
Shock and Vibration 9 (2002) 253–264 253
IOS Press

Frequency-dependent viscoelastic models for

passive vibration isolation systems

Alberto Coronado, Marcelo A. Trindade and Rubens Sampaio
Departamento de Engenharia Mecânica, PUC-Rio, Rua Marquês de São Vicente 225, 22453-900, Rio de Janeiro,

Brazil

Tel.: +55 21 3114 1178; Fax: +55 21 3314 1165; E-mail: beto cm@yahoo.com; trindade@mec.puc-rio.br;

rsampaio@mec.puc-rio.br

Abstract. Even though there is a growing interest in active vibration isolation systems, passive approaches are still the best choice

in many cases because they are inherently the simplest and of lowest cost. Moreover, better comprehension of the dynamics

and specially of the damping behavior in passive systems is required for successful implementation of active schemes. In the

vast literature of passive isolation systems, there are not many works that consider damping models more elaborated than the

widely used complex modulus. In this work a passive isolation system composed of a base and two isolators, modelled as

Timoshenko beams, and a vibration source, modelled as a rigid body, is considered. For the isolators, two different viscoelastic

models are considered: the Anelastic Displacement Fields (ADF) and Fractional Calculus (FC), which will be compared with the

complex modulus model. The results show that both ADF and FC models lead to better approximation of dissipated energy, since

they account for frequency-dependence of the viscoelastic isolators. Analysis of the curve-fitting of material parameters, using

ADF and FC models has shown that generally less parameters are needed by FC model, for the same fitting quality, although

optimization results depends strongly on the initial guess for the solution.
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1. Introduction

Vibration isolation systems are used in a wide va-

riety of applications in order to reduce the transmis-

sion of mechanical vibrations from the equipments

(source) to the foundation (base) or vice versa. Iso-

lation is obtained by inserting a mechanical com-

ponent (isolator) that links the source and the base.

Hence, it is very important to accurately model the

system source/base/isolator. However, it is not easy

to find a model that describes suitably the response

at all frequencies. Single-degree-of-freedom models

are not satisfactory and even models considering mul-

tiple mounts, each one treated as a lumped system,

are incomplete. Additionally, the material stiffness E
and loss factor η normally vary with the frequency,

this is specially noticeable in isolators made of vis-

coelastic materials. In this work, the simple frequency-

independent complex modulus model is compared with

Anelastic Displacement Fields (ADF) [6] and Frac-

tional Calculus (FC) [1] models, which are able to pre-

dict the response even in highly damped structures.

On the other hand, there are many methods used

to model flexible bodies, the Finite Element Method

(FEM) is largely the most widespread, however al-

ternative methods like the Spectral Element Method

(SEM) [4] may be most suitable for analysis in medium

and high frequency ranges, mainly because it has the

advantage of considering exact solutions in the fre-

quency domain. These two modelling methods can be

easily implemented in conjunction with the viscoelastic

models aforementioned.

The object of the work is to present an analysis of an

isolation system with two isolators made of viscoelas-

tic material. We pay special attention to the model

formulation and the frequency-dependent viscoelastic

material properties.
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Fig. 1. Isolation system model with two isolators.

2. Isolation system model

Considering the Fig. 1, expressions based in a
mobility-impedance formulation will be introduced.

All the forces (qs = [fy fz tx]T ,qb = [f ′

y f ′

z t′x]T ,

fs1 = [ny1 nz1 tx1]
T , etc.) and displacements (vs1 =

[v1 w1 θx1]
T , etc.) have 3 components, though, in

general, we show just one for simplicity. Note that
the displacements, velocities, accelerations and forces
will be represented by x = Xeiωt, where x is a har-

monically time-varying quantity and X is an ampli-
tude that in the more general case will be a complex
number. Each component is a quantity that varies har-
monically, so it can be written in the following way:
fy = Fye

iωt, fz = Fze
iωt, tx = Txe

iωt, etc.
Expressions that relate the velocities (v̇) and the

forces (f ) in the source and in the base can be expressed
as [5]

v̇s = Ms1fs + Ms2qs (1)

v̇b = Mb1fb + Mb2qb (2)

Where we have the relations

v̇s =

[

v̇s1

v̇s2

]

, fs =

[

fs1
fs2

]

,

v̇b =

[

v̇b1

v̇b2

]

, fb =

[

fb1
fb2

]

The following notation will be used: the mobilities
(M) with subscript 1 correspond to the internal forces

(fs1, fs2, fb1, fb2) and those with subscript 2 to the ex-

ternal forces (qs, qb). Meanwhile, the velocities (v̇)

or the forces (f ) with subscript 1 correspond to the

left isolator and the ones with subscript 2 to the right

isolator.

For the isolators, the forces and the velocities in their

ends will be related by

fi = Zi1v̇i (3)

where Zi1 is the impedance matrix. Moreover

fi =









fi11
fi12
fi21
fi22









, v̇i =









v̇i11

v̇i12

v̇i21

v̇i22









The equations that relate the external forces (qs, qb)

with the internal forces (fs , fb) and velocities (v̇s, v̇b)

in the system will be presented below. New matrices

and vectors will be defined

Msb1 =

[

Ms1 0

0 Mb1

]

,

Msb2 =

[

Ms2 0

0 Mb2

]

qsb =

[

qs

qb

]

, v̇sb =

[

v̇s

v̇b

]

,

fsb =

[

fs
fb

]
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Then, the first two equations can be grouped as

v̇sb = Msb1fsb + Msb2qsb (4)

Using the action-reaction principle for the forces and
continuity for the velocities, we obtain two additional
equations

fi = −Tfsb

v̇i = Tv̇sb

T is a transformation matrix that relates displace-
ments, velocities or forces at the contact points between
the source (or the base) and the isolators.

Using the expressions above, we can find the veloc-
ities (v̇sb) and the forces (fsb) in the source and in the
base as a function of the external forces (qsb)

v̇sb = M1vqsb (5)

fsb = M1fqsb (6)

where

M1v = (I + Msb1T
−1Zi1T)−1Msb2 (7)

M1f = −T−1Zi1T
(8)

(I + Msb1T
−1Zi1T)−1Msb2

The source-base mobility expressions due to internal
forces (Msb1) and due to external forces (Msb2) will
be calculated using a matrix approach [3]. Addition-
ally, the two isolators impedance matrix (Zi1) will be
calculated using the Spectral Element Method (SEM).
It is worth noting that using the SEM we will obtain
a dynamic stiffness matrix (Ki1) that is easily related
with the impedance matrix, Zi1 = iωKi1.

In this work, the vibration transmission from the
source to the base will be quantified through the eval-
uation of the input power due to the source and the
power transmitted to the base. The input power to the
isolation system is given by the product of fs times the
hermitian transpose of the velocity v̇s

PI =
1

2
fsv̇

H
s (9)

In addition, we can evaluate the transmitted power
to the base which is given by the product of fb times
the hermitian transpose of v̇b

PT =
1

2
fbv̇

H
b (10)

The difference between the input power PI and the
transmitted power PT is the power dissipated in the
isolator. This quantity allows us to quantify the perfor-
mance of the isolation system. Notice also that both
PI and PT are obtained from the velocities and loads
at the source and the base.

3. The spectral element method (SEM)

The major advantage of the SEM [4] is that the ele-

mentary dynamic stiffness matrix is calculated from the

analytical solution, this can be done by transforming

the equation of motion to the frequency domain. Since

the isolators are considered as a combination of a rod

and a beam, in this section we will derive some basic

relations of these structural elements.

3.1. Simple rod

The transformed homogeneous equation for a simple

rod is

d

dx

(

EA
dû

dx

)

+ ω2ρAû = 0 (11)

where û is the transformed displacement, E is the

Young modulus, A is the cross-section area, ρ is the

material density and ω is the angular frequency. In this

paper we will compare some models to describe the

frequency-dependence of the Young modulus. These

models will be briefly addressed in the following sec-

tion.

In order to obtain the dynamic stiffness matrix, we

will use the dynamic shape functions approach. These

shape functions are essentially interpolation functions,

but instead of being simple polynomials, they are the

exact displacement distributions. The general longitu-

dinal displacement for a rod is

û(x) = Ae−ik1x + Be−ik1(L−x) (12)

where k1 = ω
√

ρ
E

is the wavenumber and L is the

element length.

The displacement end conditions are

û(0) ≡ û1 = A + Be−ik1L,

û(L) ≡ û2 = Ae−ik1L + B

After solving for A and B, the longitudinal displace-

ment can be written as

û(x) = ĝ1(x)û1 + ĝ2(x)û2 (13)

where

ĝ1(x) =
(

e−ik1x
− e−ik1(2L−x)

)

/△

ĝ2(x) =
(

−e−ik1(L+x) + e−ik1(L−x)
)

/△,

△ = (1 − e−i2k1L)

The member loads at each end of the rod are related

to the displacements by
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F̂1 = −F̂ (0) = −EA (ĝ′1(0)û1 + ĝ′2(0)û2)

F̂2 = F̂ (L) = EA (ĝ′1(L)û1 + ĝ′2(L)û2)

where primes indicate differentiation with respect to

x. These two equations can be written in the matrix

form F̂R = kRûR, where F̂R = [F̂1 , F̂2]
T , ûR =

[û1 , û2]
T and

kR =
EA

L

ik1L

(1 − e−i2k1L)
(14)[

1 + e−i2k1L −2e−ik1L

−2e−ik1L 1 + e−i2k1L

]

3.2. Timoshenko beam

The transformed equations for a Timoshenko beam

are [4]

GAK1
∂

∂x

(

∂v̂

∂x
− φ̂

)

+ ω2ρAv̂ = 0 (15)

EI
∂2φ̂

∂x2
+ GAK1

(

∂v̂

∂x
− φ̂

)

(16)
+ ω2ρIK2φ̂ = 0

v̂ and φ̂ are the transformed displacement and rotation.

K1 is the shear correction factor and K2 is a coeffi-

cient of the rotation inertia. The Mindlin coefficient

K1 = π2

12 for shear correction is considered here, while

settingK2 to zero allows us to neglect the rotation iner-

tia for analysis. However, the results presented in this

work were obtained with K2 = 1. G is the frequency-

dependent shear modulus and I is the second area mo-

ment of the cross section. The frequency-dependence

of the shear modulus G will be treated in detail in the

next section.

The general transverse displacement is

v̂(x) = R1Ae−ik1x + R2Be−ik2x

−R1Ce−ik1(L−x) (17)

−R2De−ik2(L−x)

φ̂(x) = Ae−ik1x + Be−ik2x

(18)
+Ce−ik1(L−x) + De−ik2(L−x)

where A,B,C and D are coefficients determined from

the boundary conditions of the element and R i are the

amplitude ratios

Ri =
ikiGAK1

GAK1k2
i − ρAω2

(19)

The end conditions of the element are

v̂(0) = v̂1 , φ̂(0) = φ̂1,

v̂(L) = v̂2 , φ̂(L) = φ̂2

After solving a system of equations we get








A

B

C

D









= Ĝ









v̂1

φ̂1

v̂2

φ̂2









= Ĝû

where Ĝ is a [4 × 4] matrix. The displacements and

rotations can be written as

v̂(x) = N̂T L̂1Ĝû (20)

φ̂(x) = N̂T Ĝû (21)

where N̂T = [e−ik1x, e−ik2x, e−ik1(L−x),

e−ik2(L−x)] and L̂1 = diag[R1, R2, −R1, −R2].
The shear force and the moment expressions are

V̂ (x) = −EIN̂′′T Ĝû − ρIω2N̂T L̂1Ĝû

M̂(x) = EIN̂′T Ĝû

the primes indicating differentiation with respect to x.

Evaluation at x = 0 and x = L gives









−V̂ (0)

−M̂(0)

V̂ (L)

M̂(L)









= P̂Ĝ









v̂1

φ̂1

v̂2

φ̂2









We will consider V̂1 = −V̂ (0), M̂1 = −M̂(0),
V̂2 = V̂ (L) and M̂2 = M̂(L). The relation between

the loads and element degrees of freedom can be written

as

F̂B = kBûB (22)

where F̂B = [V̂1 , M̂1 , V̂2 , M̂2]
T , ûB = [v̂1 ,

φ̂1 , v̂2 , φ̂2]
T and kB is the [4× 4] element stiffness

matrix.

We use the two stiffness matrices derived, coming

from the rod kR and beam kB spectral elements, to

obtain a global stiffness matrix for each isolator. After,

the global stiffness matrices of the two isolators need to

be assembled, leading to the dynamic stiffness matrix

Ki1 required for the evaluation of the impedance matrix

Zi1 in Eqs (7) and (9). This process is detailed in

Coronado [3] and is not repeated here for the sake of

brevity.
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4. Dissipation models

In this section, three viscoelastic models are pre-

sented, namely the Anelastic Displacement Fields

(ADF), proposed by Lesieutre and Bianchini [6], the

Fractional Calculus (FC) put forward by Bagley and
Torvik [1] and the well-known complex modulus ap-

proach. These are needed to model the frequency-

dependence of the two viscoelastic isolators considered

in this work.

4.1. Anelastic displacement fields (ADF)

The linear viscoelasticity theory [2] states the fol-

lowing law

σ(t) =

∫ t

−∞

c(t− τ)dε(τ) (23)

where σ is the stress tensor and ε is the strain tensor. In

the special case of linear elastic materials, c(t) is con-

stant, i.e. c(t) = co. For viscoelastic materials, c(t)
is not constant, so the integration must be calculated

in the range [−∞, t]. Considering that the material is

initially at rest, i.e. εj(t) = 0 for −∞ < t < 0, the jth

component of the stress tensor is

σj(t) = G(t)εj(0)
(24)

+

∫ t

0

G(t− τ)
∂εj

∂τ
(τ)dτ

where G is the shear modulus. If we define h(t) =
G(t) −G0, then

σj(t) = G0εj(t) + h(t)εj(0)
(25)

+

∫ t

0

h(t− τ)
∂εj

∂τ
(τ)dτ

The modulus after the material relaxation will be
G0 = limt→∞ G(t). If the initial conditions are equal

to zero, we observe that the last equation is the expres-

sion of the Laplace transform

σ̃j(s) = [G0 + h(s)]ε̃j(s) (26)

with h(s) = sh(s). Additionally, G0ε̃j(s) accounts

for the material elasticity and h(s)ε̃j(s) is related to

dissipation. Becauseh(s) functions give the dissipative

behavior, many authors have developed mathematical
representation for these functions, such as [6] and [7].

Lesieutre and Bianchini [6] representh(s) as a series

of functions in the Laplace-domain

h(s) = G0

n
∑

i=1

△is

s + Ωi

(27)

which may be written in the frequency-domain as

G∗(ω) = G0

(

1 +
n

∑

i=1

△i

ω2 + jωΩi

ω2 + Ω2
i

)

(28)

G∗(ω) is the complex frequency-dependent shear mod-

ulus, Ωi is the inverse of the characteristic time of re-

laxation at constant deformation, and △ i is the relax-

ation resistance. These series of two parameters and the

static modulusG0 will be calculated from experimental

data making use of a non-linear least-squares optimiza-

tion. Additional details and comparison between this

model and some others can be found in [11].

4.2. Fractional calculus (FC)

In the standard linear viscoelastic model, a series of

time derivatives applied to the stress fields is related to

a series of time derivatives on the strain fields

σ(t) +

M
∑

m=1

bm

dmσ(t)

dtm

(29)

= G0ε(t) +

N
∑

n=1

Gn

dnε(t)

dtn

which is cumbersome to use. For viscoelastic materi-

als having mechanical properties that are strongly fre-

quency dependent, the number of time derivatives, M
and N , in the series can be large. Consequently the

number of empirical parameters in the model is large.

Observations of the mechanical properties of vis-

coelastic materials indicated that the stress relaxation

phenomenon appeared to be proportional to time raised

to fractional powers [1]. The general form of the

present fractional derivative viscoelastic model is

σ(t) +

M
∑

m=1

bmDβm < σ(t) >

(30)

= G0ε(t) +

N
∑

n=1

GnD
αn < ε(t) >

Experimental observations indicate that many vis-

coelastic materials can be modelled by retaining only

the first fractional derivative term in each series [1].

The result is a viscoelastic model with five parameters,

b, G0, G1, α and β.

σ(t) + bDβ < σ(t) >
(31)

= G0ε(t) + G1D
α < ε(t) >

The fractional derivatives are defined by
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Fig. 3. Curve fitting of FC model for 5 parameters.

Dα < x(t) >

=
1

Γ(1 − α)

d

dt

∫ t

0

x(τ)

(t− τ)α
dτ ; (32)

0 < α < 1

where Γ is the gamma function. The fractional deriva-
tives have the following property in the Fourier domain

F < Dα < x(t) >>= (iω)αF < x(t) > (33)

That is, the Fourier transform of the fractional deriva-
tive of order α of x(t) is (iω)α times the Fourier trans-
form of x(t). Hence, taking the Fourier transform of
the five parameter viscoelastic model, yields

σ∗(iω) + b(iω)βσ∗(iω)
(34)

= G0ε
∗(iω) + G1(iω)αε∗(iω)

Factoring and dividing terms, one may obtain a re-
lation between stress and strain, through a complex
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frequency-dependent modulus G∗(ω)

σ∗(iω) = G∗(ω)ε∗(iω);
(35)

G∗(ω) =
G0 + G1(iω)α

1 + b(iω)β

4.3. Complex modulus

This approach is motivated by observing the rela-

tionship between sinusoidal stress and sinusoidal strain

in viscoelastic materials. The strain lags the stress and

the imaginary part of the complex constant adequately

describes this phenomenon.

The expression for the complex shear modulus can

be written in terms of the frequency ω as

G∗(ω) = G′(ω) + jG′′(ω)
(36)

= G′(ω)[1 + jηG(ω)]

where G′(ω) is the elastic shear modulus and ηG(ω) is
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s

= [1, 1, 1] and ADF model with 7 parameters (3 series).

the loss factor which is defined by

ηG(ω) =
G′′(ω)

G′(ω)
. (37)

Finally, the Young modulusE ′(ω) can be easily cal-

culated from the well known relation

G′(ω) =
E′(ω)

2[1 + ν(ω)]
(38)

where ν is the Poisson ratio. Here, for simplicity,
ν(ω) is considered frequency-independent so that the
stiffness of the material is proportional to G∗(ω).

5. Numerical examples

The properties of the isolation system (Fig. 1) were
taken from the work of Gardonio et al. [5] and are
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Fig. 9. Input and transmitted power for qs = [1, 1, 1] and complex modulus model with G = 0.46MPa and η = 0.1.

resumed here. Source: mass 105.3 kg, x-axis mo-

ment of inertia with respect to the center of mass

3.16 kg/m2. Isolators (3M ISD112, viscoelastic mate-

rial at 27◦C [10]): external diameter 0.06 m, internal

diameter 0.03 m, length 0.1 m, density 1000 kg/m 3,

frequency-dependent Young modulus, Poisson ratio

0.5, frequency-dependent loss factor. Base (Aluminum

beam): section height 0.03 m, section width 0.01 m,

length 1 m, density 2700 kg/m3, Young modulus

7.1 × 1010 N/m2, Poisson ratio 0.33, loss factor 0.02.

Additionally Ds = 0.25 m, β = 0◦.

The frequency responses of vibration isolation sys-

tems have some interesting characteristics [8]. For the

above defined system we can recognize three distinct
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Fig. 10. Input and transmitted power for qs = [1, 1, 1] and complex modulus model with G = 0.46MPa and η = 0.3.
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Fig. 11. Input and transmitted power for qs = [1, 1, 1] and complex modulus model with G = 0.46MPa and η = 0.7.

areas (Fig. 7): below 10 Hz there are the ‘suspen-

sion modes’, where the source acts like a rigid body;

between 10 and 50 Hz the ‘isolation area’ is located,

where there are no resonances, and above 50 Hz there

are the ‘flexible modes’, where we can find the base

and isolator resonances.

For demonstration purposes, we will consider that

the ‘operational area’ of a given machine coincides

with the ‘isolation area’ defined above (between 10 and

50 Hz). However, the fitting of the damping material

properties and the response of the isolation system are

shown on a broader frequency range, for comparison

purposes. Additionally, from Fig. 4 it is seen that the

maximum value of the loss factor η associated with
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the transition frequency [9] occurs near 104 Hz, which

is out of the ‘isolation area’ frequencies, so that the

material can be considered as Type I [9].

The fitting curves of the ADF and FC models were

carried out using the Optimization Toolbox of the

MATLAB�. Specifically, we used the lsqnonlin
function which uses a non-linear least squares algo-

rithm.

In the Figs 2 and 3, we show the measured [10] and

fitted curves of the shear modulusG′ and the loss factor

η, in a 1–1000 Hz frequency range, for the ADF and

FC models. The two models show a great fit with the

measured values, although the ADF presents a slight

difference in the 1000 Hz neighborhood. The ADF

model owns 7 parameters (3 series) and the FC model

owns 5 parameters, additionally the later one has in

general a fastest convergence, but it depends hardly on

the initial values of the optimization. Whereas, in this

work we will carry simulations on the 1–1000 Hz range,

we will show the results obtained for fitting process that

have a wider range.

The Figs 4 and 5 show a broader frequency range,

0.1 − 105 Hz. In Fig. 4, we observe that the ADF

model fits the measured curve in a acceptable manner

in the low frequencies, but becomes poorer at the high

extreme. On the other hand, in Fig. 5, we note that the

FC model lacks some fitness in the low frequencies, but

over 10 Hz it becomes highly suitable. As an additional

comparison, it is shown in Fig. 6 an ADF fitting with

9 parameters (4 series). There is improvement mainly

in the high frequencies, but in the medium range some

error remains.

In the following figures we compare the input and

transmitted power in the isolation system. The Figs 7

and 8 show a very similar behavior, with small differ-

ences in the high frequencies, near 1000 Hz.

The three latest Figs 9, 10 and 11 show very dissimi-

lar responses obtained with the frequency-independent

complex modulus model in comparison with the two

former models. These differences can be noted already

at the rigid source modes (near 10 Hz) and are more

evident at the other frequencies. The use of a small

constant loss factor (η = 0.1, Fig. 9) is intended to cap-

ture the system behavior in the lower frequencies. On

the other hand, the use of a large constant loss factor

(η = 0.7, Fig. 11) is intended to capture the system

behavior in the higher frequencies. However, not only

Figs 9 and 11 furnish wrong results for the higher and

lower frequencies, respectively, but also both provide

wrong results for the power dissipated in the isolation

area. Moreover, Fig. 10 shows that even an interme-

diate value of η = 0.3 does not capture the system

behavior adequately.

6. Conclusions

The influence of the isolator stiffness and damping

frequency dependence was analyzed, this was carried

out on an isolation system with two isolators and a

flexible base. In order to excite many vibration modes

as an attempt to consider more realistic situations, two

excitation forces, in y and z directions, and one excita-

tion moment, in x direction, were considered. This fact

allow us to see easily the different responses obtained

using the approaches early discussed.

The isolation systems using Anelastic Displacement

Fields (ADF) and Fractional Calculus (FC) models

have shown very similar responses in the frequencies

analyzed here. On the other hand the responses ob-

tained using the frequency-independent complex mod-

ulus model were clearly different, which indicates that

this model is not suitable when we work in a broad

frequency range and with highly dissipative isolators.

Additionally, we can conclude that for a frequency

analysis like the one done in the present work, the FC

model has some advantage with respect to ADF, since

the FC requires less parameters and its fitting converges

quickly.
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