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S
tudies of population genomics have revealed that many bac-
terial species exhibit extensive variation in their ‘accessory’ 
genomes. While neutral evolutionary models can account for 

such diversity1–3, allowing for heterogeneity in the evolutionary rate 
between genes significantly improves their fit to genomic data4–6, 
consistent with selection causing differences in gene content7.  
If recombination rates are sufficiently high, selection can alter the 
distribution of individual genes8. However, lower levels of recom-
bination are associated with chromosome-wide sweeps, such that 
niche specialization at one or more loci can result in largely clonal 
‘ecotypes’9,10. Similarly, a recent model has suggested that selec-
tion acting on a high proportion of the genome could partition 
even freely recombining bacteria into highly diverged ‘metabolic 
types’11. As well as adaptation to particular niches, this latter model11  
considered antigenic loci to be under NFDS, the situation in which 
alleles are most beneficial to genotypes when they are rare. This is 
based on the assumption that antigens become more costly when 
common, because they are more frequently recognized by acquired 
immune responses.

Such NFDS has been proposed to explain the extensive antigenic 
diversity of the nasopharyngeal colonizer and respiratory pathogen  
Streptococcus pneumoniae (pneumococcus)11–13. This variation 
makes anti-pneumococcal vaccine development challenging. The 
first licensed conjugate vaccine (PCV7) targeted seven of over 
ninety serotypes14, and consequently was associated with ‘sero-
type replacement’ as vaccine types were replaced by non-vaccine 

types (NVTs), with no substantial overall change in carriage rates15.  
This was driven by both serotype switching, the replacement of 
vaccine types by NVTs that differed at few loci other than those 
which determined the serotype, and clonal replacement of vaccine 
types by distantly related NVTs. These population dynamics are 
now amenable to detailed study, having been tracked by genomic 
surveillance of isolates carried by children in both Massachusetts 
(USA)14 and Southampton (UK)16,17, and isolates from invasive 
pneumococcal disease in adults in Nijmegen (the Netherlands)18. 
Here we use the distribution of the accessory genome across isolates 
to develop a gene frequency-based model of bacterial population 
structure based on multiple NFDS mechanisms19,20.

Results
Enrichment of loci under frequency-dependent selection in  
the accessory genome. Previous analyses of 5,442 clusters of 
orthologous genes (COGs) in the Massachusetts pneumococcal 
population suggested that those present at intermediate frequencies 
were important in distinguishing sequence clusters21. To identify  
functions that were enriched in this set of genes, the 1,112 COGs 
present in 5% to 95% of isolates and 1,194 core COGs14 were anno-
tated by integrating multiple analyses (Fig. 1a and Supplementary 
Datasets 1, 2). The most substantial difference was in mobile 
genetic elements (MGEs; Fisher’s exact test; odds ratio (OR) =  336; 
two-sided P <  2.2 ×  10−16). However, few of these genes were ‘cargo’ 
beneficial to the host bacterium, and were instead likely to be 
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parasitic, consistent with the distribution of prophages between  
pneumococci21,22. Correspondingly, restriction modification sys-
tems that protect against MGE infection accounted for 2.4% of 
the intermediate-frequency genes, but were absent from the core 
COGs. These are most often advantageous when rare, such that the 
donor of an infecting MGE is unlikely to have the same system19, but  
typically futile when ubiquitous. Therefore, the coexistence of  
lineages probably involves competition between bacteria and MGEs 
through ‘kill-the-winner’ dynamics, a form of NFDS in which 
an increase in a genotype’s frequency would be associated with a  
counterbalancing rise in the prevalence of MGE genotypes able to 
infect such cells23.

Functional annotation of the intermediate-frequency genes also 
suggested that direct interference competition between bacteria 
was likely to be important in maintaining a diversity of lineages24. 
Bacteriocins, which mediate interstrain competition25, were sig-
nificantly enriched in the accessory genome relative to the core 
(Fisher’s exact test; OR =  24.0; two-sided P <  2.2 ×  10−16). Although 
regulatory components of the bacteriocin-like peptide (blp) locus 

were conserved across the population, most of the gene cluster was 
composed of various combinations of bacteriocin and immunity 
protein genes, many of which were found in multiple loci26. Despite 
this diversity, each of the previously described fifteen monophyletic 
sequence clusters14 was typically associated with one distinctive  
blp allele (Supplementary Fig. 1), with the exception of sequence 
cluster (SC)3 and SC14, which did not coexist for long owing to 
vaccine-induced population dynamics14.

Sequence clusters also varied in their complement of rarer bac-
teriocin biosynthesis gene clusters, including pneumocyclicin27 and 
pneumolancidin28; two loci associated with the TprA/PhrA quo-
rum-sensing system29, and other putative operons (Supplementary 
Fig. 1). No individual gene cluster replicated the diversity of the  
blp locus; instead, sequence variation often corresponded to dis-
ruptive mutations in bacteriocin structural or biosynthetic genes. 
Assuming phenotypes can be reliably inferred from the gene clus-
ters, such mutations result in bacteria immune to  the relevant 
bacteriocin, but unable to kill competitors. These immune non-
producers cocirculate with producer cells carrying the putatively 
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Fig. 1 | Diversity and structure of the pneumococcal population. a, Functional classification of the 1,112 intermediate-frequency and 1,194 core COGs in the 

Massachusetts pneumococcal population, as detailed in Supplementary Datasets 1, 2. Each barchart compares the functional category frequencies in the 

intermediate-frequency and core COGs. Categories are grouped as likely to be under NFDS resulting from bacterium–MGE interactions (pink), bacterium–

bacterium interactions (blue), or bacterium-host interactions (green). The chart with orange segments shows the frequencies of loci with roles in general 

metabolism or signal transduction, or that otherwise could not be classified. b, Population structure of the 4,127 isolates from Massachusetts (Mass), 

Southampton (Soton), Nijmegen and Maela (Supplementary Dataset 3). The maximum likelihood phylogeny was generated from 1,447 core gCOGs. The 

adjacent columns contain a row for each genome, and represent the population in which the bacterium was isolated, its susceptibility to PCV7-induced 

immunity, and sequence cluster classification. c, Comparison of core genome divergence, quantified as the cophenetic distance between isolates in the core 

genome phylogeny, and the accessory genome divergence, quantified as the Jaccard distance between the gCOG content of isolates. Each point represents 

a pairwise comparison between randomly sampled isolates (excluding the polyphyletic SC0), which was coloured orange if the isolates belonged to the 

same sequence cluster; purple if they belonged to different sequence clusters but were both encapsulated; and dark blue otherwise, revealing the presence 

of some genetically divergent unencapsulated genotypes. Isocontour lines quantify the distribution of points in each category.
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fully functional allele, and susceptible cells completely lacking the 
gene cluster. Analogous variation with respect to individual bacte-
riocins is probably present between the blp loci, given their diverse 
complements of production and immunity genes. If both biosyn-
thesis and immunity functions are costly, these phenotypes can 
coexist through rock–paper–scissors NFDS dynamics, as produc-
ers kill susceptible cells, immune non-producers outcompete pro-
ducers, and susceptible cells outcompete immune non-producers30. 
Therefore, the distinctive overall bacteriocin-production profile of 
strains may be shaped by NFDS acting on multiple loci.

NFDS can also result from competition for resources20,31. A par-
ticular nutrient import strategy, either optimized for different nutri-
ents31 or different concentrations of the same nutrient32, will become 
less advantageous as it becomes more common, as a consequence 
of more intense competition for the same resource24. While nutri-
ent importers account for 11.5% of the core COGs, because many 
are universally necessary, they also make up 9.35% of the inter-
mediate-frequency COGs. Therefore, these genes are significantly 
enriched relative to general metabolic genes in the latter category 

(Fisher’s exact test, OR =  2.48, two-sided P =  2.61 ×  10−8). This sug-
gests that NFDS may sustain multiple nutrient-acquisition strate-
gies in the population as a consequence of interstrain competition 
for resources.

Antibiotic resistance, also variable between isolates, could be 
affected by similar competition33. If resistant bacteria are consid-
ered adapted to hosts consuming antibiotics, but suffering a cost in 
untreated hosts, then resistance will be most effective as a resource 
acquisition strategy where rare, because of the lessened competi-
tion with other strains. This could directly result in NFDS, although 
there are alternative explanations for the coexistence of sensitive 
and resistant pneumococci that instead imply NFDS through other 
mechanisms34.

A further functional category that was enriched in the inter-
mediate-frequency COGs relative to the core genome were genes 
encoding the biosynthesis of immunogenic structures, such as 
surface proteins35 or the capsule36 (Fisher’s exact test, OR =  2.56, 
two-sided P =  9.23 ×  10−10). These can be under NFDS as long as 
alleles are immunologically distinguishable, a criterion met by the  
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Fig. 2 | Distribution of genetic diversity between populations. a, The distribution of sequence clusters between populations; the frequency of each 

sequence cluster in Massachusetts is shown on the x axis, and the corresponding frequencies in Maela, Southampton and Nijmegen are shown on the 

y axes (from top to bottom). Red points represent sequence clusters predominantly (≥ 75%) composed of vaccine-type isolates across the compared 

populations; blue points represent sequence clusters predominantly (≥ 75%) composed of NVT isolates, and black points are mixed sequence clusters. 

b, The distribution of gCOGs between populations. The frequency of each intermediate-frequency gCOG in Massachusetts is shown on the x axis, and 

the corresponding frequencies in Maela, Southampton and Nijmegen are shown on the y axes. Only gCOGs present at a mean frequency between 5% 

and 95% across the two compared populations were included, and the corresponding points are coloured according to the functional annotation of COGs 

in Fig. 1a. The gCOGs encoded by Tn916, including the tetM tetracycline-resistance gene, are annotated in the comparison of the Massachusetts and 

Maela populations. c, The pre- and post-vaccination frequencies of sequence clusters in Massachusetts, Southampton and Nijmegen. Points are coloured 

as in a, showing the general decrease in the frequency of sequence clusters of vaccine types. d, The pre- and post-vaccination frequency of gCOGs in 

Massachusetts, Southampton and Nijmegen. Only gCOGs with an overall frequency between 5% and 95% in the relevant population were included. 

Points are coloured as in b. The reduced frequency of the wciN allele involved in the synthesis of vaccine-type capsules 6A and 6B is annotated. Each panel 

displays Pearson's correlation statistics, including two-sided P values.
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serotype-defining capsule36, as well as accessory antigens that are 
typically either present as large surface structures, or completely 
absent, such as the pili37.

Therefore, multiple disparate functions enriched in the inter-
mediate-frequency genes relative to the core genome can each be 
understood as being subject to NFDS, albeit through different pro-
cesses. While no NFDS mechanism could be identified for 32.1% of 
the intermediate-frequency COGs, this category is likely to include 
both metabolic enzymes and signal transduction proteins linked to 
loci under NFDS on genomic islands, and loci under NFDS that 
cannot be identified as such, owing to incomplete functional infor-
mation. To test whether these inferences applied to other pneumo-
coccal populations in a similar manner, further genomic datasets 
were compared to those from Massachusetts.

Population similarities in frequencies of genes, but not geno-
types. Overall, 4,127 isolates were combined from available refer-
ence sequences, Massachusetts, Southampton, Nijmegen and the 
Maela refugee camp in Thailand, where the population is unvac-
cinated38 (Supplementary Dataset 3). This analysis identified 
11,049 ‘global’ COGs (gCOGs), from which a ‘relaxed’ core of 1,447 
gCOGs was extracted to generate a maximum-likelihood phylogeny  
(Fig. 1b and Supplementary Fig. 2). Notably, there was little evi-
dence of genetic isolation-by-distance, as both vaccine-type status 
and country of isolation had a polyphyletic distribution, indicating 
a history of recombination and frequent international migration.

The core alignment was also used to define 74 sequence clusters. 
Plotting the pairwise core genome divergence of isolates, repre-
sented by their cophenetic separation in the tree, against their acces-
sory genome divergence, calculated as the Jaccard distance between 
the gCOG content of isolates, showed that members of the same 
sequence cluster were substantially more similar in their accessory, 
as well as core, genomes (Fig. 1c). These differences between lin-
eages were probably biologically meaningful, as they represented a 
significant proportion of the accessory genome and were preserved 
despite international dissemination of some genotypes and ongoing 
horizontal DNA transfer. Although some of the previously identi-
fied atypical unencapsulated lineages were associated with extensive 
private gene content21, sequence clusters of encapsulated pneumo-
cocci each contained few unique accessory loci. The mean num-
bers of gCOGs present in ≥ 95% of the isolates in a given sequence 
cluster, but not meeting this criterion in any other sequence cluster 
in the same population, were only 16.75 in Massachusetts, 19.94 in 
Southampton, 19.46 in Nijmegen and 15.02 Maela (Supplementary 
Fig. 2). The distinctiveness of the sequence clusters instead resulted 
from the polyclonal distribution of the 1,731 intermediate- 
frequency gCOGs, present in between 5% and 95% of the pre- 
vaccination isolates in at least one population (Supplementary  
Fig. 2). Therefore, a long history of recombination was reflected in 
intermediate-frequency loci that were associated with multiple lin-
eages, with each lineage in turn defined by a unique combination of 
intermediate-frequency loci.

Despite the lineages representing discrete and distinct sets of 
genotypes, their prevalences were highly heterogeneous between 
the four populations, with a significant correlation only between 
those in Massachusetts and Southampton (Fig. 2a). In contrast, the 
frequencies of accessory gCOGs were strongly correlated between 
Massachusetts and every other population (Fig. 2b; Pearson's 
correlation, two-sided P <  10−15 in all comparisons). This suggests 
that pneumococcal populations are configured by genomic islands 
being maintained at equilibrium frequencies that are conserved 
between populations, consistent with their prevalence being 
influenced by NFDS19. A significant deviation between populations 
was the elevated frequency of Tn916 in Maela; this transposon 
underlies tetracycline resistance21, and hence the difference is likely 
to represent a location-specific selection pressure rather than drift39. 

Therefore, selection appears to shape pneumococcal populations to 
be similar in frequencies of genes, rather than genotypes.

Vaccination as a test of NFDS. The partial-coverage vaccines 
introduced to limit pneumococcal disease can be used as a natural 
experiment, to test whether loci expected to change in frequency 
due to association with vaccine types were actually maintained at 
equilibrium frequencies by NFDS. Although a significant correla-
tion existed between pre- and post-PCV7 sequence cluster fre-
quencies in the three vaccinated populations (Fig. 2c), divergence 
in population composition was driven by the replacement of some 
vaccine-type sequence clusters with distantly related NVT lineages. 
Across all comparisons of pre- and post-PCV7 populations, gCOG 
frequencies showed a stronger positive correlation. This stability in 
gene frequencies reflected the significant correlation between the 
post-PCV7 decrease in a gCOG’s absolute frequency in vaccine-
type isolates, and the contemporaneous increase in its absolute 
frequency in NVT isolates (Supplementary Fig. 3), consistent with 
the NFDS hypothesis. The greatest deviation in the Massachusetts 
population was wciN, which is directly involved in the synthesis of 
the vaccine-targeted 6A and 6B capsules, reflecting differences in 
selection pressures between timepoints14. This suggested that the 
equilibrium frequencies of the intermediate-frequency gCOGs were 
likely to govern the post-vaccine restructuring of the population.

To quantify whether NFDS of intermediate-frequency gCOGs 
could explain changes in pneumococcal populations better than 
a neutral model, a discrete-time Wright–Fisher multilocus NFDS 
model was constructed in which the number of offspring produced 
by a genotype i at generation t, Xi,t, was distributed as:

κ

σ~ − − +
π
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General density-dependent competition was parameterized by 
the number of pneumococci in the simulated population at gen-
eration t, Nt, and the environment’s carrying capacity κ, which was 
constant across t, reflecting the stable levels of pneumococcal car-
riage post-PCV7 (refs 15,16). The other demographic process was 
migration, at rate m (per month-long generation), by which isolates 
in the resident simulated population were replaced by genotypes 
randomly selected from the genomic data from the same location. 
Vaccine-type genotypes were subject to a fitness cost, v, represent-
ing vaccine efficacy at preventing transmission. The final term 
parameterized NFDS, the strength of which was determined by σf 
and the exponent πi,t:

∑π = −
=

( )g e fi t

l

L

i l l l t,

1
, ,

where l is an intermediate-frequency locus (gCOG or antibiotic-
resistance phenotype), and gi,l is a binary variable indicating whether 
l is present in genotype i. Each l has an equilibrium frequency el, its 
prevalence in the pre-vaccination sample, and an instantaneous fre-
quency at generation t, fl,t. Therefore fl,t determines whether l ben-
efits its host, when it is rare relative to el, or has a net cost, when it is 
common relative to el. Model details are described in Supplementary 
Fig. 4 and the Methods.

The σf , v and m parameters were estimated for the Massachusetts 
population using Approximate Bayesian Computation, an inference 
technique for intractable simulator-based models40,41. The simulated 
population was compared to the sequence cluster distribution across 
three time points (Fig. 3a) using the Jensen–Shannon divergence 
(JSD) to determine similarity. Convergence of the parameter esti-
mates found strong evidence for NFDS (σf significantly greater than 
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its lower bound; Table 1, Supplementary Table 1 and Supplementary 
Fig. 5). The precedent of other models4,6 has suggested that the fit 
could be improved by allowing the strength of selection to be het-
erogeneous across loci. Therefore, an expanded model featured a 
proportion, pf, of the intermediate-frequency loci experiencing 

NFDS at strength σf, whereas (1 −  pf) experienced NFDS at strength 
σw (see Methods). Convergence of parameter estimates found strong 
evidence for NFDS (σf and pf significantly greater than their lower 
bounds; Table 1, Supplementary Table 1 and Supplementary Fig. 5), 
with a substantial improvement over the homogeneous selection 
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Fig. 3 | Comparing the sampled and simulated pneumococcal populations. In each barplot, vertical black lines split the bacterial population into sequence 

clusters, which are annotated at the top of the graph. Each sequence cluster is split into three timepoints: pre-vaccination, a midpoint sample and a late 

sample. Only sequence clusters present at a frequency greater than 2.5% in at least one of these timepoints in the genomic sample are included in the 

graphs; full results are shown in the Supplementary Information. The bars at each timepoint are split into red segments, for vaccine-type isolates, and 

blue segments, for NVT isolates. In each comparison, the top row is the genomic sample against which simulations were evaluated. The bottom row 

summarizes the output of 100 simulations using the heterogeneous-rate multilocus NFDS model with the point-estimate parameter values from Table 1.  

At the times at which samples were reported in the respective genomic collections, the same numbers of isolates were randomly selected from the 

simulated populations. The bars represent the median result and the error bars (orange for vaccine-type isolates and purple for NVT isolates) represent 

the interquartile range observed across the simulations. a, The results for Massachusetts. Isolates were split into pre-vaccination (2001; 133 isolates), 

midpoint (2004; 203 isolates) and late (2007; 280 isolates) samples. b, The results for Southampton. Isolates were split into pre-vaccination (up to 2007; 

100 isolates), midpoint (2008–2009; 194 isolates) and late (2010–2011; 195 isolates) samples. c, The results for Nijmegen. The isolates were split into 

pre-vaccination (up to 2007; 209 isolates), midpoint (2008–2009; 80 isolates) and late (2010–2011; 48 isolates) samples.
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model, as quantified by the significantly smaller JSD values from 
appropriately parameterized simulations (Wilcoxon rank-sum test 
on 100 simulation pairs, W = 9,902, two-sided P =  4.73 ×  10−33; 
Supplementary Fig. 6).

At the locus level, those genes subject to stronger NFDS stabi-
lized close to their equilibrium frequencies, whereas the frequen-
cies of those subject to weaker NFDS showed near-neutral drift 
(Supplementary Fig. 6). At the lineage level, these simulations 
replicated three important facets of the post-vaccination popula-
tion dynamics (Fig. 3a and Supplementary Fig. 7). The first was 
the stable post-vaccine prevalence of some NVT sequence clus-
ters, such as SC4 and SC8. The second was serotype switching, the 
replacement of vaccine types by NVTs within sequence clusters 
that remained at stable overall frequencies, as observed in SC1, 
SC5, SC9 and SC15. The third was clonal replacement of vaccine 
types by unrelated NVTs, such as the contemporaneous disap-
pearance of SC13, SC14, SC22 and SC24, and the expansion of 
SC3, SC6, SC7 and SC11. These trends were not trivial to repli-
cate. The same framework was used to fit a neutral model (NFDS 
eliminated, with σf =  0); a serotype-focused single locus NFDS 
model (el applied to serotype, rather than locus, frequencies), and 
an ecotype model (el applied to sequence cluster, rather than locus, 
frequencies). Both the neutral and serotype models poorly repro-
duced the stable frequency of SC8, serotype switching within SC9 
and SC15, or any patterns of clonal expansion. The ecotype models  
better reproduced NVT sequence-cluster stability and serotype 
switching, but did not replicate the observed patterns of clonal 
replacement. All of these models resulted in significantly worse 
fits to the data than the heterogeneous multilocus NFDS model 
(Supplementary Figs. 6, 7).

The estimated vaccine selection strength, v, of 0.081 per month 
from the heterogenous-rate multilocus NFDS is consistent with 

PCV7’s halving of the rate at which vaccine types are acquired42, if 
pneumococci transmit at least once every six months, an interval 
similar to the carriage duration of vaccine serotypes43. Similarly, 
the estimated migration rate, m, of 0.0044 per month suggests 
half the resident Massachusetts pneumococcal population would 
be replaced by immigrant strains over approximately 13 years, 
which is realistic given the 50% probability that a pneumococcal 
lineage was detectable in different localities within Massachusetts  
after 3–4 years14.

Consistent evidence of NFDS in other populations. The homo-
geneous and heterogeneous multilocus NFDS models were also fit-
ted to similar surveillance data from Southampton (Supplementary  
Figs. 5, 8). The JSD values for the heterogenous rate model were 
reproducible and significantly smaller than for the homogeneous 
rate model (Wilcoxon  rank-sum test on 100 simulation pairs, 
W = 9,954, two-sided P =  1.01 ×  10−33). The point estimates of 
parameter values were robust and, in the case of the three param-
eters determining the strength of NFDS, very similar to those for 
Massachusetts (Table 1 and Supplementary Table 1).

However, the vaccine selection strength was estimated to be 
2.54-fold higher in Southampton than in Massachusetts. This dif-
ference is probably attributable to the substantially higher PCV7 
coverage in children under 24 months of age in the years imme-
diately after the introduction of the vaccine in the UK relative to 
the USA44,45, combined with the lower age range included in the 
Southampton study, excluding older children who are less likely to 
have been immunized, or in whom natural acquisition of immunity 
blunted the selective pressure of the vaccine16,46. Simulations using 
these point estimates replicated the strain dynamics observed in the 
genomic sample (Fig. 3b). Predominantly vaccine-type SC5 and 
SC18 were eliminated at realistic rates; NVT lineages SC3, SC19 and 

Table 1 | Parameter estimates from model fits achieved through Approximate Bayesian Computation with BoLFi, run for 2,000 
iterations

Population Model Maximal NFDS 
strength, σf

vaccine selection 
strength, v

Migration rate, m Proportion of  
loci under strong 
NFDS, pf

Weaker NFDS 
strength, σw

Mass Neutral - 0.0375 0.0073 - -

Mass Homogeneous-rate multilocus NFDS 0.0075  
(0.0017–0.0234)

0.0733  
(0.0430–0.1207)

0.0057  
(0.0020–0.0131)

- -

Mass Heterogeneous-rate multilocus NFDS 0.1363  
(0.0213–0.2113)

0.0812  
(0.0491–0.1254)

0.0044  
(0.0015–0.0165)

0.2483  
(0.1197–0.5448)

0.0023  
(0.0010–0.0514)

Mass Homogeneous-rate serotype NFDS 0.0333 0.0415 0.0071 - -

Mass Heterogeneous-rate serotype NFDS 3.2613 0.0394 0.0053 0.1862 0.0127

Mass Homogeneous-rate ecotype 3.4514 0.0525 0.0090 - -

Mass Heterogeneous-rate ecotype 1.0101 0.0541 0.0071 0.99 0.0009

Soton Homogeneous-rate multilocus NFDS 0.0028  
(0.0010–0.0117)

0.1175  
(0.0667–0.2262)

0.0032  
(0.0011–0.0132)

- -

Soton Heterogeneous-rate multilocus NFDS 0.1393  
(0.0121–0.2148)

0.2063  
(0.0832–0.3150)

0.0124  
(0.0012–0.0394)

0.4035  
(0.1005–0.5951)

0.0023  
(0.0010–0.0238)

Nijmegen Homogeneous-rate multilocus NFDS 0.0605  
(0.0012–0.0966)

0.0318  
(0.0011–0.2621)

0.0018  
(0.0009–0.0184)

- -

Nijmegen Heterogeneous-rate multilocus NFDS 0.1462  
(0.0013–0.2012)

0.0381  
(0.0016–0.3235)

0.0015  
(0.0009–0.0060)

0.1988  
(0.0013–0.8356)

0.0032  
(0.0010–0.1247)

Maela Heterogeneous-rate multilocus NFDS 0.1115  
(0.0020–0.2138)

0.0011  
(0.0010–0.0354)

0.0227  
(0.0012–0.0568)

0.4995  
(0.0028–0.9468)

0.0129  
(0.0010–0.1416)

The displayed values represent point estimates of parameter values that were generated based on the Gaussian process minimizers, with 95% credibility intervals in parentheses where calculated. The 

simplest neutral model required fitting of only v and m to the genomic data. Homogeneous-rate (σf,v and m) and heterogeneous-rate (σf , v, m, pf and σw) fits are shown for the multilocus NFDS model, in 

which intermediate-frequency gCOGs and resistance phenotypes have equilibrium frequencies; for the serotype NFDS model, in which serotypes have equilibrium frequencies; and for the ecotype model, 

in which sequence clusters have equilibrium frequencies. Replicate fits of the heterogeneous-rate multilocus NFDS models to the Massachusetts, Southampton and Nijmegen datasets are shown in 

Supplementary Table 1 to demonstrate the robustness of the fitting process to stochastic effects.
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SC35 remained at stable frequencies; serotype switching occurred 
within SC1 and SC9, while NVT SC2 rose in prevalence at a much 
faster rate than same lineage did in Massachusetts.

The homogeneous and heterogeneous rate multilocus NFDS 
models were also fitted to a genomic dataset from cases of invasive 
pneumococcal disease in Nijmegen. The heterogeneous model was 
a significantly closer fit to the genomic data, as assessed by the JSDs 
(Wilcoxon rank-sum test, W = 3,988, two-sided P =  0.0135; Table 1 
and Supplementary Fig. 5). Precisely replicating the observed pop-
ulation dynamics was difficult (Fig. 3c and Supplementary Fig. 9), 
owing to the sparser sampling, particularly post-PCV7, and inevi-
table bias towards more invasive genotypes in this dataset. While the 
estimated strength of NFDS was similar to both Massachusetts and 
Southampton, the estimated vaccine selection strength was lower 
than in these infant carriage surveillance projects, consistent with the 
Nijmegen collection being isolated in an adult population primarily 
protected by herd immunity18. Correspondingly, fitting the heter-
ogenous-rate model to the Maela dataset, isolated from an entirely 
unvaccinated community, estimated v close to zero (Table 1).

NFDS acting on genomic islands can also affect variation in 
the core genome. Comparisons between pre- and post-vaccination 
populations, and between different locations, revealed allele fre-
quencies of core genome single-nucleotide polymorphisms (SNPs) 
typically showed very similar correlations to those of accessory loci 
frequencies (Supplementary Fig. 10). This was not a consequence of 
tight linkage between SNPs in the regions flanking genomic islands 
(Supplementary Fig. 10). Nevertheless, simulations in which NFDS 
acted on only accessory loci precisely replicated the post-vaccina-
tion changes in the core SNP allele frequencies, and similar corre-
lations to those between collections were observed in simulations 
where the Massachusetts population was gradually replaced with 
isolates from other datasets (Supplementary Fig. 10). Therefore, 
although it is possible that core genome loci may also be under 
NFDS, the observed correlations can be attributed to NFDS acting 
only on accessory loci.

Consequences of NFDS for the impact of vaccination. 
Simulations were used to investigate counterfactual scenarios.  
In the absence of vaccination (v =  0), the pre-PCV7 populations 
were stable in Massachusetts (Supplementary Fig. 7), Southampton 
(Supplementary Fig. 8) and Nijmegen (Supplementary Fig. 9). 
Eliminating migration (m =  0) significantly increased the pro-
portion of vaccine serotypes in simulations of all three popula-
tions (Wilcoxon rank-sum tests; Massachusetts, W = 0, two-sided 
P =  2.56 ×  10−34; Southampton, W = 0, two-sided P =  2.56 ×  10−34; 
Nijmegen, W = 1,453, two-sided P =  4.50 ×  10−18), highlighting the 
importance of imported or previously rare NVTs in driving out 
vaccine types. However, removing NFDS significantly decreased 
the proportion of vaccine serotypes in simulations of all three 
populations (Wilcoxon  rank-sum tests; W = 10,000, two-sided 
P =  2.56 ×  10−34 in Massachusetts and Southampton; W =  9,979, 
two-sided P =  4.81 ×  10−34 in Nijmegen). This is because follow-
ing vaccination, those loci enriched in vaccine-type genotypes 
become increasingly advantageous to their bacterial hosts as 
they become rarer, resulting in NFDS slowing the rate at which  
vaccine-type isolates are eliminated until such loci rise in  
frequency in NVT genotypes.

Discussion
These combined analyses of multiple population genomic datas-
ets suggest that NFDS plays an important part both in the stable 
structuring of pneumococcal populations and in their dynamics 
following disruption by vaccine-induced immunity. According to 
the best-fitting model, relatively strong NFDS acts on a few hun-
dred accessory genes, corresponding to 5.0% of the Massachusetts 
pangenome and 8.3% of that in Southampton. This cumulative 

effect across multiple loci in complex populations is predicted to 
maintain stable lineage compositions in the absence of disruption 
by vaccination, without the oscillatory dynamics associated with 
some single-locus NFDS processes19,30,47,48. Therefore, multiple lin-
eages can persistently coexist within this framework despite their 
confinement to a niche, the human nasopharynx, that is physio-
chemically homogeneous compared to the varied environments 
inhabited by species often considered as split into ecotypes, such 
as Escherichia coli. Furthermore, although intraspecific recombina-
tions are slow over the timescales simulated in this study14, horizon-
tal DNA transfer has comprehensively reassorted genomic islands 
between genotypes over the species’ history. Their consequent 
polyclonal distribution means accessory locus frequencies can be 
preserved by multiple lineage combinations, thereby accounting for 
the diverse population structures that are observed globally, and the 
panoply of strains that they contain49. Although the NFDS processes 
represented in the multilocus model were sufficient to explain 
the major post-vaccination population changes, further work is 
required to determine whether core loci are also involved. Such 
continued development of quantitative models with large genomic 
datasets should improve our understanding of how diverse selec-
tive pressures affecting bacterial populations shape their response to 
public health interventions, and how best to design novel pathogen- 
control strategies.

Methods
Annotation of the accessory genome. �e previously analysed Massachusetts 
population14,50 contained 1,112 COGs present in between 5% and 95% of the 616 
isolates and 1,194 COGs present in a single copy in every isolate. Information on 
whether these were associated with capsule polysaccharide synthesis, antibiotic 
resistance, restriction modi�cation systems, pneumococcal pathogenicity island 1 
or MGEs was extracted from previously described analyses14,21,50. Coding sequences 
(CDS) associated with proteinaceous immunogenic structures were identi�ed 
through the results of protein antigen array data35. Candidate bacteriocins were 
identi�ed using the BAGEL3 algorithm51. �e variation at the blp locus, and the 
other putative bacteriocin-production loci, was manually identi�ed within de novo 
assemblies of the Massachusetts isolates using Artemis and ACT52. �e heat map 
showing the distribution of the blp alleles in Supplementary Fig. 1 was generated 
by mapping Illumina reads for each of the Massachusetts isolates against the 
concatenated set of loci using BWA with default settings53. Further information on 
COG functional domains14 and previous automated annotations50 was additionally 
used to manually curate all available information into the annotation and 
classi�cation in Supplementary Datasets 1, 2.

Bioinformatic analysis of genomic data. The isolate collections analysed each 
came from systematic sampling of defined host populations. The Massachusetts 
pneumococcal dataset, isolated from the nasopharynxes of children of up to 
six years of age during routine primary care physician visits, consisted of the 
616 de novo assemblies generated with Velvet54 as described previously14,50. 
VelvetOptimiser55 was used to assemble data from the Maela collection38 (3,085 
genomes), isolated from the nasopharynxes of infants of up to two years of age, 
and their mothers, in a Thai refugee camp; the Southampton collection16 (516 
genomes), isolated from the nasopharynxes of children of up to four years of age 
during outpatient visits; and the Nijmegen collection18 (337 genomes), isolated 
from adults hospitalized with bacteraemic pneumonia. These were supplemented 
with 20 complete, publically available reference genomes (Supplementary 
Dataset 3). To standardize these genome collections relative to the Massachusetts 
dataset, assemblies were discarded if they were less than 1.98 Mb, or greater than 
2.19 Mb, in length; had an N50 less than 15 kb14,50; or necessary information was 
absent from the public databases. Of the 4,586 genomes, 4,462 met these criteria 
and were included in a preliminary analysis that identified non-pneumococcal 
streptococci, which were then excluded from the final analysis. Consequently, 
the final dataset of 4,127 genomes contained 20 reference sequences, 616 
Massachusetts sequences, 491 Southampton sequences, 337 Nijmegen sequences 
and 2,663 Maela sequences.

Each genome was processed with RNAmmer v.1.2 to annotate rRNA56; 
tRNAscan-SE v.1.3.1 to annotate tRNA57; Rfam scan to annotate other non-coding 
RNA58; scanned for BOX, RUP and SPRITE repeats using HMM profiles59,60; and 
Prodigal v.2.6 (ref. 61) to annotate CDS using a model trained on the genome of  
S. pneumoniae ATCC 700669 (ref. 62). CDS that overlapped with the non-coding 
RNA or short interspersed repeat sequences were then removed from the 
annotation, and the remaining set was translated to allow a non-redundant set of 
proteins to be identified. A version of the protein sequence dataset without low-
complexity regions was generated by filtering these with segmasker63 and masking 
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choline-binding domains. All-against-all comparisons of these protein databases 
were then generated using BLAT v.0.34 (ref. 64). gCOGs were then generated using 
COGtriangles and COGcognitor65, and through linking pairs of highly similar 
sequences, as described previously14. The gCOG nomenclature was then applied to 
the full, redundant set of protein sequences.

To correct for misassemblies, particularly those reflecting differences between 
the methods used to assemble the genomes of the Massachusetts isolates and those 
from other populations, false-positive CDS were eliminated from the intermediate-
frequency gCOGs. A database generated from the annotation of S. pneumoniae 
ATCC 700669 (ref. 62) was used to search intermediate-frequency gCOG DNA 
sequences using BLASTALL v.2.2.25. This identified 39 gCOGs corresponding  
to fragments of tRNA, oligomers of choline-binding domains, or antisense fragments 
of insertion sequences. This left a final set of 11,049 gCOGs, of which 1,731 were 
present at a frequency between 5% and 95% in the pre- or peri-vaccination  
samples (grouped as pre-vaccination samples in the Results) of at least one of  
the four study populations.

To transfer the functional annotation onto the gCOG sequences, the 
annotated protein sequences from Massachusetts in Supplementary Table 1 were 
used to identify identical proteins in the gCOG dataset. When COGs could 
not be matched to gCOGs through this approach, links were instead made by 
searching gCOGs for proteins with identity to the middle 50% of annotated 
protein sequences from Massachusetts. These links were then manually curated 
to categorize the 1,731 intermediate-frequency gCOG sequences where possible, 
as shown in Fig. 2.

Analysis of population structure. To analyse the overall population structure, 
a ‘relaxed’ core set of 1,447 gCOGs were identified that met two criteria: first, 
that they were present in at least 95% of the isolates; and second, that the total 
number of gCOG representatives was less than 105% of the number of isolates 
containing the gCOG, to exclude gCOGs that are present in high copy number  
in some, or all, genomes. A codon alignment was then generated for each  
gCOG using mafft v.7.221 (ref. 66), excluding any sequences from isolates 
containing more than one representative of the gCOG. These were concatenated, 
with gap sites used to pad regions where data were missing for a particular 
isolate, and a 293,508 bp alignment of polymorphic sites extracted using SNP-
sites67. A phylogeny was generated from this alignment using FastTree2 with the 
‘fastest’ option68.

Lineages were identified using hierarchical BAPS clustering69. Five independent  
runs of the estimation algorithm, starting from the upper bound of 200–500 
clusters, all converged to the same posterior mode. Two polyphyletic primary 
BAPS clusters were split into their secondary level clusters, yielding 73 sequence 
clusters that were almost entirely congruent with the phylogeny, and SC0, which 
remained polyphyletic. The monophyletic sequence clusters that were most 
similar to those in Massachusetts14 were numbered accordingly. The plot in Fig. 1c 
combined cophenetic distances from the core genome phylogeny, extracted with 
Bioperl70, and the Jaccard distance calculated from the presence and absence matrix 
of gCOGs using the R package vegan71. For each isolate, 100 comparator isolates 
were selected at random, and this sample of pairwise comparisons was used to 
generate the plot.

Of the polymorphic sites in the core genome, 282,043 corresponded to a 
base in the S. pneumoniae ATCC 700669 reference genome. For each population, 
the set of sites that were both biallelic and had a non-reference allele frequency 
between 5% and 95% in that population were extracted with VCFtools v.0.1.14 
(ref. 72); there were 27,616 of these in the Massachusetts dataset, 26,954 in the 
Southampton dataset, 28,396 in the Nijmegen dataset and 30,579 in the Maela 
dataset. The r2 statistics between these polymorphic sites, and between the binary 
presence and absence information of accessory gCOGs with a representative in 
the S. pneumoniae ATCC 700669 genome, were then calculated with VCFtools by 
treating each isolate as a phased haplotype. These were used to generate the linkage 
analysis plots in Supplementary Fig. 10.

Inference of antibiotic-resistance profiles. Genotypes of individual isolates were 
used to predict their antimicrobial resistance profiles. The presence of  
aph3′  (the gCOG CLS350021) was inferred to cause resistance to aminoglycosides; 
the presence of tetM (CLS03712) was inferred to cause resistance to 
tetracycline; the presence of cat (CLS01043) was inferred to cause resistance to 
chloramphenicol; and the presence of ermB (CLS01283), mef (CLS02227), or both 
was inferred to cause macrolide resistance62,73. These gCOGs themselves were 
removed from the set of loci used in the simulations, and the inferred antibiotic-
resistance phenotype was used instead.

Non-susceptibility to other antibiotics is determined by core genome loci; 
to incorporate these into the model, resistant alleles of relevant loci were treated 
analogously to the presence of an accessory resistance gene. The presence of  
the I100L substitution in the dihydrofolate reductase protein (CLS03211) was 
inferred to result in resistance to trimethoprim74,75 and the presence of an insertion 
shortly after S61 in the dihydropteroate synthase protein (CLS01442) was  
inferred to result in resistance to sulphamethoxazole76. Three penicillin-binding 
proteins substantially contribute to β -lactam resistance. Using a similar approach 
to ref. 77, the population-wide protein sequences of Pbp1A (CLS01776),  

Pbp2X (CLS01031) and Pbp2B (CLS01093) were aligned with mafft v.7.221  
(ref. 66), and the transpeptidase domain regions extracted. Following validation 
using the isolates from Massachusetts14, sequences exhibiting less than 97% 
amino acid identity with the susceptible alleles defined by in ref. 77 in the multiple 
sequence alignment were considered resistance-associated. These antibiotic-
resistance phenotypes were included as intermediate-frequency loci if they met  
the criteria for a given population.

Multilocus NFDS model. The multilocus NFDS model was generated within a 
discrete-time Wright–Fisher framework78,79. Although such models were designed 
with a number of strong assumptions, the results of simulations have been found 
to be robust to violations of these conditions80. Each individual i had a genotype 
gi defined by a binary string representing the presence and absence of each gCOG 
or antibiotic-resistance phenotype present at an intermediate frequency in the 
starting population. The number of offspring arising from i at time t is a Poisson-
distributed random variable Xi,t. This Poisson approximation is justifiable if only 
a small proportion of descendants survive to the next generation78, as is likely 
to be the case for a nasopharyngeal colonizer with a small within-host effective 
population size81 that experiences a strong bottleneck at transmission. To allow for 
differential reproductive success between genotypes in a manner that depended 
on the composition of the overall population, Xi,t was parameterized using the 
function (Supplementary Fig. 4):
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The four components of the function each correspond to a different biological 
process. General density-dependent selection depends on κ, the carrying capacity 
of the environment, and Nt, the total number of individuals at time t.  
This maintained an approximately stable population size throughout simulations. 
This is justifiable, as S. pneumoniae colonization levels did not substantially change 
in the years immediately after the introduction of PCV7.

Migration into the population occurred at rate m, subject to the limits 
0 ≤  m ≤  1, and therefore the reproductive fitness of resident individuals was 
reduced by a factor of (1 −  m) accordingly to maintain an approximately constant 
population size of κ. The number of immigrating individuals at time t, Nm,t, was a 
random variable calculated as:

κ~N mbin( , )m t,

Migrant individuals were selected, with replacement, from all isolates 
observed at any time point in the geographically specified dataset being 
studied. Therefore it was the only mechanism by which genotypes not present 
in the pre-vaccine genome samples could enter the simulated population. To 
prevent artefactually improving the fit of the model at high values of m through 
sampling all isolates in proportion to their observed frequency, the selection of 
an immigrating isolate was biased such that it was equally likely to come from 
any sequence cluster with at least one representative in the studied population, 
although these were present at very different frequencies within each population. 
Therefore, the probability of an immigrating individual being of genotype i and 
sequence cluster s, pm,s,i, was:

=p
n
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s
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,

where S is the number of sequence clusters in the population, ns,i is the number 
of isolates in sequence cluster s of genotype i in the genome dataset, and ns is the 
number of isolates in the sequence cluster s in the genomic dataset.

The vaccine selection pressure to which individual i was subject, vi, depended 
on whether the individuals were of a vaccine serotype or not; for PCV7, the  
vaccine serotypes were 4, 6B, 9V, 14, 18C, 19F and 23F, as well as 6A, a vaccine-
related type to which PCV7 elicited strong cross-immunity14. Consequently, vi was 
determined as:







v
v if isolate has a vaccine serotype

0 otherwise
i

where v was subject to the constraint 0 ≤  v ≤  1.
In the homogeneous-rate multilocus model of NFDS, the magnitude of this 

pressure was determined by the term σ+

π

( )1 f

i t,
, where σf ≥  0. The selection 

pressure depended on the genotype gi and distribution of intermediate-frequency 
loci at time t, as summarized by the exponent πi,t. The calculation of πi,t necessitated 
determining the frequency fl,t of each locus l at time t in the simulation, using the 
binary variables gi,l that represent the presence or absence of l in i:
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These were compared to the equilibrium frequencies, el, of the same loci, which 
were assumed to correspond to their frequencies in the sample of G0 genomes from 
isolates sampled pre- or peri-vaccination:
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The overall deviation of the L accessory genome loci included in the 
simulations, for individual i at time t, πi,t, was calculated as:

∑π = −
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Therefore, if all accessory genes are at their equilibrium frequencies, then 

σ+

π

( )1 f

i t,
 =  1, and NFDS has no effect on an individual’s reproductive fitness. 

When a genotype contains many genes rarer than their equilibrium frequencies, 

σ+

π

( )1 f

i t,
 >  1, and NFDS increases an individual’s reproductive fitness. And when 

a genotype contains many genes more common than their equilibrium frequencies, 

σ+

π

( )1 f

i t,
 <  1, and therefore NFDS reduces an individual’s reproductive fitness. In 

the absence of l from an individual’s genotype, fl,t has no direct effect on its fitness.

Extension to heterogeneous frequency-dependent selection. Two further 
parameters were introduced when accessory genes were split into two categories, 
each subject to a different level of frequency-dependent selection. The σw 
parameter represented the strength of weaker NFDS acting on a fraction, (1 −  pf), 
of the accessory genes included in the model. To facilitate inference of these two 
parameters, it was assumed that loci under weaker NFDS would vary in frequency 
to a greater extent between the initial and final genomic samples; therefore the 
accessory loci were ordered by the statistic Δl:

Δ =

−

− −

>( )f e

e e(1 (1 ))
l

l t l

l l

, 0

2

where el is the frequency of the gCOG or antibiotic-resistance phenotype across 
all pre- or peri-vaccination samples, as defined previously, and fl,t>0 is its frequency 
across all post-vaccination samples. The denominator is intended to emphasize 
the effects of gCOGs at frequencies of approximately 50%, which are likely to 
have a large effect on the overall population structure. The proportion pf of genes 
for which Δl was smallest were considered subject to NFDS with strength (1 +  σf), 
whereas the rest where subject to NFDS of strength (1 +  σw). If the L loci were 
ordered by ascending values of Δl, then lf was the highest ranking meeting  

the criterion, ≤ p
l

L f

f . This resulted in two distinct measurements of the deviation of 
fl,t from el:
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Therefore, the modified offspring distribution was:
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Simulations and parameter estimation. The model was implemented in C+ +  
using the GNU scientific library, and is available for download from https://
github.com/nickjcroucher/multilocusNFDS. In each simulation, genotypes were 
represented by the gCOGs and antibiotic-resistance phenotypes present in between 
5% and 95% of the pre- or peri-vaccination population. Therefore, L was 1,090 for 
Massachusetts, 1,175 for Southampton, 1,090 for Nijmegen and 1,254 for Maela. 
For simplicity, κ was assumed to represent the number of pneumococci likely to 
transmit between individuals in the sampled population. This was estimated to 
correspond to 25% colonization of children under ten years of age in the USA and 
European samples. In Massachusetts15, an under ten population of 828,129 in 2000 
(ref. 82) implied a bacterial population size of 2 ×  105 (105 was actually used for 
model fitting for computational efficiency; comparing simulations demonstrated 
that this had no detectable effect on the results); in Southampton (including 
Hampshire and Portsmouth), an under ten population of 202,404 in 2011 (ref. 83)  
implied a bacterial population size of 5 ×  104; and in Nijmegen (including 
Arnhem), an under ten population of 77,753 in 2011 (ref. 84) implied a bacterial 
population of 2 ×  104. An increased colonization rate of 50% (ref. 85) was used for 

Maela, where estimating that 15% of the 40,000 residents were under 10 implied a 
bacterial population size of 3 ×  103.

Each simulation was run for a number of timesteps corresponding to the 
number of months spanned by the genomic collection, excluding early or late 
years in which sampling was sparse. The well-sampled periods were the 72 months 
between spring 2001 and spring 2007 for Massachusetts50; the 48 months between 
spring 2007 and spring 2011 for Southampton16; the 120 months between 2001 
and 2011 for Nijmegen18; and the 24 months between 2007 and 2009 for Maela85. 
All isolates from a single winter were assigned to the year in which the season 
ended. In simulations of the Nijmegen population, where a substantial proportion 
of samples pre-dated the introduction of the vaccine, v =  0 for years up to 2007. In 
each case, the starting population for the simulation, of size κ, was generated by 
randomly resampling with replacement from the genotypes present in the pre- and 
peri-vaccination samples in each study; therefore, the ‘pre-vaccination’ population 
consisted of isolates sampled up to spring 2001 in Massachusetts, up to spring 2007 
in Southampton, and up to 2007 in Nijmegen. These were the genomic samples 
used to calculate el for all intermediate-frequency loci; all later samples were used 
to calculate fl,t>0 in the definition of Δl.

At each time t at which a genomic sample was available, the equivalent number 
of genotypes was randomly sampled from the simulated population. The similarity 
between the simulated and genomic samples at t was then calculated as the  
Jensen–Shannon divergence86 (JSDt) between the real and simulated samples:
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Where ft,s,v is the simulated frequency of genotypes of sequence cluster s and 
vaccine-type status v at time t, and at,s,v is the equivalent value from the genomic 
sample. This value was summed over all vaccine-type statuses and sequence 
clusters for each timepoint sampled in the genomic dataset to calculate the overall 
divergence of the simulation from the sampled data.

Each set of simulations was run with variation in the parameters v (range 
0–0.5); m (range 0–0.2); σf (range 10−6–0.22); σw (range 10−6–0.15; only in the 
heterogeneous-rate model), and pf (range 0–1; only in the heterogeneous-rate 
model). Model fitting was achieved through Approximate Bayesian Computation 
with the BOLFI algorithm40, run for 2,000 iterations of Bayesian optimization 
to identify best-fitting parameter sets by minimizing the JSD (Table 1 and 
Supplementary Fig. 5). Point estimates of parameter values were generated based 
on the Gaussian process minimizers, with the distribution of the projected JSD 
values shown for each fit in Supplementary Fig. 5. Exploration of parameter space 
was performed with logarithmically transformed values to avoid discontinuity 
of the approximate likelihood function near the natural boundary and to 
enable better fit of the Gaussian process regression. The 95% posterior credible 
intervals for the parameters were obtained using three generations of sequential 
Monte Carlo sampling with the same default settings as used in ref. 40 for the 
pneumococcal daycare centre transmission model.

Alternative model formulations. To test whether equivalently good fits to the 
genomic data could be achieved using different approaches within the same 
framework, alternative model formulations were tested. The neutral model was 
fitted in the same way as the multilocus NFDS models, except that σf was fixed at 
zero. The serotype NFDS model assumed all serotypes were present at equilibrium 
frequencies in the pre-vaccine samples, and therefore πi,t was calculated as the 
deviation of an isolate’s serotype from its initial frequency. This was fitted using 
both the homogeneous and heterogeneous selection rate models. In the latter case, 
Δl was calculated by comparing the serotype el values with their post-vaccination 
frequencies, as for the intermediate-frequency loci. The same parameter ranges 
were used as for the multilocus NFDS model, except σf and σw were allowed to take 
values within the range 10−6–25 to compensate for the single locus contributing to 
πi,t and ωi,t. Additionally, to avoid many lower frequency sequence clusters evolving 
neutrally, serotypes were considered to be at intermediate frequencies if they were 
between 1% and 99% prevalence in the pre- or peri-vaccination population.

The ecotype NFDS model assumed each sequence cluster was adapted to a 
specific ecological niche, and therefore was present at an equilibrium frequency 
in the pre-vaccine samples. Therefore, πi,t and ωi,t were calculated as the deviation 
of an isolate’s sequence cluster from its initial frequency. This was fitted using 
both the homogeneous and heterogeneous selection rate models using the same 
parameter ranges and intermediate-frequency range as for the serotype NFDS 
model, as well as the same approach to the calculation of Δl. For both the serotype 
and ecotype models, fitting was conducted with BOLFI40 as for the multilocus 
NFDS model, using JSDs to quantify the differences between the simulated and 
sampled populations. Results are shown in Table 1. These implementations are not 
intended to represent the optimal versions of each model, but instead demonstrate 
that the fits of the multilocus NFDS models cannot be trivially replicated by 
changing the genetic basis of NFDS.

Simulations in which isolates from two populations were combined used 
the pre-vaccination population from Massachusetts and post-vaccine isolates 
from one of the alternative populations. The initial population was drawn only 
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from Massachusetts; both these isolates, and those from the alternative dataset, 
could enter the simulated population through migration. When the alternative 
population corresponded to Southampton or Nijmegen, the population size, 
number of generations, parameter point estimates, Δl and el values were those 
of the alternative population. When the alternative population was Maela, the el 
and Δl values were those of the alternative population, but the simulations were 
otherwise parameterized for the Massachusetts population, due to the difficulty 
of obtaining robust point estimates for parameters from the Maela population as a 
consequence of the lack of vaccine introduction in this location.

Statistical analyses. Statistical analyses, including calculation of Pearson’s R2, 
Wilcoxon tests, interquartile ranges and Fisher’s exact tests, were performed using 
R87. Estimation of parameter values and credibility intervals through model fitting 
were performed with BOLFI40. All reported P values are two-sided.

Code availability. The model code used in this analysis is freely available from the 
GitHub repository, https://github.com/nickjcroucher/multilocusNFDS.

Data availability. The sequence datasets analysed in the current study are available 
in the public sequence databases with the accession codes listed in Supplementary 
Dataset 3. The epidemiological and phylogenetic data analysed in the current study 
are available from https://microreact.org/project/multilocusNFDS.
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