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Abstract

Frequency-difference electrical impedance tomography (fdEIT) has been

proposed to deal with technical difficulties of a conventional static EIT imaging

method caused by unknown boundary geometry, uncertainty in electrode

positions and other systematic measurement artifacts. In fdEIT, we try to

produce images showing changes of a complex conductivity distribution with

respect to frequency. Simultaneously injecting currents with at least two

frequencies, we find differences of measured boundary voltages between those

frequencies. In most previous studies, real parts of frequency-difference voltage

data were used to reconstruct conductivity changes and imaginary parts to

reconstruct permittivity changes. This conventional approach neglects the

interplay of conductivity and permittivity upon measured boundary voltage

data. In this paper, we propose an improved fdEIT image reconstruction

algorithm that properly handles the interaction. It uses weighted frequency

differences of complex voltage data and a complex sensitivity matrix to

reconstruct frequency-difference images of complex conductivity distributions.

We found that there are two major sources of image contrast in fdEIT. The

first is a contrast in complex conductivity values between an anomaly and

background. The second is a frequency dependence of a complex conductivity

distribution to be imaged. We note that even for the case where conductivity

and permittivity do not change with frequency, the fdEIT algorithm may show a

contrast in frequency-difference images of complex conductivity distributions.

On the other hand, even if conductivity and permittivity values significantly

change with frequency, there is an example where we cannot find any contrast.
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The performance of the proposed method is demonstrated by using computer

simulations to validate its feasibility in future experimental studies.
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1. Introduction

In electrical impedance tomography (EIT), we inject currents into an imaging object such

as the human body through surface electrodes so that induced internal current pathways are

dictated by its complex conductivity distribution to be imaged. In this paper, the complex

conductivity means σ + iωε in S m−1 where σ, ω and ε are the conductivity, angular frequency

and permittivity, respectively. Local change of an internal complex conductivity value results

in a distortion of the current pathway whose effect is conveyed to boundary voltage data which

take complex values. EIT uses these measured boundary voltage data to reconstruct images of

the complex conductivity distribution inside the imaging object (Webster 1990, Metherall et al

1996, Cheney et al 1999, Saulnier et al 2001, Holder 2005).

In a static EIT imaging method, we may construct a forward model of the imaging object

with a presumed complex conductivity distribution. Injecting the same currents into the

model, boundary voltages are computed to numerically simulate measured data. Since the

initially guessed complex conductivity distribution of the model is in general different from

the unknown complex conductivity distribution of the object, there exist some differences

between measured and computed voltages. Most static EIT imaging methods are based on a

minimization technique where a sum of these voltage differences is minimized by adjusting

the complex conductivity distribution of the model (Yorkey et al 1987, Cheney et al 1990,

Woo et al 1993, Lionheart et al 2005, Adler and Lionheart 2006). Other methods may include

the layer-stripping (Cheney et al 1991) and d-bar (Isaacson et al 2004) algorithms.

In order for a static EIT image reconstruction algorithm to be reliable, we should construct

a forward model that mimics every aspect of the imaging object except the internal complex

conductivity distribution. This requires knowledge of the boundary geometry, electrode

positions and other sources of systematic artifacts in measured data. However, in practice, it

is difficult to obtain such information with a reasonable accuracy and cost. Since static EIT

imaging is sensitive to these errors, it has a limited applicability so far.

New methods are desirable to overcome these difficulties. One way is to adopt a

time-difference imaging method where any difference of an internal complex conductivity

distribution between two time instances is imaged (Metherall et al 1996, Holder 2005, Oh et al

2008). Even though numerous time-difference EIT (tdEIT) methods have been applied to

image lung functions, stomach emptying, brain functions and others, there are cases where

time-referenced data are not available. For example, in all applications of EIT for tumor

imaging including breast tumor, time-referenced data do not exist at the time of imaging since

the patient either has tumor or not at that time. Stroke-type detection using EIT is another

example. In those cases, static EIT imaging has been tried but reconstructed images suffered

from the above-mentioned technical difficulties.

We note that complex conductivity spectra of numerous biological tissues show frequency-

dependent changes (Gedded and Baker 1967, Gabriel et al 1967, Grimnes and Martinsen 2000,
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Oh et al 2008). This indicates that we can view a complex conductivity distribution inside

an imaging object as a function of frequency. Based on this observation, there have been

attempts to perform frequency-difference image reconstructions (Griffiths 1987, Scalfe et al

1994, Schlappa et al 2000, Yerworth et al 2003). However, there has been not much study on

its theory and reconstruction algorithm as well as experimental results.

In this paper, we pay attention to frequency-difference EIT (fdEIT) where we inject

currents with at least two different frequencies. Utilizing differences of measured boundary

voltages between chosen frequencies, we try to alleviate undesirable effects of modeling

errors. By investigating the sensitivity of frequency-difference voltage data to a change

in a complex conductivity distribution, we will propose an improved frequency-difference

image reconstruction algorithm. We will test its performance through numerical simulations

assuming a 16-channel multi-frequency EIT system with a frequency range of 10 Hz to

500 kHz (Oh et al 2007a, 2007b).

For image reconstructions of complex conductivity distributions, most previous studies

have used real parts of complex voltage data to reconstruct conductivity images and their

imaginary parts to reconstruct permittivity images. This traditional approach neglects the

interplay of conductivity and permittivity values upon measured complex voltage data. It

becomes inappropriate especially for a frequency above 1 kHz, for example, where ωǫ values

of biological tissues get bigger to be comparable with their σ values. In this paper, we

suggest using weighted frequency differences of complex voltage data together with a complex

sensitivity matrix to properly handle the interaction.

We will discuss that there are two major sources of image contrast in fdEIT. The first is

a contrast in complex conductivity values between an anomaly and background. The second

is a frequency dependence of a complex conductivity distribution to be imaged. Since these

two are interrelated, there is an example where we cannot see any contrast in reconstructed

frequency-difference images even though a true complex conductivity distribution has a strong

frequency dependence. On the other hand, fdEIT may visualize an anomaly as long as its

complex conductivity differs from that of the background, without requiring any frequency

dependence. The performance of the proposed method will be demonstrated by using computer

simulations to validate its feasibility in future experimental studies.

2. Methods

2.1. Problem formulation

Let an imaging object occupy a two- or three-dimensional region � bounded by its surface

∂�. Electrodes Ej for j = 1, . . . , n are attached on the boundary ∂�. We inject a sinusoidal

current with its magnitude I and angular frequency ω through a chosen pair of electrodes and

measure boundary voltages between other pairs of electrodes. The resulting time-harmonic

voltage uω in � is governed by
{

∇ · ((σ (r, ω) + iωε(r, ω))∇uω) = 0 in �

−(σ (r, ω) + iωε(r, ω))∇uω · n = g on ∂�,
(1)

where σ and ε are the conductivity and permittivity, respectively, which depend on the position

r = (x, y, z) and ω. Here, n is the outward unit normal vector on ∂� and g is the magnitude of

the current density on ∂� due to the injection current. On current injection electrodes Ej and

Ek , we have
∫

Ej
g ds = I = −

∫

Ek
g ds where ds is the surface element. The Neumann data g

is zero on the regions of boundary not contacting with current injection electrodes. Setting a

reference voltage having
∫

∂�
uω = 0, we can obtain a unique solution uω of (1) from σ, ǫ and
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g. Denoting real and imaginary parts of uω by vω = Re uω and hω = Im uω, respectively, the

boundary value problem in (1) can be expressed as the following coupled system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ · (σ∇vω) − ∇ · (ωε∇hω) = 0 in �

∇ · (ωε∇vω) + ∇ · (σ∇hω) = 0 in �

n · (−σ∇vω + ωε∇hω) = g on ∂�

n · (−σ∇hω − ωε∇vω) = 0 on ∂�.

(2)

We focus on a mathematical model for a 16-channel multi-frequency EIT system described

by Oh et al (2007a, 2007b). Using the fdEIT system, we may inject currents with several

different sinusoidal frequencies of ω1, ω2, . . . , ωm, for example, 10 Hz �
ω1

2π
�

ω2

2π
� · · · �

ωm

2π
� 500 kHz. In this paper, we will express the induced boundary voltage as

fω = uω|∂�,

where uω is a solution of (1) or (2). As explained in the following sections, we will use a

weighted frequency difference of the boundary voltage data

fωk
− αfωl

with ωk �= ωl

to reconstruct an image of a weighted frequency difference of complex conductivity values

α[σ(r, ωk) + iωkε(r, ωk)] − [σ(r, ωl) + iωlε(r, ωl)],

where α is an appropriate constant.

Use of fωk
− αfωl

together with a complex sensitivity matrix is the key idea to minimize

undesirable effects of modeling errors. It is important to understand how α[σ(r, ωk) +

iωε(r, ωk)] − [σ(r, ωl) + iωε(r, ωl)] is related with fωk
− αfωl

. In the following section,

we investigate the sensitivity of fωk
− αfωl

to the presence of an anomaly. We will derive

a representation formula providing a relation between boundary voltage data and change of

complex conductivity across the anomaly.

2.2. Sensitivity analysis

We assume that the imaging object � is a circular saline tank that is treated as a unit disk

and an anomaly D is located inside �. The complex conductivity distribution γ (r, ω) =
σ(r, ω) + iωε(r, ω) changes abruptly across the boundary of the anomaly, ∂D. We set

σ(r, ω) =

{

σb(ω) if r ∈ �\D

σa(ω) if r ∈ D
and ε(r, ω) =

{

εb(ω) if r ∈ �\D

εa(ω) if r ∈ D.
(3)

The complex conductivities σa + iωεa and σb + iωεb are constants at each frequency ω but they

may change with ω.

The following representation formula explains how fω2
− αbfω1

is related with the

anomaly D.

Lemma 2.1. Under the assumption (3), we have

fω2
(r) − αbfω1

(r) =

∫

D

r − r′

π |r − r′|2
· [τ2∇uω2

(r′) − τ1∇uω1
(r′)] dr′, r ∈ ∂�, (4)

where

αb =
σb(ω1) + iω1εb(ω1)

σb(ω2) + iω2εb(ω2)

and

τj =
(σb(ωj ) − σa(ωj )) + iωj (εb(ωj ) − εa(ωj ))

σb(ω2) + iω2εb(ω2)
, j = 1, 2.
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Proof. Let r ∈ ∂� and rt = r + tn(r). Note that rt ∈ R
2 \ � for t > 0. Denote �(r, r′) =

1
2π

log |r − r′|, the fundamental solution of the Laplace equation. Since ∇2�(rt , r′) = 0 for

r′ ∈ � and t > 0, we have

0 = (σb(ω) + iωεb(ω))

∫

�

∇2�(rt , r′)uω(r′) dr′, for t > 0.

Integrating by parts, we get
∫

∂�

g(r′)�(rt , r′) dsr′ + [σb(ω) + iωεb(ω)]

∫

∂�

∂n�(rt , r′)fω(r′) dsr′

= ([σb(ω) − σa(ω)] + iω[εb(ω) − εa(ω)])

∫

D

∇�(rt , r′) · ∇uω(r′) dr′, (5)

where ∂n = n · ∇ and t > 0. We choose two different frequencies of ω1 and ω2 and eliminate

the integral term involving the input current g in (5). With ω1 < ω2, we have the following

identity: for r ∈ R
d\�,

∫

∂�

∂n�(rt , r′)[fω2
(r′) − αbfω1

(r′)] dsr′

=

∫

D

∇�(rt , r′) · [τ2∇uω2
(r′) − τ1∇uω1

(r′)] dr′. (6)

It follows from the well-known trace formula for singular integral that

−
1

2
[fω2

(r′) − αbfω1
(r′)] = lim

t→0+

∫

∂�

∂n�(r + tn(r), r′)[fω2
(r′) − αbfω1

(r′)] dsr′ (7)

for r ∈ ∂�. This completes the proof of (4) and it tells that real and imaginary parts of

fω2
− αbfω1

correspond to those of τ2∇uω2
− τ1∇uω1

inside D, respectively. �

Observation 2.2. Average directions of ∇v1,∇v2,∇h1,∇h2 on D are approximately parallel

or anti-parallel provided that the injection current is a projection current (Isaacson 1986)

and D is small,
∣

∣

∣

∣

∫

D

∇v1(r) dr ×

∫

D

∇v2(r) dr

∣

∣

∣

∣

≈ 0 and

∣

∣

∣

∣

∫

D

∇vj (r) dr ×

∫

D

∇hj (r) dr

∣

∣

∣

∣

≈ 0

for j = 1, 2. Under these approximations, real and imaginary parts of (4) can be approximated

by

Re{fω2
(r) − αbfω1

(r)} ≈ C1

(

ω1, ω2,
σa

σb

,
εa

εb

) ∫

D

r − r′

π |r − r′|2
· ∇v1(r

′) dr′, r ∈ ∂�

Im{fω2
(r) − αbfω1

(r)} ≈ C2

(

ω1, ω2,
σa

σb

,
εa

εb

) ∫

D

r − r′

π |r − r′|2
· ∇v1(r

′) dr′, r ∈ ∂�,

(8)

where C1 and C2 are constants depending on ω1, ω2,
σa

σb
and εa

εb
.

We will numerically verify this observation in section 3.1 (see figure 2). Although various

numerical simulations support the observation 2.2 for a quite general anomaly D, we still do

not have its theoretical justification which requires very technical analysis. Kwon et al (2002)

and Ammari and Seo (2003) provided some analysis to estimate the direction of the vector
∫

D
∇v1(r) dr when ω1 = 0.

Observation 2.3. As long as the complex conductivity value of the anomaly is different from

that of the background, the weighted frequency-difference voltage in (4) contains information

to detect the anomaly even for the case where σl(ω1) = σl(ω2) and εl(ω1) = εl(ω2) for l = a, b
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(no change in conductivity and permittivity with respect to frequency for both anomaly and

background). In this case, the formula for the imaginary part in (8) can be simplified as

Im{fω2
(rj ) − αbfω1

(rj )} ≈ |D|

[

ω2εb

σb

(

σa

σb

−
εa

εb

)

(z − rj ) · ∇v1(z)

|z − rj |2

]

, (9)

where rj is the center of the electrode Ej for each j = 1, . . . , 16 and z is the center of D.

Hence, we can detect D provided that σa

σb
�= εa

εb
.

We will numerically verify this observation in section 3.2 (see figure 3).

2.3. Frequency-difference image reconstruction algorithm

We assume a 16-channel multi-frequency EIT system (Oh et al 2007a, 2007b) where we

sequentially inject 15 linearly independent sinusoidal currents I sin(ωt) using adjacent pairs

of electrodes Ej and Ej+1 for j = 1, 2, . . . , 15. Resulting complex voltage u
j
ω satisfies the

following mixed boundary value problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇ ·
(

γω∇u
j
ω

)

= 0 in �

I = −

∫

Ej

γω

∂u
j
ω

∂n
ds =

∫

Ej+1

γω

∂u
j
ω

∂n
ds

∫

∂�

uj
ω = 0, ∇uj

ω × n|Ej
= 0 = ∇uj

ω × n|Ej+1

γω

∂u
j
ω

∂n
= 0 on ∂� \ Ej ∪ Ej+1,

(10)

where ∂u
∂n

= ∇u · n. Primarily for the simplification, we use the simple electrode model which

could be enough for an EIT system utilizing the four-electrode measurement method. One

may adopt a more sophisticated electrode model such as the shunt model or complete electrode

model (Cheng et al 1989).

We use two sets of measured boundary voltages f
j
ω1(k) = u

j
ω1

∣

∣

Ek
and f

j
ω2(k) = u

j
ω2

∣

∣

Ek

at different frequencies of ω1 and ω2, respectively. According to (8), it is desirable to use a

weighted frequency-difference voltage data f
j
ω2(k) − αbf

j
ω1(k). Assume that γω1

and γω2
have

homogeneous backgrounds with complex conductivity values of γ̂1 and γ̂2, respectively, and

γω1
= γ̂1 and γω2

= γ̂2 near ∂�. In this case,

αb =
γ̂1

γ̂2

and γω1
− αbγω2

= 0 on ∂�.

Since the complex number αb is not available in practice, we take αb as a minimizer of the

following sum:

η(α) =
∑

k

∑

j

∣

∣f j
ω2

(k) − αf j
ω1

(k)
∣

∣

2
.

In fdEIT, we try to reconstruct an image of δγ = αbγω2
− γω1

from f
j
ω2 − αbf

j
ω1 . We may

use the output least-square method for the following misfit functional:

�(δγ ) =

15
∑

j=1

∫

∂�

∣

∣δU j −
(

f j
ω2

− αbf
j
ω1

)
∣

∣

2
ds, (11)
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where δU j = δuj |∂� is the boundary value of δuj that is a solution of the following mixed

boundary value problem:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∇ ·
(

α−1
b (γω1

+ δγ )∇δuj
)

= ∇ ·
(

δγ∇uj
ω1

)

in �

0 =

∫

Ej

γω2

∂δuj

∂n
ds =

∫

Ej+1

γω2

∂δuj

∂n
ds

∫

∂�

δuj = 0, ∇δuj × n|Ej
= 0 = ∇δuj × n|Ej+1

γω2

∂δuj

∂n
= 0 on ∂� \ Ej ∪ Ej+1.

(12)

We can view δuj as a nonlinear function of δγ , where δuj corresponds to u
j
ω2 − αbu

j
ω1 .

Applying integration by parts to the relation ∇ ·
(

δγ∇u
j
ω1

)

= −∇ ·
(

α−1
b (γω1

+ δγ )∇δuj
)

yields the following:
∫

�

δγ∇uj
ω1

· ∇uk
ω2

dr −

∫

∂�

δγ
∂
(

u
j
ω1

)

∂n
uk

ω2
ds

= −

∫

�

γω2
∇δuj · ∇uk

ω2
dr +

∫

∂�

γω2

∂(δU j )

∂n
uk

ω2
ds

=

∫

�

∇ ·
(

γω2
∇uk

ω2

)

δuj dr −

∫

∂�

γω2

∂
(

uk
ω2

)

∂n
δuj ds.

Note that δγ = 0 on ∂� and ∇ ·
(

γω2
∇uk

ω2

)

= 0 in �. We obtain
∫

�

δγ∇uj
ω1

· ∇uk
ω2

dr =

∫

∂�

δU jgk ds (13)

for each j, k = 1, 2, 3, . . . , 15 where gk is the Neumann data corresponding to uk
ω2

.

It is equivalent to
∫

�

(

αbγω2
− γω1

)

∇uj
ω1

· ∇uk
ω2

dr =

∫

∂�

(

f j
ω2

− αbf
j
ω1

)

gk ds (14)

for each j, k = 1, 2, 3, . . . , 15. Let û
j

l , l = 1, 2, be solutions of (10) with γ̂l in place of γω.

We replace the terms u
j
ω1 and uk

ω2
in the left integrand of (13) by û

j

1 and ûk
2, respectively, and

then (13) can be approximated by
∫

�

(

αbγω2
− γω1

)

∇û
j

1 · ∇ûk
2 dr ≈

∫

∂�

(

f j
ω2

− αbf
j
ω1

)

gk ds. (15)

Since γ̂l û
j

l = û
j

0 where û
j

0 is a solution of (10) with γω = 1, (15) becomes

∫

�

(

αbγω2
− γω1

)

∇

(

û
j

0

γ̂1

)

· ∇

(

ûk
0

γ̂2

)

dr ≈

∫

∂�

(

f j
ω2

− αbf
j
ω1

)

gk ds. (16)

Writing δγ = αbγω2
− γω1

, the normalized change of complex conductivity from ω1 to

ω2 is computed from
∫

�

δγ∇

(

û
j

0

γ̂1

)

· ∇

(

ûk
0

γ̂2

)

dr ≈
(

f j
ω2

(k) − αbf
j
ω1

(k)
)

I (17)

for j, k = 1, 2, 3, . . . , 15. The number of degrees of freedom N is limited to the number of

independent voltage measurements in such a way that N � 16×15
2

. We decompose the imaging

domain � into � = ∪N
i=1�i where �i is the ith pixel. Let χ�i

be the characteristic function of
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the ith element �i . Assuming a frequency-difference conductivity δγ =
∑N

i=1 δγiχ�i
, (17)

can be reduced to the following linear system:

N
∑

i=1

[

1

I

∫

�i

∇

(

û
j

0

γ̂1

)

· ∇

(

ûk
0

γ̂2

)

dr

]

δγi ≈ f j
ω2

(k) − αbf
j
ω1

(k) (18)

for j, k = 1, 2, 3, . . . , 15. This system can be expressed in a matrix form as

1

I γ̂1γ̂2

[A] �δγ ≈ �fω1
− αb

�fω2
, (19)

where �δγ = [δγ1, . . . , δγN ]T and the mnth entry of A is amn =
∫

�n
∇û

j

0 · ∇ûk
0 dr with

m = 15(j − 1) + k. Frequency-difference image reconstruction can be performed by solving

(19) for �δγ . Note that the sensitivity matrix A is complex and the use of complex numbers,

γ̂1, γ̂2 and αb in (19) is important.

2.4. Numerical simulation

We performed numerical simulations on a unit disk � = {(x, y) : x2 + y2 � 1} with

16 electrodes equally spaced around its circumference. We generated a finite element

mesh of the disk using 1038 triangular elements and 552 nodes. We assumed that the

disk was filled with a saline. Inside the disk, we placed an anomaly occupying the region

D = {(x, y) : (x − 0.45)2 + y2 � 0.252}. Complex conductivity values of the saline and

anomaly were chosen as shown in table 1 (Oh et al 2008). We used the PDE toolbox supported

by Matlab (The Mathworks Inc., USA) and all computations were performed using a PC with

a Pentium IV processor, 1GB RAM and Windows XP operating system.

We numerically solved the forward problem in (10) to generate simulated voltage data,

f
j
ω1 and f

j
ω2 for j = 1, . . . , 15. Frequency-difference image reconstructions of �δγ were

performed based on (19) where we used the set of weighted frequency-difference voltages

f
j
ω2(k)−αbf

j
ω1(k). The complex sensitivity matrix A was computed by using the corresponding

forward solutions in the absence of the anomaly. For the frequency-difference image

reconstructions, we used a separate mesh with a smaller number of triangular elements.

Reconstructed images were displayed on a 30 × 30 square mesh by using a proper mapping

and smoothing function.

3. Results

3.1. Numerical forward solution and verification of observation 2.2

Using the finite element method, we solved the forward problem in (10) at different frequencies

varying from 100 Hz to 500 kHz. Figure 1 shows a numerical solution uω of (10) at 100 kHz for

an injection current between a pair of neighboring electrodes. In order to numerically verify

the observation 2.2, we used a projection current of a sinusoidal pattern (Isaacson 1986).

The amplitude of the injection current at the kth electrode was chosen as −sin
(

π
8
k + π

4

)

.

Figure 2 illustrates numerical solutions of (10) at 50, 100, 250 and 500 kHz supporting the

observation 2.2.

3.2. Verification of observation 2.2

We tested the observation 2.2 using the proposed fdEIT algorithm. In figure 3, we assumed a

model with a homogeneous background with σb = 0.036 S m−1 and εb = 1.9 × 10−9 F m−1.
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(a) (b)

Figure 1. Equipotential lines (solid lines) and electric field streamlines (arrows) of the complex

potential uω in (10) at ω/2π = 100 kHz subject to an injection current between an adjacent pair

of electrodes. Complex conductivity values of the anomaly and the background were those of

the banana and the saline, respectively, in table 1. (a) Real part (Re{uω}) and (b) imaginary part

(Im{uω}).

Figure 2. Equipotential lines (solid lines) and electric field streamlines (arrows) of the complex

potential uω at 50, 100, 250 and 500 kHz. Complex conductivity values of the anomaly and the

background were the values of the banana and the saline, respectively, in table 1. The injection

current was a projection current (Isaacson 1986), that is, the amplitude of the injection current at

the kth electrode was − sin( π
8
k + π

4
).

The circular anomaly had a conductivity σa = 0.042 S m−1. Permittivity of the anomaly

was chosen either as εa = 9.7 × 10−9 or 2.2 × 10−9 F m−1. In the latter case, we had the

condition of σa

σb
= εa

εb
. We used the same complex conductivity values for both ω1 and ω2

meaning that they had no frequency dependence. Reconstructed real- and imaginary-part of

frequency-difference images in the middle of figure 3 clearly show that the anomaly D is

visible provided that σa

σb
�= εa

εb
. As shown in the rightmost image in figure 3, the proposed

fdEIT algorithm is blind to the presence of D when σa

σb
= εa

εb
.
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Figure 3. Reconstructed fdEIT images of the case where σ(ω1) = σ(ω2) and ε(ω1) = ε(ω2) for
ω1
2π

=1 kHz and ω2
2π

=100 kHz. Two images in the middle show that the anomaly is still visible as

long as σa
σb

�= εa
εb

. The image on the right shows that fdEIT is blind to the anomaly when σa
σb

= εa
εb

.
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(a) (b) (c)

Figure 4. Effect of a boundary geometry error. (a) The ellipse with solid line was the true imaging

domain and the circle in dashed line was the computational model domain. The small disk inside

the domain was an anomaly. Complex conductivity values of the anomaly and the background

were those of the banana and the saline in table 1, respectively. (b) and (c) are reconstructed static

images (real-part images) at frequencies ω1
2π

= 100 Hz and ω2
2π

= 50 kHz, respectively. Each

image was reconstructed using the boundary voltage data from the homogeneous computational

model domain as the reference data.

3.3. Robustness against boundary geometry error

We tested the robustness of the fdEIT algorithm against a boundary geometry error. Let

�true :=
{

(x, y) :
(

x
1.2

)2
+ y2 < 1

}

, an ellipse, be the true imaging domain and let the

computational domain be the unit disk �comp := {(x, y) : x2 + y2 < 1} as in figure 4(a). We

injected currents into the ellipsoidal imaging domain with a given true complex conductivity

distribution at two different frequencies of ω1

2π
= 100 Hz and ω2

2π
= 50 kHz and computed two

sets of simulated boundary voltages, f
j
ω1 and f

j
ω2 for j = 1, . . . , 15, respectively. We injected

the same currents into the circular homogeneous computational domain and computed two sets

of boundary voltage data, f̃
j
ω1 and f̃

j
ω2 at ω1 and ω2, respectively. We computed the sensitivity

matrix from the circular homogeneous computational domain that contains the modeling

error.

There exist numerous static image reconstruction algorithms and the quality of a

reconstructed image depends on a chosen algorithm. Since the primary purpose was to

test the robustness of the fdEIT algorithm, we tried to avoid the issue on the choice of the static

imaging algorithm. The fdEIT algorithm in (19) is proposed as a single-step algorithm based
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Figure 5. Robustness of the proposed fdEIT algorithm against a boundary geometry error. (a) The

same true and computation domains explained in figure 4(a). (b) Real part of the reconstructed

frequency-difference image Re{αbγω2 −γω1 } and (c) imaginary-part image Im{αbγω2 −γω1 }. Two

frequencies were ω1
2π

= 100 Hz and ω2
2π

= 50 kHz. The homogeneous computational model

domain was used to compute the sensitivity matrix.

on the sensitivity matrix. For the purpose of comparison, we used a single-step truncated

singular value decomposition method as a kind of static image reconstruction method.

First, we performed a static EIT image reconstruction at each frequency of ω1 and ω2

separately. Images in figure 4(b) and (c) using f
j
ω1 − f̃

j
ω1 and f

j
ω2 − f̃

j
ω2 , respectively, can be

considered as static images for the purpose of comparison with the fdEIT algorithm. Note

that f̃
j
ω1 and f̃

j
ω2 contained the boundary geometry error and these static images show that its

effect is quite severe. Second, we applied the simulated data f
j
ω2 − f

j
ω1 to the fdEIT algorithm

without using f̃
j
ω1 and f̃

j
ω2 . Reconstructed frequency-difference images in figure 5(b) and (c)

clearly show that the proposed fdEIT method is more robust against the boundary geometry

error.

3.4. Simulation of frequency-difference imaging experiments

To see effects of complex numbers αb, γ̂1 and γ̂2 in (19), we tried frequency-difference

image reconstructions twice with and without using them. In all simulations, we fixed one

reference frequency of ω1/2π = 100 Hz and chose four different higher frequencies of

ω2/2π = 50, 100, 250 and 500 kHz.

Figure 6 shows the performance of the proposed fdEIT algorithm to reconstruct frequency-

difference images the banana in the saline background. According to table 1, conductivities

and permittivities of the banana at ω2 were set to be much greater than those at ω1 (100 Hz).

These large differences between two chosen frequencies made the banana object very well

distinguished in reconstructed frequency-difference images. For the cucumber object in the

saline background, we could obtain similar results.

Figure 7 shows results for the PAA object in the saline background. Based on table 1,

we set the conductivity of the PAA object to be almost constant for all chosen frequencies.

Also, its permittivity value was significantly smaller than that of the banana with only a small

frequency dependence. In figure 7, we can still recognize the PAA object supporting the

observation 2.3 since the condition σa

σb
�= εa

εb
was met. For non-biological objects such as agar,

AHG and TX151 listed in table 1, we could obtain similar results.

In all images of figures 6 and 7, we can see that uses of γ̂1, γ̂2 and αb significantly enhance

the image quality. This was more evident for imaginary-part images and also for the cases of

ω2/2π = 250 and 500 kHz.
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Table 1. Complex conductivity (σ + iωε) values of seven different materials at five different frequencies used in numerical simulations. Saline was used as the background and others

were used as anomalies. Complex conductivity values of the cucumber and banana mimic those of biological tissues. The rest of them including TX151, PAA, AHG and agar were used

as non-biological objects. Oh et al (2008) explained the recipe to fabricate these objects and reported measured complex conductivity values summarized here.

σ (S m−1)

Frequency (Hz) TX151 PAA AHG Agar Cucumber Banana Saline

100 1.53 × 10−1 1.83 × 10−1 5.80 × 10−2 9.30 × 10−2 4.30 × 10−2 7.00 × 10−3 3.60 × 10−2

50 000 1.51 × 10−1 1.77 × 10−1 5.80 × 10−2 9.20 × 10−2 1.05 × 10−1 2.50 × 10−2 3.60 × 10−2

100 000 1.49 × 10−1 1.77 × 10−1 5.70 × 10−2 9.10 × 10−2 1.65 × 10−1 4.20 × 10−2 3.60 × 10−2

250 000 1.49 × 10−1 1.76 × 10−1 5.50 × 10−2 8.80 × 10−2 3.13 × 10−1 1.15 × 10−1 3.30 × 10−2

500 000 1.44 × 10−1 1.70 × 10−1 5.00 × 10−2 8.30 × 10−2 4.05 × 10−1 3.61 × 10−1 3.00 × 10−2

ωǫ (S m−1)

100 0 0 0 0 1.46 × 10−6 2.28 × 10−6 0

50 000 5.17 × 10−4 5.17 × 10−4 6.26 × 10−4 5.23 × 10−4 7.59 × 10−2 3.32 × 10−2 5.94 × 10−4

100 000 1.19 × 10−3 1.19 × 10−3 1.08 × 10−3 8.47 × 10−4 1.21 × 10−1 6.07 × 10−2 1.21 × 10−3

250 000 3.18 × 10−3 3.18 × 10−3 3.15 × 10−3 2.65 × 10−3 1.92 × 10−1 1.35 × 10−1 3.96 × 10−3

500 000 7.24 × 10−3 7.24 × 10−4 8.72 × 10−3 8.24 × 10−3 2.21 × 10−1 2.58 × 10−1 8.86 × 10−3
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Figure 6. Reconstructed frequency-difference images of the banana placed in the saline background

using ω1/2π = 100 Hz.

4. Discussion

Except for the extremely rare case of σa

σb
= εa

εb
, the proposed fdEIT algorithm can visualize an

anomaly in reconstructed frequency-difference images. The contrast in a frequency-difference

image stems from two factors. The first is a frequency dependence of a complex conductivity

distribution to be imaged and the second is a contrast in complex conductivity values between

an anomaly and background. This fdEIT method is robust against modeling errors and,

therefore, will be advantageous in imaging a complex conductivity distribution inside the

human body with an irregular boundary shape.

Though the fdEIT algorithm has a potential to overcome technical drawbacks of the

conventional static EIT imaging method, we do not argue that it is free from the ill-posedness

of the EIT image reconstruction problem. The ill-posedness is the inherent nature of the

problem limiting the spatial resolution of a reconstructed image. The results in section 3.3

are promising but we need to further investigate how the boundary geometry error affects
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Figure 7. Reconstructed frequency-difference images of the PAA object placed in the saline

background using ω1/2π = 100 Hz.

the reconstructed frequency-difference image in our future study. Recent application studies

show that EIT images with a low spatial resolution can be used in numerous clinical settings

(Holder 2005). To improve their applicability, there should be improvements in consistency

and accuracy of reconstructed images as well as efficient human interface methods.

Starting from the improved idea of the fdEIT method described in this paper, there must

be future studies to advance it to the stage of clinical applications. Most of all, experimental

validations must be followed by using two- and three-dimensional phantoms including

biological materials of known complex conductivity spectra. In our future experimental

studies, we can estimate γ̂1 and γ̂2 as the equivalent homogeneous complex conductivity

values of the imaging object at frequencies ω1 and ω2, respectively. This can be done by

using the measured boundary voltage data at each frequency. The weighting parameter αb is

a complex number in general and will be computed as αb = γ̂1

γ̂2
. Its value mainly reflects the

change of the equivalent homogeneous complex conductivity value of the imaging object with

respect to the frequency change from ω1 to ω2.
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In terms of the algorithm, we must investigate different kinds of regularization and

numerical implementation techniques of the image reconstruction algorithm. We need to study

the feasibility of an iterative algorithm where the complex sensitivity matrix is updated in each

iteration. Effects of electrode contact impedance must be investigated since they can change

with frequency. It will be worthwhile to try different kinds of electrode models. Theoretical

advance is also needed since there is little knowledge on the forward and inverse problem

governed by complex partial differential equations in (1) and (2). Frequency-difference

detection rather than imaging is worth pursuing in some applications such as breast cancer

detection.

5. Conclusion

Suggesting a frequency-difference image reconstruction algorithm properly handling the

interplay of conductivity and permittivity, we showed the feasibility of frequency-difference

EIT imaging. Numerical simulations showed that the complex parameters of γ̂1, γ̂2 and αb

play an important role in improving the image quality. The major advantage of frequency-

difference EIT over static EIT is that it will be possible to reduce undesirable effects of

modeling errors.

We plan to undertake experimental validation studies using saline tanks containing

numerous anomalies with known complex conductivity spectra. We expect that frequency-

difference EIT will be useful for clinical applications not supported by time-difference imaging.

Even for the cases where time-difference imaging is applicable, frequency-difference imaging

will be able to provide additional diagnostic information. We speculate that the future EIT

system should be equipped with a multi-frequency capability producing spectroscopic time-

and also frequency-difference images of an internal complex conductivity distribution.
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