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vibrazioni continuino ad accompagnarci.

Abstract. This paper deals with the effects of generalized damping distributions on vibrating linear systems. The attention is

focused on continuous linear systems with distributed and possibly non-proportional viscous damping, which are studied in terms

of modal analysis, defining and discussing the orthogonality properties of their eigenfunctions.

Exact expressions of the frequency response functions obtained by direct integration of the equations of motion are compared

with the analogous formulas based on the superposition of modes. In addition, approximate expressions of the frequency response

functions of both continuous and discrete (finite element models) systems in terms of their undamped eigenfunctions/eigenvectors

are also considered and discussed.

The presented methods are explained, compared and validated by means of numerical examples on a clamped-free Euler-

Bernoulli beam.

1. Introduction

The effects of generalized damping distributions on vibrating linear mechanical systems have been not exhaustively

studied in terms of modal analysis, especially as regards to continuous systems, i.e. distributed parameter systems.

In fact, continuous systems are seldom modelled considering damping distributions, and when this is the case, the

models are almost always based on the proportional damping assumption, i.e. the damping operator can be expressed

as a linear combination of the mass and stiffness operators [1]. This way of modelling is of course so often adopted

since it carries little analytical and computational further effort in addition to the undamped case analysis. But

in many real situations the proportional damping assumption is not valid and such a simplified approach does not

describe the dynamics of the system with sufficient accuracy. So, in this paper the more general case in which the

damping distributions result to be non-proportional is considered.

Since the existing bibliography about modal analysis for distributed parameter systems with generalized damping

concerns particular cases [2,3], a complete theoretical statement valid in the general case is herein included. It is

nothing but the natural extension of the undamped continuous system theory [1], in which the well-known results

for the discrete systems are easily found as a particular case.

After reducing the differential boundary problem to an eigenvalue problem through the separation of variables,

the existence of orthogonality relations valid for the general case of non-proportional damping is demonstrated. By

means of such relations, the general solution can then be expressed through the so-called expansion theorem. A

discussion about the meaning of the modal parameters in case of non-proportional damping is also included.
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Since the solution of the above mentioned differential eigenproblem is often a very difficult task, several methods

giving approximate solutions have been proposed [1]. Among them, this paper includes the description and

application of a technique presented in [4], valid when the solution is known for the undamped system only.

For a rather large class of continuous systems, however, analytical solutions (i.e. analytical expressions of the

eigenfunctions) can be found. According to [5], a method for the solution of the differential eigenproblem is

described, suitable for a class of vibrating continuous systems with non-proportional damping distributions,according

to different damping models.

This method, starting from a partition of a continuous system in homogeneous substructures or segments, matches

a reduction of the differential equation order with a transfer matrix technique. So it can be easily applied to a large

number of continuous vibrating systems with non-proportional damping, provided that closed-form solutions of the

undamped case for each substructure are known. Moreover, this approach leads to an easy computer implementation

and presents a high computational efficiency, due to the invariance of the matrix dimensions with respect to the

number of substructures considered.

The particular case of non-homogeneous Euler-Bernoulli beams with different non-proportional internal and

external damping distributions is considered. Actually, only little changes in the coefficients would be required to

solve the problem for strings, rods, shafts or Timoshenko beams with viscous or more complicated damping models.

The possibility of extending the proposed method also to several kinds of membranes and plates is intrinsic in its

formulation.

The attention is then focused on the expression of the frequency response functions (FRFs). This result can now

be achieved through the modal analysis approach, since both the modal parameters and modal shapes are available

applying the above mentioned analytical methods. The same techniques, however, allow to express the FRFs in a

different way, which does not require either eigenvalues or eigenfunctions, i.e. which does not need the solution of

any eigenproblem. This result is simply achieved by direct integration of the equations of motion, and since in this

case the solution is not expressed by means of a series (indeed it is the sum of the series resulting from the modal

approach), it could be very useful for high frequency analysis.

Numerical examples are then included in order to show and to compare both the accuracy and efficiency of the

proposed methods. Non-proportional damping distributions are tested on a non-homogeneous Euler-Bernoulli beam

in bending vibration and consequently a discussion on the related frequency response diagrams is presented.

Finally, the results are validated by means of a finite element (FE) model, thus showing their reliability in problems

involving non-proportional damping distributions.

2. Modal analysis of continuous systems with viscous generalized damping

In this section some fundamentals of modal analysis for distributed parameter systems are presented. Among

them, a statement of the expansion theorem, leading to the general solution, a discussion about the meaning of the

modal parameters and finally the expression of the frequency response functions, both in exact and approximate

form.

2.1. General solution: The expansion theorem

The dynamic behaviour of a continuous system with viscous generalized damping can be described by the

following equation of motion

M

[

∂2

∂t2
w(x, t)

]

+ C

[

∂

∂t
w(x, t)

]

+ K [w(x, t)] = f(x, t), x ∈ D (1)

where M,C,K are linear homogeneous differential operators and are referred to as mass operator, damping operator

(generally non-proportional) and stiffness operator, respectively, f is the external force density, w and x are the

displacement and the spatial coordinate in a domain of extension D, respectively (the spatial coordinate as well as

the displacement and the external force density can be scalars or vectors, but here the scalar notation is adopted,

since in what follows this does not represent a loss of generality) and t is time.
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To solve Eq. (1), appropriate boundary and initial conditions must be satisfied by w.
If the damping operator can be expressed as a linear combination of the mass and stiffness operators, it is said to

be proportional [1], but in this paper the more general case in which it results to be non-proportional is considered.
Recalling that self-adjointness of differential operators in continuous systems corresponds to symmetry of matrices

in discrete systems, in the following the operators M,C and K will be supposed to be self-adjoint. This assumption
is unnecessary and could easily be removed, as it will be clarified in the end of the present section. Nevertheless
it will be adopted since such properties hold in most of the existing models, carrying less cumbersome analytical
developments.

With the notation

(w1, w2) =

∫

D

w1w2dD (2)

denoting the inner product between two scalar functions w 1 and w2 over a domain of extension D (if w1 and w2 are
vector functions, then the integrand in Eq. (2) represents their scalar product), a linear differential operator L is said
to be self-adjoint if

(w1,L[w2]) = (w2,L[w1]) (3)

which is a property of symmetry with respect to the inner product.
As usual in modal analysis, the differential boundary problem will be reduced to a differential eigenvalue

problem by separating the variables, so the solution will be given by a linear combination of terms in the form
w(x, t) = φ(x)q(t). Note that although the global solution will always be real, complex terms φ(x)q(t) are expected:
in the case of non-proportional damping the phase of φ(x) will not be constant with respect to x, and consequently
the motion will be non-synchronous [5].

Equation (1) can then be rewritten in the state-space form as follows

A[ẇ] + B[w] = f (4)

the dot denoting derivation with respect to time, where A and B are linear homogeneous differential operators, w
and f are the state vector and the external force density vector, respectively. They can be expressed as

A =

[

C M
M 0

]

, B =

[

K 0
0 −M

]

, w =

[

w
ẇ

]

, f =

[

f
0

]

(5)

so that, if M,C and K are self-adjoint, A and B result to be self-adjoint as well.
The state-space Eq. (4) leads to the differential eigenproblem

sA[z] + B[z] = 0 with eigenvectors z = [φ sφ(x)]T (6)

The solution of this eigenproblem forms an infinite set of pairs of discrete values, each pair characterizing a mode
and being related to a pair of eigenvectors (i.e. to a pair of eigenfunctions). In the case of underdamped modes,
complex conjugate pairs sn, s∗n of eigenvalues are expected, yielding pairs of complex conjugate eigenvectors z n,
z∗

n (i.e. pairs of complex conjugate eigenfunctions φn, φ∗
n). On the other hand, in the case of overdamped modes,

pairs of real negative eigenvalues are expected, yielding pairs of real eigenvectors (in the following, the notation for
the underdamped case will be adopted, but the results are valid in both cases).

The eigenvectors orthogonality properties can be derived rewriting Eq. (6) for the nth and mth mode, respectively,
pre-multiplying the first by zT

m and the second by zT
n , then integrating them both over the spatial domain D, i.e.

{

snA[zn] + B[zn] = 0
smA[zm] + B[zm] = 0

⇒
{

sn(zm, A[zn]) + (zm, B[zn]) = 0
sm(zn, A[zm]) + (zn, B[zm]) = 0

(7)

which, taking into account the self-adjointness of A and B, yield
{

(sn − sm)(zm, A[zn]) = 0
(s−1

n − s−1
m )(zm, B[zn]) = 0

⇒

if n = m then

{

(zn, A[zn]) = an

(zn, B[zn]) = bn
,

{

(z∗n, A[zn]) = 0
(z∗n, B[zn]) = 0

(8)

if n �= m then

{

(zm, A[zn]) = 0
(zm, B[zn]) = 0
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Due to the orthogonality properties of the eigenvectors zn, any other vector in the same space of functions can be

expressed as their linear combination. This statement constitutes what is usually known as the expansion theorem,

so that the free response can be written in the form

w(x, t) =

∞
∑

n=1

[γnφn(x)esnt + γ∗
nφ∗

n(x)es∗

nnt

] (9)

where γn is a complex scaling factor which depends on the initial conditions. Note that a n and bn, if taken separately,

are known unless an indeterminate scaling factor albeit their ratio is fixed, i.e. b n/an = −sn.

When at least one of the differential operators involved in the model results not to be self-adjoint the expansion
theorem still holds, but the orthogonality relations Eq. (8) have to be replaced by a set of biorthogonality relations,

which require the solution of two eigenproblems for the so-called right and left eigenvectors, respectively [1].

2.2. Expression of the frequency response functions

A harmonic excitation force of amplitude f0 acting with angular frequency ω at a coordinate xf is now considered.
Since the system is linear-time-invariant, the response w will still be a harmonic oscillation at the same angular

frequency ω. So, taking into account the expansion theorem and dropping the time dependent terms, the state-space

equation of motion Eq. (4) can be rewritten as

∞
∑

n=1

Γm{(iω)A[zm] + B[zm]} = f0 (10)

where Γm is a scaling factor and f0 = [f0δ(x − xf )0]T , δ being the Dirac distribution.

Pre-multiplying by zT
n , integrating over the spatial domain D and remembering the orthogonality properties

Eq. (8), Eq. (10) gives

Γn =
(zn, f0)

an[(i, ω) − sn]
=

φ0(xf )f0

an[(iω) − sn]
(11)

where the expression of the modal force fn = (zn, f0) in terms of φn and f0 is due to the Dirac distribution
properties.

Finally, if the eigenfunctions are normalized with respect to an, i.e.

φ̂n(x) =
1√
an

φn(x) (12)

taking into account again the expansion theorem and Eqs (9) to (11), it is possible to express the system receptance,

defined as the ratio of the amplitude of displacement at a coordinate x to the intensity of a single harmonic force
acting at a coordinate xf as follows

xαxf (ω) =
W

f0
=

∞
∑

n=1

[

φ̂n(xf )φ̂n(x)

(iω) − sn

+
φ̂∗

n(xf )φ̂∗
n(x)

(iω) − s∗n

]

(13)

The expressions of other frequency response functions, such as accelerance or mechanical impedance, follow

immediately from Eq. (13).

2.3. Meaning of the modal parameters

The definitions of the modal parameters which hold in the case of proportional damping, usually referred to as

modal mass, modal damping and modal stiffness, can be extended to the non-proportional case according to

mn − (φ∗
n,M[φn]), cn = (φ∗

n,C[φn]), kn = (φ∗
n,K[φn]) (14)

Despite their dimensions are coincident with those of a modal mass, a modal damping and a modal stiffness,

respectively, their properties are not the same. To highlight this concept, it is necessary to put in explicit form their

relationships with the eigenvalues sn.
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Remembering the previous definitions, the orthogonality relations (8a) yield

(z∗
n, A[zn]) = 0 ⇒ Re[sn] = − cn

2mn

, (z∗
n, B[zn]) = 0 ⇒ |sn|2 =

kn

mn

(15)

Since these expressions are formally the same as in the case of proportional damping, then by analogy it is possible

to define






ω
(np)
n =

√

kn

mn

ζ
(np)
n = cn

2
√

knmn

⇒
{

Re[sn] = −ζ
(np)
n ω

(np)
n

Im[sn] = ω
(np)
n

√

1 − ζ
(np)
n ,

,

{

|sn| = ω
(np)
n

Arg[sn] = π − arccosζ
(np)
n

(16)

So ω
(np)
n represents the modulus of the related eigenvalue sn and ζ

(np)
n defines its phase, but it is very important to

underline that ω
(np)
n is not the modal natural angular frequency ωn and its magnitude depends on the rate of damping,

whilst ζ
(np)
n is not the modal damping ratio ζn which holds in the case of proportional damping. As a consequence,

the nth modal natural frequency cannot be extracted directly from the corresponding eigenvalue s n.

The gap between ω
(np)
n and ωn gives a measure of the non-proportionality effects, therefore it suggests the

definition of the following “modal” index of non-proportionality

NPn =
ω

(np)
n

ωn

(17)

which is a dimensionless, real, non-negative parameter. For different definitions of non-proportionality indexes the

reader is referred to [6].

2.4. Approximation of the solution

The solution of the eigenproblem Eq. (6) is often a very difficult task (in Section 3, however, an analytical technique

suitable for an important class of continuous systems will be described) and several methods have been proposed to

by-pass the problem when closed-form expressions for the eigenfunctions are not known. Suffice is to remember

the Rayleigh-Ritz approach where the eigenfunctions are defined by a sum of functions, referred to as admissible

functions, satisfying the geometric boundary conditions only [1].

In this section a method giving approximate results is presented, valid when the solution is known for the undamped

system only. According to this method, as clearly explained in [4], the solution can be approximated by a finite

expansion in terms of the undamped system (known) eigenfunctions ϕ, i.e.

w(x, t) ∼=
N

∑

j=1

ϕj(x)rj(t) = ϕT r (18)

Substituting this expanded form of the solution in the equation of motion Eq. (1) and taking into account the

orthogonality relations of the eigenfunctions ϕ with respect to M and K, it is possible to rewrite the state-space

Eq. (4) as follows

Av̇ + Bv = f̃ (19)

where

A =

[

C M

M 0

]

, B =

[

K 0

0 −M

]

, v =

[

r

ṙ

]

, f̃ =

[

(ϕ, f(x, t))
0

]

(20)

and the N × N matrices M,C and K are built up by means of the following inner products involving the

differential operators M, C, K and the eigenfunctions ϕ

M = [(ϕi,M[ϕj])], C = [(ϕi, C[ϕj ])] = CT , K = [(ϕi,K[ϕj ])] (21)

with i, j = 1, . . . N . It is worth noticing that both M and K are diagonal.

The solution of the related algebraic eigenvalue problem, consisting of a set of 2N eigenvalues (say: s
(r)
n ) and

2N eigenvectors (say: un), allows to uncouple the equations of motion Eq. (19) introducing the usual coordinate
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transformation v = Uη (U denoting the eigenvector matrix), which in the frequency domain yields

ηn =
fn

a
(r)
n [(iω) − s

(r)
n ]

(22)

where a
(r)
n is the nth element of the diagonalization of A and fn is the nth component of the modal force vector

UT f̃ .

If a harmonic excitation force of amplitude f0 acting with angular frequency ω at a coordinate xf is considered,

according to Eq. (20) fn can be expressed by means of the eigenfunctions ϕ of the undamped system as follows

fn =

N
∑

i=1

uinϕi(xf )f0 (23)

Introducing Eqs (23) in (22) and taking into account backwards the links among η, v and r, the expansion Eq. (18)

yields the system receptance

xαxf
(ω) =

W

f0

∼=
2N
∑

n=1

[

∑N

i=1 ûinϕi(xf )
] [

∑N

j=1 ûjnϕj(x)
]

iω − s
(r)
n

(24)

the superscript ∧ denoting normalization with respect to the square root of a
(r)
n .

3. Further investigations for a class of continuous systems

In this section an analytical method for the solution of the differential eigenproblem is presented, valid for a

class of vibrating continuous systems with non-proportional damping distributions, according to different damping

models [5]. The results are then applied to the calculation of the FRFs. Such methodology will in particular be

implemented for non-homogeneous Euler-Bernoulli beams in bending vibration. However, it could be easily applied

also to strings, shafts, rods and Timoshenko beams with any possible boundary conditions.

3.1. Solution of the eigenproblem

In the special case of an Euler-Bernoulli beam in bending vibration, the mass, damping and stiffness operators

consist of

M = m(x), C = c(x) or C =
∂2

∂x2

[

cin(x)
∂2

∂x2

]

, K =
∂2

∂x2

[

k(x)
∂2

∂x2

]

(25)

where m(x) is the mass per unit length of beam, c(x) is the external viscous damping distribution, c in(x) is the

internal viscous damping distribution (according to the Kelvin-Voigt model, used in conjunction with the assumption

that cross-sectional areas remain planar during deformation) and k(x) = EI(x) is the bending stiffness, or flexural

rigidity, in which E is the Young’s modulus of the material and I is the area moment of inertia [1].

In order to highlight the effects of non-proportional viscous damping, the differential eigenvalue problem Eq. (6)

will be solved in the special case in which m(x), c(x) (or c in(x)) and k(x) can be considered piecewise constant on

D.

Dividing the beam into P segments of length Dxp = xp − xp − 1 (where x0 = 0, xP = l, length of the beam),

and assuming m(x), c(x) (or cin(x)) and k(x) constant on each segment, the differential eigenvalue problem reduces

to a set of P fourth-order ordinary differential equations with constant coefficients of the type (the roman number

denoting the derivative order with respect to the spatial coordinate)

φIV
P (x) = a4

pφp(x) (26)

with appropriate boundary conditions, where
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ap = 4

√

−mps2 + cps

κp

with κp = kp (27)

which holds for external distributed damping and

ap = 4

√

−mps2

κp

with κp = cin,ps + kp (28)

which holds for internal damping.

Note that more complicated damping laws, even involving fractional derivatives, could be easily taken into account

simply by modifying the definition of ap as a function of s. In any case, s is obviously the same for every segment.
At this stage it is convenient to convert Eq. (26) into a set of four first order equations.

According to the state vector definition

y(x) = [φIII(x) φII(x) φI(x) φ(x)]T (29)

the solution for each segment can then be expressed as

yp(x) = Φpe
Λpx

cp (30)

where Φp is the pth segment eigenvector matrix, Λp is the pth segment eigenvalue matrix (with eigenvalues λ1 = a,

λ2 = −a, λ3 = ia, λ4 = −ia) and cp is the pth segment constant vector.

Moreover, it is possible to show [5] that the solution at any point xp can be written as

yp(xp) = Π1
py1(0) with Π1

p =
1

∏

i=p

[Φie
Λi(xi−xi−1)Φ−1

i Bi−1] (31)

where the ith segment eigenvectors matrix and its inverse, written as functions of a i, have the form

Φi =









a3
i −a3

i −ia3
i ia3

i

a2
i a2

i −a2
i −a2

i

ai −ai iai −iai

1 1 1 1









Φ−1
i =

1

4









a−3
i a−2

i a−1
i 1

−a−3
i a−2

i −a−1
i 1

ia−3
i −a−2

i −ia−1
i 1

−ia−3
i −a−2

i ia−1
i 1









(32)

and Bi−1 are 4 × 4 matrices obtained by imposing the continuity of displacement, rotation, moment and shear in

x = xi − 1. Clearly, these constraints represent the inner boundary conditions between the adjacent beam segments.

Note that B0 = I and that in the absence of external constraints in x i−1, Bi−1 can be written as

Bi−1 =









κ−1
i κi−1 0 0 0

0 κ−1
i κi−1 0 0

0 0 1 0
0 0 0 1









(33)

A more general expression for B, taking into account external constraints of different kinds, is given in [5].

It is now possible to relate the solution y(l) at one end of the beam to the solution y(0) at the other end, which

enables to express the boundary conditions at the ends of the beam in the following form
{

Be0y1(0) = 0
BelΠ

1
py1(0) = 0

(34)

where Be are 2 × 4 matrices depending on the kind of constraints and y 1(0) = φ1c1. For example, in case of a

clamped end, a pinned end or a free end, they simply are

Be =

[

0 0 1 0
0 0 0 1

]

champed

Be =

[

0 1 0 0
0 0 0 0

]

pinned

Be =

[

1 0 0 0
0 1 0 0

]

free
(35)

Equation (34) form a linear homogeneous system of four algebraic equations in four unknowns (i.e. the constants

c1).
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Table 1

Short notation for the modal parameters

ψn ζn βp ν

(φn,M[φn]) (φ∗
n
,M[φn]) mp 0

(φn,C[φn]) (φ∗
n
,C[φn]) external damping cp 0

internal damping cin,p 4

(φn,K[φn]) (φ∗
n
,K[φn]) kp 4

Thus the solution of the eigenproblem follows directly by setting to zero the determinant of the coefficient matrix of

system Eq. (34), due to the fact that an algebraic system possesses non-trivial solutions if and only if the determinant

of its coefficient matrix is zero, and recalling that the elements of the coefficient matrix of system Eq. (34) depend

on the (unknown) eigenvalue s.

It should finally be noted that mathematically the eigenfunctions φ result to be classical solutions (i.e. four times

continuously differentiable in D) everywhere, except in a finite subset of D (i.e. x = x p, with p = 1, . . . , P − 1):

here they result to be weak (in this case at least one time continuously differentiable) as a consequence of the

discontinuities introduced in the functions m(x), c(x) and k(x), which have been assumed piecewise constant on D.

3.2. Frequency response functions through modal analysis

If the differential eigenproblem has been solved (i.e. both the eigenvalues sn and eigenfunctions s n are available),

the FRFs can be calculated according to Eq. (13) after the parameters an have been determined.

To this purpose, it is necessary to write in explicit form the relations among the parameters a n, bn, the differential

operators M, C, K and the eigenfunctions φn, i.e.

an = (φn,C[φn]) + 2sn(φn,M[φn])
(36)

bn = (φn,K[φn]) − s2
n(φn,M[φn])

which are a direct consequence of Eq. (8).

Thus, since the eigenfunctions φn are known, it is possible to calculate an and bn as well as the modal parameters

defined in Section 2.3 simply by applying the definition of inner product.

Introducing the notation of Table 1, according to definition Eq. (2) and taking into account the spatial domain

partition of Section 3.1, the above inner products can be written in quite similar form as

ψn =

p
∑

p=1

{

βpa
v
np

∫

∆xp

φ2
n(x)dx

}

, ξn =

p
∑

p=1

{

βpa
v
np

∫

∆xp

|φn(x)|2dx

}

(37)

Substituting the eigenfunction expressions given by Eqs (30)–(31) into Eq. (37), straightforward but tedious

integrations eventually give

ψn =

p
∑

p=1

βp{av
pH

T
p E(1)

p Hp}n, ξn =

p
∑

p=1

βp{av
pH

H
p E(2)

p Hp}n (38)

where Hp = Φ−1
p Π1

p=1y1(0), Π1
0 = I, (4 × 4 identity matrix) and E

(1)
p , E

(2)
p are 4 × 4 matrices whose elements

are respectively

ε
(1)
ij =

e(λi+λj)∆xp − 1

λi + λj

, ε
(2)
ij =

e(λ∗

i +λj)∆xp − 1

λ∗
i + λj

(39)

in which the eigenvalues λ depend from both the modal index n and the spatial domain partition index p, according

to the definitions Eqs (27) and (28).
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3.3. Frequency response functions through direct integration

Besides the modal approach just described, the analytical tools developed in Section 3.1 allow to express the FRFs

in a different way, which does not require either eigenvalues or eigenfunctions, i.e. which does not need the solution

of the eigenproblem.

This result is achieved by direct integration of the equation of motion, and it is nothing but the sum of the series

in Eq. (13).

The Euler-Bernoulli beam model with piecewise constant distributions described in Section 3.1 is now considered

under the effect of a harmonic excitation force of amplitude f 0 acting with angular frequency ω at a coordinate

xf . Since the system is linear-time-invariant, the response will still be a harmonic oscillation at the same angular

frequency ω. So, dropping the time dependent terms, the equation of motion for each segment of the beam reduces

to

W IV (x) + a4
ωpW (x) = κ−1

ωpf0δ(x − xf ) (40)

where the coefficients aωp and κωp, which are constant within each segment, can be defined according to Eqs (27)

and (28) by substituting s with iω.

Equation (40) is a non-homogeneous ordinary differential equation with constant coefficients, since the angular

frequency is considered as a given parameter.

As in Section 3.1, in order to find the global solution, the four coefficients of c1 have to be determined by imposing

four boundary conditions at the ends of the beam.

By assuming, without loss of generality, that the external force acts at a separation point between two segments

(say: xf = xp), and defining the external force vector in the state-space as follows

f = [κ−1
ωf f0 0 0 0]T (41)

(κωf being κω evaluated in xf ) then the system yielding the unknown coefficients of c1 is simply
{

Bel

[

Π1
p

]

ω
Φ1ωc1 = −Bel

[

Πp=f
p

]

ω
f

Be0Φ1ωc1 = 0
if xf ∈ (0, l]

or (42)
{

Bel

[

Π1
p

]

ω
Φ1ωc1 = −Bel

[

Π1
p

]

ω
f

BelΦ1ωc1 = −Be0f
if xf = 0

where it is important pointing out the following remarks:

– the matrices Be are the same as in system Eq. (34);

– the matrices Π, Φ (and Λ) retain their own definitions as in system Eq. (34), but the subscript ω means that a np

has been substituted by aωp (i.e. in every definition sn has been changed in iω).

As an example, if a homogeneous beam with two different external damping levels forced in x f (with x1 � xf � l)
is considered, the system Eq. (42) simply reduces to

{

Bel[Φ2ωeΛ2ω(l−x1)Φ−1
2ω Φ1ωeΛ1ωx1 ] = c1 = −Bel[Φ2ωeΛ2ω(l−xf )Φ−1

2ω ]f
Be0Φ1ωc1 = 0

(43)

so the receptance at a coordinate x (with 0 � x � x1) can be easily written in function of the four coefficients c1

xαxf
(ω) =

1

f0
[c11e

a1ωx + c12e
−a1ωx + c13e

ia1ωxc14e
−ia1ωx] (44)

The coefficients c1 are generally rather complicated functions of both x f and ω. However, in some particular cases

such functions take a very simple form, as for example in the case of a clamped-free homogeneous Euler-Bernoulli

beam forced at its free end (xf = l), whose receptance at a coordinate x is given by

xαl(ω) =
1

κa3

S+(al)C−(ax) − C+(al)S−(ax)

c2
+(al) − S+(al)S−(al)

(45)
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where

C±(·) = cosh(·) ± cos(·)
(46)

S±(·) = sinh(·) ± sin(·)
As it is expected, if the angular frequency tends to 0, the system receptance Eq. (45) tends to the static deflection

of the beam, i.e.

lim
ω→0

xα1(ω) = lim
a→0

xα1(ω) =
x2

2k

(

1 − x

3

)

(47)

and this limit still holds whatever non-proportional damping distribution is added to the beam model.

Note that the described method could also be applied to the calculation of the response to distributed harmonic

loads, retaining the notation of system Eq. (42) and introducing a convolution integral.

4. Numerical example

A numerical example is presented in order to test and to compare the described methods, and eventually to validate

the results by means of a FE model, showing their reliability in problems involving non-proportional damping

distributions.

As already shown in [5], the proposed approach is characterised by a high computational efficiency, due to the

reduced dimensions of the matrices involved in the numerical procedure. The most crucial point of the modal

approach is the zero finding routine needed to solve the algebraic system Eq. (34). This problem has been solved

applying the secant method to a real function of complex variable [7]. All the codes have been written in Matlab

and computed by an AMD-Athlon XP1600+ processor. The zero finding routine runs in less than one second and

the finite element model presented in Section 5 runs in some tens of seconds.

4.1. Analysis of non-proportional damping effects

The selected numerical example concerns a homogeneous Euler-Bernoulli beam clamped in x = 0 and free in

x = l with a non-proportional damping distribution consisting of two different levels of external damping according

to Fig. 1 (as regards to the effects of internal damping in similar cases, the reader is referred to [5]).

The parameters for each of the two segments in which the beam is divided are as follows:

– length l = 0.30 m, l1 = 0.10 m, l2 = 0.20 m;

– mass density m1 = m2 = m = 0.243 kg/m;

– bending stiffness k1 = k2 = k = 4.725Nm2.

In this example the distributed external damping density on the second segment (l 1 � x � l) is kept constant,

c2 = 1.675Ns/m2, while on the first segment (0 � x � l1) it varies from (proportional damping case) to infinity

(non-proportional damping limit case). So, different levels of non-proportionality can be obtained by increasing the

damping on the first segment only.

In the following, the dimensionless parameter

χ =
c1

c2
(48)

will provide a measure of both the non-proportionality and damping levels.

Figure 2 shows the root loci for the first four modes of the beam under the effect of non-proportional external

damping. The curves in the proportional damping case can be obtained by varying both c 1 and c2 keeping χ = 1:

for underdamped modes they are a quarter of a circle. For each mode, the two trajectories (proportional and non-

proportional case) start from the same point s(prop) corresponding to c 2 = c1 = 1.675 Ns/m2. Due to the particular

choice of the damped segment lengths, even for the first and second mode relevant differences can be observed

between proportional and non-proportional external damping. The curves are nearly coincident with the proportional
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c(x)

0

x0 = 0 x1 = l1 = 0.1 m x2 = l = 0.3 m

x

x

c2

c1

Cantilever E-B homogeneous beam

Non-proportional external damping distribution

Fig. 1. Cantilever homogeneous beam with non-proportional external damping.

(a) (b) 

Fig. 2. (a) root loci for external damping; c1 increases and c2 remains unchanged (non-proportional damping); (b) zoom on first mode.

case only in the neighbourhood of the starting point s (prop), then they strongly diverge at higher values of damping

and never reach the real axis.

The third mode behaves more like the proportional case and becomes overdamped at high values of χ. On the

contrary, the fourth mode curve never reaches the real axis but intersects and then tends to for s
(lim)
4 for χ → ∞.

The asymptotic behaviour of the root loci of the first, second and fourth mode can be explained considering that

as χ → ∞, the clamped-free beam under analysis tends to transform into a clamped-free beam of total length l 2

as shown for a similar example in [5], where the same clamped-free beam with a different damping variation gives
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(a) 

 

(b) 

(c) 

 

(d) 

Fig. 3. Modal index of non-proportionality NP versus damping level χ (five equally spaced damping levels from χ=1 to χ5 = 801) for mode

1 (a), mode 2 (b), mode 3 (c) and mode 4 (d).

completely different root loci.

In order to highlight the effects of a non-proportional damping distribution on the frequency response functions,

five equally spaced damping levels from χ1 = 1 to χ5 = 801 are considered.

In Fig. 3 the modal indexes of non-proportionalityNP for the first four modes are depicted versus the five damping

levels χ.

Figure 4 shows a FRF corresponding to a displacement measured at a coordinate x = l1
2 due to a single harmonic

force acting at a coordinate x = l1 + l2
2 with χ = 1 (proportional damping). The receptance modulus | xαxff

(ω)|
obtained by the modal approach (Section 3.2) with the first four modes is compared with that obtained by direct

integration (Section 3.3) and by FE analysis (Section 5.1) with eight undamped modes. The three curves are in a

very good agreement, except for the antiresonances, where the modal truncation error becomes important, and away

from the natural frequencies of the first four modes (the only terms included in the modal approach).

The influence of the damping level χ on the receptance is highlighted in Fig. 5, where the measurement and

forcing points are the same as in the previous case. The curves obtained with direct integration and FE model are

perfectly superimposed, while those obtained with the modal approach and four FE modes (not shown) exhibit a

modal truncation error of the same order of magnitude as in Fig. 4. Similar results have been obtained for the phase

plots as well.



S. Sorrentino et al. / Frequency domain analysis of continuous systems with viscous generalized damping 255

Fig. 4. Receptance moduli |xαxf
(ω)| obtained by direct integration (solid line), by FE analysis with eight undamped modes (dashed line) and

by modal approach with four damped modes (dotted line).

5. Finite element numerical validation

In this section the results of the analytical methods presented previously are numerically validated by a finite

element model, which has been designed with elements based on an assumed displacement field.

5.1. The finite element model

A standard beam element has been chosen, i.e. with transverse displacement wi and rotation θ i as degrees of

freedom at each node i and cubic interpolation, so that its mass and stiffness matrices can simply be computed or

even found in any textbook [8].

As regards the damping matrix, it is written with the same structure of the mass matrix [9], which corresponds to

the case of external distributed viscous damping (see Eq. (25)). It would be possible to assume the same structure of

the stiffness matrix, which would lead to the case of internal damping.

The damping matrix can be non-proportional and the expression of the FRF can be found using the state space

approach, i.e. solving a complex eigenproblem. This technique is not commonly implemented in FE procedures

because it doubles the dimensions of the matrices, thus significantly increasing the computational effort.

However, it is possible to by-pass this limitation by solving two smaller eigenproblems, i.e. by following a

procedure which is very close to that described in Section 3.4.

Two important concepts have to be underlined at this point:

– the expansion of the solution is now written in terms of eigenvectors (namely ϕ j , not to be confused with the

eigenfunctions ϕ(x)) of the undamped discrete system;

– to cut down the computational effort, the order of the system can be reduced by taking into account a subset of

only N eigenvectors ϕj with N � M , M being the number of degrees of freedom of the FE model. It should

be stressed that the selected sequence of eigenvectors does not necessarily include the first N or even a set of

N close to ϕj , albeit this has been che choice for the numerical examples herewith presented.

Under the hypothesis of a single force of amplitude f 0 acting with angular frequency ω on the physical d.o.f. m,

it is then possible to demonstrate that the receptance at a d.o.f. h is
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Fig. 5. Receptance moduli |xαxf
(ω)| obtained by direct integration (or by FE analysis with eight undamped modes) for five different damping

levels χ.

hαm(ω) =
Wh

f0

∼=
2N
∑

n=1

[

∑N

i=1 ûi,nϕm,i

] [

∑N

j=1 ûj,nϕh,j

]

iω − s
(r)
n

(49)

The frequency response functions can therefore be expressed as functions of a subset of real eigenvectors ϕ j of

the undamped system, and of the complex eigenvalues and eigenvectors s
(r)
n , un of the (low order) damped system.

5.2. Numerical results

The numerical results achieved with the analytical methods have been compared with a model consisting of 132

elements. As expected, the modal frequencies of this FE model without damping are in a very good accordance with

those of a classical Euler-Bernoulli beam, as confirmed also by convergence tests. Note also that the parameters of

the system are those of a proper beam with a very high length to thickness ratio.

The root loci represented in Fig. 2 show an almost perfect coincidence between the analytical and numerical

results, and also the comparison of the FRFs both in modulus (Figs 4 and 5) and phase is completely satisfying.

In the selected frequency band and taking into account the first eight modes of the undamped system, the FE

model receptances are exactly superimposed on the curves obtained through the exact theoretical approach, whilst

the absence of higher modes becomes significant in the upper part of the frequency domain (not represented in the

figures). Finally, it should be noted that the analytical dotted line in Fig. 4 (modal approach with four modes) is also

representative of the effects of using four modes in the FE method.

6. Conclusions

In this paper two general methods have been proposed to compute the exact frequency response functions of

continuous systems with non-proportional damping distributions, focusing the attention on the Euler-Bernoulli beam

model.

The first method is based on the modal approach and takes advantage from the orthogonality properties of the

eigenfunctions, which have been demonstrated for vibrating continuous systems whose equations of motion are

characterized by self-adjoint differential operators.
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On the contrary, the second method exploits a direct integration of the equations of motion, thus being not affected
by any modal truncation error at high frequencies.

Both methods, starting from a partition of a continuous system in homogeneoussubstructures, have been developed
combining the reduction of the differential equation order with a transfer matrix technique.

As a result, they have shown a high computational efficiency, due in part to the invariance of the dimensions of
the matrices involved in the numerical procedures with respect to the number of substructures in which the system
has been divided.

The presented methods have then been applied to test the accuracy of a technique based on the approximation of
the solution by a finite expansion in terms of the undamped system eigenfunctions, showing its reliability.

Finally, the numerical results have been successfully validated by means of a finite element procedure, in which
the computational effort due to the non-proportional damping distributions has been significantly reduced applying
again the same technique of approximation based on a selected set of undamped eigenvectors.

The described analytical tools enable a complete frequency domain study of the effects of generalized damping
distributions on continuous systems. However, the fundamentals to extend the analysis to the time domain are
included as well.

In particular, the introduction of a new modal index of non-proportionality has been proposed, following a
discussion about the meaning of the modal parameters in case of non-proportional damping.

Possible applications of these methods could regard the analysis and passive control of vibrating elements
consisting of non-homogeneous bars, shafts beams, or more complicated systems, such as for example ducts or
pipe-lines, in which the proportional damping assumption could not be valid to describe the dynamics with sufficient
accuracy.

Future work will extend the proposed approach to different vibrating continuous systems including more com-
plicated damping laws, even involving fractional derivatives, and possibly the effects of random or/and moving
loads.

NOMENCLATURE

Bold characters indicate matrices and vectors

a, b complex scalars due to the decoupling of the state-space equation of motion

a transmission factor in the Euler-Bernoulli beam model

A,B state-space dynamic matrices

Bi inner boundary condition matrix

Be external boundary condition matrix

cn modal damping

c complex constant vector

D spatial domain

E Young’s modulus

f force density

f0 amplitude of the force density

f force density vector

f0 amplitude of the force density vector

I area moment of inertia

I identity matrix

l total length of the beam

kn modal stiffness

mn modal mass

N number of selected eigenfunctions/eigenvectors of the undamped system

NP modal index of non-proportionality

P total number of homogeneous substructures

q, r generalized coordinates

r generalized coordinate vector
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s eigenvalue

t time

u eigenvector of the discretized system

U matrix of the eigenvectors u
w displacement

W amplitude of the displacement

w state vector of the whole system

x spatial coordinate

y state vector related to a single homogeneous substructure

z eigenvector of the whole system

α receptance

β exponent in the short notation for the modal parameters

χ damping level

δ Dirac distribution

η modal coordinate vector

Γ, γ complex scaling factors

ϕ eigenfunction of the undamped system

φ eigenfunction of the damped system

Φ eigenvector matrix related to a single homogeneous substructure

κ stiffness component in the transmission factor a
λ eigenvalue related to a single homogeneous substructure

Λ matrix of the eigenvalues λ
ν dimensional factor in the short notation for the modal parameters

ξ, ψ generic modal parameters

ω angular frequency

ζ damping ratio

Operators

A[·], B[·] state space dynamic operators

|.| modulus of a complex number

Arg[·] phase of a complex number

c(x) damping distribution of the beam

C[·] damping operator

Im[·] imaginary part of a complex number

k(x) flexural stiffness of the beam

K[·] stiffness operator

L[·] linear operator

m(x) mass per unit length of the beam

M [·] mass operator

Re[·] real part of a complex number

Subscripts

e ends of the beam

n modal index

p spatial domain partition index

Superscripts

H hermitian of matrices and vectors

(np) non proportional damping

(r) reduced order system

T transpose of matrices and vectors

∗ complex conjugate
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I–IV first to fourth derivative with respect to x
∧ normalization
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