the auto-covariance vector. Next, let us build up a diagonal
matrix U composed of the elements of vector u. Then, let us
consider a new matrix C(circ) of size N ′

ui × N ′
ui defined as

C(circ) def= � f ′FUF∗, (19)

where � f ′ = 1/(N ′
ui�t).

Matrix C(circ) is circulant, and its first row is the result
of the inverse Fourier transform applied to the vector � f ′u
(see the Appendix). Since the discrete Fourier transform is
reversible, the first row of the matrix C(circ) is nothing but the
auto-covariance vector (extended with a sufficient amount
of zeroes and with the “mirror elements”, and cyclically re-
ordered such that it starts from the zeroth element). Thus, the
whole matrix C(circ) can be understood as a cyclic extension
of the estimated covariance matrix C(st).

Let us introduce a “truncation matrix” M(tr) of size Nui ×
N ′

ui, obtained from the unit matrix by removing the first and
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a)

b)

c)

Fig. 2 Truncation of the circulant matrix C with the truncation matrix M(tr). a M(tr)C is a band-limited Toeplitz matrix extended horizontally;

b C
(

M(tr)
)T

is a band-limited Toeplitz matrix extended vertically; c M(tr)C
(

M(tr)
)T

is a square band-limited Toeplitz matrix

last Ne rows. Then, the matrix C(st) can be formally related
to the matrix C(circ) as follows (see Fig. 2):

C(st) = M(tr)C(circ)
(

M(tr)
)T

. (20)

Notice that Eq. 20 can easily be generalized to the case
of data with gaps: it is enough to remove in the matrix M(tr)

also the rows related to the missing observations.
Since the proposed procedure guarantees that all elements

of the PSD vector are positive, the square root of the matrix
C(circ) can be introduced (see the Appendix):

(

C(circ)
) 1

2 =
√

� f ′
N ′

ui
FU

1
2 F∗. (21)

Then, Eq. 20 can be re-written as

C(st) = QQT, (22)
where

Q def= M(tr)
(

C(circ)
) 1

2
. (23)

The matrix Q is a band-limited Toeplitz matrix extended
horizontally (Fig. 2a). Comparison of Eqs. 8 and 22 leads
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to the conclusion that these formulae coincide for stationary
noise (i.e. when the matrix C(nst) is a unit matrix) provided
that

P def= Q. (24)

It is, therefore, natural to define the matrix P this way in all
cases, whether the noise is stationary or not. Thus, we have

Cd = QC(nst)QT. (25)

It is easy to see that the data covariance matrix obtained
in this way is always positive definite, including the case of
data with gaps. Consider the expression

yTCd y = yTQC(nst)QTy = zTC(nst)z, (26)

where y is an arbitrary vector, and

z = QTy. (27)

Let us show that if the vector y is non-zero, the vector z
is also non-zero. From Eqs. 21, 23 and 27, it follows that

z =
√

� f ′
N ′

ui
FU

1
2 F∗ (

M(tr)
)T

y. (28)

We have to demonstrate that the application of any matrix

from Eq. 28 – F, U
1
2 , F∗, and

(

M(tr)
)T

– to a non-zero vector
results in a non-zero vector (i.e. that all these matrices have
the full column rank).

For matrices F and F∗ this is obvious; otherwise, the dis-
crete Fourier transform would not be a reversible operation.

This is also obvious for the matrix U
1
2 because this is a diag-

onal matrix with all the diagonal elements greater than zero
(we make use of the fact that the estimated PSD is forced to
be positive at all the frequencies). Finally, it is easy to see that

the matrix
(

M(tr)
)T

just stretches a vector of size Nui to the
size N ′

ui by adding some zero elements. All the elements from
the original vector are preserved, so that the output vector is
non-zero, if the input vector is non-zero.

Next, the matrix C(nst) is positive definite by definition.
Therefore, for any non-zero vector y we have the relationship

yTCd y = zTC(nst)z > 0, (29)

which completes the proof.

3.3 Usage of a noise model in data processing

As follows from Eqs. 6 and 7, the data processing deals with
the inverse data covariance matrix. Since this matrix is usu-
ally huge, its explicit inversion is impossible. Therefore, it is
necessary to discuss how an accurately estimated data covari-
ance matrix can be used in practical data processing. The
algorithm we propose is a further development of the ones
described in (Klees and Ditmar 2004; Ditmar and van Eck
van der Sluijs 2004; Ditmar et al. 2006b).

First of all, it is advisable to solve the system of normal
equations (Eq. 6) with the pre-conditioned conjugate gradi-
ent (PCCG) method (Hestenes and Stiefel 1952) as it was

proposed in the context of global gravity field modeling by
Schuh (1996). As such, it is not necessary to compute the
normal matrix explicitly. Instead, it is sufficient to have a
procedure for the multiplication of the normal matrix to a
vector. In such a procedure, all the matrices that compose the
normal matrix (cf. Eq. 7) have to be multiplied with a vector
one-by-one. This concerns, in particular, the matrix C−1

d .
Thus, it is not necessary to invert the data covariance ma-

trix; it is enough to solve the system of linear equations based
on this matrix a number of times. For this purpose, a “low-
level” PCCG procedure can be used, which has to be exe-
cuted at each iteration of the “high-level” PCCG procedure.
To make the low-level PCCG procedure accurate and numer-
ically efficient, one has to implement two basic operations:
(i) the exact multiplication of the data covariance matrix to a
vector, and (ii) a pre-conditioning, i.e., an approximate mul-
tiplication of the inverse data covariance matrix to a vector.

3.3.1 Multiplication of the data covariance matrix
to a vector

According to Eq. 25, the multiplication of the matrix Cd to a
given vector z can be performed as a sequential multiplication
of matrices QT, C(nst), and Q to vectors.

In principle, each of the three multiplications can be done
explicitly. The problem is, however, that the number of non-
zero elements in each row/column of the matrix Q can be
large (it depends on how much the auto-covariance vector is
truncated; cf. Eq. 17). Since the matrix Q has to be multiplied
with a vector many times, this step may slow down the whole
data processing procedure significantly.

The solution we propose is to make use of the represen-
tation of Eq. 23. That is, this step can be implemented as

a multiplication of two matrices to a vector:
(

C(circ)
) 1

2 and
M(tr). The first matrix is circulant; its application to a vector
is nothing but filtering (or, more strictly, cyclic convolution).
This operation can be efficiently implemented in the Fourier
domain (see Eq. 21 and the Appendix).

As far as the matrix M(tr) is concerned, its application
to a vector reduces to eliminating edge elements as well as
elements that correspond to data gaps, if they exist. The appli-
cation of the matrix QT to a vector can be implemented in a
similar way.

3.3.2 Pre-conditioning

According to Eqs. 23 and 25, the data covariance matrix can
be represented as

Cd = M(tr)B
(

M(tr)
)T

, (30)

where B is a matrix of size N ′
ui × N ′

ui:

B =
(

C(circ)
) 1

2
C(nst)

(

C(circ)
) 1

2
. (31)

The inverse of a circulant matrix can be found with ease
(see the Appendix). Therefore, obtaining the inverse of B is
also straightforward:
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B−1 =
(

C(circ)
)− 1

2
(

C(nst)
)−1 (

C(circ)
)− 1

2
, (32)

where

(

C(circ)
)− 1

2 =
√

N ′
ui

� f ′
1

(

N ′
ui

)2 FU− 1
2 F∗. (33)

Then, the pre-conditioner G – an approximate inverse of
Cd – can be defined as

G def= M̃(tr)B̃−1
(

M̃(tr)
)T

. (34)

Notice that both the truncation matrix and the matrix B are
accompanied by a “tilde”. This indicates, in this context, that
the inversion of both matrices may have to be accompanied
by an extra extension, as follows.

The number of non-zero diagonals in an inverse circulant
matrix can be totally different from that in the original circ-
ulant matrix. On the other hand, we assume, as before, that
the application of the truncation matrix totally removes non-
zero elements (or, more strictly, not nearly-zero elements) in
the upper-right and lower-left corners of a circulant matrix.
Therefore, we have to take into account that the truncation
matrix in the pre-conditioner – M̃(tr) – may be different from
the original one because it has to remove another (e.g. larger)
number of rows/columns at the edges. Similarly, a different
extension of the matrix B may be needed in the context of
pre-conditioning.

Finally, we would like to remark that the composition
of the pre-conditioner (Eq. 34), is similar to that of the data
covariance matrix itself (Eq. 30). This means that the mul-
tiplication of the pre-conditioner to a vector can be done in
exactly the same way as the multiplication of the data covari-
ance matrix to a vector (namely, with filtering in the Fourier
domain).

4 Examples

4.1 CHAMP data processing

We have used the above-proposed approach for modeling
the Earth’s gravity field from a 322-day set of CHAMP data
provided by D. Švehla and M. Rothacher, Technical Uni-
versity of Munich (Švehla and Rothacher 2003). The data
set includes a kinematic and a reduced-dynamic orbit of the
CHAMP satellite. The functional model we exploit is based
on the satellite accelerations that are derived from a kine-
matically determined satellite orbit and transformed into the
local orbital reference frame (LORF) (Ditmar and van Eck
van der Sluijs 2004).

The CHAMP data set also includes the covariance matrix
of positioning errors; the matrix consists of 3×3 blocks, one
block per epoch (no information about temporal correlations
was considered). The provided information was used to build
up the matrix C(nst). Two different ways were tried: (i) the
covariances (off-diagonal elements) were set equal to zero,

so that the matrix C(nst) is purely diagonal; and (ii) the co-
variances were preserved (in this case, an explicit inverse
of each 3 × 3 block had to be computed for the purpose
of pre-conditioning). Importantly, the provided covariance
matrix was scaled so that the average variance per compo-
nent (along-track, cross-track, and radial) became equal to
one, as explained in Sect. 3.1.

For the purpose of gravity field modeling, residual satel-
lite accelerations are derived from “observed” ones by sub-
tracting the non-gravitational accelerations (measured with
the on-board CHAMP accelerometer) and the reference accel-
erations. To compute the latter ones, we used the EGM96
static gravity field model (Lemoine et al. 1998) to degree and
order 360, combined with models of astronomic, solid-Earth
and oceanic tides (Ditmar et al. 2006b).

An outlier detection procedure was used in order to mini-
mize the influence of jumps and spikes in the kinematic orbit
(Ditmar et al. 2006b). Accelerometer scale factors and biases
(one per component per 10-day interval) were explicitly esti-
mated jointly with gravity field parameters. The overall data
processing procedure consisted of the following steps: (i)
preliminary gravity field modeling and computation of a pos-
teriori residuals; (ii) estimation of the noise model; and (iii)
final gravity field modeling.

The outcome of the modeling procedure is a set of fully
normalized spherical harmonic coefficients from degree 2 to
70. The accuracy of final results was assessed by a com-
parison with the state-of-the-art gravity field model EIGEN-
CG03C (Förste et al. 2005) truncated at degree 70. That
model has been compiled from various satellite, airborne,
and terrestrial data. In the range of degrees we are interested
in, the dominant contributor to the EIGEN-CG03C model
is a 376-day GRACE data set. Since these data are signifi-
cantly more accurate than CHAMP data, discrepancies be-
tween a CHAMP-based model and EIGEN-CG03C can be
safely interpreted as errors in a CHAMP-based model.

4.1.1 Computation of a posteriori residuals

In the preliminary gravity field modeling, we used an analytic
definition of the noise square-root-PSD originally proposed
by Ditmar and van Eck van der Sluijs (2004):

√

u( f ) = σ

(�t)
3
2

[

2 (1 − cos(2π f �t)) +
(

�t

τ

)2
]

, (35)

where f is the frequency, σ is a scaling factor that can be
interpreted as the average CHAMP positioning accuracy, and
τ is a parameter that controls the behavior of the PSD at low
frequencies.

Here, we set σ equal to the a priori average CHAMP posi-
tioning accuracy for a given component, whereas τ was set
equal to 180s. The latter value was selected on the basis of the
numerical study of Ditmar and van Eck van der Sluijs (2004).
In fact, this is not the optimal value. Ditmar et al. (2006b)
showed later that a smaller τ (about 60s) can lead to better
results. We made the choice of 180s deliberately: to demon-
strate that the proposed data processing scheme ultimately
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delivers reasonable results even if little a priori information
exists about the noise model.

The specified noise square-root-PSD per component is
shown in Fig. 3. The covariances between the components
were taken into account. The existing covariance matrix of
the EGM96 model was used at this stage as the covariance
matrix Cmo (cf. Eq. 7).

A comparison with the EIGEN-CG03C model showed
that the RMS accuracy of the produced preliminary gravity
model in terms of geoid heights is 19.5 cm. This is notice-
ably worse than that for the DEOS_CHAMP-01C_70 model,
14.1 cm (Ditmar et al. 2006b). The difference can be ex-
plained by a more accurate noise model used to produce the
DEOS_CHAMP-01C_70 model.

The residual gravity field model we have obtained (i.e. the
total model minus the reference model) was used to compute
a series of (residual) adjusted satellite accelerations. Further-
more, the adjusted accelerations were corrected for by tak-
ing into account estimated biases and accelerometer scale
factors. Then, the series of a posteriori residuals obtained as
the difference between the original and the adjusted residual
accelerations was considered as a realization of data noise.

4.1.2 Estimation of the noise model

A noise PSD was computed on the basis of a posteriori residu-
als as explained in Sect. 3.2.2. The number of lags in the com-
putation of the auto-covariance was set equal to 215+1, which
corresponds to the time interval of 32, 769 × 30 s ≈ 273 h
(a too short interval would lead to inaccuracies at low fre-
quencies, whereas a too long interval would make the com-
putations too time consuming).

To ensure the positiveness of the computed PSD, it was
smoothed with Q ≈ 21 h for the along-track and cross-track
components, and with Q ≈ 29 h for the radial component
(Fig. 4). Furthermore, more drastically smoothed PSDs were
obtained after setting Q = 3 h for all three components
(Fig. 5). Finally, the square-root-PSDs were approximated
by an analytic expression of Eq. 35 (Fig. 6).

As could be expected, a smaller factor Q leads to a stron-
ger truncation of the auto-covariance and, consequently, to
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Fig. 3 Square-root noise PSD, as it was defined in the preliminary grav-
ity field modeling. Solid black, gray, and dotted black lines correspond
to the radial, along-track, and cross-track components, respectively
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Fig. 4 Square-root PSD of noise in CHAMP accelerations. Solid black,
gray, and dotted black lines correspond to the radial, along-track, and
cross-track components, respectively. Smoothing applied is just enough
to make the PSDs positive at all the frequencies (Q ≈ 29, 21, and 21 h
for the three components, respectively)
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Fig. 5 Same as Fig. 4 but smoothing is stronger (Q = 3 h for all the
components)
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Fig. 6 Analytic approximation of the square-root PSD of noise in
CHAMP accelerations. Solid, dashed, and dotted lines correspond to
the radial, along-track, and cross-track components, respectively. Orig-
inal square-root PSDs taken over from Fig. 4 are shown in gray as a
reference. The chosen parameters of the analytic approximation are: σ
= 2, 1.5, and 5 mm for the three components, respectively; τ = 50 s for
all three components

a smoother PSD. In the case of the analytic approximation,
the result is even smoother; only the major features of the
noise behavior are captured: a nearly constant level at low
frequencies and an increase at high frequencies. The three
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Table 1 Gravity field modeling from CHAMP accelerations

Noise model Co-variances Regularization Cumulative geoid height error (cm)
between the
components

degree 10 degree 20 degree 40 degree 70

Accurate numerical No No 0.44 0.88 3.1 30.8
Smoothed numerical No No 0.45 0.89 3.2 30.9
Analytic No No 0.46 0.92 3.2 31.7
Accurate numerical Yes No 0.45 0.89 3.1 30.9
Accurate numerical No Yes 0.35 0.79 2.8 13.6

Accuracy of resulting models in terms of cumulative geoid heights

sets of PSDs were used to build up three noise models. Here-
after, they are referred to as “accurate numerical”, “smoothed
numerical”, and “analytic”, respectively.

4.1.3 Final gravity field modeling

Each of the three noise models was exploited in gravity field
modeling as discussed in Sect. 3. In the first instance, covari-
ances between the components were ignored. Furthermore,
the regularization matrix Cmo was set equal to zero. The qual-
ity of the produced models is compared in Table 1. One can
see that the accurate numerical noise model leads to marginal
improvements in comparison with the smoothed numerical
one, whereas the latter is slightly better than the analytic noise
model.

In the next step, we have included correlations between
the components in the stochastic model. It turned out that
the quality of the gravity field remained basically the same,
or even became a bit lower (Table 1). In fact, worsening the
model after taking the cross-component correlations is not
very surprising because these correlations are not taken into
account in the noise estimation procedure.

Finally, the regularization matrix, defined as the full
covariance matrix of the EGM96 model (to degree and order
70), was added to the normal matrix. Naturally, this made the
model quality significantly better (Table 1). It is worthwhile
to note that the total RMS geoid height error (which is equal
to the cumulative geoid height error from degree 2 to degree
70) is in this case better than that of the DEOS_CHAMP-
01C_70 model (14.1 cm).

This proves that a proper noise model may improve the
results of gravity field modeling.

4.2 CHAMP data processing in the absence
of accelerometer data

A common opinion is that high-precision measurements of
non-gravitational accelerations are crucial for accurate grav-
ity field modeling. On the contrary, Ditmar et al. (2006b)
claimed that their gravity field modeling procedure is not sen-
sitive to errors in accelerometer scale factors. Furthermore,
Ditmar et al. (2004a) have shown that neglecting accelerom-
eter data may lead to only minor additional errors in a derived

gravity field model. Therefore, we found that it is important
to analyze how much a gravity field model can be distorted
in the absence of accelerometer data if a proper noise model
is used.

To begin with, we have computed the PSD of non-gravita-
tional accelerations measured by the accelerometer on-board
the CHAMP satellite (Fig. 7). One can see that non-gravi-
tational accelerations are relatively strong at very low fre-
quencies (below 3 × 10−5 Hz). Furthermore, they show five
prominent peaks in the range of frequencies between 0.0001
and 0.001 Hz. These peaks correspond to the frequencies of
1, 2, . . . , 5 cycles per revolution (cpr).

The peak at frequency 1 cpr is especially visible at the
along-track and the cross-track components. In the first case,
it can be explained by variations of the atmospheric drag
caused by the orbit eccentricity (e ≈ 0.002). The probable
reason in the second case is the atmosphere rotation, so that
the drag force is directed to the right on the ascending pass
and to the left on the descending pass. The peak at frequency
2 cpr is very strong only in the along-track component. It can
be attributed to variations of the atmospheric drag caused by
the Earth’s flattening. Other peaks at frequencies less or equal
to 5 cpr seem to be comparable in magnitude with the noise
level, whereas all the peaks at frequencies above 5 cpr seem
to be significantly below the noise level.

It is, therefore, tempting to conclude immediately that
non-gravitational accelerations, even if they are not removed
from the data, must not destroy a resulting gravity field model.
Such a conclusion is, however, premature. The fact is that all
the peaks at the plots have been somewhat smoothed. Without
the smoothing, a peak magnitude can be significantly larger.
This can be interpreted as an evidence that non-gravitational
accelerations are not stochastic quantities. Therefore, it is
necessary to perform gravity field modeling in order to draw
conclusions about a possibly destructive role of non-gravita-
tional accelerations.

The CHAMP accelerations not cleaned from non-gravi-
tational signals were processed in exactly the same way as
explained above, starting from the preliminary gravity field
modeling. Naturally, the accelerometers’ scale factors were
excluded from the list of unknown parameters. The estimated
noise PSD is shown in Fig. 8. One can see that non-gravi-
tational accelerations significantly exceed the random noise
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Fig. 7 Square-root PSD of non-gravitational CHAMP accelerations (in
black). a the along-track component; b the cross-track component; c the
radial component. In all the cases, smoothing with Q = 30 h is applied.
The square-root PSD of noise in CHAMP accelerations is shown in
gray as a reference

level at frequencies 1 and 2 cpr at the along track-compo-
nent and at the frequency 1 cpr at the cross-track component.
This results in prominent peaks in the a posteriori residuals.
It is also interesting to notice that the along-track and radial
components of the a posteriori residuals are weaker at low
frequencies than the corresponding component of non-grav-
itational accelerations. This can be explained by the fact that
the data biases, which are estimated over 10-day intervals,
partly absorb the influence of non-gravitational accelerations.

As before, both the cross-component correlations and the
regularization were, in the first instance, switched off. The
estimated noise PSD obtained after a smoothing with Q ≈
30 h in all three components (just enough to make the PSD
positive at all the frequencies) was used as the basis for the
accurate numerical noise model. Furthermore, an approxi-
mate numerical noise model was defined by smoothing with
Q = 3 h. Finally, the analytic noise model from the previ-
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Fig. 8 Square-root PSD of noise in CHAMP accelerations not cleaned
from non-gravitational accelerations (in black): a the along-track com-
ponent; b the cross-track component; c the radial component. In all
the cases, smoothing with Q = 30 h is applied. The square-root PSD
of non-gravitational accelerations is shown as a dashed gray line as a
reference

ous example was re-used (it was not necessary to update it
because the noise PSD has not changed much apart from a
limited number of peaks).

Each of these three noise models was used to produce
a gravity field model. These gravity field models are com-
pared in Table 2. As before, one can see that the accurate
numerical noise model leads to the best results in terms of
the total RMS geoid height error, whereas the analytic noise
model performs slightly worse. It is interesting to notice that
the smoothed numerical noise model gives the best results at
low degrees; the reason for this is not entirely clear.

Furthermore, we have tried to take into account the corre-
lations between the components. As before, the model qual-
ity does not change much in this case (Table 2). Finally, the
gravity field model improves dramatically when the regular-
ization is switched on.
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Table 2 Gravity field modeling from CHAMP accelerations not cleaned from non-gravitational accelerations

Noise model Co-variances Regularization Cumulative geoid height error (cm)
between the
components

degree 10 degree 20 degree 40 degree 70

Accurate numerical No No 0.46 0.87 3.1 29.8
Smoothed numerical No No 0.42 0.86 3.1 30.0
Analytic No No 0.45 0.91 3.2 30.8
Accurate numerical Yes No 0.49 0.89 3.0 29.7
Accurate numerical No Yes 0.35 0.78 2.8 13.5

Accuracy of resulting models in terms of cumulative geoid heights

It is interesting to compare models produced with and
without accelerometer data (cf. Tables 1 and 2). It turns out
that the absence of accelerometer data does not deteriorate
the resulting gravity field model. Furthermore, the total RMS
geoid height error even seems to reduce. The explanation for
the latter effect is a slightly larger number of data that could be
used in the absence of cleaning from non-gravitational accel-
erations. In the course of this cleaning, about 5% of data is
lost due to the absence of either star camera measurements
or the accelerometer measurements (Ditmar et al. 2006b).

Gravity field models obtained with and without acceler-
ometer data can also be compared graphically (Fig. 9). Both
models demonstrate practically the same accuracy at all de-
grees except for degree 2, where the cleaned data definitely
lead to a better result.

One can argue that non-gravitational accelerations must
influence, first of all, the zonal spherical harmonic coeffi-
cients, for which a resonance effect may take place. Such an
influence can hardly be noticed from Fig. 9, where the errors
at all the orders for a given degree are summed up. Therefore,
we have also compared the errors in zonal spherical harmonic
coefficients alone (Fig. 10). Again, one can see that cleaning
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Fig. 9 Accuracy of gravity field models produced from CHAMP accel-
erations that are cleaned (gray lines) and not cleaned (black lines) from
non-gravitational accelerations, in terms of cumulative geoid height
errors (solid lines) and geoid height errors per degree (dashed lines).
Both gravity field models are obtained with the exact numerical noise
models; both the cross-component correlations and the regularization
are switched off
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Fig. 10 Accuracy of gravity field models produced from CHAMP
accelerations that are cleaned (solid gray line) and not cleaned (solid
black line) from non-gravitational accelerations: errors in the zonal

coefficients are shown. Furthermore the error difference δl
def= 10 ×

(

|C (non-cleaned)
l,0 − C (true)

l,0 | − |C (cleaned)
l,0 − C (true)

l,0 |
)

is plotted as a

dotted line. δl > 0 if the non-cleaned accelerations give a larger error
and δl < 0 if the non-cleaned accelerations give a smaller error. Both
gravity field models are obtained with the exact numerical noise mod-
els; both the cross-component correlations and the regularization are
switched off

the data from non-gravitational accelerations does not lead
to a noticeable improvement of the gravity field model above
degree 2.

5 Discussion and conclusions

We have shown how to handle correlated noise in data, even
if a data series contains interruptions. Furthermore, a vari-
able data accuracy can be taken into account provided that
the data are supplied with error estimates. The noise model
is built up numerically. Therefore, any dependence of noise
on frequency can be considered.

To illustrate the proposed methodology, we have shown
how it can be exploited in CHAMP data processing. In par-
ticular, we have compared the proposed methodology with
the one presented earlier, when dependence of noise on fre-
quency was described analytically, by a function with only
two adjustable parameters (Ditmar et al. 2004b, 2006b).
Though it turned out that both types of noise models perform
almost equally, we still believe that the proposed methodology
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is a step forward. Noise in data of other types (in particular,
delivered by other satellite missions) can depend on fre-
quency in a completely different way, and the analytic model
will be unable to approximate it properly.

A number of interesting aspects were left beyond the
scope of the discussion in order to make it better focused.
Let us briefly summarize the results that are not included
into the main text.

1. Extension of the covariance matrix. We mentioned that
the matrix C(nst) has to be extended in order to be used in
the context of the correlated noise. The new elements of
the matrix C(nst) are set equal to unity. Of course, this is
an arbitrary choice. Then, the question arises whether the
gravity field model is robust with respect to this choice.
Numerical experiments allowed us to give the positive
answer. Even if the new elements in the matrix C(nst) are
defined very differently (e.g. set equal to 100), the change
in the resulting gravity field model is negligible.

2. Further improvement of the noise model. In essence, we
propose an iterative scheme for estimation of both a noise
model and a gravity field model. In the considered exam-
ple, we stop after two iterations; the corresponding grav-
ity field model is called final. One may think that a final
gravity field model can be used for a further improve-
ment of the noise model and, consequently, of the gravity
field model. Our experience tells us, however, that the
improvement of the noise model after the second itera-
tion is marginal. Therefore, the gravity field model does
not improve after two iterations any further. We believe
that this observation can be related to the fact that the
problems we consider are highly redundant: the num-
ber of data is much larger than the number of unknown
parameters.

3. Importance of a correlated noise model in general. A
question one may pose is whether it makes sense to
consider a dependence of noise on frequency at all. Our
answer is definitely positive. In general, a simplistic least-
squares adjustment without a proper frequency-dependent
data weighting may deteriorate the resulting gravity field
model dramatically (Klees et al. 2003; Ditmar and van
Eck van der Sluijs 2004). This is particularly true when
noise at different frequencies changes by the orders of
magnitude. On the other hand, it is important to remember
about a link between the magnitude of noise variations
and the data sampling rate. For example, satellite accel-
erations derived from an orbit with 1-s sampling may
show a strong dependence of noise on frequency, so that
a frequency-dependent data weighting is essential. At
the same time, the accelerations derived from an orbit
with a 30-s sampling may show a much weaker depen-
dence on frequency, so that reasonable results can even be
obtained without a frequency-dependent data weighting
(Ditmar et al. 2006b).

It is important to notice that an accurate noise stochastic
model may solve the problem of the optimal regularization
parameter. As soon as the covariance matrix of the reference

gravity field model Cmo is known, the statistically optimal
combined model is given by Eqs. 6 and 7, which do not con-
tain any regularization parameter, i.e., a scaling factor to be
applied to the matrix Cmo . A regularization parameter is only
needed if the latter matrix is not known.

Fortunately, this is not the case for the available covari-
ance matrix of the EGM96 model. Our experience tells us
that the optimal combined model is obtained when no scal-
ing is applied to this matrix, provided that an accurate noise
stochastic model is used (Ditmar et al. 2006a). This is not
fully consistent with previous publications, which claimed
that the EGM96 covariance matrix has to be significantly
down-scaled (e.g.van Loon and Kusche 2005). We believe
that this discrepancy can primarily be explained by the fact
that no serious attention was paid so far to a proper data
weighting (especially, in the frequency domain).

The proposed data processing methodology has also been
applied to CHAMP data under the assumption that no knowl-
edge of non-gravitational forces is available. It was not very
surprising to see that the harmonics of relatively high de-
grees could be restored from these data accurately: non-
gravitational accelerations mostly manifest themselves at low
frequencies. It was more surprising that even low-degree har-
monics (except for degree 2) are not deteriorated when the
data are not cleaned from non-gravitational accelerations. We
believe that there are at least two factors that contributed to
such an outcome:

1. Not all observational components are contaminated by
non-gravitational accelerations equally. In particular, the
cross-track component suffers from these accelerations
less than the along-track one. Since the cross-track com-
ponent is the most accurate one and, consequently, gets
the largest weight in the data processing, the influence of
non-gravitational accelerations is reduced.

2. Even though the atmospheric drag in the along-track com-
ponent is relatively large, its direction is dependent on
whether the satellite ascends or descends. As far as the
number of ascending and descending passes over each
geographical area is approximately equal, the signals re-
lated to non-gravitational accelerations cancel each other.

Thus, we have been able to demonstrate that an accurate
gravity field model can be obtained from a satellite orbit even
if the satellite is not equipped with an accelerometer. This
opens the door for the utilization of non-dedicated satellites
for high-quality gravity field modeling. The pre-requisites
are (i) a precise knowledge of the satellite orbit (presumably,
derived from GPS data); (ii) a low altitude (at least in the peri-
gee); and (iii) an attitude control, which is needed to make
a correction for the offset between the GPS antenna and the
satellite center of mass.

The aim of gravity field modeling on the basis of non-
dedicated missions can be to monitor temporal variations of
the gravity field. Even though this task is being solved by
the GRACE mission at this moment, it is unwise to ignore
possible alternatives. This is because (i) the spatial/temporal
resolution of the GRACE mission is limited, and any addi-
tional information can improve the resolution (this would be
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important, in particular, for a further improvement of ocean
tide models); (ii) the series of GRACE data suffer from inter-
ruptions; information delivered by other satellites can, to a
certain extent, fill in these gaps; (iii) the GRACE mission will
be completed in 2009 or 2010, and no final decision regarding
a follow-on mission(s) has been made yet.

Naturally, it goes without saying that additional studies
are needed in order to assess the possible contribution of
non-dedicated satellites to monitoring temporal variations of
the Earth’s gravity field. Our preliminary estimations show
that non-dedicated satellite missions may indeed contribute
to such monitoring provided that the positioning accuracy is
improved by at least one order of magnitude compared to the
CHAMP mission.
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Appendix. Basics of the discrete Fourier transform
and circulant matrices

This appendix concisely presents the basic facts about the dis-
crete Fourier transform (DFT) and circulant matrices. Only
the statements directly related to the contents of the article
are included (for more information see, e.g., Davis 1979;
Voevodin and Tyrtyshnikov 1987).

1. Discrete Fourier transform. Let x be a vector composed
of N real numbers and let s be its discrete spectrum (a
vector comprised N complex numbers). Then, the rela-
tionship between x and s can be written as

s = 1

N
F∗x, (36)

where F is the DFT matrix of size N × N with entries
defined as {F}mq = eimq 2π

N , and F∗ is the Hermitian con-
jugate (transposed complex conjugate) of F (for the sake
of convenience, all the entries in vectors and matrices
hereafter are enumerated starting from 0, not from 1). All
the elements of the spectrum s are real (not complex) if
the elements of the original vector x are symmetric with
respect to the element number N/2 (i.e., {x}i = {x}N−i ).

2. Inverse discrete Fourier transform. It is easy to show that
F∗, up to a scaling factor, coincides with the inverse of F:
F∗F = FF∗ = NI. Therefore, application of the matrix
F to both parts of Eq. 36 results in the inverse DFT:

x = Fs, (37)

The DFT is a reversible operation: the sequential appli-
cation of the direct and inverse Fourier transform results
in the original vector.

3. Periodicity properties. In the DFT, a periodicity of vec-
tors both in the time domain and in the Fourier domain is
assumed. This means that the result of the DFT does not
change if the elements of the input vector are re-ordered
in time in a cyclic way, i.e., such that the indices of some
elements (at the beginning or at the end of the vector) are
increased or decreased by N. Similarly, the result of the
inverse DFT does not change if the elements of the input
vector are re-ordered in the frequency domain in a cyclic
way.

4. Circulant matrices. Let H be a diagonal matrix of size
N × N . Then, a matrix C defined as

C = FHF∗ (38)

is a circulant matrix, i.e. a matrix where each row is a
copy of the previous one obtained by putting the last ele-
ment into the first place, so that the whole row gets shifted
by one position to the right. Obviously, the whole con-
tent of a circulant matrix is defined by the contents of the
first row. Application of a circulant matrix to a vector is a
cyclic convolution, i.e., the convolution carried out under
the assumption that the input and the output vectors are
periodic.

5. Circulant matrices and Fourier transforms. Let us intro-
duce a vector h composed of the diagonal elements of
the matrix H from Eq. 38. Furthermore, let c be a vec-
tor coinciding with the first row of the matrix C. Then, c
is the result of the inverse DFT applied to the vector h:
c = Fh.

6. Filtering. Filtering in the Fourier domain is multiplica-
tion of a spectrum with certain filter coefficients: s(h)

j =
Nh j s j , where s j are the elements of the input spectrum,

s(h)
j are the elements of the filtered spectrum, and Nh j

are the elements of the filter. In matrix–vector notation,
this can be written as

s(h) = NHs. (39)

Application of the inverse DFT to Eq. 39 yields

x(h) = NFs(h) = FHF∗Fs = Cx, (40)

where x is the original vector in the time domain, x(h) is
the filtered vector in the time domain, and C is a circulant
matrix defined according to Eq. 38. Thus, filtering in the
Fourier domain is equivalent to the cyclic convolution in
the time domain.

7. Square root of a circulant matrix. If C is a circulant matrix
defined according to Eq. 38, then

C
1
2 = 1√

N
FH

1
2 F∗. (41)

Indeed,

C
1
2 C

1
2 = 1

N
FH

1
2 F∗FH

1
2 F∗

= FH
1
2 H

1
2 F∗ = FHF∗ = C. (42)

The pre-requisite is that all the diagonal elements of the
matrix H are non-negative. It follows from Eq. 41 that the



Frequency-dependent data weighting in global gravity field modeling 95

matrix C
1
2 is also circulant. Equation 41 can be imple-

mented with ease because H is a diagonal matrix.
8. Inverse of a circulant matrix. For a circulant matrix C

defined according to Eq. 38, it holds that

C−1 = 1

N 2 FH−1F∗. (43)

Indeed,

C−1C = 1

N 2 FH−1F∗FHF∗

= 1

N
FH−1HF∗ = 1

N
FF∗ = I. (44)

The pre-requisite is that all the diagonal elements of the
matrix H are non-zero. The matrix C−1 is also circulant.
Equation 43 can be implemented with ease.
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