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Frequency Domain Analysis of Nonlinear
Systems Driven by Multiharmonic Signals

Michael Solomou, David Rees, and Neophytos Chiras

Abstract—This paper examines the output properties of static
power-series nonlinearities driven by periodic multiharmonic sig-
nals with emphasis given to their effect on linear frequency re-
sponse function (FRF) measurements. The analysis is based on the
classification of nonlinear distortions into harmonic and interhar-
monic contributions. The properties of harmonic contributions are
examined in detail and explicit formulae are derived, by which the
number of harmonic contributions generated at the test frequen-
cies can be calculated for odd-order nonlinearities up to, and in-
cluding, the ninth order. Although an analytic solution for any odd-
order nonlinearity is still under investigation, a heuristic method-
ology is developed that solves this problem. It is shown that the
derived formulae provide a useful tool in the examination of the
behavior of FRF measurements in the presence of nonlinear distor-
tions. Based on these formulae, different approaches in classifying
nonlinear distortions are then compared with respect to their suit-
ability in assessing the influence of system nonlinearities on linear
FRF measurements.

Index Terms—Frequency-domain analysis, linear systems, mul-
tisine signals, nonlinear distortions, signal processing, system iden-
tification.

I. INTRODUCTION

L
INEAR SYSTEM identification deals with the measure-

ment and modeling of linear dynamic systems. However,

in reality, the linearity assumption is only approximately valid,

since all practical systems are nonlinear to some extent. This

creates the need for an intuitive understanding of the behavior

of nonlinear systems. This is the main topic of this paper, which

examines the output properties of static power-series nonlineari-

ties and their effect on linear frequency response function (FRF)

measurements. As such, the study presented in this paper falls

within the spectrum of work of other authors in this field [1],

[2]. The paper is organized as follows.

The contributions generated by static power-series nonlin-

earities driven by periodic multiharmonic inputs are examined

based on the frequency-domain approach introduced by Evans

et al. [3], [4], by which nonlinear distortions are classified into

harmonic and interharmonic contributions. This approach is

closely related to extensive work conducted by Schoukens et al.

[5] in this area. It is shown that interharmonic contributions

depend entirely on the properties of the input harmonic vector;

thus their behavior varies accordingly. Harmonic contributions,
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however, exhibit more systematic properties, since they only

depend on the number of input frequencies and the order of the

nonlinearity.

This leads to an investigation of the characteristics of har-

monic contributions as the order of the nonlinearity increases

and explicit formulae are derived, by which the number of har-

monic contributions generated at the excitation frequencies can

be calculated for odd-order nonlinearities up to, and including,

the ninth order. Although an analytic solution for any odd-order

nonlinearity is yet to be found, a heuristic methodology has

been developed that solves this problem. It is shown that the de-

rived formulae offer new insights into the output properties of

power-series nonlinearities and also provide the tool by which

their influence on different types of multiharmonic signals can

be examined.

Based on these formulae, different approaches in classifying

nonlinear distortions are then compared, with the aim of clari-

fying the suitability of each approach in examining the behavior

of FRF measurements in the presence of nonlinear distortions,

and the use of the Evans et al. approach is advocated.

II. NONLINEAR SYSTEMS

Consider a periodic multiharmonic signal applied to a time

invariant system. Any nonlinearities present will generate an

output contribution that will be the same for each successive

period of the signal. This will introduce a distortion into the es-

timated linear FRF, which in contrast to the error introduced by

stochastic effects, will not reduce with averaging

(1)

where and are the input and output Fourier co-

efficients averaged across periods, is the linear re-

sponse, and the nonlinear distortion at the test frequen-

cies .

The nature of this distortion will now be examined by em-

ploying the parallel nonlinear structure given in Fig. 1.

This is the most basic nonlinear model and it is composed of

a linear system in parallel with a static power-series nonlinear

element [6]. The nonlinear element is defined by

(2)

where is the input signal and represents the coefficient

of the th-order term. The use of the parallel nonlinear structure

of Fig. 1 does not affect in any way the generality of the analysis

that follows.

0018-9456/04$20.00 © 2004 IEEE
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Fig. 1. Parallel nonlinear structure.

The input signal is a multisine of cosines with dc excluded

and a double-sided spectrum

(3)

with

and

where is a vector of harmonic amplitudes, a vector of har-

monic numbers, a vector of harmonic phases, is the signal

fundamental frequency, and represents the Dirac delta func-

tion defined as

(4)

The distortions introduced by static power-series nonlinearities

are the product of time-domain multiplication of the input

multisine and, hence, convolution in the frequency domain. The

output from a nonlinear term of order will consist of

contributions, made up of all possible combinations of input

harmonics. For example, in the specific case of a third-order

nonlinearity, the output will consist of contributions,

made up of all possible combinations, with permutations, of

three input harmonics

(5)

It is clear from (5) that the third-order nonlinear contributions

will be generated at frequencies which are sums of three input

harmonics.

It is common practice to consider the contributions generated

by an th-order nonlinearity as two types: the th harmonic

contributions, generated by combinations of the same input fre-

quencies (e.g., ), and the cross-talk or intermodu-

lation contributions, made up of combinations of different input

frequencies (e.g., ). This distinction owes its

origin to communications engineering [7] and will be termed as

the classic approach for the remainder of this paper. This ap-

proach clearly has some value when considering inputs made

up of only a few frequencies, but it can be misleading when

studying the contributions generated by multiharmonic signals,

since the th harmonic contributions are only a very small frac-

tion of the total number of contributions.

An alternative methodology that can be used to clarify the in-

fluence of power-series nonlinearities on such signals was pro-

posed by Evans et al. [3], [4], by which the contributions are

divided into two types.

1) Harmonic Contributions: These are generated by

combinations of pairs of equal positive and negative fre-

quencies, or another test frequency combined with pairs

of equal positive and negative frequencies. For example,

for a second-order nonlinearity, a combination such as

( ) will result in a harmonic contribution

at dc, and for a cubic nonlinearity, the combinations

( ) and ( ) will

result in harmonic contributions at . The number

of harmonic contributions generated depends only on

the order of the nonlinearity and the number of input

frequencies. Altering the specific frequencies which are

included in the signal will, in no way, affect the number

of the harmonic contributions.

2) Interharmonic Contributions: These contributions are

generated by frequency combinations that do not follow

the pattern of the harmonic contributions. For example,

for a second-order nonlinearity, the frequency com-

bination ( ) will result in an interharmonic

contribution at , and, for a cubic term, the fre-

quency combination ( ) will generate

an interharmonic contribution at . The resulting

frequencies at which interharmonic contributions will

fall depend entirely on the input harmonic vector . The

phases of these contributions will vary depending on

the phases of the specific input harmonics that gave

rise to them. Omitting certain harmonics from the input

signal will influence the number of the interharmonic

contributions that fall at a given test frequency. Since

the number and relative phase of these contributions will

vary from frequency to frequency, the resulting bias will

also vary. These contributions will introduce a bias in

the form of a scatter, which can easily be mistaken for

a stochastic effect.

The specific influence of the two types of contributions will

depend on the order of the nonlinearity.

1) Even-Order Terms: The harmonic contributions will all

fall at dc in this case, since they will be generated by

pairs of equal positive and negative frequencies. There-

fore, they will have no influence on the estimated FRF. In

the case of interharmonic contributions, if the input signal

contains only harmonics which are odd multiples of the

fundamental frequency, then all the contributions will fall

at even frequencies. Thus, by using an odd harmonic mul-

tisine, the linear and even-order contributions will be or-

thogonal in the frequency domain. The even harmonics

can then be omitted from the data set used for estimation.
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2) Odd-Order Terms: The harmonic contributions will fall

at the input frequencies. They will always have the same

phase as the original input frequency, since they are gen-

erated by the combination of that frequency with pairs

of equal positive and negative frequencies, for which the

phases cancel out. However, it should be noted that al-

though the phases cancel out, this is not true for the am-

plitudes, which are multiplied together and the resulting

amplitudes depend on the specific frequency combina-

tions. The number of harmonic contributions generated

will be equal for each test frequency and depends only on

the order of the nonlinearity and the number of harmonics

included in the input signal. They will, therefore, tend to

introduce a bias, in the form of a systematic offset at each

frequency of the measured output signal, which will also

depend on the power spectrum of the input signal.

Restricting the input signal to contain only odd harmonics

will ensure that the interharmonic contributions will only fall

at odd frequencies, which will include the input frequencies

themselves. The number and phase of the interharmonic con-

tributions that fall at a given input frequency will depend on the

specific input harmonics selected and their relative phases. Em-

ploying an odd harmonic signal will also ensure that the inter-

harmonic contributions generated by odd- and even-order terms

will be orthogonal in the frequency domain.

Harmonic and interharmonic contributions have been previ-

ously described in the literature as Type I and Type II contri-

butions respectively [3], [4]. However, it was considered more

appropriate to introduce a broader terminology, which will aid

a comparison with related work in Sections IV and V of this

paper.

III. ANALYSIS OF HARMONIC CONTRIBUTIONS

A. Motivation

Consider a multisine signal containing harmonics of equal

amplitude applied to the parallel nonlinear model shown in

Fig. 1, with the linear element of the model set to a gain of one

and the nonlinear element set to the cubic order. The nonlinear

distortion of (1) at the test frequencies can be expressed as

(6)

where is the cumulative magnitude of the interharmonic

contributions that fall at the test frequencies, phase and

are the cumulative magnitude of the harmonic contributions,

which is equal for each test frequency (given a flat-amplitude

spectrum), and can be calculated from

(7)

where are the input Fourier coefficients and is the

number of harmonic contributions generated at each test fre-

quency. Evans et al. [3] showed that for the case of a cubic non-

linearity is equal to

(8)

where the superscript term denotes the order of the nonlinearity

. Equations (6)–(8) can be used to separate the harmonic and

interharmonic components that fall at the test frequencies and

thus examine their interaction at those frequencies and in ex-

tent their overall influence on the system response. In fact, this

methodology has been previously employed by the authors in

[8] to examine the mechanisms at work when low CF signals

are subjected to a cubic nonlinearity and to design low CF mul-

tisines that minimize the nonlinear distortion. This provided the

motivation to investigate the behavior of harmonic contributions

for higher orders of nonlinearity, with the aim of deriving ex-

plicit formulae to calculate the number of harmonic contribu-

tions that fall at the test frequencies for any odd-order nonlin-

earity.

B. Formulae

Consider the case of a cubic nonlinear element driven by a

multisine signal that contains harmonics. The frequency-do-

main output will consist of contributions, generated by

all possible combinations and permutations of each combina-

tion of three input frequencies. The combinations of input fre-

quencies that result in harmonic contributions can be considered

as an arrangement that comprises one input frequency and one

frequency pair position which accommodates pairs of equal

positive and negative input frequencies, taken a pair at a time.

This is illustrated in Fig. 2 where is a vector of harmonic

numbers. For example, in the case of a 5 odd-harmonic multisine

signal, 5, 1, 3, 5, 7, and 9, and, therefore, 3,

9. To simplify the analysis that follows, the fundamental har-

monic frequency will be considered as the test frequency

under investigation. This does not have any effect on the gener-

ality of the results obtained since the number of harmonic con-

tributions that fall at a test frequency is equal for all test frequen-

cies.

From Fig. 2, it can be seen that the frequency combinations

are initiated by the combination of with its own pair of

positive and negative frequencies. The number of contributions

resulting from this combination is simply 3!/2!. The remaining

number of harmonic contributions is generated by the combina-

tions of the remaining 1 frequency pairs with , which

results in 3! ( 1) contributions. Adding the two different

terms gives (8).

The same methodology can be applied to calculate the

number of harmonic contributions for the case of a fifth-order

nonlinearity. The procedure is shown in Fig. 3, where

and . In this case, there are two frequency pair

positions that need to be filled by pairs of equal positive and

negative frequencies. The first combination of frequencies

is that comprising with its own frequency pairs, which

generates 5!/(3! 2!) contributions. Then one frequency pair

position is left free by a frequency pair of and can now

be occupied by the remaining 1 frequency pairs resulting

in (5!/2!) ( 1) contributions. The second frequency pair

position can now be left free by the other frequency pair of

. There are two scenarios in this situation. 1) Frequency

pairs of the same input frequency occupy both frequency pair

positions, which result in 5!/(2! 2!) ( 1) contributions.

2) Both frequency pair positions are occupied by different
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Fig. 2. Frequency combinations for harmonic contributions: cubic
nonlinearity.

frequency pairs resulting in 5!/2 ( 1 2) contributions.

The summation of the various terms leads to the Taylor series

representation

(9)

Following the same methodology generated an expression for

the case of a seventh-order nonlinearity

(10)

From (8)–(10), it is obvious that the general expression for cal-

culating the number of harmonic contributions for any odd-

order nonlinearity will have the form

(11)

The first step in analyzing the general expression given in (11)

begins with , which is a constant term that depends only on

the order of the nonlinearity

(12)

Equation (12) represents the number of harmonic contributions

generated by the permutations of the test frequency under in-

vestigation (e.g., ) with its own equal positive and negative

frequency pairs. For example, in the case of a seventh-order ,

can be calculated by taking all possible permutation terms

in the combination ( ), which

simply results in 7!/(4! 3!) 35 contributions, as seen in (10).

The remaining unknown variable in (11) is , which repre-

sents the coefficients of the ( ) terms. Although an explicit

solution for the term coefficients has not been found yet, ex-

plicit equations have been derived to calculate the first two and

the last two term coefficients for any odd-order , which are

shown in the Appendix . Furthermore, a heuristic methodology

has been developed by which any remaining term coefficient

can be calculated. This methodology is based on the procedure

followed to derive (9) (see Fig. 3), and it is also shown in the

Appendix . Combining this methodology with the explicit for-

mulae shown in the Appendix yielded the term coefficients for

13, which can be seen in Table I.

Recent work conducted by the authors in [9] demonstrated

the use of the formulae derived in this section in examining the

Fig. 3. Frequency combinations for harmonic contributions: fifth-order
nonlinearity.

impact of odd-order nonlinearities ( 9) on different types of

multisine signals. This was achieved simply by modifying (7) to

(13)

where is given by (11). Since the FRF estimate will depend

on the type of multisine used, it is clear that these formulae con-

tribute to a better understanding of the influence of static non-

linearities in the identification and modeling of linear systems.

These formulae also offer new and important insights into the

output properties of a wide class of nonlinearities that can be

modeled using a power series expansion [6].

Based on the derived formulae, a comparison between dif-

ferent approaches in classifying nonlinear distortions will now

be conducted, with the aim of clarifying the suitability of each

approach in assessing the influence of static power-series non-

linearities on linear FRF measurements.

IV. CLASSIFICATION OF NONLINEAR DISTORTIONS

Two of the approaches under investigation, namely the classic

approach and the Evans et al. approach, have already been pre-

sented in Section II. Two more approaches will now be consid-

ered in the analysis that follows.

A. Bussgang et al. Approach

This approach was first proposed by Bussgang et al. [2] and

was further examined by Billings and Tsang [10], where it was
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TABLE I
TERM COEFFICIENTS FOR ODD-ORDER NONLINEARITIES

employed to investigate the properties of higher-order frequency

response functions. According to the Bussgang et al. approach,

the contributions generated by frequency combinations of the

form ( ), ( ), ( ),

and ( ) were classified as harmonic, intermod-

ulation, gain compression/expansion, and desensitization con-

tributions, respectively.

It is obvious that harmonic contributions possess exactly the

same properties as the th harmonic contributions defined under

the classic approach and, therefore, they can be included in

the wider class of interharmonic contributions according to the

Evans et al. approach. The intermodulation contributions will

fall at both the excited and the nonexcited frequencies at the

output, depending on the specific frequency combinations that

gave rise to them. For example, frequency combinations of the

form ( ) will generate intermodulation contri-

butions at , which is an excitation frequency, whereas fre-

quency combinations of the form ( ) will gen-

erate intermodulation contributions at , which is not an

excitation frequency. It can be seen that this class of contribu-

tions has the same properties as the interharmonic contributions.

Gain compression and gain expansion are terms that are

used to describe the nonlinear variation in the gain of a system

at a specific frequency, as the input amplitude at that fre-

quency varies. For example, as the amplitude of changes,

frequency combinations of the form ( ) will

either compress or expand the gain of the system at in a

nonlinear manner. It is clear that gain compression/expansion

contributions belong to the class of harmonic contributions

according to the Evans et al. approach. Desensitization is a

term used to describe the transfer of energy from one input

frequency to another, a common phenomenon in nonlinear

systems [11]. The desensitization effect can be illustrated by

frequency combinations of the form ( ).

In this case, the system amplitude response at will be

affected by a change in the amplitude of . It can be seen

that desensitization contributions also belong to the class of

harmonic contributions.

B. Schoukens et al. Approach

The Schoukens et al. [5] approach of classifying nonlinear

distortions is very similar to the Evans et al. approach. Their

work involved the exploitation of the properties of harmonic

and interharmonic contributions to establish a framework to be

used when conducting linear FRF measurements in the pres-

ence of nonlinear distortions. The kernel of their approach is

based on the elimination of the influence of interharmonic con-

tributions at the excitation frequencies by using random phase

excitations. In this case the interharmonic contributions adopt

Gaussian noise properties, thus termed by Schoukens et al. as

stochastic contributions. However, the harmonic contributions

are always present at the excitation frequencies and will intro-

duce a bias in the form of an offset. Hence, Schoukens et al.

termed harmonic contributions as systematic contributions.

Table II can be constructed as a brief summary of the ap-

proaches considered in this paper.

V. COMPARISON OF APPROACHES

From the analysis conducted in Section IV, it can be seen

that the Bussgang et al. approach has many similarities to

the Evans et al. approach. It is clear that the class of gain

expansion/compression contributions combined with that

of desensitization contributions form the class of harmonic

contributions. This is an interesting observation, which illus-

trates that harmonic contributions can be further divided into

gain expansion/compression contributions and desensitization

contributions. However, the question arises of the benefits that

such a division could provide. This can be investigated by con-

sidering the analysis conducted in Section III. It is obvious that

the number of gain compression/expansion contributions can

be calculated from (12). It follows that the remaining number

of harmonic contributions can be considered as desensitization

contributions.

By examining Table I and (11), it can be seen that the number

of desensitization contributions will always be much larger

than that of the gain compression/expansion contributions

for any odd-order nonlinearity. It is obvious that, for input

signals with many frequencies, the gain compression/expan-

sion contributions will have negligible influence at the test

frequencies and will be dominated by the desensitization

contributions. Therefore, dividing the harmonic contributions

into compression/expansion and desensitization contributions

does not provide any additional benefits in the examination of

the effect of harmonic contributions on FRF measurements.

Interharmonic contributions can also be divided into two

different classes, namely the harmonic and the intermodulation
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TABLE II
SUMMARY OF CLASSIFICATION APPROACHES

contributions. However, the benefits of separating the inter-

harmonic contributions when studying their influence on FRF

measurements are negligible, since only the intermodulation

contributions will fall at the test frequencies. Moreover, if

the input signal contains many harmonics, the number of the

harmonic contributions will only be a very small fraction of

the total number of the intermodulation contributions and,

therefore, the influence of harmonic contributions on the

overall system response will be negligible.

The Schoukens et al. and the Evans et al. approaches only

have terminology differences. It is clear that systematic and har-

monic contributions are generated by the same type of frequency

combinations and therefore they possess the same properties.

A close agreement also exists for the stochastic and the in-

terharmonic contributions. In this case, the stochastic contri-

butions can be considered as interharmonic contributions with

random phases since the term “stochastic” is used to describe the

noise-like properties of the interharmonic contributions, which

are imposed by the random phases of the input signal.

The overall analysis indicates that both the Evans et al. ap-

proach and the Schoukens et al. approach are suitable for exam-

ining the behavior of linear FRF measurements in the presence

of nonlinear distortions and should be preferred over the classic

approach and the Bussgang et al. approach. The Evans et al.

approach, however, can be considered as broader since it also

applies for signals that do not possess random phases.

VI. CONCLUSION

The output properties of static power-series nonlinearities

driven by periodic multiharmonic inputs have been examined

in this paper. The analysis was based on the classification of

nonlinear distortions into harmonic and interharmonic con-

tributions. It was shown that harmonic contributions possess

properties that can be used to examine the effect of a cubic

nonlinearity on linear FRF measurements. This provided

the motivation to investigate the characteristics of harmonic

contributions for higher orders of nonlinearity.

As a result, explicit formulae have been derived, by which the

number of harmonic contributions that fall at the test frequen-

cies can be calculated for odd-order nonlinearities up to, and

including, the ninth order. Although an analytic solution for any

odd-order nonlinearity is yet to be found, a heuristic method-

ology has been developed that solves this problem. It was shown

that the derived formulae offer new insights into the output prop-

erties of static nonlinearities and can be used to examine their

effect on linear system identification.

Based on these formulae, different approaches in classifying

nonlinear distortions were then compared, with the aim of clar-

ifying their suitability for assessing the effect of system nonlin-

earities on linear FRF measurements. These were termed the

classic approach, the Bussgang et al. approach, the Evans et

al. approach, and the Schoukens et al. approach. The analysis

raised some interesting issues on the use of each approach when

studying the contributions generated by periodic multiharmonic

signals.

It was shown that the classic approach has some value for in-

puts made up of only a few harmonics but can prove misleading

in the case of multiharmonic signals. The Bussgang et al. ap-

proach is also useful for signals containing a small number of

harmonics but does not work as well for inputs with many har-

monics. The analysis illustrated that, in this case, the Evans et al.

approach works much better and should be preferred over the

two approaches. It was finally shown that the Schoukens et al.

approach is closely related to the Evans et al. approach, but it
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is most effective when studying the contributions generated by

multiharmonic inputs with random phases.

APPENDIX

TERM COEFFICIENTS

Given a set of frequency combinations S required to calculate

a term coefficient in (11), S will be initiated by the frequency

combination where ( 1) different frequency pairs occupy only

one pair position each, with pairs of completing all remaining

positions. To calculate the permutations of this initial combina-

tion, the number of positive must be identified

(14)

From (14), it follows that the number of negative that are

present in this initial combination is equal to ( 1). All re-

maining frequency combinations are determined by considering

that, for a given , ( 1) positions initially occupied by pairs

of will be replaced one at a time by ( 1) available fre-

quency pairs (see Fig. 3 for an example) to form ( 1) com-

bination subsets, with each subset having frequency com-

binations, where

(15)

From (14) and (15), a preliminary general expression for has

been derived

(16)

The factor [count ] represents all the remaining factorials

that need to be present in the denominators of all the terms in

(16). This factor can be found by identifying all different groups

of identical frequencies, other than , that are present in com-

bination . Then, counting the number of frequencies in each

group will give the missing factorials. Although an analytical so-

lution for remains an open problem, explicit formulae have

been derived to calculate the first two and last two coefficients

for any , as follows:

(17)

(18)

(19)

(20)

The results in Table I for 9 follow directly from (17)–(20)

and by using (14)– (16), any remaining term coefficients for

9 were calculated.
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