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3CNRS, UPR 288 Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (EM2C), Grande Voie des Vignes,
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Owing to their long phonon mean free paths (MFPs) and high thermal conductivity, carbon nanotubes

(CNTs) are ideal candidates for, e.g., removing heat from electronic devices. It is unknown, however, how

the intrinsic phonon MFPs depend on vibrational frequency in nonequilibrium. We determine the spectrally

resolved phonon MFPs in isotopically pure CNTs from the spectral phonon transmission function calculated

using nonequilibrium molecular dynamics, fully accounting for the resistive phonon-phonon scattering processes

through the anharmonic terms of the interatomic potential energy function. Our results show that the effective room

temperature MFPs of low-frequency phonons (f < 0.5 THz) exceed 10 μm, while the MFP of high-frequency

phonons (f � 20 THz) is in the range 10–100 nm. Because the determined MFPs directly reflect the resistance

to energy flow, they can be used to accurately predict the thermal conductivity for arbitrary tube lengths by

calculating a single frequency integral. The presented results and methods are expected to significantly improve

the understanding of nonequilibrium thermal transport in low-dimensional nanostructures.

DOI: 10.1103/PhysRevB.91.115426 PACS number(s): 63.22.−m, 05.60.Cd, 44.10.+i

I. INTRODUCTION

The small atomic mass, rigid sp2 bonding, and high

structural order of carbon atoms in carbon nanotubes (CNTs)

and graphene gives rise to exceptional mechanical and thermal

properties. For example, the thermal conductivity (TC) of

carbon nanotubes has been theoretically predicted [1–7] and

experimentally measured [8–11] to be in the range 500–7000

W/(mK) at room temperature, depending on, e.g., the tube

chirality, tube length, and experimental setups [12]. The

high TC, mechanical strength and the vast possibilities of

chemical functionalization make carbon nanotubes attractive

for applications aiming at, e.g., efficient heat removal in

electronics [13], thermoelectric interface materials [14,15],

and phonon waveguides and rectifiers [16,17].

Heat is carried in CNTs primarily by the propagating lattice

vibrations, phonons [18]. One of the key unknown factors

determining the phononic TC in isotopically pure nanotubes

is the mean free path (MFP) describing the characteristic

distance of resistive phonon-phonon scattering events. The

effective MFP in CNTs has been experimentally estimated to

be in the range 500–750 nm at room temperature [8,9]. These

estimates are based, however, on a kinetic formula, which

is known to underestimate the true MFP [19] and cannot

account for the strong dependence of MFP on the phonon

frequency [20–24]. The frequency-dependence is visible, e.g.,

in the thermal conductivity accumulation function [25,26],

whose experimental measurement has been recently enabled

by advanced spectroscopic techniques [27–30].

The frequency-dependent MFPs have been previously

determined theoretically either from the decay of the mode

energy correlation function [31,32] in equilibrium molecular

*kimmo.saaskilahti@aalto.fi
†sebastian.volz@ecp.fr

dynamics (EMD) simulations [5,33] or by calculating

the phonon-phonon scattering rates from first principles

[21–24,34,35]. While it is known that only the umklapp

scattering processes can directly generate thermal resistance

due to the change in crystal momentum [36,37], both normal

and umklapp scattering processes contribute to redistributing

the mode energy. Therefore, the MFPs obtained from EMD

simulations do not directly reflect the decay of the heat flux

in nonequilibrium [36]. In first-principles calculations, on

the other hand, typically only three-phonon scattering in the

first order is considered. Higher-order scattering processes

and four-phonon scattering processes are either neglected or

treated approximately [22]. In addition, determining TC from

the first-principles scattering rates requires [24] the solution of

the highly complicated Boltzmann equation.

In this paper, we provide an in-depth evaluation of

the frequency dependence of the effective phonon MFPs

and phonon transmission functions based on nonequilibrium

molecular dynamics (NEMD) simulations and the generalized

form of the recently developed expression for the spectral

decomposition of the nonequilibrium heat current [38]. The

obtained phonon MFPs reflect the length dependence of

the transmission function arising from the phonon-phonon

interactions implicitly included in our simulations through the

anharmonic terms in the interatomic potential energy function.

Because the nonequilibrium heat current inherently accounts

for the different roles of normal and umklapp processes in

generating thermal resistance, the determined MFPs capture

the subtle interplay of normal and umklapp processes. In

contrast to first-principles calculations of MFPs, NEMD also

accounts for all orders of all phonon-phonon interactions and

the effective MFPs can be directly used to predict TC, as shown

below.

The paper is organized as follows. We first generalize the

recently developed expression for the spectral heat current

to describe many-body potentials in Sec. II A. We then
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define the generalized phonon transmission function and

show how the MFPs can be determined from the length

dependence of the transmission in Sec. II B. In Sec. II C,

we discuss the decomposition of the transmission function

into different angular wave-number contributions, allowing for

calculating the relaxation times for different wave numbers

and comparison to other methods. The molecular dynamics

setup and the numerical methods are presented in Sec. III A,

followed by a detailed overview of the numerically calculated

length-dependent transmission functions and mean free paths

in Sec. III B and their dependence on the angular wave numbers

and comparison to EMD in Sec. III C.

II. THEORY

A. Spectral heat current formula

To calculate the phonon MFPs from the decrease of the

phonon transmission function as a function of tube length,

we need to evaluate the phonon transmission function from

the anharmonic NEMD simulations. To achieve this, we first

need to generalize our previous approach [38] to calculate

the spectrally resolved heat current to many-body potentials

such as the Tersoff potential. Here we briefly overview this

generalization by complementing the previous derivation of

Ref. [38].

The expression for the interparticle heat current Qi→j

between atoms i and j (located at different sides of the

imaginary cross-section) is given by [39,40]

Qi→j = 1
2
〈Fji · vj − Fij · vi〉. (1)

Here, the angular brackets denote the steady-state nonequilib-

rium ensemble average assumed to be equal to the time average

due to ergodicity, the velocities of atoms i and j are denoted

by vi and vj , respectively, and Fji is the interparticle force

on atom j due to atom i. The spectral heat current qi→j (ω),

satisfying Qi→j =
∫ ∞

0
(dω/2π )qi→j (ω) with ω the angular

frequency, was shown to be given by the expression [38]

qi→j (ω) = 2Re[K̃ji(ω)], (2)

where K̃ji(ω) =
∫ ∞
−∞ dteiωtKji(t) is the Fourier transform of

the force-velocity cross-correlation function defined in time-

domain as

Kji(t1 − t2) = 1
2
〈Fji(t1) · vj (t2) − Fij (t1) · vi(t2)〉. (3)

The correlation function (3) depends explicitly only on the

time difference t1 − t2 (and the Fourier transform on a single

frequency variable) due to the assumed steady state.

In contrast to Ref. [38], where the forces were generated due

to two-particle interactions (more specifically Lennard-Jones

potentials), in the present CNT systems the forces have also

three-body contributions. Therefore it is necessary to carefully

define the interatomic forces Fji used in analyzing the force-

velocity correlation function (3) using NEMD.

The required expression for the interparticle force can be

derived from the interparticle heat current, which can in turn

be calculated by monitoring the temporal rate of change of the

local energy [41,42]. The system’s total energy E = K + U ,

which consists of the kinetic energy K and potential energy

U , is written as the sum over the local energies εi of atoms

i ∈ {1, . . . ,N}:

E =
∑

i

εi . (4)

The local energy εi consists of the local kinetic and potential

energy contributions,

εi = 1
2
mv2

i + Ui(r1, . . . ,rN ), (5)

where ri is the atomic position, m is the atom mass, N is the

number of atoms and Ui the local potential energy. By using

the equation of motion

m
dvi

dt
= −

∂U

∂ri

, (6)

one can show that the temporal rate of change of local energy,

which equals the in-flow of heat current, is

dεi

dt
= −

∑

j �=i

(

−
∂Ui

∂rj

· vj +
∂Uj

∂ri

· vi

)

. (7)

Identifying the term in parentheses on the right-hand side

as the interparticle heat current and comparing to Eq. (1)

leads to conclude that for general interatomic potentials, the

interparticle force Fji used to calculate the heat currents is

given by

Fji = −2
∂Ui

∂rj

. (8)

The spectral heat current (2) can be calculated using

force and velocity trajectories from NEMD simulation with

fully anharmonic interatomic potentials. Keeping track of the

generalized interparticle forces (8) is, however, complicated

and tedious. Therefore it is useful to derive an expression

for the spectral heat current that only requires the atomic

velocity trajectories instead of explicit interparticle forces. For

a solid, this can be achieved by expanding the interparticle

force in terms of small atomic displacements ui = ri − r0
i

from the average position r0
i . It is important to emphasize

that this expansion is only applied in the post-processing

phase to simplify the calculation of the spectral heat current.

Fully anharmonic forces, accounting for all orders of phonon-

phonon interactions, are used in the NEMD simulation.

The first-order term of Eq. (2), which turns out to be the

strongly dominant term for the rigid carbon-carbon interac-

tions considered in this paper, is obtained by approximating

the total potential energy as the quadratic sum

U ≈
1

2

∑

i,j

∑

α,β

uα
i K

αβ

ij u
β

j , (9)

where the force constant matrix is

K
αβ

ij =
∂2U

∂uα
i ∂u

β

j

∣

∣

∣

∣

u=0

. (10)

Here, the coordinates are α,β ∈ {x,y,z}. From Eq. (9), one

can see that the local potential energy Ui can be approximated

by

Ui ≈
1

2

∑

j

∑

α,β

uα
i K

αβ

ij u
β

j . (11)
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This results in the generalized interparticle force [Eq. (8),

j �= i]

F
γ

ji ≈ −
∑

α

uα
i K

αγ

ij . (12)

One can then use Fourier transform identities and the

correspondence between continuous and discrete Fourier

transforms to show that the spectral heat current (2) can be

calculated from the compact expression

qi→j (ω) ≈ −
2

tsimuω

∑

α,β∈{x,y,z}

Im
〈

v̂α
i (ω)∗K

αβ

ij v̂
β

j (ω)
〉

. (13)

Here, tsimu is the simulation time and the velocities v̂α
i (ω) and

v̂
β

j (ω) are the discrete Fourier transforms of atomic velocity

trajectories vα
i (t) = u̇α

i (t) (more details below in Sec. III A).

The heat current across any interface separating disjoint atom

sets L̃ and R̃, which we will choose to be the left and right

halves of the tube, is obtained by summing over atoms in each

set:

q(ω) =
∑

i∈L̃

∑

j∈R̃

qi→j (ω). (14)

B. Transmission and mean free paths

Having expressions (13)–(14) for the spectral heat current

available, we define the generalized phonon transmission

function as

T (ω) =
q(ω)

kB	T
. (15)

In the ballistic limit, this transmission function is simply equal

to M(ω), the number of propagating modes [43], which can be

determined from the phonon band structure. The anharmonic

phonon-phonon interactions incorporated in NEMD render the

transmission function (15) dependent on the tube length L,

which can be phenomenologically taken into account through

the relation [44–47]

T (ω) =
M(ω)

1 + L/
(ω)
, (16)

where 
(ω) is the effective phonon MFP. Equation (16)

smoothly interpolates between the ballistic [T (ω) = M(ω)]

and diffusive [T (ω) ∼ 1/L] limits. It can be derived by treating

the phonon-phonon scattering events as resistance sources

and combining the resistances incoherently [44] or from the

Boltzmann transport equation under the frequency-dependent

relaxation time approximation [47]. Note that the mean free

paths of Ref. [47] correspond to the decay length of the

phonon density, proportional to the square |u|2 of the phonon

amplitude, whereas our MFP definition corresponds to the

decay in phonon amplitude u. Hence the mean free paths differ

by a factor of two. Both definitions are correct as long as one

remains consistent when using the MFPs to calculate thermal

properties.

Equation (16) has been previously used [45,46] to develop

simplified models for the ballistic-diffusive transition in CNTs.

Here, in contrast, we use Eq. (16) to determine the mean

free paths from the relation between T (ω), M(ω) and tube

length L. This procedure was also used by Savic, Mingo, and

Stewart [48] to determine the impurity scattering MFPs in

CNTs, but the harmonic Green’s function simulations they

used could not account for the phonon-phonon interactions

incorporated in our simulations through the anharmonic terms

in the interatomic potential.

From the spectral heat current q(ω), we also calculate

the spectral decomposition of the thermal conductivity κ =
Q/(A|dT /dx|) as

κ(ω) =
q(ω)

A	T
L. (17)

In the definition of κ , Q is the total heat current flowing along

the tube and A is the cross-sectional area, typically defined [12]

for the hollow tube as A = πd × 0.34 nm, where d the tube

diameter. In Eq. (17), we assumed dT /dx ≈ −	T/L for

the temperature gradient to allow for predicting the thermal

conductivity for tubes of arbitrary length by utilizing Eqs. (15)

and (16) and the MFPs:

κ(ω) =
kBL

A

M(ω)

1 + L/
(ω)
. (18)

C. Wave-number decomposition of the transmission function

At each frequency ω, there are typically multiple prop-

agating phonon modes with different polarizations and wave

vectors. These degenerate modes may have different mean free

paths due to the different probabilities for the multiple scat-

tering events. Therefore the MFPs determined from Eq. (16)

correspond to an average or effective scattering length at each

frequency. To separately derive the mean free paths of different

phonon branches and to simplify the determination of the

relaxation times from the mean free paths, we decompose the

transmission function (15) into different angular wave-number

contributions.

Owing to the rotational symmetry of the nanotube, the

phonon states in a (n,n) nanotube can be labeled by their

angular wave number kθ ∈ {−n/2 + 1, . . . ,n/2} [49,50] (we

assume throughout that n is even). The label kθ signifies

the dependence of the phonon amplitude u ∼ exp(ikθθ ) on

the azimuthal angle θ along the tube circumference. The

decomposition of the transmission function into kθ compo-

nents relies on decomposing the spectral heat current into

its angular wave-number components as q(ω) =
∑

kθ
q̃ (ω,kθ ).

This procedure, outlined in Appendix B, is similar to the one

presented in Ref. [51], where the authors decomposed the

transmission function in terms of the in-plane wave vectors at

solid-solid interfaces. There are, however, some differences

arising from the fact that that the tubes exhibit rotational

invariance instead of translational invariance.

From the decomposed spectral current, the wave-vector

decomposed transmission function is obtained as

T (ω,kθ ) =
q̃ (ω,kθ )

kB	T
. (19)

The wave-number-decomposed mean free paths 
(ω,kθ ) can

then be determined from the formula analogous to Eq. (16):

T (ω,kθ ) =
M(ω,kθ )

1 + L/
(ω,kθ )
. (20)
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Here, M(ω,kθ ) is the number of modes for given ω and

kθ , determined from the wave-number-decomposed band

structure shown below in Sec. III C for a (10,10) nanotube.

III. NUMERICAL RESULTS

A. Molecular dynamics setup

For the numerical results, we study thermal conduction in

a single-walled CNT using the computational NEMD setup

schematically depicted in Fig. 1. To generate the heat current

through the tube, the atoms located within the distance Lbath

from the left and right ends of the tube are coupled to hot

and cold Langevin heat baths at temperatures T + 	T/2 and

T − 	T/2, respectively. Two left and right-most translational

unit cells are maintained at fixed positions to prevent large

deformations and moving of the tube. The setup eliminates

the contact resistance between the tube and the heat baths

when the bath coupling time constant τbath is small and Lbath

is large [38], ensuring that the spectral heat current is only

limited by the internal conductance of the nanotube and does

not depend on τbath and Lbath.

The numerical results will be calculated for an armchair

CNT with (10,10) chirality. The diameter of the (10,10) tube

is d = 1.36 nm. The optimized Tersoff potential [52] is used

for modeling the interatomic interactions. The simulation time

step is 0.5 fs, the duration of the data collection run tsimu =
25 ns, the bath coupling time constant is chosen as τbath = 1 ps

and the length of the thermalized regions Lbath = 36 nm. The

mean bath temperature is fixed at T = 300 K and the values

of temperature bias 	T are 	T = 60 K, 	T = 100 K, and

	T = 200 K for L � 800 nm, L ∈ {1,2} μm, and L = 4 μm,

respectively. We have checked that the used values for 	T

are small enough to keep heat transfer in the linear regime by

confirming that the transmission functions remain practically

unchanged when the bias in reduced. The simulations are

performed using the LAMMPS simulation package [53,54].

We calculate the spectral heat current (13)–(14) across the

cross-section located at the middle of the tube, depicted by the

Umklapp
scattering

Normal
scattering

FIG. 1. (Color online) Schematic illustration of the NEMD setup

and phonon-phonon scattering processes. Thermal current in a CNT

is generated by coupling regions of length Lbath to Langevin heat baths

at temperatures T + 	T/2 and T − 	T/2 at the left and right ends

of the tube, respectively. Inside the unthermalized region of length L,

phonons traveling between the heat baths undergo phonon-phonon

scattering processes. Whereas the normal scattering processes only

redistribute phonon energies, the umklapp processes generate thermal

resistance, giving rise to the length-dependence of the spectral heat

current q(ω) evaluated at the middle cross-section of the tube (thick

dashed line).

thick dashed line in Fig. 1. We have checked that the spectral

current is insensitive to the exact position of the cross-section

by calculating the current spectra flowing across cross-sections

located at different positions along the tube and noting that the

spectra agree. For the calculation of q(ω), the interatomic force

constants K
αβ

ij appearing in Eq. (13) are determined from the

finite-difference derivatives of the interatomic potential energy

function. In the simulation run, the velocities vα
i (t) = u̇α

i (t) of

atoms located within the potential cutoff distance from the

cross-section in the middle of the tube are sampled at intervals

	ts = 5 fs for the duration of the simulation tsimu = Nf 	ts .

The trajectories are used to evaluate the discrete Fourier

transforms

v̂α
i (ωm) = 	ts

Nf −1
∑

k=0

eiωmk	ts vα
i (k	ts) (21)

at the discrete frequencies ωm = 2πm/(Nf 	ts), m =
0,1, . . . ,Nf − 1. The discrete Fourier transforms are then used

to calculate the spectral heat current [Eqs. (13) and (14)]

flowing across the middle cross-section. The obtained sharply

fluctuating spectral heat current is smoothened by convolving

with a Gaussian window with standard deviation 	f = 0.1

THz. We have checked that the anharmonic contribution to

the spectral heat current, disregarded in Eq. (13), is negligible

by comparing the integral of Eq. (13) to the total heat current

Q (determined from the work done by the heat baths) and

confirming that the values agree up to statistical accuracy.

B. Spectral transmission and mean free paths

Figure 2 shows the transmission function (15) for four

different tube lengths L = 0.5 nm, 50 nm, 200 nm, and 1

μm. In the shortest tube, the unthermalized part of the tube

consists of only two translational unit cells, corresponding to

the length L ≈ 0.5 nm. The transmission through such a short

tube is, as expected, practically equal to the ballistic value

M(ω), the number of propagating modes in a (10,10) CNT

Frequency (THz)
0 10 20 30 40 50

T
(ω

)

0

10

20

30

40
Ballistic
L=0.5 nm
L=50 nm
L=200 nm
L=1 μm

FIG. 2. (Color online) Spectral transmission function T (ω) =
q(ω)/(kB	T ) for various tube lengths at T = 300 K, determined

from the NEMD simulations. As expected, increasing the tube length

reduces the transmission. For L = 0.5 nm, the spectral conductance

is very close to the ballistic value M(ω) determined by counting the

number of propagating modes from the phonon band structure of

Fig. 6.
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Frequency (THz)
10 20 30 40 50

κ
(ω

) 
[W

/(
m

K
·T

H
z
)]

0

10

20

30

40

50

60

70
L=50 nm

L=200 nm

L=600 nm

L=1 μm

FIG. 3. (Color online) Spectral thermal conductivity κ(ω) =
q(ω)L/(A	T ) for various tube lengths at T = 300 K, determined

from the NEMD simulations. The absolute contribution of high

frequencies (f � 15 THz) has converged as a function of length for

L = 1 μm due to the short mean free paths. The absolute contribution

of low-frequency vibrations, on the other hand, increases because of

the (partially) ballistic transport.

(black, solid line), showing that the heat current flowing in the

tube is only limited by the number of propagating modes and

not by contact resistance to heat baths.

As the tube length is increased to L = 50 nm, the transmis-

sion function decreases significantly due to phonon-phonon

scattering. The decrease in the transmission is especially strong

in the high frequencies due to the large available phase-space

for phonon-phonon scattering and the small group velocity.

For f � 5 THz, the transmission is still nearly equal to the

ballistic value for L = 50 nm, suggesting that MFP in this

frequency range is longer than 50 nm. For L = 1 μm, the

transmission is close to ballistic below 1 THz, implying that

such low-frequency modes can propagate ballistically even

through a 1-μm-long tube.

Figure 3 shows the spectral decomposition (17) of thermal

conductivity for various tube lengths. In the shortest tubes, the

spectral conductivity increases as a function of tube length in

the whole frequency range due to ballistic phonon transport.

Once the tube length exceeds the mean free path, phonon

transport becomes more diffusive and the spectral conductivity

eventually converges. In Fig. 3, this convergence can be

observed for the longest tubes for f � 12 THz, suggesting

that the MFPs in this frequency range are markedly below 600

nm. At low frequencies, the conductivity still significantly

increases, suggesting that the MFPs are in the micrometer

range.

The MFPs obtained by fitting 
(ω) to Eq. (16) are shown

in Fig. 4. The inset demonstrates the fitting procedure, where

M(ω)/T (ω) has been calculated for tube lengths L = 0.5 nm,

200 nm, 400 nm, 600 nm, 800 nm, 1 μm, 2 μm, and 4 μm. The

values of 
(ω) are obtained from the inverse slope of the linear

fit to the data points and they are independent of the tube length.

The shaded regions in Fig. 4 reflect the 92.5% confidence

interval for the slope. Figure shows that the MFP at high

frequencies f > 20 THz is around 
 ∼ 10–100 nm, reflecting

the strong reduction of the transmission in this frequency range

for a tube of length L = 200 nm. At low frequencies, however,
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FIG. 4. (Color online) Log-log plot of the mean free path 
(ω) at

T = 300 K. The inset shows the scaled inverse transmission functions

M(ω)/T (ω) as a function of tube length L. The mean free paths

are determined from the inverse slopes of the least-square linear

fits (dashed, black lines in the inset) calculated using an automated

numerical routine at each frequency. The shaded regions in the main

figure correspond to the 92.5% confidence interval for the slope.

Below 0.25 THz, the confidence interval is very large (not shown)

due to numerical uncertainties, inhibiting the reliable determination

of mean free paths for very small frequencies.

MFP is longer and exceeds one micrometer below 2.9 THz,

reaching 
(ω) ≈ 25 μm for f = 0.25 THz. Between 1 THz

and 18 THz, the MFP can be seen to scale as 
(ω) ∼ ω−0.97.

To see how the long mean free paths of Fig. 4 affect the

conductivity, Fig. 5 shows TC κ = QL/(A	T ) determined

from NEMD simulations as a function of tube length L. The

total average heat current Q can be determined either by

integrating the spectral heat current q(ω) over the positive

frequencies or from the average power exchange with the
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FIG. 5. (Color online) Thermal conductivity in semilogarithmic

scale. NEMD results (circles) are compared to the estimates κ =
κlow-f + κhigh-f and κ = κhigh-f for two different forms of κlow-f . Here,

κlow-f and κhigh-f are, respectively, the contributions of frequencies

below and above 0.25 THz to the integral of Eq. (18). The dash-

dotted line includes only the high-frequency contribution calculated

numerically by using the MFP data of Fig. 4. The low-frequency

contribution has been calculated analytically assuming either that


(ω) ∝ ω−1 or 
(ω) = 25 μm for low frequencies.
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K. SÄÄSKILAHTI, J. OKSANEN, S. VOLZ, AND J. TULKKI PHYSICAL REVIEW B 91, 115426 (2015)

heat baths. Figure shows that TC increases as a function

of tube length L even up to L = 4 μm, the longest simu-

lated tube length. The spectral decomposition (17) of TC shows

that the low-frequency phonons (f � 3 THz) are primarily

responsible for the increase of conductivity in the longest

simulated tubes (not shown).

Because simulations for long tubes are very time-

consuming, we have estimated TC for arbitrary L by using

the MFPs shown in Fig. 4 and the spectral decomposition (18)

of TC. Figure 5 also illustrates how the low [0,0.25] THz and

high [0.25,∞) THz frequency parts of the integral contribute to

the TC by separately showing the high-frequency contribution

κhigh-f and the total κ = κlow-f + κhigh-f , where MFP in κlow-f

has been assumed to scale as 
(ω) ∝ ω−1 or 
(ω) = 25 μm.

The decomposition is discussed in more detail in Appendix A.

The conductivity κhigh-f due to high-frequency phonons

predicts the conductivity very well for all the simulated tube

lengths, but the contribution of the low-frequency component

κlow-f determines the scaling of TC for longer lengths. This

contribution depends sensitively on the exact spectral form of

low-frequency MFP, which we cannot extract reliably from

the current simulations. If 
(ω) scales as 
(ω) ≈ v/ω for

ω → 0+, TC diverges logarithmically. If MFP diverges more

slowly or tends to a constant, κ converges as shown in Fig. 5.

We note that although TC of one-dimensional chains is known

to diverge following a power-law [55], it is unknown if CNTs

(or other physical systems) are truly one-dimensional in this

respect. More experiments and simulations for longer tubes

are still needed to settle the length-scaling of TC in long tubes.

C. Wave-number decomposition and relaxation times

We now turn to the calculation of the transmission functions

and mean free paths for different angular wave numbers

kθ . The phonon band structure of a (10,10) nanotube has

been calculated earlier by Ong and Pop [56] for different

kθ from the spectral energy density. For completeness, we

show the decomposed band structure in Fig. 6, calculated here

directly by determining the spatial Fourier transform of the

wave-number-decomposed force constant matrix (defined in

Appendix B) along the tube axis and diagonalization. As

shown earlier [49,50], the longitudinal acoustic (LA) and

twist (TW) modes, which have linear dispersion ω ∼ kx for

small wave vector kx , are constant in amplitude along the

tube circumference and therefore belong to the kθ = 0 branch.

The flexural (F) modes, which obey the quadratic dispersion

law ω ∼ k2
x at small wave vectors, can be seen to belong to the

kθ = ±1 branches. By separately calculating the transmissions

T (ω,kθ = 0) andT (ω,kθ = 1) from Eq. (19), we can therefore

separately study the damping of linear and quadratic modes.

The MFPs 
(ω,kθ = 0) are shown in Fig. 7(a). To

save computational resources, we calculated the decomposed

transmission functions T (ω,kθ ) (shown for selected lengths in

Appendix B) for a single length L = 1 μm and determined

MFP directly from Eq. (20) instead of performing calculations

for multiple lengths and performing linear fitting as above.

The simulation time duration was increased to tsimu = 100 ns

to enhance the statistical accuracy, allowing for reducing the

width of the Gaussian smoothing window to 	f = 0.05 THz

for better resolution at low frequencies. Figure 7(a) shows
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FIG. 6. (Color online) Wave-number-decomposed low-freque-

ncy band structure of a (10,10) CNT calculated using the optimized

Tersoff potential [52]. At low frequencies, the longitudinal acoustic

(LA) and twist (TW) modes with kθ = 0 have linear dispersion. The

flexural (F) mode with quadratic dispersion is doubly degenerate,

with the two branches corresponding to kθ = ±1. The wave vector

kx along the tube axis is scaled by π/acell, where acell =
√

3aCC and

aCC is the nearest neighbor carbon-carbon distance.

that the MFPs of LA and TW modes are strongly frequency-

dependent at low frequencies and extend up to 10 μm.

To compare our results to the phonon lifetimes determined

from EMD simulations, we also show the frequency-dependent

relaxation time τ (ω,kθ ) = 
(ω,kθ )/v(ω,kθ ) in Fig. 7(b).

Because there are typically multiple phonon branches (index

by integer p) propagating at each ω and kθ , one needs to

choose which group velocity vp(ω,kθ ) to use in calculating

τ (ω,kθ ). We choose to use the maximum group velocity

vmax(ω,kθ ) = maxp vp(ω,kθ ) as the group velocity v(ω,kθ ) at

each frequency ω. We have checked that very similar results

would be obtained by employing the average group velocity at

each frequency ω in the calculation of τ (ω,kθ ).

Figure 7(b) shows that the relaxation time for kθ = 0

decreases linearly in the log-log axis as a function of frequency

for f � 0.6 THz. Linear regression delivers the fit τ (ω,kθ =
0) ∼ ω−1.23 (dashed line). Below f � 0.6 THz, however, the

power-law breaks down, suggesting that the divergence does
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FIG. 7. (Color online) (a) Mean free path 
(ω,kθ ) for kθ = 0.

Below 5 THz, only the acoustic LA and TW modes can be excited

(see Fig. 6). The mean free path has been determined from Eq. (20)

for L = 1 μm. The relaxation time τ (ω,kθ ) shown in (b) is well fitted

by the power-law τ (ω,kθ = 0) ∼ ω−1.23 (dashed line).
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FIG. 8. (Color online) (a) Mean free path 
(ω,kθ ) for kθ = 1,

corresponding solely to the flexural (F) mode below f � 3 THz (see

Fig. 6). The mean free path has been determined from Eq. (20) for

L = 1 μm. The relaxation time τ (ω,kθ = 1) shown in (b) is well

fitted by the power-law τ (ω,kθ = 1) ∼ ω−1.08 (dashed line) above

0.2 THz.

not extend all the way to ω → 0+. Because of the difficulties in

determining the mean free paths at the very low frequencies, we

cannot, however, certainly conclude if the break-down of the

power-law is a physical phenomenon or a numerical artefact.

Figure 8 shows the MFP 
(ω,kθ ) and the relaxation time

τ (ω,kθ ) for the angular wave number kθ = 1, corresponding

to the F mode at low frequency. Below 10 THz, the relax-

ation time τ (ω,kθ = 1) follows the power-law τ (ω,kθ = 1) ∼
ω−1.08 down to f ≈ 0.2 THz. Below 0.2 THz, the power-law

seems to break down, but because the low-frequency MFPs

are prone to numerical uncertainties, we cannot rule out the

possibility that the relaxation time of the flexural mode could

actually diverge.

The found scaling laws for τ (ω,kθ ) differ from the

traditional umklapp scattering lifetime τU (ω) ∼ ω−2, which

has been applied in multiple works to estimate the length-

dependence of TC in CNTs [45,57,58], but which may not

be applicable for CNTs due to the strict selection rules for

phonon-phonon scattering [23,24]. EMD simulations [33]

have suggested τ (ω) ∼ ω−1.1 scaling for the TW phonon

lifetime in a (10,10) tube, which is close to τ (ω,kθ = 0) ∼
ω−1.23 we found from NEMD. On the other hand, the

same equilibrium simulations also predict τ (ω) ∼ ω−2 for the

flexural (F) mode, in contrast to τ (ω,kθ = 1) ∼ ω−1.08 found

from NEMD.

These differences demonstrate that the relaxation times

determined from NEMD are not directly comparable to the

relaxation times determined from EMD or first-principles

calculations: the latter methods reflect the total scattering

rate in thermal equilibrium, neglecting the different roles

of normal and umklapp processes in generating thermal

resistance and their complicated interplay in nonequilibrium

situations. Considering that thermal transport is inherently a

nonequilibrium process, we expect that the relaxation times

determined from the NEMD simulations are the actually

relevant scattering times that can be used to make predictions

of, say, the length-dependence of TC. Quantum effects, which

are expected to reduce the scattering rates particularly at low

temperatures, could also be partially included in the NEMD

method by replacing the classical heat baths employed in this

work by quantum heat baths [59].

IV. CONCLUSION

We have determined the frequency-dependent transmission

function and phonon mean free paths in carbon nanotubes

from nonequilibrium molecular dynamics simulations. The

calculations relied on determining the spectral heat current

for different tube lengths. Because our simulations exclude

both boundary and impurity scattering, the MFPs reflect the

scattering length in infinitely long, pristine tubes. Our results

showed that the MFPs are approximately proportional to ω−0.97

over a wide range of frequencies and exceed 10 μm for the

low-frequency (f < 0.5 THz) phonons. This leads to a thermal

conductivity that increases as a function of tube length even

in tubes as long as 4 μm. The determined MFPs can be used

to accurately predict the thermal conductivity of tubes shorter

than 4 μm and they also provide insight into the conductivity of

longer tubes. Relaxation times of selected phonon modes were

shown to obey power-laws as a function of frequency, with

generally different exponents than found using equilibrium

simulations.

The presented methods for determining the contributions

of different vibrational frequencies to thermal transfer are

expected to be very useful in thermal engineering of carbon

nanotube devices. Such calculations can be expected to im-

prove, for example, the efficiency of thermoelectric materials

by guiding the engineering process aiming at enhancing the

contact to the heat source and sink. The method can also

deliver transparent picture of the effect of nonlinearities on

thermal transfer, which is vital in enhancing the performance

of nonlinear thermal devices such as thermal diodes [17]. More

efficient design of such nonlinear devices could eventually

enable information processing using phonons [60].
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APPENDIX A: SPECTRAL DECOMPOSITION AND THE

LENGTH-DEPENDENCE OF THERMAL CONDUCTIVITY

In this Appendix, we discuss the separation of the thermal

conductivity (TC) into low and high-frequency components

in more detail. As stated in Sec. III B, we separate κ =
QL/(A	T ) into its low- and high-frequency components as

κ = κlow-f + κhigh-f by using the spectral decomposition (18):

κlow-f =
kBL

A

∫ ωc

0

dω

2π

M(ω)

1 + L/
(ω)
(A1)

and

κhigh-f =
kBL

A

∫ ωmax

ωc

dω

2π

M(ω)

1 + L/
(ω)
. (A2)
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K. SÄÄSKILAHTI, J. OKSANEN, S. VOLZ, AND J. TULKKI PHYSICAL REVIEW B 91, 115426 (2015)

Here, ωc = 2πfc is the cutoff frequency between the low and

high frequencies and ωmax = 2π × 50 THz is the maximum

vibrational frequency. The long-L limit of the high-frequency

contribution κhigh-f is simple to evaluate, because 
(ω)

obtained from NEMD simulations is bounded from above

in the integration range ωc � ω � ωmax. Therefore, for L ≫
maxω∈[ωc,ωmax] 
, the high-frequency contribution converges to

the value

κhigh-f =
kB

A

∫ ωmax

ωc

dω

2π
M(ω)
(ω). (A3)

The long-L limit of the low-frequency part can be similarly

evaluated if MFP is bounded from above. If this is not the

case and MFP diverges at low frequencies as 
(ω) = bω−η

with η > 0, one can calculate the asymptotic behavior of the

low-frequency part (A1) by choosing the cutoff small enough

(e.g. fc = 0.5 THz) so that only the four acoustic modes can be

excited for f < fc so that M(ω) = 4. Then Eq. (A1) becomes

(for η �= 1)

κlow-f =
4kBL

A

∫ ωc

0

dω

2π

1

1 + Lωη/b
(A4)

=
4kBLωc

2πA
2F1

(

1,
1

η
,1 +

1

η
, − ωη

c

L

b

)

(A5)

=
4kB

2πA
Ŵ

(

1 +
1

η

)[

b1/ηŴ

(

1 −
1

η

)

L1−1/η

+ bω1−η
c Ŵ

(

1

η
− 1

)

Ŵ

(

1

η

)−2]

+ O

(

1

L

)

, (A6)

where 2F1 is the hypergeometric function [61], written in the

third line using its asymptotic expansion for large L and the

gamma function. For η = 1, the integral (A1) is

κlow-f =
4kBb

A
ln

(

1 +
Lωc

b

)

. (A7)

FIG. 9. (Color online) (a) Schematic description of the division

of the x-translational unit cell in a (4,4) armchair CNT into four

minimal unit cells (rectangles) labeled by the index l. The index

m ∈ {1,2,3,4} specifies the atom inside the minimal unit cell, as

shown in (b). Note that we have plotted the CNT in two dimensions

by choosing the vertical axis to correspond to be the azimuthal angle

θ around the tube. The horizontal x axis is the tube axis.

Equations (A6) and (A7) then directly lead to the conclusion

that TC converges for η < 1, diverges as κ(L) ∝ L1−1/η

for η > 1 and diverges logarithmically for η = 1. Similar

connection between the low-frequency scattering rates and

the divergence of TC has been earlier proposed using mode-

coupling theory [39] and by treating the finite length of the

tube as a source of boundary scattering [22].

APPENDIX B: DERIVATION OF THE WAVE-NUMBER

DECOMPOSITION OF THE TRANSMISSION FUNCTION

We outline here the decomposition of the spectral heat cur-

rent q(ω) into angular wave-number components q(ω,kθ ) for

an (n,n) nanotube. We assume throughout that the velocities

and the force constant matrix are represented in cylindrical

coordinates to respect the rotational symmetry of the tube.

The x-translational unit cell, which can be replicated along

the tube axis to produce the whole CNT, contains 4n atoms.

This unit cell can be divided into n minimal translational unit

cells, which repeat along the circumference as shown in Fig. 9.

Each atom in the x-translational unit cell can be labeled by

its indices l ∈ {1,2, . . . ,n} and m ∈ {1,2,3,4}, which specify

the minimal unit cell and the atom index inside the minimal
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FIG. 10. (Color online) Decomposed transmission function

T (ω; kθ ) for (a) kθ = 0 and (b) kθ = 1. At low frequencies, kθ = 0

corresponds to the LA and TW modes, whereas kθ = 1 corresponds

to the flexural (F) mode.
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cell, respectively. We denote the discrete Fourier transformed

velocity vectors of the atoms belonging to the unit cells at the

left and right sides of the imaginary plane separating the unit

cells by v̂L
l,m,α(ω) and v̂R

l,m,α(ω), respectively, where the greek

index α stands for the co-ordinates x, y and z. Each minimal

unit cell l is in angle θl = 2πl/n + θ0 with respect to the

positive y axis, where θ0 is a constant angle depending on the

chosen orientation of the positive y axis. The transformation

of the velocities to the angular wave-number basis is then

ṽL
kθ ,m,α(ω) =

∑

l∈{1,...,n}

eikθ θl v̂L
l,m,α(ω), (B1)

and similarly for v̂R . The force constant matrix K specifying

the force constants between the atoms located in these

neighboring unit cells can be similarly transformed into the

angular wave-number basis as

K̃
kθ

m1,α;m2,β
=

∑

l1∈{1,...,n}

eikθ (θl1
−θl2

)Kl1,m1,α;l2,m2,β , (B2)

where l2 is arbitrary. With these decompositions at hand, it

is straightforward to show that the decomposed spectral heat

current is

q̃ (ω,kθ ) = −
2

ωntsimu

∑

m1,m2

∑

α,β

× Im
〈

ṽL
kθ ,m1,α

(ω)∗K̃
kθ

m1,α;m2,β
ṽR

kθ ,m2,β
(ω)

〉

. (B3)

Figure 10 shows the wave-number-decomposed transmis-

sion function (19) for (a) kθ = 0 and (b) kθ = 1. For kθ = 0,

only the LA and TW modes can be excited at low frequencies,

so the ballistic transmission in Fig. 10(a) is therefore equal to

two at low frequencies. For L = 200 nm, the low-frequency

transmission is close to two due to the long mean free path of

LA and TW modes. For L = 1 μm, however, the transmission

at f � 5 THz is already significantly smaller, suggesting that

MFP is of the order of micrometer. The MFP can also be seen

to decrease as a function of frequency.

For kθ = 1 [Fig. 10(b)], only the flexural F mode with

quadratic dispersion ω ∼ k2
x can be excited below f < 3 THz.

The ballistic transmission is therefore equal to unity. Again, the

transmission at low frequencies remains close to the ballistic

value even for L = 200 nm at T = 300 K. For L = 1 μm,

however, the flexural mode is visibly dampened, with the

damping increasing as a function of frequency.
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[2] J. Che, T. Çagin, and W. A. G. III, Nanotechnol. 11, 65 (2000).

[3] M. A. Osman and D. Srivastava, Nanotechnol. 12, 21 (2001).

[4] N. Mingo and D. A. Broido, Phys. Rev. Lett. 95, 096105 (2005).

[5] D. Donadio and G. Galli, Phys. Rev. Lett. 99, 255502 (2007).

[6] A. Cao and J. Qu, J. Appl. Phys. 112, 013503 (2012).

[7] R. N. Salaway and L. V. Zhigilei, Int. J. Heat Mass Transfer 70,

954 (2014).

[8] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett.

87, 215502 (2001).

[9] C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5,

1842 (2005).

[10] E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, and H. Dai,

Phys. Rev. Lett. 95, 155505 (2005).

[11] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett.

6, 96 (2006).

[12] A. M. Marconnet, M. A. Panzer, and K. E. Goodson, Rev. Mod.

Phys. 85, 1295 (2013).

[13] S. Kaur, N. Raravikar, B. A. Helms, R. Prasher, and D. F.

Ogletree, Nat. Comm. 5, 3082 (2014).

[14] R. S. Prasher, X. J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen,

S. Volz, F. Cleri, and P. Keblinski, Phys. Rev. Lett. 102, 105901

(2009).

[15] Y. Gao, A. Marconnet, M. Panzer, S. LeBlanc, S. Dogbe,

Y. Ezzahri, A. Shakouri, and K. Goodson, J. Electron. Mater.

39, 1456 (2010).

[16] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl,

Phys. Rev. Lett. 99, 045901 (2007).

[17] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science

314, 1121 (2006).

[18] A. A. Balandin, Nat. Mater. 10, 569 (2011).

[19] Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74, 3005

(1999).

[20] P. Klemens and D. Pedraza, Carbon 32, 735 (1994).

[21] J. X. Cao, X. H. Yan, Y. Xiao, and J. W. Ding, Phys. Rev. B 69,

073407 (2004).

[22] N. Mingo and D. A. Broido, Nano Lett. 5, 1221 (2005).

[23] Y. Gu and Y. Chen, Phys. Rev. B 76, 134110 (2007).

[24] L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 80,

125407 (2009).

[25] C. Dames and G. Chen, in Thermoelectrics Handbook, Macro

to Nano, edited by D. M. Rowe (Taylor & Francis, New York,

2006).

[26] F. Yang and C. Dames, Phys. Rev. B 87, 035437 (2013).

[27] A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S.

Dresselhaus, K. A. Nelson, and G. Chen, Phys. Rev. Lett. 107,

095901 (2011).

[28] K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. McGaughey,

and J. A. Malen, Nat. Commun. 4, 1640 (2013).

[29] J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J.

Minnich, T. Kehoe, C. M. Sotomayor-Torres, G. Chen, and

K. A. Nelson, Phys. Rev. Lett. 110, 025901 (2013).

[30] J. Cuffe, J. K. Eliason, A. A. Maznev, K. C. Collins, J. A.

Johnson, A. Shchepetov, M. Prunnila, J. Ahopelto, C. M. S.

Torres, G. Chen, and K. A. Nelson, arXiv:1408.6747.

[31] A. J. C. Ladd, B. Moran, and W. G. Hoover, Phys. Rev. B 34,

5058 (1986).

[32] A. J. H. McGaughey and M. Kaviany, Phys. Rev. B 69, 094303

(2004).

[33] Z.-Y. Ong, E. Pop, and J. Shiomi, Phys. Rev. B 84, 165418

(2011).

115426-9

http://dx.doi.org/10.1103/PhysRevLett.84.4613
http://dx.doi.org/10.1103/PhysRevLett.84.4613
http://dx.doi.org/10.1103/PhysRevLett.84.4613
http://dx.doi.org/10.1103/PhysRevLett.84.4613
http://dx.doi.org/10.1088/0957-4484/11/2/305
http://dx.doi.org/10.1088/0957-4484/11/2/305
http://dx.doi.org/10.1088/0957-4484/11/2/305
http://dx.doi.org/10.1088/0957-4484/11/2/305
http://dx.doi.org/10.1088/0957-4484/12/1/305
http://dx.doi.org/10.1088/0957-4484/12/1/305
http://dx.doi.org/10.1088/0957-4484/12/1/305
http://dx.doi.org/10.1088/0957-4484/12/1/305
http://dx.doi.org/10.1103/PhysRevLett.95.096105
http://dx.doi.org/10.1103/PhysRevLett.95.096105
http://dx.doi.org/10.1103/PhysRevLett.95.096105
http://dx.doi.org/10.1103/PhysRevLett.95.096105
http://dx.doi.org/10.1103/PhysRevLett.99.255502
http://dx.doi.org/10.1103/PhysRevLett.99.255502
http://dx.doi.org/10.1103/PhysRevLett.99.255502
http://dx.doi.org/10.1103/PhysRevLett.99.255502
http://dx.doi.org/10.1063/1.4730908
http://dx.doi.org/10.1063/1.4730908
http://dx.doi.org/10.1063/1.4730908
http://dx.doi.org/10.1063/1.4730908
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.065
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.065
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.065
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.065
http://dx.doi.org/10.1103/PhysRevLett.87.215502
http://dx.doi.org/10.1103/PhysRevLett.87.215502
http://dx.doi.org/10.1103/PhysRevLett.87.215502
http://dx.doi.org/10.1103/PhysRevLett.87.215502
http://dx.doi.org/10.1021/nl051044e
http://dx.doi.org/10.1021/nl051044e
http://dx.doi.org/10.1021/nl051044e
http://dx.doi.org/10.1021/nl051044e
http://dx.doi.org/10.1103/PhysRevLett.95.155505
http://dx.doi.org/10.1103/PhysRevLett.95.155505
http://dx.doi.org/10.1103/PhysRevLett.95.155505
http://dx.doi.org/10.1103/PhysRevLett.95.155505
http://dx.doi.org/10.1021/nl052145f
http://dx.doi.org/10.1021/nl052145f
http://dx.doi.org/10.1021/nl052145f
http://dx.doi.org/10.1021/nl052145f
http://dx.doi.org/10.1103/RevModPhys.85.1295
http://dx.doi.org/10.1103/RevModPhys.85.1295
http://dx.doi.org/10.1103/RevModPhys.85.1295
http://dx.doi.org/10.1103/RevModPhys.85.1295
http://dx.doi.org/10.1038/ncomms4082
http://dx.doi.org/10.1038/ncomms4082
http://dx.doi.org/10.1038/ncomms4082
http://dx.doi.org/10.1038/ncomms4082
http://dx.doi.org/10.1103/PhysRevLett.102.105901
http://dx.doi.org/10.1103/PhysRevLett.102.105901
http://dx.doi.org/10.1103/PhysRevLett.102.105901
http://dx.doi.org/10.1103/PhysRevLett.102.105901
http://dx.doi.org/10.1007/s11664-010-1256-7
http://dx.doi.org/10.1007/s11664-010-1256-7
http://dx.doi.org/10.1007/s11664-010-1256-7
http://dx.doi.org/10.1007/s11664-010-1256-7
http://dx.doi.org/10.1103/PhysRevLett.99.045901
http://dx.doi.org/10.1103/PhysRevLett.99.045901
http://dx.doi.org/10.1103/PhysRevLett.99.045901
http://dx.doi.org/10.1103/PhysRevLett.99.045901
http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1126/science.1132898
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1038/nmat3064
http://dx.doi.org/10.1063/1.123994
http://dx.doi.org/10.1063/1.123994
http://dx.doi.org/10.1063/1.123994
http://dx.doi.org/10.1063/1.123994
http://dx.doi.org/10.1016/0008-6223(94)90096-5
http://dx.doi.org/10.1016/0008-6223(94)90096-5
http://dx.doi.org/10.1016/0008-6223(94)90096-5
http://dx.doi.org/10.1016/0008-6223(94)90096-5
http://dx.doi.org/10.1103/PhysRevB.69.073407
http://dx.doi.org/10.1103/PhysRevB.69.073407
http://dx.doi.org/10.1103/PhysRevB.69.073407
http://dx.doi.org/10.1103/PhysRevB.69.073407
http://dx.doi.org/10.1021/nl050714d
http://dx.doi.org/10.1021/nl050714d
http://dx.doi.org/10.1021/nl050714d
http://dx.doi.org/10.1021/nl050714d
http://dx.doi.org/10.1103/PhysRevB.76.134110
http://dx.doi.org/10.1103/PhysRevB.76.134110
http://dx.doi.org/10.1103/PhysRevB.76.134110
http://dx.doi.org/10.1103/PhysRevB.76.134110
http://dx.doi.org/10.1103/PhysRevB.80.125407
http://dx.doi.org/10.1103/PhysRevB.80.125407
http://dx.doi.org/10.1103/PhysRevB.80.125407
http://dx.doi.org/10.1103/PhysRevB.80.125407
http://dx.doi.org/10.1103/PhysRevB.87.035437
http://dx.doi.org/10.1103/PhysRevB.87.035437
http://dx.doi.org/10.1103/PhysRevB.87.035437
http://dx.doi.org/10.1103/PhysRevB.87.035437
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1103/PhysRevLett.107.095901
http://dx.doi.org/10.1038/ncomms2630
http://dx.doi.org/10.1038/ncomms2630
http://dx.doi.org/10.1038/ncomms2630
http://dx.doi.org/10.1038/ncomms2630
http://dx.doi.org/10.1103/PhysRevLett.110.025901
http://dx.doi.org/10.1103/PhysRevLett.110.025901
http://dx.doi.org/10.1103/PhysRevLett.110.025901
http://dx.doi.org/10.1103/PhysRevLett.110.025901
http://arxiv.org/abs/arXiv:1408.6747
http://dx.doi.org/10.1103/PhysRevB.34.5058
http://dx.doi.org/10.1103/PhysRevB.34.5058
http://dx.doi.org/10.1103/PhysRevB.34.5058
http://dx.doi.org/10.1103/PhysRevB.34.5058
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://dx.doi.org/10.1103/PhysRevB.84.165418
http://dx.doi.org/10.1103/PhysRevB.84.165418
http://dx.doi.org/10.1103/PhysRevB.84.165418
http://dx.doi.org/10.1103/PhysRevB.84.165418
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[48] I. Savić, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101,

165502 (2008).

[49] V. N. Popov, V. E. Van Doren, and M. Balkanski, Phys. Rev. B

61, 3078 (2000).

[50] G. D. Mahan and G. S. Jeon, Phys. Rev. B 70, 075405 (2004).

[51] Y. Chalopin and S. Volz, Appl. Phys. Lett. 103, 051602 (2013).

[52] L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010).

[53] S. Plimpton, J. Comput. Phys. 117, 1 (1995).

[54] http://lammps.sandia.gov.

[55] T. Mai, A. Dhar, and O. Narayan, Phys. Rev. Lett. 98, 184301

(2007).

[56] Z.-Y. Ong and E. Pop, J. Appl. Phys. 108, 103502 (2010).

[57] P. Chantrenne and J.-L. Barrat, Superlattices Microstruct. 35,

173 (2004).

[58] Z. Wang, D. Tang, X. Zheng, W. Zhang, and Y. Zhu,

Nanotechnol. 18, 475714 (2007).

[59] J.-S. Wang, Phys. Rev. Lett. 99, 160601 (2007).

[60] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev.

Mod. Phys. 84, 1045 (2012).

[61] G. Arfken, Mathematical Methods for Physicists, 3rd ed.

(Academic Press, Orlando, Florida, 1985).

115426-10

http://dx.doi.org/10.1088/0953-8984/15/23/101
http://dx.doi.org/10.1088/0953-8984/15/23/101
http://dx.doi.org/10.1088/0953-8984/15/23/101
http://dx.doi.org/10.1088/0953-8984/15/23/101
http://dx.doi.org/10.1103/PhysRevB.74.165420
http://dx.doi.org/10.1103/PhysRevB.74.165420
http://dx.doi.org/10.1103/PhysRevB.74.165420
http://dx.doi.org/10.1103/PhysRevB.74.165420
http://dx.doi.org/10.1119/1.4892612
http://dx.doi.org/10.1119/1.4892612
http://dx.doi.org/10.1119/1.4892612
http://dx.doi.org/10.1119/1.4892612
http://dx.doi.org/10.1103/PhysRevB.90.134312
http://dx.doi.org/10.1103/PhysRevB.90.134312
http://dx.doi.org/10.1103/PhysRevB.90.134312
http://dx.doi.org/10.1103/PhysRevB.90.134312
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1103/PhysRevE.80.011107
http://dx.doi.org/10.1103/PhysRevE.80.011107
http://dx.doi.org/10.1103/PhysRevE.80.011107
http://dx.doi.org/10.1103/PhysRevE.80.011107
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1063/1.3358338
http://dx.doi.org/10.1063/1.3358338
http://dx.doi.org/10.1063/1.3358338
http://dx.doi.org/10.1063/1.3358338
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1063/1.2185727
http://dx.doi.org/10.1063/1.2185727
http://dx.doi.org/10.1063/1.2185727
http://dx.doi.org/10.1063/1.2185727
http://dx.doi.org/10.1143/APEX.2.095003
http://dx.doi.org/10.1143/APEX.2.095003
http://dx.doi.org/10.1143/APEX.2.095003
http://dx.doi.org/10.1143/APEX.2.095003
http://dx.doi.org/10.1103/PhysRevE.88.012128
http://dx.doi.org/10.1103/PhysRevE.88.012128
http://dx.doi.org/10.1103/PhysRevE.88.012128
http://dx.doi.org/10.1103/PhysRevE.88.012128
http://dx.doi.org/10.1103/PhysRevLett.101.165502
http://dx.doi.org/10.1103/PhysRevLett.101.165502
http://dx.doi.org/10.1103/PhysRevLett.101.165502
http://dx.doi.org/10.1103/PhysRevLett.101.165502
http://dx.doi.org/10.1103/PhysRevB.61.3078
http://dx.doi.org/10.1103/PhysRevB.61.3078
http://dx.doi.org/10.1103/PhysRevB.61.3078
http://dx.doi.org/10.1103/PhysRevB.61.3078
http://dx.doi.org/10.1103/PhysRevB.70.075405
http://dx.doi.org/10.1103/PhysRevB.70.075405
http://dx.doi.org/10.1103/PhysRevB.70.075405
http://dx.doi.org/10.1103/PhysRevB.70.075405
http://dx.doi.org/10.1063/1.4816738
http://dx.doi.org/10.1063/1.4816738
http://dx.doi.org/10.1063/1.4816738
http://dx.doi.org/10.1063/1.4816738
http://dx.doi.org/10.1103/PhysRevB.81.205441
http://dx.doi.org/10.1103/PhysRevB.81.205441
http://dx.doi.org/10.1103/PhysRevB.81.205441
http://dx.doi.org/10.1103/PhysRevB.81.205441
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://lammps.sandia.gov
http://dx.doi.org/10.1103/PhysRevLett.98.184301
http://dx.doi.org/10.1103/PhysRevLett.98.184301
http://dx.doi.org/10.1103/PhysRevLett.98.184301
http://dx.doi.org/10.1103/PhysRevLett.98.184301
http://dx.doi.org/10.1063/1.3484494
http://dx.doi.org/10.1063/1.3484494
http://dx.doi.org/10.1063/1.3484494
http://dx.doi.org/10.1063/1.3484494
http://dx.doi.org/10.1016/j.spmi.2003.11.011
http://dx.doi.org/10.1016/j.spmi.2003.11.011
http://dx.doi.org/10.1016/j.spmi.2003.11.011
http://dx.doi.org/10.1016/j.spmi.2003.11.011
http://dx.doi.org/10.1088/0957-4484/18/47/475714
http://dx.doi.org/10.1088/0957-4484/18/47/475714
http://dx.doi.org/10.1088/0957-4484/18/47/475714
http://dx.doi.org/10.1088/0957-4484/18/47/475714
http://dx.doi.org/10.1103/PhysRevLett.99.160601
http://dx.doi.org/10.1103/PhysRevLett.99.160601
http://dx.doi.org/10.1103/PhysRevLett.99.160601
http://dx.doi.org/10.1103/PhysRevLett.99.160601
http://dx.doi.org/10.1103/RevModPhys.84.1045
http://dx.doi.org/10.1103/RevModPhys.84.1045
http://dx.doi.org/10.1103/RevModPhys.84.1045
http://dx.doi.org/10.1103/RevModPhys.84.1045



