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Abstract—In the regime of strong mode coupling, the modal
gains and losses and the modal group delays of a multimode
fiber are known to have well-defined statistical properties. In
mode-division multiplexing, mode-dependent gains and losses are
known to cause fluctuations in the channel capacity, so that the
capacity at finite outage probability can be substantially lower
than the average capacity. Mode-dependent gains and losses,
when frequency-dependent, have a coherence bandwidth that is
inversely proportional to the modal group delay spread. When
mode-division-multiplexed signals occupy a bandwidth far larger
than the coherence bandwidth, the mode-dependent gains and
losses are averaged over frequency, causing the outage capacity
to approach the average capacity. The difference between the
average and outage capacities is found to be inversely proportional
to the square-root of a diversity order that is given approximately
by the ratio of the signal bandwidth to the coherence bandwidth.

Index Terms—Channel capacity, frequency diversity, MIMO,
mode-division multiplexing, multimode fiber.

I. INTRODUCTION

A LTHOUGH multimode fiber (MMF) is used traditionally
for short-reach links [1]–[3], the throughput of long-haul

fiber systems can be increased, in principle, by mode-division
multiplexing (MDM) in MMF [4]–[10]. Ideally, the channel ca-
pacity is directly proportional to the number of modes.

The modes in an MMF have slightly different group delays
(GDs) [11] and potentially different losses. Manufacturing vari-
ations, bends, mechanical stresses, thermal gradients and other
effects cause coupling between different modes [12], [13]. The
statistics of mode-dependent GDs and mode-dependent gains
and losses (collectively referred to here as MDL) in the regime
of strong mode coupling were studied by us recently [14], [15].
MDL poses a fundamental limit to system performance [15],
[16]. The extreme case of high MDL is equivalent to a reduc-
tion in the number of modes, leading to a proportional reduction
in channel capacity.

In wireless communications, multipath propagation causes
frequency-selective fading of wideband signals ([17], Sec-
tion 5.5.1.2). Various forms of frequency diversity can be
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used to combat this effect. For example, using coded orthog-
onal frequency-division multiplexing (OFDM) [18], [19], an
error-correction code effectively averages over strong and
weak subchannels. Alternatively, space-time codes can pro-
vide frequency diversity for OFDM signals [20], [21], or for
single-carrier signals [22], [23].

In wireless communications, multipath channel models typi-
cally depend on many parameters including, but not limited to,
the number of paths, the fading distribution for each path (e.g.,
Rician or Rayleigh), the delay spread, and the speed of the user
([17], Ch. 4 & 5). A single statistical model is often unable to
include all important cases.

By contrast, for MMF in the strong-coupling regime, the
channel statistics depend on only a few parameters, and simple
statistical models are able to include all meaningful cases [14],
[15]. The statistics of the GDs depend only on the number of
modes and the overall GD spread [14], while the statistics of
the MDL, and thus the channel capacity, depend only on the
number of modes and the overall MDL [15]. At any single fre-
quency, the channel capacity is a random variable that depends
on the specific realization of MDL, and the outage capacity may
be significantly smaller than the average capacity [15], [16].

The frequency dependence of MDL has a coherence band-
width that should be inversely proportional to the GD spread.
Likewise, the channel capacity has a coherence bandwidth that
is also inversely proportional to the GD spread. If MDM signals
occupy a bandwidth far larger than the coherence bandwidth
of the capacity, because of statistical averaging, the outage ca-
pacity should approach the average capacity. These frequency
diversity effects are studied numerically in this paper. For typ-
ical values of MDL and the signal-to-noise ratio (SNR), the co-
herence bandwidth of the capacity is found to be approximately
equal to the reciprocal of the standard deviation (STD) of the
GD, . The difference between the average capacity and the
outage capacity is found to decrease with the square-root of a
diversity order that is given approximately by the ratio of the
signal bandwidth to the coherence bandwidth of the capacity.

The remainder of this paper is organized as follows. Section II
reviews the random matrix model from which the frequency-
dependent GD and MDL statistics are derived, and presents
the correlation coefficient of MDL as a function of frequency
separation. Section III presents the correlation coefficient of
channel capacity as a function of frequency separation, and de-
scribes how frequency diversity mitigates the frequency depen-
dence of capacity. Sections IV and V provide discussion and
conclusions, respectively. The Appendix describes method to
compute diversity order directly from the frequency correlation
coefficients.
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II. FREQUENCY-DEPENDENT PROPAGATION IN MMF

Designing a long-haul MDM system to be in the strong-cou-
pling regime, in which the overall fiber length is far longer than
a correlation length over which the local eigenmodes can be
considered constant [14], [15], offers several advantages. Strong
coupling reduces the amount of modal dispersion, minimizing
receiver complexity [14]. Likewise, it reduces the amount of
MDL, improving system performance [15]. As we show here,
it also helps achieve frequency diversity. In the strong coupling
regime, a fiber can be modeled as a concatenation of many in-
dependent sections, which are described by random matrices.

A. Random Matrix Model

An MMF is assumed to be composed of independent sec-
tions, each having length at least equal to the correlation length.
Each section is modeled as a random matrix, as in [14]–[16].
This is an extension of the models used for polarization-mode
dispersion or polarization-dependent loss in single-mode fiber
[24], [25]. The overall transfer matrix of an MMF comprising

sections, as a function of angular frequency , is:

(1)

For an MMF supporting propagating modes1 the matrix for
the th section is , a matrix that is the product
of three matrices:

(2)

Here, denotes Hermitian transpose, and are
frequency-independent random unitary matrices representing
modal coupling at the input and output of the section, respec-
tively, and is a diagonal matrix representing modal
propagation of the uncoupled modes in the th section.

Including both MDL and modal dispersion, can be
expressed as:

(3)

where, in the th section, the vector
describes the uncoupled MDL,

and describes the uncoupled
modal GDs.

Similar to multi-input multi-output (MIMO) wireless systems
[26], [27], at any single frequency, using singular value decom-
position, the overall matrix can be decomposed into
spatial channels:

(4)

where and are frequency-dependent input and
output unitary beam-forming matrices, respectively, and

(5)

1Throughout this paper, “modes” include both polarization and spatial de-
grees of freedom. For example, the two-mode case can describe the two polar-
ization modes in single-mode fiber.

Here, is a fre-
quency-dependent vector of the logarithms of the eigenvalues
of , which quantifies the overall MDL of a
MIMO system.

In the MIMO system characterized by the random matrix
, the GDs of the modes are given by the eigenvalues

of , where [14].
In the absence of MDL, in an MMF with statistically iden-
tical sections, the GDs have a variance , where is
the GD variance of an individual section [14], [28]. Moreover,
in the absence of MDL, the GDs are frequency-dependent, but
all statistical properties of the GDs depend only on the number
of modes and the overall GD STD (at least when
chromatic dispersion is the same for all spatial modes). For an
MMF with MDL, the statistical properties of the GDs are more
complicated, and are outside the scope of this paper.

For the MDL at each single frequency, the MDL statistics
depend only on the number of modes and on the square-root
of the accumulated MDL variance via [15]:

(6)

If an MMF comprises independent, statistically identical sec-
tions, each with MDL variance , we have . The
MDL at each single frequency has these statistical properties,
regardless of the GD STD .

B. Frequency Dependence of MDL

The MDL given by the singular value decomposition (4) is
frequency-dependent in general. In the special case that there
is no modal dispersion, such that is equal to
zero, the MDL is independent of frequency. Assuming nonzero

, the correlation of the MDL at two frequencies depends on
the frequency separation. If the frequency separation is small,
the phase factors for the uncoupled modes appearing in (3) are
similar, leading to similar MDL values at the two frequencies.
If the frequency separation is large, the values of at the
two frequencies are independent, leading to independent MDL
at the two frequencies.

Considering the simplest case of two modes, Fig. 1 illustrates
the frequency dependence of MDL in the regimes of small
and large GD spread, quantified by the GD STD . Over the
frequency range shown, the gains and (and thus
the MDL) vary slowly for small and rapidly for large ,
as shown in Fig. 1(a) and (b), respectively. For signals launched
into two orthogonal reference modes, the output powers (in
logarithmic units) are
and , respectively. Over
frequency, these output powers vary slowly for small and
rapidly for large , as shown in Fig. 1(c) and (d), respec-
tively. For MDM signals spanning the frequency range shown,
Figs. 1(c) and (d) would correspond to regimes of low diversity
order and moderate-to-high diversity order, respectively.

The correlation properties of MDL should depend on the nor-
malized frequency separation , where is the
angular frequency separation. For small normalized frequency
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Fig. 1. Frequency dependence of the MDL in a two-mode fiber for (a) small
� and (b) large � , where � is the STD of GD. Output powers of signals
launched into two orthogonal reference modes for (c) small � and (d) large
� .

Fig. 2. Modal gains � � � � �� � � � � �, as a function of normalized frequency
separation for an MMF with � � �� modes.

separation, , the MDLs at the two frequencies are iden-
tical, while for large normalized frequency separation, ,
the MDLs at the two frequencies are independent. The coher-
ence bandwidth of MDL should be of the same order as the re-
ciprocal of the overall STD of GD, ; hence, the normalized
coherence bandwidth should be of order unity.

Fig. 2 shows simulations of the gain vector defined
in (5) as a function of normalized frequency separation . The
MMF has modes and an accumulated MDL of

dB. The MMF comprises statistically identical
sections, as in [15]. The gain vector in each section is the
same as in [15]. The GD vector in each section is generated
as a Gaussian random vector whose entries sum to zero, using
the method described in the Appendix of [15]. Each curve in
Fig. 2 corresponds to one of the elements of the vector
as a function of normalized frequency separation . The -axis
of Fig. 2 is the normalized frequency separation with respect to
the first frequency.

Fig. 2 illustrates how the correlation of the MDL depends on
frequency separation, similar to Figs. 1(a) and (b). The gain of
each mode is a smooth, continuous curve, so each modal gain

Fig. 3. Correlation coefficients of modal gains � � � � �� � � � ��, as a func-
tion of normalized frequency separation for an MMF with � � �� modes. The
correlation coefficient of the average channel capacity, assuming an SNR of 20
dB and assuming CSI is not available at the transmitter, is also shown.

is highly correlated for small frequency separations. Conversely,
each modal gain is uncorrelated for large frequency separations.
Fig. 2 also shows that the highest and lowest modal gains are
subject to larger variations than the intermediate modal gains,
consistent to the theory of [14], [15], in which the outer peaks
of the probability density function exhibit a larger spread then
the inner peaks.

Fig. 3 shows the correlation coefficients of the elements of the
modal gain vector as a function of normalized frequency
separation. The simulation parameters are the same as in Fig. 2,
but the correlation coefficients are calculated with 23 000 real-
izations of modal gain curves, each similar to Fig. 2. In Fig. 3,
the correlation coefficient is calculated for each gain coefficient
after conversion to a decibel scale. In Fig. 3, the ten curves are
observed to cluster into five pairs, which are for the gain coeffi-
cients and . The correlation coeffi-
cients are observed to decrease with an increase of . Referring
to Fig. 2, the highest and lowest two curves exhibit
the largest (and similar) correlation over frequency, while the
middle two curves exhibit the smallest (and similar)
correlation over frequency.

In Fig. 3, it is difficult to uniquely define a single coherence
bandwidth for all the modal gains, because they decay at dif-
ferent rates, and do not decay fully to zero at large normalized
frequency separation (this may arise, at least in part, from
numerical errors). Considering the highest and lowest gains
with the largest correlations, the normalized one-sided coher-
ence bandwidths are 0.25 or 0.67 for correlation coefficients
of 50% or 10%, respectively. At 10% correlation coefficient,
the normalized one-sided coherence bandwidth ranges from
0.32 to 0.67 for the different gain coefficients. At a normalized
frequency separation of unity, the correlation coefficients range
from 0 to 4.7% for the different gain coefficients.

III. CHANNEL CAPACITY AND FREQUENCY DIVERSITY

Figs. 1–3 demonstrate that the modal gains are frequency-de-
pendent, and are strongly correlated only over a finite coherence
bandwidth. If MDM signals occupy a bandwidth far larger than
the coherence bandwidth, the outage channel capacity should
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Fig. 4. Distribution of channel capacity at a single frequency for a MDM
system with� � �� modes at an SNR of 20 dB, assuming CSI is not available
at the transmitter. The capacity at �� outage probability is indicated.

approach the ensemble average channel capacity of the channel
due to statistical averaging.

A. Outage and Average Channel Capacities

At any single frequency, the gain vector given by (5),
obtained by the singular value decomposition (4), is a random
vector having the same statistical properties as a zero-trace
Gaussian unitary ensemble, assuming a system with practical
MDL values [15]. The channel capacity is also a random vari-
able, and it depends on whether or not channel state information
(CSI) is available at the transmitter [15], [16]. Assuming CSI is
not available, given a realization of the gain vector , at
a single frequency, the channel capacity2 is:

(7)

where is the ratio of the transmitted power (total over all
modes) to the received noise power (per mode) [15]. The SNR3

is the product of and the average gain , where
denotes expectation. The channel capacity over the signal

bandwidth is just the average of (7) over the signal bandwidth.
The capacity (7) assumes that the output noises in the principal
modes are independent and identically distributed (i.i.d). This
assumption is justified theoretically and verified numerically
in [15].

Fig. 4 shows the simulated distribution of the channel ca-
pacity of a MDM system with modes at an SNR of
20 dB, corresponding to an SNR per mode of 10 dB, assuming
CSI is not available at the transmitter. All parameters are the
same as in Fig. 3. The distribution in Fig. 4 is constructed using
about 5 900 000 channel capacity values.

2Throughout this paper, channel capacity is computed per unit bandwidth,
and thus has units of b/s/Hz.

3As in [15], following the literature on MIMO wireless systems, the SNR is
defined as the received signal power (total over all � modes) divided by the
received noise power (per mode).

Fig. 5. Outage channel capacity at �� outage probability vs. SNR for various
normalized bandwidths, for an MDM system with � � �� modes, assuming
CSI is not available at the transmitter. The average channel capacity is shown
for comparison.

In Fig. 4, we observe that the average channel capacity, near
the peak of the distribution, is about 17.2 b/s/Hz, while the ca-
pacity for outage probability is about 14.3 b/s/Hz. At any
single frequency, the channel capacity has the same distribution
as that in Fig. 4.

B. Correlation Coefficient of Channel Capacity

We recall that Fig. 3 shows the correlation coefficients of the
modal gains vs. normalized frequency separation, for an MMF
with modes, illustrating how the gains at nearby fre-
quencies are highly correlated. Fig. 3 also shows the correlation
coefficient of the average channel capacity. The capacity is com-
puted as in Fig. 4, assuming an SNR of 20 dB, and assuming no
CSI is available at the transmitter, so equal power is allocated
to all modes. The normalized one-sided coherence bandwidths
of the channel capacity are 0.31 and 0.92 for correlation coef-
ficients of 50% and 10%, respectively. A normalized frequency
separation of unity gives a correlation coefficient of 8.8%.

C. Frequency Diversity and Diversity Order

If MDM signals occupy a bandwidth much greater than the
coherence bandwidth of the capacity, statistical averaging over
frequency should cause the outage channel capacity to approach
the average channel capacity. Fig. 5 shows the outage capacity
at as a function of SNR, for signals occupying different band-
widths. All parameters are as in Figs. 3 and 4, i.e.,
modes are used, CSI is not available, and the outage proba-
bility is . A normalized signal bandwidth is defined as

, where is the signal bandwidth (measured
in Hz). In Fig. 5, signals occupy normalized bandwidths from

(a single frequency) to . The average capacity
is shown for comparison. Fig. 5 shows that as the normalized
bandwidth increases, the outage capacity does approach the av-
erage capacity.

Statistical averaging over frequency is a consequence of the
law of large numbers [29]. Consider two OFDM subchannels at
frequencies whose separation far exceeds the coherence band-
width of the capacity, e.g., at two frequencies well-separated in
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Fig. 1(b). Suppose the subchannels have capacities and ;
these are independent random variables following a common
distribution (e.g., that in Fig. 4). A channel comprising the two
subchannels has an overall capacity , as the ca-
pacity is computed on a per-unit-frequency basis. If each sub-
channel capacity has variance , the overall channel capacity
has variance , i.e., it is reduced by a factor of two. The
channel comprising two i.i.d. subchannels has a diversity order
of two. More generally, given a channel spanning a finite band-
width , we define the diversity order in terms of a reduction
of the variance of capacity: a diversity order equal to cor-
responds to a reduction of the variance of capacity from to

. With this definition, the diversity order may be any real
number not smaller than unity.

It would be useful to be able to estimate the diversity order
directly from the statistics of the frequency-dependent gain

vector , rather than having to compute the frequency-de-
pendent capacity and characterize its statistics. In the Appendix,
a procedure is described for computing the diversity order di-
rectly from the frequency correlation coefficients of the channel
capacity using principal component analysis.

Numerical simulations of MDM systems similar to those in
Fig. 5 have been performed, with number of modes
and normalized bandwidth ranging from 0 to 16. As the di-
versity order computed using (10) varies, the distribution of
the channel capacity is found to retain approximately the same
shape as that of Fig. 4, but the variance is reduced from to
approximately . The mean channel capacity is found not
to change with diversity order. The outage capacity as a func-
tion diversity order is found to follow

(8)

where is the single-frequency outage capacity following
the distribution in Fig. 4. The relationship (8) is found to be in-
dependent of the outage probability, provided the outage capac-
ities and refer to the same outage probability.
The relationship (8) is found to be valid as the shape of the dis-
tribution of capacity deviates from that shown in Fig. 4. If the
capacity distribution is assumed to be Gaussian, as in [16], the
relationship between outage capacity and diversity order at
any particular outage probability can be computed analytically.
However, the distribution of capacity in Fig. 4 is observed to de-
viate noticeably from a Gaussian distribution, e.g., it is slightly
asymmetric. This non-Gaussianity is consistently observed at
all SNRs and all diversity orders.

Fig. 6 shows the outage capacity reduction ratio, defined as

(9)

as a function of , where is the diversity order com-
puted using (10) from the correlation coefficients of the channel
capacity shown in Fig. 3. The simulation parameters used for
Fig. 6 are the same as those of Figs. 3 and 5, i.e., the MDM
system uses modes, and CSI is not available at the
transmitter. Values of the diversity order are only computed
for dB, as in Fig. 3, but Fig. 6 shows values of (9)
computed at and dB, illustrating that the diversity

Fig. 6. The outage capacity reduction ratio, given by (9), as a function of
��
�
� , where � is the diversity order, given by (10). The green and blue

lines have slopes of 1 (theoretical slope) and 1.06 (best-fit slope), respectively.
The MDM system uses � � �� modes, and CSI is not available at the
transmitter.

order is valid over a range of SNR values. The correlation
coefficients in Fig. 3 are subject to numerical error, as they never
go to zero even for large frequency separations. To limit numer-
ical error, diversity orders in Fig. 6 are computed only using
values of the correlation coefficients from Fig. 3 that are larger
than 1%.

Based on (8), the outage capacity reduction ratio (9) should
approximately equal to , and the plots in Fig. 6 should be
straight lines with unit slope. In Fig. 6, the best-fit slope is found
to be 1.06. Fig. 6 clearly shows that approaches
zero as the diversity order increases. The observed depen-
dence of the difference between average and outage capacities
on is a direct consequence of the law of large numbers
[29]. The outage and average capacities converge slowly with
an increase in diversity order . The diversity order must
be four to decrease the capacity difference to half that without
diversity, and must be 100 to decrease the difference to 10% of
that without diversity.

IV. DISCUSSION

In MDM systems using coherent detection, modal dispersion
does not fundamentally degrade performance, but does affect
the complexity of signal processing required for equalization
and spatial demultiplexing [14]. By contrast, MDL can funda-
mentally degrade MDM system performance [15], particularly
when CSI is not available at the transmitter. Hence, it can be
advantageous to design a transmission system with sufficient
modal dispersion to provide the frequency diversity needed to
mitigate MDL. This work, together with [14], [15], provides a
basis for transmission system design to counter MDL. Existing
coherent systems can compensate chromatic dispersion causing
a GD spread spanning hundreds of samples [30], [31]. A modal
dispersion having comparable GD spread should enable suffi-
cient frequency diversity to ensure reliable system operation.
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Frequency diversity is optimized by strong coupling
(whether direct or indirect) between all propagating modes.
The pairwise coupling strength between two modes depends
on a dimensionless ratio between the coupling coefficient
per unit length and the difference between the two modal
propagation constants [32]. A given perturbation may strongly
couple modes having nearly equal propagation constants,
but weakly couple modes having highly unequal propagation
constants. For this reason, modes within the same spatial mode
group have coupling lengths less than 1 km [33], whereas
modes in different groups have coupling lengths as long as
25 km in traditional MMFs [34], and possibly even longer
in fibers with near-ideal index profiles [35]. Nevertheless, in
long-haul systems spanning hundreds to thousands of km, it
should be possible to achieve strong coupling between all
modes. This may be facilitated by using graded index profiles,
and possibly by intentionally introducing weak perturbations
to increase mode coupling, analogous to those used to increase
mode coupling in single-mode fibers with polarization-mode
dispersion [36].

The ratio of outage to average capacities, , de-
creases with an increase of MDL or a reduction of SNR. In the
limit of a very high SNR and an MDL smaller than the SNR,
the channel capacity without CSI (7) is approximately equal to

, which is in-
dependent of the frequency-dependent gain vector . The
average SNR needs to be large enough that even the weakest
mode has sufficiently high SNR. At high SNR, the channel ca-
pacity is independent of even for a system with CSI.

In Fig. 3, the modal gains are observed to have smaller co-
herence bandwidths than the channel capacity at typical SNR
values. At low SNR, as shown in [15], the channel capacity is
proportional to the overall received power. With large MDL, the
coherence bandwidth of the capacity is determined by the modes
having the largest gain. At low SNR, the channel capacity has
smaller coherence bandwidth than the modal gains.

While not yet established, in the case of spatial-mode-de-
pendent chromatic dispersion, the higher-order frequency
dependence of the GD statistics may be modified slightly [14].
The general approach presented here should remain valid. The
STD of GD becomes a frequency-dependent to include
the effect of spatial-mode-dependent chromatic dispersion.
The normalized frequency separation may be modified to

, where is the reference
frequency. The normalized bandwidth is always the nor-
malized frequency separation between the lowest and highest
frequencies.

In mobile wireless systems, the frequency diversity order [37]
has been estimated as , where is a coherence
bandwidth of the channel frequency response, and where
denotes the smallest integer greater than or equal to . Here,
for large is found to be close to the correct
diversity order , i.e., close to the observed reduction of the
variance of capacity, but for small tends to
underestimate the diversity order. This is not surprising; for ex-
ample, when yields a diversity order
of one, whereas the correct diversity order should lie between
one and two (for example, in Fig. 6).

V. CONCLUSION

In the strong-coupling regime, the frequency dependence of
MDL in an MMF has a coherence bandwidth inversely propor-
tional to the STD of GD. If an MDM signal occupies a band-
width far larger than the coherence bandwidth, because of sta-
tistical averaging, the outage channel capacity approaches the
average channel capacity. The difference between the average
and outage channel capacities decreases with the square-root of
a diversity order. The diversity order can be computed using the
frequency correlation coefficients of the modal gains based on
principal component analysis. If the signal has a bandwidth far
larger than the coherence bandwidth, the diversity order is the
ratio of the signal bandwidth to the coherence bandwidth.

APPENDIX

This Appendix describes procedures for computing the di-
versity order directly from the frequency correlation coef-
ficients of the modal gains using principal component analysis
[38]. Principal component analysis is similar to either the con-
tinuous or discrete Karhunen-Loève transform [39], [40], which
yield similar results.

Given , the covariance or correlation matrix of a vector of
random variables, the number of independent components can
be found by the eigenvalue decomposition of [38]. In the
present context, the number of independent components corre-
sponds to the diversity order . While conceptually similar,
the number of independent components may be defined in
terms of:

1. The number of non-zero eigenvalues.
2. The number of eigenvalues up to certain fraction (e.g., 1%)

of the largest eigenvalue.
3. The sum of all eigenvalues, scaled by the largest eigen-

value. If the eigenvalues are with largest, the
number of independent components is

(10)

The first definition is the same as the rank of the matrix [41],
[42]. In both the first and second definitions, the number of in-
dependent components is an integer ([38], Ch. 6), similar to the
definition of diversity order in [37], [41], [42]. In the third def-
inition, the number of independent components may be a real
number greater than or equal to unity. As suggested by (9), the
diversity order need not be integer-valued, so we employ the
third definition here.

The diversity order can be equated to the number of indepen-
dent components of a correlation matrix

...
...

...
. . .

where each row of the matrix corresponds to a correlation coef-
ficient, sampled uniformly at different values of the frequency
difference. Such a correlation matrix is a symmetric Toeplitz
matrix given by a sequence [43], which is fully
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specified by the frequency correlation coefficients (e.g., those in
Fig. 3).

In (10), the summation is the trace of , and is equal
to where is the dimension of . If OFDM signals
are used, may be interpreted as the number of subchan-
nels. If the dimension of a Toepltiz matrix is very large, its
eigenvalues are given by the Fourier transform of the sequence

[44]. For example, if is an odd
number, the largest eigenvalue is .
In Fig. 3, the correlation coefficients are observed to be small
for large . From the theory of large Toeplitz matrices, the
diversity order (10) is always proportional to and always
directly proportional to the signal bandwidth if the number of
OFDM subchannels is very large and approaches zero.
The coherence bandwidth may be defined as

which yields

(11)

where is equal to the subchannel spacing in the case of
OFDM signals. If the correlation coefficient versus frequency
is , the coherence bandwidth (11) is just with

and , showing obviously that (11)
yields a two-sided coherence bandwidth.

In this paper, the diversity order is always computed using
(10) by finding the eigenvalues of the Toeplitz matrix numer-
ically. For zero-mean stationary random process, the covari-
ance and correlation matrices are equivalent and yield identical
results.
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