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Abstract: Here, the authors propose two adaptive detection schemes based on single-carrier frequency-domain
equalisation (SC-FDE) for multiuser direct-sequence ultra-wideband systems, which are termed structured
channel estimation (SCE) and direct adaptation (DA). Both schemes use the minimum mean square error
(MMSE) linear detection strategy and employ a cyclic prefix. In the SCE scheme, adaptive channel estimation
is performed in the frequency domain and the despreading is implemented in the time domain after the FDE.
In this scheme, the MMSE detection requires the knowledge of the number of users and the noise variance.
For this purpose, simple algorithms are proposed for estimating these parameters. In the DA scheme, the
interference suppression task is fulfilled with only one adaptive filter in the frequency domain and a new
signal expression is adopted to simplify the design of such a filter. Least mean squares, recursive least squares
and conjugate gradient adaptive algorithms are then developed for both schemes. A complexity analysis
compares the computational complexity of the proposed algorithms and schemes, and simulation results for
the downlink illustrate their performance.
1 Introduction
Ultra-wideband (UWB) technology [1, 2] is a promising next
generation short-range wireless communication technique
which has numerous advantages such as potentially very
high data rate and low operation power. The development
of UWB communications for commercial applications has
been boosted with the permit to use a huge (7.5 GHz)
unlicensed bandwidth that is released by the Federal
Communications Commission in the USA in 2002 [2–4].
The direct-sequence UWB (DS-UWB) communication
spreads the information symbols with a pseudo-random
code and enables multiuser communications [4]. DS-UWB
systems have been considered as a potential standard
physical layer technology for wireless personal area
networks [5].
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In multiuser DS-UWB systems, the receiver is required to
effectively suppress the multiple-access interference (MAI)
which is caused by the multiuser communication and the
inter-symbol interference (ISI) which is caused by the
multipath channel. In UWB systems, the huge
transmission bandwidths introduce a high degree of
diversity at the receiver due to a large number of resolvable
multipath components [6]. In order to operate in dense
multipath environments with low complexity, single-carrier
frequency-domain equalisation (SC-FDE) systems with a
cyclic prefix (CP) have been recently applied to DS-UWB
communications [7–13]. In [7], a frequency-domain
minimum mean-square error (MMSE) turbo equalisation
scheme is proposed for single-user DS-UWB systems. For
multiuser communications, the frequency-domain detector
is obtained by combining the turbo equaliser with a soft
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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interference canceller. In [8], the performance of the linear
MMSE detector in SC-FDE and orthogonal frequency-
division multiplexing systems are compared over UWB
channels and the simulation results show that the SC-FDE
system is reasonably robust in the presence of carrier
frequency offset and sampling time offset. In [9], a low-
complexity channel estimation algorithm is proposed for
single-user communication. A new SC block transmission
structure was proposed in [10], where a novel despreading
scheme was employed in the frequency domain before
channel estimation and equalisation. In [11–13],
frequency-domain linear multiuser detection and channel
estimation was performed and a linear MMSE equalisation
scheme was described. However, in [7–13], prior
knowledge of the channel and the received signal is
required and the parameter estimation problem was not
considered in detail.

Adaptive techniques are effective tools for estimating
parameters and are able to deal with channel variations
[14]. In the frequency domain, adaptive algorithms are
usually more stable and converge faster than in the time
domain [15]. To the best of our knowledge, these
techniques have not been thoroughly investigated for UWB
communications yet. In this work, adaptive algorithms
based on least mean squares (LMS), recursive least square
(RLS) and conjugate gradient (CG) techniques are
developed for frequency-domain detectors in multiuser DS-
UWB communications. The major advantage of the LMS
algorithm is its simplicity and this feature makes the LMS
a standard against other linear adaptive algorithms [14].
The RLS algorithm converges faster than the LMS
algorithm but usually requires much higher computation
complexity. The CG method is the most important
conjugate direction method that is able to generate the
direction vectors simply and iteratively [16]. With faster
convergence speed than stochastic gradient techniques and
lower complexity than RLS algorithms, CG methods are
known as powerful tools in computational systems [17–21],
and hence, suitable for the DS-UWB communications.

In this work, we present two adaptive detection schemes in
the frequency domain and apply them to SC-FDE in
multiuser DS-UWB systems. In the first scheme, a
structured channel estimation (SCE) approach that extends
[15] to multiuser UWB systems is carried out separately in
the frequency domain and the estimated channel impulse
response (CIR) is substituted into the expression of the
MMSE detector to suppress the ISI. After the frequency-
domain processing, the despreading is performed in the
time domain to eliminate the MAI. The LMS and RLS
adaptive algorithms for the SCE with single-user SC
systems were proposed in [15] and in this work we extend
them to multiuser scenarios. However, the SCE-RLS has a
very high complexity because there is an inversion of matrix
that must be computed directly [15]. This problem
motivates us to develop the SCE-CG algorithm, which will
be shown later, that has much lower complexity than the
T Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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SCE-RLS while performing better than the SCE-LMS
and comparable to the SCE-RLS. In this scheme, the
MMSE detector requires the knowledge of the noise
variance and the number of active users. We estimate the
noise variance via the maximum-likelihood (ML) method.
With a relationship between the input signal power and the
number of users, we propose a simple and effective
approach to estimating the users number. In the second
scheme, which is termed direct adaptation (DA), only one
filter is implemented in the frequency domain to suppress
the interference. It is important to note that with the
traditional signal expression for the multiuser block
transmission systems, the DA scheme requires a matrix-
structured adaptive filter in the frequency domain which
leads to prohibitive complex solutions. In the literature, the
adaptive DA scheme in multiuser UWB systems has not
been investigated in detail. Prior work on adaptive
frequency-domain algorithms is limited to single-user
systems [22] and do not exploit the structure created by
multiuser UWB systems with a CP. In order to obtain a
simplified filter design, we adopt the signal expression
described in [10] and extend it into an adaptive parameter
estimation implementation. After obtaining the matrix
form of the MMSE design of such a filter, we convert it
into a vector form and develop LMS, RLS and CG
algorithms in the frequency domain that enables the linear
suppression of ISI and MAI. In our proposed DA scheme,
a low complexity RLS algorithm, termed DA-RLS, is
obtained with the new signal expression. The proposed
DA-RLS algorithm is suitable for multiuser block
transmission systems. With faster convergence rate than the
DA-LMS and DA-CG, the complexity of the DA-RLS in
the multiuser cases is comparable to the DA-CG. In the
single-user scenario, the complexity of the DA-RLS is
reduced to the level of the DA-LMS.

The main contributions of this work are listed below.

† Two adaptive detection schemes are developed and
compared for SC-FDE in multiuser DS-UWB systems.
For both schemes, the LMS, RLS and CG algorithms are
developed.

† In the first scheme, named SCE, adaptive algorithms are
developed for estimating the channel coefficients and
algorithms for computing the noise variance and the
number of active users are also proposed.

† In the second scheme, named DA, a new signal model is
adopted to enable simplified adaptive implementation. A
low-complexity RLS algorithm is then obtained.

† The performance and complexity of LMS, RLS and CG
algorithms are compared for both schemes.

The rest of this paper is structured as follows. In Section 2,
the system model is detailed. The detection schemes for the
SC-FDE in DS-UWB system are introduced in Section 3.
1637
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The proposed adaptive algorithms for SCE and DA schemes
are described in Sections 4 and 5, respectively. The
complexity analysis for the adaptive algorithms and
the schemes are presented in Section 6. In Section 7, the
approaches for estimating the noise variance and the
number of active users is detailed. Simulations results of
the proposed schemes are shown in Section 8, and Section
9 draws the conclusions.

2 System model
In this section, we consider a downlink block-by-block
transmission binary phase-shift keying (BPSK) DS-UWB
system with K users. The block diagram of the system
is shown in Fig. 1. An Nc-by-1 Walsh spreading code sk is
assigned to the kth user. The spreading gain is
Nc = Ts/Tc, where Ts and Tc denote the symbol duration
and chip duration, respectively. At each time instant, an N-
dimensional data vector bk(i) is transmitted by the kth user,
where N is the block size. We define the signal after
spreading as xk(i) and express it in a matrix form as

xk(i) = Dkbk(i) (1)

where the M-by-N (M = N × Nc) block diagonal matrix Dk

is performing the spreading of the data block.

In order to prevent inter-block interference (IBI), a CP
guard interval is added and the length of the CP is
assumed larger than the CIR. For UWB communications,
widely used pulse shapes include the Gaussian waveforms,
raised-cosine pulse shaping and root-raised cosine (RRC)
pulse shaping [23]. Throughout this paper, the pulse
waveform is modelled as the RRC pulse with a roll-off
factor of 0.5 [5, 9]. With the insertion of the CP at the
transmitter and its removal at the receiver, the Toeplitz
channel matrix could be transformed into an equivalent
circulant channel matrix [12]. In this work, we adopt the
IEEE 802.15.4a standard channel model for the indoor
residential non-line of sight (NLOS) environment [24].
This standard channel model is valid for both low-data-rate
and high-data-rate UWB systems [25]. We assume that
38
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the timing is perfect and focus on the channel estimation
and interference suppression tasks. At the receiver, a pulse-
matched filter is applied and the received sequence is then
sampled at chip-rate and organised in an M-dimensional
vector y(i). The equivalent channel is shown in Fig. 1 and
denoted as an M-by-M circulant Toeplitz matrix H equ,
whose first column is structured with hequ zero-padded to
length M, where hequ = [h(0), h(1), . . . , h(L − 1)] is the
equivalent CIR. Hence, the time-domain received signal at
the ith time instant can be expressed as

y(i) =
∑K

k=1

H equxk(i) + n(i) (2)

where n(i) denotes the additive white Gaussian noise. After
the discrete Fourier transform (DFT), the frequency-
domain received signal z(i) is expressed as

z(i) = Fy(i) (3)

where F represents the M-by-M DFT matrix and its (a, b)th
entry can be expressed as

Fa,b =
1���
M

√
( )

exp −j
2p

M

( )
ab

{ }
(4)

where a, b [ {0, M − 1}.

After the DFT, the frequency-domain detectors are
implemented to recover the original signal, as shown in
Fig. 1. We propose two detection schemes, named SCE
and DA, respectively. The SCE scheme explicitly perform
the channel estimation in the frequency domain, the
detection with the estimated channel coefficients, and
finally carry out despreading in the time domain. The DA
scheme implicitly estimates the channel and suppresses the
ISI and MAI together with only one filter and has a
simpler structure than the SCE scheme. Without loss of
generality, we consider user 1 as the desired user and
bypass the subscript of this user for simplicity.
Figure 1 Block diagram of SC-FDE schemes in DS-UWB system

a SCE
b DA
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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We define the estimated signal as b̂(i) and the final
recovered signal as b̂r(i). Hence, for the SCE scheme, the
recovered signal can be expressed as

b̂r(i) = sign(<(b̂(i)) = sign(<(DHF HCHz(i))) (5)

where (.)H denotes the Hermitian transpose, sign(.) is the
algebraic sign function and <(.) represents the real part
of a complex number. C denotes the frequency-domain

equaliser. The despreading is denoted as DH which can be
considered as the Hermitian transpose of the spreading
matrix.

For the DA scheme, the final recovered signal can be
expressed as

b̂r(i) = sign(<(b̂(i)) = sign(<(FH
N W Hz(i))) (6)

where W represents the frequency-domain filter that is in an
M-by-N matrix form. F N is the N-by-N DFT matrix. In this
scheme, the channel estimation and the despreading is
fulfilled implicitly together in the filter W.

In the next section, the MMSE designs of the matrix C in
the SCE scheme and W in the DA scheme will be detailed.

3 Proposed linear MMSE
detection schemes
In this section, the MMSE design of the proposed schemes is
detailed. In general, these two detection schemes are based
on the same MMSE problem which aims at minimising
E[‖b(i) − b̂(i)‖2], but they use different approaches to
perform linear detection. For each scheme, some
simplifications and approximations for the later adaptive
implementations will also be presented.

3.1 Detector with SCE

The block diagram of the detector with SCE is shown as the
branch (a) in Fig. 1. Expanding (3), we have

z(i) = FH equ

∑K

k=1

xk(i) + Fn(i)

= FH equFHF
∑K

k=1

xk(i) + Fn(i) (7)

Bearing in mind the circulant Toeplitz form of the equivalent
channel matrix, we have a diagonal matrix

LH = FH equF H (8)

whose ath diagonal entry can be expressed as
h̃a =

∑L−1
l=0 hl exp{−j(2p/M)al}. Let us express it in a
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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more convenient matrix form as

h̃ =
���
M

√
F M ,Lhequ (9)

where h̃ = [h̃0, h̃1, . . . , h̃M−1]T is called the frequency-
domain CIR and F M ,L is an M-by-L matrix that is
structured with the first L columns of the DFT matrix F.
In order to simplify the expression of this scheme in later
adaptive developments, we include the constant

���
M

√
into

the F M ,L, that is

F M ,L⇐=
���
M

√
F M ,L (10)

Equations (9) and (10) are important for the development of
the adaptive algorithms in the SCE scheme which will be
detailed later. Here, we develop the MMSE detector C to
minimise the following cost function

J MSE−SCE(i) = E[‖b(i) − DHFHCHz(i))‖2] (11)

Substituting (7) and (8) into (11) and assuming that the noise
sequence and the signal sequences are uncorrelated to each
other, we can obtain the expression of the detector as

CMMSE = (LH FDallD
H
allF

HLH
H + s2I M)−1LH (12)

where the M-by-NK block diagonal matrix Dall contains the
information of the spreading codes for all the users and can be
expressed as

Dall =

s1 · · · sK

s1 · · · sK

. .
.

s1 · · · sK

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (13)

For the adaptive implementation, the downlink terminal
usually dose not have the information of the spreading
codes of other users. Hence, in this work, we adopted the
approximation DallD

H
all ≃ (K/Nc)I M for the development

of the adaptive algorithms. This approximation can also
lead to a diagonal MMSE detector that can be considered
as a sub-optimal solution [13]

Ĉ = K

Nc

LHLH
H + s2

e I M

( )−1

LH (14)

From the expression of (14), it is clear that the remaining
tasks of the SCE scheme for the adaptive implementation
are to estimate the channel coefficients h̃, the noise variance
s2

e and the number of active users K. The proposed
algorithms for estimating these parameters will be
presented in later sections.
1639
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3.2 Detector with DA

The block diagram of the DA scheme is shown as the branch
(b) in Fig. 1. This scheme has much simpler system structure
than the SCE scheme. However, if we go directly with the
signal model used for the SCE scheme, the resulting
adaptive filter for DA schemes will be in an M-by-N
matrix form which means a very high complexity. Thanks
to the new signal model proposed in [10], we can explore
the structure of the MMSE detector in SC-FDE systems
more efficiently. In this work, we adopt this new signal
model and extend it to simplify the design of the adaptive
filters. It will be clear soon how the new signal model we
adopted can significantly reduce the complexity of the
adaptive filter implementation in the DA scheme.

First, we can express the transmitted signal from the kth
user as

xk(i) = Skbk,e(i) (15)

where the M-by-M (M = N × Nc) spreading matrix Sk has a
circulant Toeplitz form as [10]

Sk =

sk(1) sk(2)

sk(2) sk(1) ..
.

..

.
sk(2) sk(Nc)

sk(Nc)
..
. . .

.

sk(Nc)
. .
.

. .
.

sk(1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The equivalent M-dimensional expanded data vector is

bk,e(i) = [bk(1), 0Nc−1, bk(2), 0Nc−1, . . . , bk(N ), 0Nc−1]T

where (.)T is the transpose. Hence, with the new signal
model, the frequency-domain received signal becomes

z(i) = Fy(i) =
∑K

k=1

FH equSkbk,e(i) + Fn(i) (16)

Since both H equ and Sk are circulant Toeplitz matrices, their
product also has the circulant Toeplitz form. This feature
makes Lk = FH equSkFH a diagonal matrix. Hence, we have

z(i) =
∑K

k=1

FH equSkFHFbk,e(i) + Fn(i)

=
∑K

k=1

LkFbk,e(i) + Fn(i)

(17)
40
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We can further expand Fbk,e(i) as [10]

Fbk,e(i) =
1���
Nc

√
( )

I eF N bk(i) (18)

where F N denotes the N-by-N DFT matrix and the M-by-
M matrix I e are structured as

I e = [ I N , . . . , I N︸�����︷︷�����︸
Nc

]T (19)

where I N denotes the N-by-N identity matrix. Finally, the
frequency-domain received signal z(i) is expressed as

z(i) =
∑K

k=1

1���
Nc

√
( )

LkI eF N bk(i) + Fn(i) (20)

In the DA scheme, an M-by-N MMSE filter W (i) can be
developed via the following cost function

J MSE−DA(i) = E[‖b(i) − F H
N W H(i)z(i)‖2] (21)

The MMSE solution of (21) is

W MMSE = R−1P (22)

where

R = E[z(i)zH(i)] = 1

Nc

( )∑K

k=1

LkI eI H
e L

H
k + s2I ;

P = E[z(i)bH(i)] = 1���
Nc

√
( )

LkI e

(23)

Expanding (22), the MMSE solution can be expressed as

W MMSE = 1

Nc

∑K

k=1

LkI eI H
e L

H
k + s2I

( )−1
LkI e���

Nc

√ = VI e

(24)

where the M-by-M matrix V is

V = 1���
Nc

√ 1

Nc

∑K

k=1

LkI eI H
e L

H
k + s2I

( )−1

Lk (25)

Note that the matrix V can be expressed as Nc-by-Nc block
matrices vij , i, j [ {1, Nc}, each vij is a N-by-N diagonal
matrix. Hence, we take a closer look at the product of V
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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and Ie

VI e =

v1,1 v1,2 · · · v1,Nc

v2,1 v2,2 · · · v2,Nc

..

. ..
. ..

. ..
.

vNc,1 vNc,2 · · · vNc,Nc

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

I N

I N

..

.

I N

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

=

∑Nc
j=1 v1,j∑Nc
j=1 v2,j

..

.∑Nc
j=1 vNc,j

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ =

ŵ1

ŵ2

. .
.

ŵNc

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

×

I N

I N

..

.

I N

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ = Ŵ I e (26)

where ŵi =
∑Nc

j=1 vi,j , i = 1, . . . , Nc, are diagonal matrices.
Hence, the product of V and I e can be converted into a
product of a M-by-M (M = N × Nc) diagonal matrix Ŵ
and I e, where the entries of Ŵ are ŵl , l = 1, . . . , M ,
equals the sum of all entries in the lth row of matrix V.
Finally, we express the MMSE design as

W MMSE = Ŵ I e = diag(ŵe)I e (27)

where ŵe = (ŵ1, ŵ2, . . . , ŵM ) is an equivalent filter with
M taps.

The design of the MMSE filter in DA scheme can be
expressed as either in (22) or (27). We remark that the
expression shown in (27) enable us to design an M-
dimensional adaptive filter rather than an M-by-N matrix
form adaptive filter to estimate the MMSE solution. This
simplification significantly reduced the complexity of this
scheme.

4 Adaptive algorithms for SCE
In this section, we develop the LMS, RLS and CG adaptive
algorithms for the frequency-domain channel estimation in
multiuser DS-UWB communications.

4.1 Structured channel estimation-LMS

Substituting (9) and (10) into (7) and defining a diagonal
matrix X a(i) = diag[F

∑K
k=1 xk(i)], the rearranged frequency-

domain received signal becomes

z(i) = X a(i)h̃ + Fn(i) = X a(i)F M ,Lhequ + Fn(i) (28)

In the SCE, we take into account the fact that the length of the
equivalent CIR hequ is smaller than the received signal size [15].
For example, we assume that the DS-UWB channel in the
time domain has 100 sample-spaced taps. This length of the
ET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
oi: 10.1049/iet-com.2009.0621
standard channel contains more than 85% of the total energy
and can be considered as an upper bound of the channel
length. In the scenario where the received signal has a length
of M ¼ 256 chips and we assume that each chip was
sampled three times; hence, the length of the hequ is equal to
L ¼ 34 chips that is much smaller than M. As shown in (9),
we can estimate the L-dimensional vector hequ rather than
the M-dimensional vector h̃. The SCE-LMS aims at
minimizing the MSE cost function

J SCE−LMS(ĥequ(i)) = E[‖z(i) − X (i)F M ,Lĥequ(i)‖2] (29)

where the frequency-domain received signal z(i) is shown in
(28) and X (i) = diag[Fx(i)], x(i) is the pilot signal from the
desired user. The gradient of (29) with respect to ĥequ(i) is

gh(i) = −E[F H
M ,LX H(i)z(i)]

+ E[F H
M ,LX H(i)X (i)F M ,L]ĥequ(i) (30)

This leads to the SCE-LMS algorithm

ĥequ(i + 1) = ĥequ(i) + mhFH
M ,LX H(i)eh(i) (31)

where eh(i) = z(i) − X (i)F M ,Lĥequ(i) denotes the L-
dimensional error vector and the constant mh is the step size
of SCE-LMS.

4.2 Structured channel estimation-RLS

The SCE-RLS algorithm is developed to minimise the least
squares (LS) cost function

J SCE−RLS(ĥequ(i)) =
∑i

j=1

l
i−j
h ‖z(j) − X (j)F M ,Lĥequ(i)‖2

(32)

where lh is the forgetting factor. Computing the gradient of
(32) with respect to ĥequ(i) and setting it to zero, the LS
solution is

hequ,LS(i) = R−1
h (i)ph(i) (33)

where Rh(i) =
∑i

j=1 F H
M ,LX H(j)X (j)F M ,L and ph(i) =∑i

j=1 F H
M ,LX H(j)z(j).

Note that there is an inversion of an L-by-L matrix Rh(i)
in this solution. The matrix Rh(i) can be shown in a recursive
way as

Rh(i) = lhRh(i − 1) + F H
M ,LX H(i)X (i)F M ,L (34)

There is no recursive way to simplify the inversion of this
matrix and hence, we apply the adaptation equation shown
1641
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in [15], that is

ĥequ(i + 1) = ĥequ(i) + R−1
h (i)F H

M ,LX H(i)eh(i) (35)

where eh(i) = z(i) − X (i)F M ,Lĥequ(i) is the M-dimensional
error vector. For the L-by-L matrix Rh(i), computing its
inverse matrix with Gauss–Jordan elimination requires L3

of complex multiplications [26]. This problem makes the
SCE-RLS a high complexity algorithm and for this reason
the performance of RLS algorithm has not been discussed
in [15]. For this paper, our goal is to implement this
approach and assess its performance against the
performance of the proposed SCE-CG algorithm.

4.3 Structured channel estimation-CG

The SCE-CG aims at minimising the MSE cost function

J SCE−CG(ĥequ(i)) = E[‖z(i) − X (i)F M ,Lĥequ(i)‖2] (36)

where the frequency-domain input signal z(i) is shown in
(28) and X (i) = diag[Fx(i)], x(i) is the pilot signal from
the desired user. The instantaneous estimate of the gradient
of (36) with respect to ĥequ(i) is

ĝh(i) = −FH
M ,LX H(i)eh(i) (37)

where eh(i) = z(i) − X (i)F M ,Lĥequ(i) denotes the error
vector. For each input data vector, a number of iterations
are required for the CG method. Let us denote the
iteration index as c. For the (c + 1)th iteration, the
estimated ĥequ(i) is updated as

ĥequ,c+1(i) = ĥequ,c(i) + ah,c(i)dh,c(i) (38)

where ah,c(i) is the optimum step size and dh,c(i) is the
direction vector for the cth iteration. With the new
estimator ĥequ,c+1(i), the error vector is updated as

eh,c+1(i) = z(i) − X (i)F M ,Lĥequ,c+1(i)

= eh,c(i) − ah,c(i)X (i)F M ,Ldh,c(i) (39)

Since the direction vector dh,c(i) is orthogonal to the inverse
gradient vector after the cth iteration [18], we have

dH
h,c(i)[−ĝh,c+1(i)] = 0 (40)

where ĝh,c+1(i) = −FH
M ,LX H(i)eh,c+1(i).

Substituting (39) into (40), we obtain the expression for
the optimum step size

ah,c(i) =
−dH

h,c(i)ĝh,c(i)

dH
h,cF

H
M ,LX H(i)X (i)F M ,Ldh,c(i)

(41)
42
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In the CG methods, the direction vector for each iteration
can be obtained by

dh,c+1(i) = −ĝh,c+1(i) + bh,cdh,c(i) (42)

where the constant bh,c is determined to fulfil the
convergence requirement for the direction vectors that these
vectors are mutually conjugate [17, 18, 21]. We adopt the
expression for bh,c as in [18]

bh,c =
ĝH

h,c+1(i)ĝh,c+1(i)

−dH
h,c(i)ĝh,c(i)

(43)

Substituting (42) into the term dH
h,c(i)ĝh,c(i) in (43) and taking

the conjugate feature of the direction vectors into account,

that is dH
h,c−1(i)ĝh,c(i) = 0, we can find that

−dH
h,c(i)ĝh,c(i) = ĝH

h,c(i)ĝh,c(i) (44)

We remark that the relationship obtained in (44) can reduce
the complexity of the SCE-CG algorithm by O(cL), where c
is the number of iterations and L is the length of the
equivalent CIR. This is because we have to compute the
scalar term ĝH

h,c+1(i)ĝh,c+1(i) in (43) for the cth iteration.
However, with the relationship shown in (44), this scalar
term can be used directly in the (c + 1)th iteration to save
the computation for the scalar term −dH

h,c+1(i)ĝh,c+1(i).

For the SCE scheme, the CG algorithm has a lower
computational complexity than the RLS algorithm while
performing better than the LMS algorithm.

The proposed adaptive algorithms for the SCE scheme are
summarised in the first column of Table 1.

5 Adaptive algorithms for DA
In this section, we develop the LMS, RLS and CG adaptive
algorithms for the DA scheme with the new signal model
presented in Section 3.2. For multiuser block transmission
systems, these techniques can be implemented with a
simple receiver structure.

5.1 Direct adaptation-LMS

With the expression in (27), we can estimate the data vector
as

b̂(i) = FH
N I H

e Ŵ
H

(i)z(i) = F H
N I H

e Ẑ(i)ŵ(i) (45)

where Ẑ(i) = diag(z(i)) and ŵ(i) = ŵ∗
e (i) is the adaptive

filter weight vector. Since F N and I e are fixed, we consider
the equivalent N-by-M received data matrix as

Y (i) = F H
N I H

e Ẑ(i) (46)
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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Table 1 Adaptive algorithms for the proposed detection schemes

SCE scheme DA scheme

1. Initialisation:
ĥequ(1) ¼ L-by-1 zero-vector
For i ¼ 1, 2, . . .

1. Initialisation:
ŵ(1) ¼ M-by-1 zero-vector
For i ¼ 1, 2, . . .

2.1 SCE-LMS
eh(i) ¼ z(i) 2 X(i)FM,Lĥequ(i)
ĥequ(i + 1) ¼ ĥequ(i) + mhFH

M,LX
H(i)eh(i)

2.1 DA-LMS
ew(i) ¼ b(i) 2 Y (i)ŵ(i)
ŵ(i + 1) ¼ ŵ(i) + mwY H(i)ew(i)

2.2 SCE-RLS
Rh(i) ¼ lhRh(i 2 1) + FH

M,LX
H(i)X(i)FM,L

eh(i) ¼ z(i) 2 X(i)FM,Lĥequ(i)

ĥequ(i + 1) ¼ ĥequ(i) + Rh
21(i)FH

M,LX
H(i)eh (i)

2.2 DA-RLS
Rw(i) ¼ lwRw(i 2 1) + Y H(i)Y (i)

eaw(i) ¼ b(i) 2 Y (i)ŵ(i)

ŵ(i + 1) ¼ ŵ(i) + Rw
21(i)Y H(i)eaw(i)

2.3 SCE-CG
STEP 1: Initialisation for iterations
ĥequ,0(i) ¼ ĥequ(i)

eh,0(i) ¼ z(i) 2 X(i)FM,Lĥequ,0(i)

dh,0(i) ¼ 2ĝh,0(i) ¼ FH
M,LX

H(i)eh,0(i)

For c ¼ 0, 1, 2, . . ., (cmax 2 1)

STEP 2: Update the channel estimation:

ah,c(i) =
ĝH

h,c(i)ĝh,c(i)

dH
h,cFH

M,LXH(i)X(i)FM,Ldh,c(i)

ĥequ,c+1(i) ¼ ĥequ,c(i) + ah,c(i)dh,c(i)

eh,c+1(i) ¼ eh,c(i) 2 ah,c(i)X(i)FM,Ldh,c(i)

ĝh,c+1(i) ¼ 2FM,L
H X H(i)eh,c+1(i)

STEP 3: Adapt the direction vector:

bh,c =
ĝH

h,c+1(i)ĝh,c+1(i)

ĝH
h,c(i)ĝh,c(i)

dh,c+1(i) ¼ 2ĝh,c+1(i) + bh,cdh,c(i)

ĥequ(i + 1) ¼ ĥequ,cmax(i)

2.3 DA-CG
STEP 1: Initialisation for iterations

ŵ0(i) ¼ ŵ(i)
ew,0(i) ¼ b(i) 2 Y (i)ŵ0(i)

dw,0(i) ¼ 2ĝw,0(i) ¼ Y H(i)ew,0(i)

For c ¼ 0, 1, 2, . . ., (cmax 2 1)

STEP 2: Update the filter weights:

aw,c(i) =
ĝH

w,c(i)ĝw,c(i)

dH
w,cYH(i)Y(i)dw,c(i)

ŵc+1(i) ¼ ŵc(i) + aw,c(i)dw,c(i)

ew,c+1(i) ¼ ew,c(i) 2 aw,c(i)Y (i)dw,c(i)

ĝw,c+1(i) ¼ 2Y H(i)ew,c+1(i)

STEP 3: Adapt the direction vector:

bw,c =
ĝH

w,c+1(i)ĝw,c+1(i)

ĝH
w,c(i)ĝw,c(i)

dw,c+1(i) ¼ 2ĝw,c+1(i) + bw,cdw,c(i)

ŵ(i + 1) ¼ ŵcmax
(i)

3. Estimate the data vector

LH(i) ¼ diag(FM, Lĥequ(i)),

Ĉ(i) = k̂
Nc
LH(i)LH

H(i) + ŝ2
eIM

( )−1
LH

b̂r(i) ¼ sign(<(DHFHĈ(i)z(i))).

3. Estimate the data vector

b̂r(i) ¼ sign(<(Y (i)ŵ(i))).
and express the estimated data vector as

b̂(i) = Y (i)ŵ(i) (47)

Hence, the cost function for developing the DA-LMS
algorithm can be expressed as

J DA−LMS(ŵ(i)) = E[‖b(i) − Y (i)ŵ(i)‖2] (48)
, Vol. 4, Iss. 13, pp. 1636–1650
.2009.0621
The gradient of (48) with respect to ŵ(i) is

gw(i) = −E[Y H(i)b(i)] + E[Y H(i)Y (i)]w(i)

Using the instantaneous estimates of the expected values in
the gradient, we obtain the DA-LMS as

ŵ(i + 1) = ŵ(i) + mwY H(i)ew(i) (49)

where ew(i) = b(i) − Y (i)ŵ(i) is the N-dimensional error
vector and mw is the step size for DA-LMS.
1643
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5.2 Direct adaptation-RLS

The DA-RLS algorithm is developed to minimise the LS
cost function

J DA−RLS(ŵ(i)) =
∑i

j=1

li−j
w ‖b(j) − Y (j)ŵ(i)‖2 (50)

where lw is the forgetting factor. Computing the gradient of
(50) with respect to ŵ(i) and setting it to zero, the LS
solution is

wLS(i) = R−1
w (i)pw(i) (51)

where Rw(i)=
∑i

j=1 Y H( j)Y ( j) and pw(i)=
∑i

j=1 Y H( j)b( j).
We can express the M-by-M (where M = NNc) matrix Rw(i)
and the M-dimensional vector pw(i) recursively as

Rw(i) = lwRw(i − 1) + Y H(i)Y (i) (52)

pw(i) = lwpw(i − 1) + Y H(i)b(i) (53)

With the expression of the received data matrix shown
in (46), we can explore the structure of the matrix Rw(i),
since

Y H(i)Y (i) = ẐH(i)I eF N F H
N I H

e Ẑ(i) = ẐH(i)(I eI H
e )Ẑ(i)

(54)

the M-by-M sparse matrix (I eI H
e ) is structured with Nc-by-

Nc block matrices and each block matrix is an N-by-N
identity matrix. Bearing in mind that the matrix Ẑ(i) is a
diagonal matrix, we conclude that Rw(i) is an M-by-M
symmetric sparse matrix which consists of Nc-by-Nc block
matrices and each block matrix is an N-by-N diagonal
matrix. The number of non-zero elements in Rw(i) equals
MNc. With the Gauss–Jordan elimination [26], the
inversion of each N-by-N diagonal matrix has the
complexity O(N ) and the inversion of Nc-by-Nc such
block matrices requires the complexity O(NN 3

c ), which
equals O(MN 2

c ). Hence, for the single user case, where
Nc = 1, the complexity of computing R−1

w (i) is only O(M).
In addition, (54) shows that the complexity of the
recursion to obtain Rw(i) is low. Since the matrix (I eI H

e )
can be pre-stored at the receiver, for each time instant, the
computation complexity to obtain Rw(i) is only O(MNc).
With these properties, we can investigate a low complexity
RLS algorithm to update the filter vector recursively.
In order to obtain such a recursion, we apply the method
that is proposed in Appendix 2 in [15]. We have the
relationship

Rw(i)ŵ(i + 1) = pw(i) (55)

Replacing ŵ(i + 1) with [ŵ(i + 1) − ŵ(i) + ŵ(i)] in (55)
44
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and using (52) and (53) obtains

Rw(i)[ŵ(i + 1) − ŵ(i)] + [lwRw(i − 1) + Y H(i)Y (i)]ŵ(i)

= lwpw(i − 1) + Y H(i)b(i)

(56)

Since Rw(i − 1)ŵ(i) = pw(i − 1), (56) becomes

Rw(i)[ŵ(i + 1) − ŵ(i)] = Y H(i)eaw(i) (57)

where eaw(i) = b(i) − Y (i)ŵ(i) is the N-dimensional error
vector. Finally, the recursion for updating the filter vector is

ŵ(i + 1) = ŵ(i) + R−1
w (i)Y H(i)eaw(i) (58)

We remark that the DA-RLS only consists of (52) and (58).
The complexity of this algorithm is only O(MN 2

c ), which is
comparable to the DA-CG in multiuser scenarios and for
the single-user scenario where Nc = 1, it reduces to the
level of the DA-LMS.

5.3 Direct adaptation-CG

The cost function for developing a CG algorithm in DA
scheme can be expressed as

J DA−CG(ŵ(i)) = E[‖b(i) − Y (i)ŵ(i)‖2] (59)

The gradient of (59) with respect to ŵ(i) is

gw(i) = −E[Y H(i)b(i)] + E[Y H(i)Y (i)]ŵ(i)

We can use the instantaneous estimates of the expected
values and obtain an estimate of the gradient vector as

ĝw(i) = −Y H(i)ew(i) (60)

where ew(i) = b(i) − Y (i)ŵ(i) is the error vector. Here,
we also define the iteration index as c. For the (c + 1)th
iteration, the error vector is

ew,c+1(i) = b(i) − Y (i)ŵc+1(i) (61)

where the filter weight vector is updated as

ŵc+1(i) = ŵc(i) + aw,c(i)dw,c(i) (62)

where dw,c(i) is the direction vector at the cth iteration. The
step size aw,c(i) is determined to minimise the cost
function (59) [18, 21]. Substituting (62) into (61), the
error vector can be expressed as

ew,c+1(i) = ew,c(i) − aw,c(i)Y (i)dw,c(i) (63)

Since the direction vector dw,c(i) is orthogonal to the inverse
gradient vector after the cth iteration [18], we have
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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dH
w,c(i)[−ĝw,c+1(i)] = 0, where ĝw,c+1(i) = −Y H(i)ew,c+1(i).

Hence, from (63), the optimum step size is

aw,c(i) =
−dH

w,c(i)ĝw,c(i)

dH
w,cY

H(i)Y (i)dw,c(i)
(64)

The adaptation equation for the direction vector can be
expressed as

dw,c+1(i) = −ĝw,c+1(i) + bw,cdw,c(i) (65)

where the constant bw,c is determined to fulfill the
convergence requirement for the direction vectors that these
vectors are mutually conjugate [17, 18, 21]. We adopt the
expression for bw,c as in [18]

bw,c =
ĝH

w,c+1(i)ĝw,c+1(i)

−dH
w,c(i)ĝw,c(i)

(66)

If we substitute (65) into the term dH
w,c(i)ĝw,c(i) in (66) and

take the conjugate feature of the direction vectors into
account, we can find that

−dH
w,c(i)ĝw,c(i) = ĝH

w,c(i)ĝw,c(i) (67)

As explained for (44), the relationship obtained in (67) can
save the computational complexity by O(cM) for the DA-
CG algorithm, where c is the number of iterations and M
is the length of the received signal.

The proposed adaptive algorithms for the DA scheme are
summarised in the second column of Table 1.

6 Complexity analysis
In this section, we discuss the complexity of the proposed
adaptive algorithms and the detection schemes.

Table 2 shows the complexity for the proposed algorithms
with respect to the number of complex additions and
complex multiplications for each time instant, where M is the
length of the received signal, N is the length of the data block
and L is the length of the equivalent CIR. For the

Table 2 Complexity analysis

Algorithm Complex additions Complex multiplications

SCE-LMS 2ML 2ML + 2M + L

SCE-RLS 2L3 + 2ML 2 2L2 2L3 + 3ML + (2 + M )L2

SCE-CG (2ML + M + 3L 2 3)c (2ML + 4M + 4L + 1)c

DA-LMS 2MN 2MN + N

DA-RLS M(Nc
2 + 2Nc + 2N 2 2) M(Nc

2 + 6Nc + 2N 2 1)

DA-CG (2MN + 2M 2 2)c (2MN + 2M + N + 2)c
T Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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CG algorithms, the iteration number is denoted as c, which
is much smaller than M, say M ¼ 256, c ¼ 8. In this
work, the complexity of the FFT and IFFT, which is
O(M log2 M), is common to all the techniques and is not
shown in this table.

It is important to note that for the adaptive algorithms in the
SCE scheme, the complexity is determined by M and L, while
in the DA scheme it is determined by M and N, bearing in
mind that the spreading gain Nc equals M/N. Hence, we
compare the complexity of the algorithms with the system
parameters that will be used in the simulation section, say
L ¼ 34 and N ¼ 32, with different spreading gain Nc (which
leads to different received signal length M, since M = NcN ).
Fig. 2 shows the number of complex multiplications for
adaptive algorithms versus different spreading gains. The
complexity of the CG algorithms with iteration number of 2
and 8 are shown in this figure for comparison. With these
system parameters, the SCE-LMS has similar complexity as
DA-LMS and SCE-CG has similar complexity as DA-CG.
However, the SCE-RLS is the most complex adaptive
algorithm while the DA-RLS has much lower complexity.
For the SCE scheme, the SCE-CG algorithm is significantly
simpler than the SCE-RLS. It will be illustrated by the
simulation results that with eight iterations, the performance
of the SCE-CG algorithm is very close to the SCE-RLS.
For the DA scheme, in the single-user scenario where
Nc = 1, the DA-RLS has the same complexity level as the
DA-LMS. In the multiuser case, the complexity of the DA-
RLS is comparable to the DA-CG. With small spreading
gains, the DA-RLS has lower complexity than the DA-CG
with only two iterations. However, the complexity of the
DA-RLS will be boosted when the spreading gain increases.
It will be illustrated by simulations that the performance of
DA-CG is comparable to the DA-RLS, hence, for multiuser
scenarios with different values of Nc, the designer can choose
either RLS or CG for the DA scheme.

Figure 2 Complexity comparison of the proposed schemes
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After discussing the complexity of the adaptive algorithms,
let us consider the complexity of the detection schemes. For
the DA scheme, where only one adaptive filter is
implemented and the complexity shown in Table 2 can be
considered as the whole scheme’s complexity. However, for
the SCE scheme, the complexity shown in the table is only
for the adaptive channel estimation. The complexity of
estimating the noise variance O(ML2), the number of active
users O(M), performing the MMSE detection O(M) and
the time-domain despreading O(N 2) should also be included.
Hence, we conclude that the DA scheme is simpler than the
SCE scheme in both structure and the computational
complexity. However, the SCE scheme, which will be shown
later, has better performance than the DA scheme.

7 Noise variance and number of
active users estimation
For the SCE scheme, the MMSE detector is generated as
(14), which requires the knowledge of the noise variance s2

e

and the number of active users K. In this section, we
propose an ML estimation algorithm that extends [15] for
estimating s2

e in the DS-UWB system. We consider
multiuser communication and the pilot sequence is
generated randomly for each time instant.

The most popular active users number detection schemes
for symbol by symbol transmission systems that are based
on the eigenvalue decomposition have been proposed in
[27–29]. These schemes have very high complexity and
require high signal-to-noise ratio (SNR) to work in our
block transmission system. In this work, we propose a
simple approach to estimate the number of users based on
the idea that the power of the received signal will reflect
the number of active users. So first, we develop the
relationship between the received signal power, the noise
variance, the estimated channel coefficients and the number
of active users. Then we obtain a simple algorithm to
estimate K with these relationships.

7.1 Noise variance estimation

Revisiting (28), we have the frequency-domain received
signal as

z(i) = X a(i)F M ,Lhequ + Fn(i) (68)

where the diagonal matrix X a(i) = diag[
∑K

k=1 Fxk(i)]. We
assume that the first user is the desired user and define
X (i) = diag[Fx(i)]. The uncorrelated additive noise is
assumed to be Gaussian distributed with zero mean and
variance of s2

e . The ML estimator aims at estimating s2
e (i)

and hequ(i) by maximising the log-likelihood function, that is

[ŝ2
e (i), ĥequ(i)] = arg max

s2
e (i),hequ(i)

L(s2
e (i), hequ(i)) (69)
46
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where

L(s2
e (i), hequ(i)) = −M ln (s2

e (i)) −
‖z(i) − B(i)hequ(i)‖2

s2
e (i)

(70)

where B(i) = X (i)F M ,L. To solve this joint optimisation
problem, we first fix s2

e (i) and find the optimum ĥequ(i).
By calculating the gradient of (70) with respect to hequ(i)
and setting it to zero, we obtain

ĥequ,ML(i) = (BH(i)B(i))−1BH(i)z(i) (71)

Substituting (71) into (70), and calculating the gradient of
(70) with respect to s2

e (i) and setting it to zero, we obtain
the ML estimate of s2

e (i)

ŝ2
e,ML(i) = 1

M
‖z(i) − B(i)ĥequ,ML(i)‖2 (72)

In the training stage of the SCE scheme, we estimate the
noise variance via (71) and (72), where the number of
complex multiplications required is ML2 + L3 + 2ML+
L2 + M + 1. The cost of this estimator is high and it is
possible to obtain a simplified estimate with the complexity
of O(ML) by replacing the ML estimate ĥequ,ML(i) with
the estimated channel ĥequ(i) that is obtained in Section 4.
However, this will introduce noticeable degradation of the
estimation performance in multiuser scenarios. Since in our
SCE scheme, the noise variance estimator is used for both
users number estimation and the MMSE detection, the
degradation of the ŝ2 will affect the final performance.

7.2 Number of active users estimation

In order to obtain the relationship of the active users number
and the received signal power, let us consider the expected
value of the frequency-domain received signal power

E[zH(i)z(i)] = E[(X a(i)h̃ + Fn(i))H(X a(i)h̃ + Fn(i))]

= h̃
H

E[X H
a (i)X a(i)]h̃ + s2

e M

(73)

where z(i) is shown in (28). Since the M-by-M diagonal
matrix X a(i) = diag[F

∑K
k=1 xk(i)], the lth entry of the

main diagonal can be expressed as

Xa,l (i) = F l

∑K

k=1

xk(i) (74)

where l = 1, 2, . . . , M and F l is the lth row of the DFT
matrix F. Bearing in mind the fact that F l FH

l = 1. Hence,
the expected entry in (73) can be expressed as

E[X H
a (i)X a(i)] = diag(E[X 2

a,1, X 2
a,2, . . . , X 2

a,M ]) (75)
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where

E[X 2
a,l ] = E F l

∑K

k=1

xk(i)

( ) ∑K

k=1

xk(i)

( )H

FH
l

⎡
⎣

⎤
⎦

= E[F l DallD
H
allF

H
l ] ≃ K

Nc

(76)

where Dall is shown in (13) and the approximation used here
is the same as in (14), that is, DallD

H
all ≃ (K/Nc)I M.

Finally, substituting (75) into (73) with the approximation
shown in (76), we obtain the relationship which can be
expressed as

E[zH(i)z(i)] ≃ K

Nc

h̃
H

h̃ + s2
e M (77)

where K is the number of active users, s2
e is the noise variance

and h̃ is the frequency-domain channel coefficients. In this
work, we have already obtained the estimator for s2

e and
hequ. The expected received signal power can be estimated
via time-averaging, that is

P̂r(i) =
1

T

∑T

i=1

zH(i)z(i) (78)

Hence, the algorithm for estimating K can be expressed as

K̂ (i) = (P̂r(i) − ŝ2
e (i)M)

Nc

P̂h(i)
(79)

where

P̂h(i) = (F M ,Lĥequ(i))H(F M ,Lĥequ(i)) (80)

In order to obtain the integer estimated values, we can set
K̂ (i) to the nearest integer towards zero.

We remark that this proposed algorithm is efficient to
estimate the number of active users in the downlink of our
block data transmission system with very low complexity.
The only parameter that is required to compute for this
algorithm is the average received signal power.

8 Simulation results
In this section, we apply the proposed SC-FDE schemes and
algorithms to the downlink of a multiuser BPSK DS-UWB
system. The pulse shape adopted in this work is the RRC
pulse with the pulse-width Tc = 0.375 ns. The length of
the data block is set to N ¼ 32 symbols. The Walsh
spreading code with a spreading gain Nc = 8 is generated
for the simulations and we assume that the maximum
number of active users is 7. The channel has been
simulated according to the standard IEEE 802.15.4a
channel model for the NLOS indoor environment as
IET Commun., 2010, Vol. 4, Iss. 13, pp. 1636–1650
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shown in [24]. We assume that the channel is constant
during the whole transmission and the time domain CIR
has the length of 100. This length of the channel gathered
more than 85% of the total channel energy of the standard
channel model. The sampling rate of the standard channel
model is 8 GHz. The CP guard interval has the length of
35 chips, which has the equivalent length of 105 samples
and it is enough to eliminate the IBI. The uncoded data
rate of the communication is approximately 293 Mbps. For
all the simulations, the adaptive filters are initialised as null
vectors. This allows a fair comparison between the analysed
techniques of their convergence performance. In practice,
the filters can be initialised with prior knowledge about
the spreading code or the channel to accelerate the
convergence. All the curves are obtained by averaging 100
independent simulations.

The first experiment we perform is to compare the
uncoded bit error rate (BER) performance of the proposed
adaptive algorithms in SCE and DA schemes. We consider
the scenario with an SNR of 16 dB, three users and 1000
training blocks. Fig. 3 shows the BER performance
of different algorithms as a function of blocks transmitted.
In this experiment, the knowledge of the number of
users K and the noise variance s2

e are given for MMSE
detection in the SCE scheme. It will be shown later, the
perfectly known K and s2

e does not produce significant
improvements in the BER performance compared with
using the estimated values. In both schemes, with only
eight iterations, the proposed CG algorithms outperform
the LMS algorithms and perform close to the RLS
algorithms. Since the filtering like step in the SCE scheme
which takes into the account that L is smaller than M
provides some performance gain, the adaptive algorithms in
SCE scheme performs better than in the DA scheme.
However, the DA scheme has simpler structure and lower

Figure 3 BER performance of the proposed SC-FDE
detection schemes against the number of training blocks
for an SNR ¼ 16 dB

The number of users is 3
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computational complexity. The MMSE curves are obtained
with the knowledge of the channel, the spreading codes of
all the users and the noise variance. It can be found that,
the MMSE performances of the proposed schemes are
exactly the same. This is because these two schemes can be
considered as two different approaches to solve the same
MMSE problem.

Fig. 4 shows the performances of the ML estimators of the
noise variance in different SNRs. For each SNR scenario, the
estimated values of the noise variances for 1, 3 and 5 users are
compared with the values in theory. For the multiuser case,
the ML estimators are not very accurate in the high SNR
environments. However, it will be demonstrated soon by
simulations that this inaccuracy will only lead to very
limited BER performance reduction.

Fig. 5 illustrates the performance of the estimators of the
number of active users in a 16 dB environment with SCE-
CG algorithm and we consider the multiuser cases of two
to four users. The number of users is determined by the

Figure 5 Performance of the active users number estimator

Figure 4 Performance of the noise variance estimator
48
The Institution of Engineering and Technology 2010
received signal power Pr(i), the noise variance s2
e (i) and

the channel power Ph(i) as shown in (79). First, we show
the performance of this estimator with the knowledge of
s2

e (i) and Ph(i). Because of an approximation used in (77),
the values of the estimated users number have gaps to the
real values. For example, in two and three users cases, these
gaps are around 0.5 users. Secondly, we assess the
performance of the users number estimator with the
estimated noise variance ŝ2

e (i) and the adaptive channel
coefficients. It should be noted that the channel estimation
is started with a null vector, which means very small P̂h(i)
at the beginning stage and this leads to very large K̂ .
Hence, we set K̂ = 7 as an upper maximum for this
estimator. The estimated values of K̂ approaches the curves
which are obtained with the knowledge of noise variance
and the channel power. For three and four users cases, the
curves fit well but there is a mismatch when the users
number is 2. This mismatch is caused by the estimation
errors of ŝ2

e (i) and P̂h(i). However, later simulations will
indicate that the mismatches introduced by the
approximation and the estimation errors will not noticeably
affect the BER performance.

Fig. 6 shows the BER performance of the proposed CG
algorithms with different number of iterations for each
adaptation. For both schemes, the CG algorithms perform
better as the number of iterations increases. However, using
more than eight iterations will only produce very limited
improvement in the BER performance for both schemes
but increase significantly the computational complexity. In
our system, a good choice for the number of iterations is
c ¼ 8. In this figure, all the dotted curves for the SCE
scheme are obtained with the knowledge of s2

e and K. We
also include a dashed curve to show the performance of the
SCE-CG with eight iterations that is using the estimated
values of ŝ2

e and K̂ . It is shown that using the estimated
values will not affect the convergence rate but only lead to
a small reduction at the steady-state performance.

Figure 6 BER performance of the proposed CG algorithms
against the number of training blocks for an SNR ¼ 16 dB

The number of users is 3
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Fig. 7 illustrates the BER performance of different
algorithms in a scenario with three users and different
SNRs. In this experiment, 500 training blocks are
transmitted at each SNR and for the SCE scheme, the
estimated ŝ2

e and K̂ are used. For all the simulated SNRs,
the proposed CG algorithms outperform the LMS
algorithms and are very close to the RLS algorithms.

Fig. 8 shows the BER performance of different algorithms
in a 16 dB scenario, with different numbers of active users.
The parameters for the adaptive algorithms are the same as
those used to obtain Fig. 7 and we use the estimated values
of ŝ2

e and K̂ for the SCE scheme. For both schemes, the
CG algorithms can support about two additional users in
comparison with the LMS algorithms and the RLS
algorithms can support about one additional user in
comparison with the CG algorithms.

Figure 7 BER performance of the proposed SC-FDE
detection schemes against the SNR

The number of users is 3

Figure 8 BER performance of the proposed SC-FDE
detection schemes against the number of users in the
scenario with a 16 dB SNR
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9 Conclusion
In this paper, two adaptive detection schemes are proposed
for the multiuser DS-UWB communications based on the
SC-FDE. These schemes can be considered as two
approaches to solve the MMSE detection problem in the
block by block transmission SC systems. The first scheme,
named SCE, adaptively estimate the channel coefficients in
the frequency domain and then performs the detection and
despreading separately. In addition, the MMSE detection
in SCE scheme requires the knowledge of the noise
variance and the number of active users. To this purpose,
we proposed simple algorithms to estimate these values.
The second scheme, named DA, updates one filter in the
frequency domain to suppress both the MAI and the ISI.
The DA scheme has simpler structure and lower complexity
but the SCE scheme performs better. For both schemes, we
developed LMS, RLS and CG adaptive algorithms. For the
SCE scheme, the CG algorithm has much lower complexity
than the RLS algorithm while performing better than the
LMS algorithm. For the DA scheme, a low complexity RLS
algorithm is obtained which has the complexity comparable
to the CG algorithm in the multiuser scenarios. In the
single-user system, the complexity of DA-RLS reduced to
the same level as the DA-LMS.
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