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Abstract—We present a novel frequency-domain analysis
framework for a closed-loop model capturing a wide range of
real-time and networked control systems with stochastic delays
and packet drops. Our results allow for inferring the mean
and variance of the output response to deterministic inputs,
based on a new frequency response plot. We illustrate the
usefulness of our results in the context of real-time control
systems with input-to-output delays resulting from the use of a
shared processor.

I. INTRODUCTION
Increasingly many control applications rely on shared

computational and communication resources. The use of
shared resources in real-time and networked control systems
reduces costs and increases flexibility. However, it also
leads to time-varying effects, such as computational and
communication delays and data drops. Taking into account
these effects in the control design requires a significantly
more elaborate analysis than that for traditional sampled-data
systems.
Several works in the literature consider different mod-

els (often stochastic) of these effects providing control
design methods coping with packet drops [1]–[6], time-
varying transmission intervals [7]–[10], and time-varying
delays [11]–[17]. Such methods include: (i) optimal control
and estimation, using the time-varying Kalman filter [1];
(ii) model-based design [9]; (iii) optimal control [2]; (iv)
emulation observer-based designs [18]; (v) adaptive sampling
period design [15], [16]; (vi) multi-rate design [14].
However, frequency-domain based tools, widespread in

industry in the context of time-invariant control design, are
almost absent for coping with varying delays and data drops
in the loop. This results from the fact that the models
capturing delays and data drops are typically time-varying.
Two exceptions in the literature are [19], [20] both exploit-
ing probabilistic descriptions of these time-varying features.
In [19] the analysis is carried out for a broad class of real-
time and networked control systems, based on the power
spectral density of the output response to white noise. A
different approach is followed in [20], where the analysis is
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based on computing the expected value and the variance of
the output response to deterministic signals. However, [20]
considers only models with packet drops.

The purpose of this paper is to show that the analysis
in [20], considering packet drops and single-input-single-
output systems, can be extended to consider a broad range
of real-time and networked control models. In fact, we
show that with proper adaptations one can consider general
linear systems with independent and identically distributed
parameters. We illustrate how this framework allows to
capture both stochastic delays in real-time and networked
control settings and data losses, arising, e.g., from deadline
misses or communication drops. Moreover, we generalize
the results in [20] to multiple-input multiple-output control
loops.

Our approach builds upon the fact that the maps between
the input of the loop and the statistical moments of the state
and of the output are time-invariant. This allows for plotting
the amplitudes of the mean and variance of a scalar output
response to sinusoidal input signals as a function of the input
frequency. Note that this parallels the classical frequency
response (Bode) plot. Moreover, much like the classical
analysis, this plot allows for inferring the behavior of the
output response, characterized now by its mean and variance,
to an arbitrary deterministic input. Through a graphical
method, and for a given scalar output, the mean can be
exactly computed and the variance can be upper bounded.

We illustrate the usefulness of our results in the analysis
of a real-time control system with control delays resulting
from the use of a shared processor. In this setting the delay
variability may be large and the choice of sampling period
is often dictated by the worst-case delays, depending on
the scheduling policies and worst-case completion times.
With our tools, one can study the influence of reducing
the sampling period. This leads to a faster control loop, but
results in deadline misses, increasing the uncertainty on the
plant’s responses, a trade-off which we can capture with our
tools.

The paper is organized as follows. Section II introduces
the model framework and discusses several settings in real-
time and networked control, which can be captured by this
model. Section III presents the main results, and Section IV
provides an illustrative example. Section V provides conclud-
ing remarks. The proofs of the results are omitted for the sake
of brevity, but can be obtained via the suitable adaptation of
the arguments provided in [20].
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II. MODELING REAL-TIME AND NETWORKED CONTROL
SYSTEMS

In this paper we provide a frequency-domain analysis
framework for the following model

ξk+1 = E(σk)ξk +H(σk)wk, (1)

where for k ∈ Z, ξk ∈ Rn is the state, which may
include plant, controller and auxiliary states, wk ∈ Rnw is
a deterministic input, which either belongs to the class of
signals with bounded energy, i.e.,

∑∞
k=−∞ ∥wk∥2 < ∞, or

to the class of periodic bounded signals, and {σk}k∈Z is a
sequence of random vectors. Each random vector σ k may
belong to a continuous or a discrete space X . A general
output of the system is given by

zk = F ξk +Qwk, (2)

for given matrices F and Q.
We assume that for every k1 ∈ Z, k2 ∈ Z, k1 ̸= k2, σk1

and σk2 are statistically independent (or orthogonal) random
vectors, an assumption which we denote by

σk1 ⊥ σk2 , k1 ̸= k2. (3)

Moreover, we assume that every σk follows the same distri-
bution µ, i.e., for every k ∈ Z,

Prob[σk ∈ A] = µ(A), ∀A ⊆ X .

Considering models for which σk , k ∈ Z, are correlated over
time warrants further research (see Section IV). Furthermore,
we assume that the (unforced) system (1) with wk = 0,
for all k ∈ Z, is mean square stable, i.e., for every ξ0,
limk→∞ E[∥ξk∥2] = 0. Since the unforced system is a
special case of a Markov jump linear system, equivalently
we assume the following condition (see [21])

r(M) < 1, (4)

where r denotes the spectral radius and

M := E[E(σ)⊗ E(σ)], (5)

for a random vector σ with probability distribution µ, where
⊗ denotes the Kronecker product.
Next, we discuss three scenarios of real-time and net-

worked control systems, which can be captured by (1)-(3),
discussing also variants. See [19] for more scenarios captured
by (1)-(3).

A. Input-output (I/0) delays in real-time (RT) control
Consider a standard real-time control loop depicted in

Figure 1, in which a linear controller, designed in continuous-
time assuming no communication and computational con-
straints, should be implemented on a shared processor (exe-
cuting other tasks possibly pertaining to other control loops).
In this context, the use of dynamic task scheduling polices
and the uncertainty in the duration of each task introduce
considerable uncertainty in the start (and completion) time
of each task execution. This leads to a significant variability
in the delay between the time at which the input of the

Fig. 1. Real-time control loop with I/0 delays due to task scheduling.

controller (sensor measurement) is obtained and the time at
which the controller output is available to the actuators.
We assume that the sensors are sampled at times

tk = kτ, k ∈ Z,

where τ ∈ R>0 is the sampling period. The input-output
delay to implement the control update based on the sensor
measurement obtained at time tk is denoted by δk, k ∈ Z.
We assume that the delays are independent and identically
distributed with a known probability distribution. We con-
sider two cases, which we discuss next: (I) either the delays
are always smaller than the sampling period, i.e., δk < τ ,
k ∈ Z, or (II) the delays can be larger than τ (see Figure 2).
The plant and controller are assumed to be described by

ẋ(t) = Ax(t) +Bû(t), y(t) = Cx(t) + v(t), (6)

and (
ẋc(t)
u(t)

)
=

(
Ac Bc

Cc Dc

)(
xc(t)

r(t) − ŷ(t)

)
, (7)

respectively, where x(t) ∈ Rnx and xc(t) ∈ Rnc denote
the state of the plant and of the controller, respectively, at
time t ∈ R, û(t) ∈ Rnu and y(t) ∈ Rny are the input
and the output of the plant at time t, respectively, ŷ(t) ∈
Rny denotes the input of the controller, and u(t) ∈ Rnu

the output. Moreover, r(t) ∈ Rny is a reference signal and
v(t) ∈ Rny is output noise. The input of the controller is hold
constant in the time interval [tk, tk+1), in the sense that,

r(t) = r(tk), ŷ(t) = y(tk), t ∈ [tk, tk+1). (8)

An important special case is when the state is available
and (7) is a static state-feedback controller

u(t) = K(r(tk)− x(tk)), t ∈ [tk, tk+1)

for some gain K .

Fig. 2. Illustration of the delay probability density function and connection
between sampling period τ and maximum delay δmax.
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1) Delay smaller than the sampling period τ : In this case,
the controller task is always executed within a sampling
interval. When such task is executed the controller can run
or integrate (7) for constant input (8), providing the control
update uk := u(tk + δk), and the state xc(tk+1). At the
actuation side, the control input is hold constant between
two actuation update times

û(t) = uk, t ∈ [tk + δk, tk+1 + δk+1).

For the state-feedback case we can capture this setting with
model (1) by considering the state ξk = (x(tk), uk−1),
the random vector σk = δk, the exogenous input wk =
(r(tk), v(tk)), k ∈ Z, and the matrices

E(δ) =

(
eAτ −B1(δ)K B2(δ)

K 0

)
,

H(δ) =

(
B1(δ)K

K

)(
I −I

)
,

where

B1(δ) :=

∫ τ−δ

0
eAsdsB, B2(δ) := eA(τ−δ)

∫ δ

0
eAsdsB,

for δ ∈ [0, τ). Moreover, the outputs y(tk) or e(tk) :=
y(tk) − r(tk) can be captured by (2). For example for y
we can take F =

(
C 0

)
and Q =

(
0 I

)
. We can also

model the output feedback case in the framework of (1) by
considering ξk = (x(tk), xc(tk), uk−1), and, for δ ∈ [0, τ),

E(δ) =

⎛

⎝
eAτ −Q1(δ) B1(δ)CceAδ B2(δ)
−Bc,1(τ)C eAcτ 0

−(Dc + CcBc,1(δ))C CceAδ 0

⎞

⎠ ,

(9)
and

H(δ) =

⎛

⎝
B1(δ)(Dc + CcBc,1(δ))

Bc,1(τ)
CcBc,1(δ) +Dc

⎞

⎠(
I −I

)
, (10)

where

Q1(δ) = B1(δ)(Dc + CcBc,1(δ))C,Bc,1(δ) =

∫ δ

0
eAcsdsB.

Note that (3) is satisfied, since the delays {δk}k∈Z are
assumed to be independent and identically distributed.
2) Delay possibly larger than the sampling period τ : Due

to the variability of the task execution times, the I/O delays
can be larger than a sampling period τ , i.e. task deadlines
may not be met at given execution periods. We assume that
if a task has not been executed within the sampling period,
it is simply canceled and the processing cycle restarts at
time tk+1. The next time that the controller task is executed,
the controller runs (7) holding constant at its input the last
obtained measurement. Then we can change the model for
the output feedback case to

E(δ) =

⎧
⎪⎪⎨

⎪⎪⎩

(9), if δ < τ,
⎛

⎝
eAτ 0 B2(τ)

−Bc,1(τ)C eAcτ 0
0 0 I

⎞

⎠ otherwise,

(11)

and

H(δ) =

⎧
⎪⎪⎨

⎪⎪⎩

(10), if δ < τ,
⎛

⎝
0

Bc,1(τ)
0

⎞

⎠(
I −I

)
otherwise.

(12)

A similar model can be obtained for the state-feedback case.
Note that this problem is also relevant when the controller

is specified in discrete time. In fact, consider, for simplicity,
a strictly proper discrete-time controller

(
xd
k+1
uk

)
=

(
Ad Bd

Cd 0

)(
xd
k

rk − ŷ(tk)

)
. (13)

In this case there is no need to cope with delays smaller than
the sampling period, since uk should only be applied at time
tk+1 and can be computed before tk+1 based on rk − ŷ(tk).
Let σk = 1 if δk ≤ τ and σk = 0 if δk > τ for every k ∈
Z. Assume that the actuation equals the previous actuation
value if the delay is larger than the sampling period, i.e.,
uk = uk−1 if δk−1 > τ . Moreover, assume for simplicity that
there is no output noise. Then (1) can capture this scenario
by considering the state ξk = (x(tk), xd

k, uk−1), wk = rk,

E(σ̄) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
eAτ B2(τ)Cd 0

−BdC Ad 0
0 Cd 0

⎞

⎠ , if σ̄ = 1,

⎛

⎝
eAτ 0 B2(τ)

−BdC Ad 0
0 0 I

⎞

⎠ , if σ̄ = 0,

(14)

H(σ̄) =

⎛

⎝
0
Bd

0

⎞

⎠ , for all σ̄ ∈ {0, 1}. (15)

We will provide a numerical example for this case in
Section IV.

B. Networked control systems
Consider a distributed networked control system in which

the plant and the controller communicate over a network. The
plant’s sensors are sampled at times tk = kτ , k ∈ Z, and
sent to the controller arriving after a communication delay
δs−c,k. After a computational delay δc,k, the controller sends
the control input of the plant’s actuators, which arrives after
a delay δc−s,k. We assume that δs−c,k + δc−s,k + δc,k < τ
for every k ∈ Z0. We suppose that a model-based control
design is pursued and to assure that the controller knows the
actual plant’s input û(t) we assume that the message from
the plant to the controller at time tk contains not only the
sensor measurement obtained at time tk but also the time at
which the actuation was updated in the interval [tk−1, tk).
Let the plant be described by (6), and consider now for

simplicity that the reference signals are absent, i.e., only the
impact of noise signals in the networked control system is to
be analyzed. Conceptually, the controller mimics the evolu-
tion of the plant between consecutive sensor measurements

˙̂x(t) = Ax̂(t) +Bû(t), t ∈ R≥0 − {tk}k∈Z, (16)
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and, when it receives an output measurement y(tk), it
updates its state by computing

x̂(tk) = x̂(t−k ) + L(y(tk)− Cx̂(t−k )). (17)

In practice the controller only needs to execute at times
tk + δs−c,k at which it receives y(tk), computes (17), where
x̂(t−k ) is obtained by running (16), (17) at previous steps,
and integrates (16) to obtain the estimated state

x̂(t), t ∈ [tk + δs−c,k, tk + 2τ). (18)

The control input to be sent to the actuator is computed as

u(t) = K(r(tk)− x̂(t)), t ∈ [tk + δs−c,k, tk + 2τ). (19)

The actuators of the plant apply this control input between
two messages received from the controller, i.e., in the interval
t ∈ [tk+δs−c,k+δc−s,k+δc,k, tk+1+δs−c,k+1+δc−s,k+1+
δc,k+1). Note that in practice the controller sends a discrete-
time version of (19) sampled at a very high frequency to the
actuators.
We can capture this networked control setting with the

model (1) by considering an auxiliary variable b k which
holds the value of the sampled output bk = y(tk) in the
interval [tk, tk+1) and making ξk := (x(tk), x̂(tk), bk), σk =
(δs−c,k, δc,k, δc−s,k), wk = v(tk),

E(δ1, δ2, δ3) = eA(τ−δ2−δ3)J(δ1)e
Aδ1N

H(δ1, δ2, δ3) = eA(τ−δ2−δ3)J(δ1)e
Aδ1L

for positive scalars δ1, δ2, δ3 and,

A :=

⎛

⎝
A −BK 0
0 (A−BK) 0
0 0 0

⎞

⎠ ,

J(δ1) :=

⎛

⎝
I 0 0
0 (I − LC) L
0 0 I

⎞

⎠ ,

N :=

⎛

⎝
I 0 0
0 I 0
C 0 0

⎞

⎠ , L :=

⎛

⎝
0
0
I

⎞

⎠ ,

where δ1 is a positive scalar.

C. Data losses in an MIMO control loop
Consider a multiple-input multi-output (MIMO) plant in

which the data sent from each sensor and actuator link can be
lost. The plant and the controller are considered in discrete
time (e.g. obtained by discretizing (6), (7)) and described by

xk+1 = Axk +Bũk, yk = Cxk, (20)

and

xc
k+1 = Acx

c
k +Bc(rk − ỹk), uk = Ccx

c
k +Dc(rk − ỹk),

(21)
respectively, where xk ∈ Rnx and xc

k ∈ Rnc denote the state
of the plant and of the controller at time k ∈ Z, respectively.
Moreover, ũk ∈ Rnu and yk ∈ Rny are the input and
the output of the plant at time k, respectively. Similarly,
ek := rk − ỹk and uk ∈ R are the input and the output

of the controller at time k, respectively, where ỹk ∈ Rny is
the latest received output of the plant and rk ∈ Rnr is the
reference signal.
To model the lossy link between the sensor and the

controller we use

ỹk = (1−Θk)ỹk−1 +Θkyk,

for k ∈ Z, where Θk is a diagonal matrix with entries θi,k,
1 ≤ i ≤ ny , at the diagonal and each θi,k equals one if the
controller receives the component i of the output of the plant
at time k and zero if this data is lost. Similarly, to model
the lossy link between the controller and the actuator of the
plant we use

ũk = (1− Ωk)ũk−1 + Ωkuk,

for k ∈ Z, where Ωk is a diagonal matrix with entries ρj,k,
1 ≤ j ≤ nu, and each ρj,k equals one if the actuator receives
the component j of the output of the controller at time k and
zero otherwise.
Note that there may exist 2ny+nu data loss possibilities at

each time k. Let σk ∈ {1, . . . , 2ny+nu} indicate which of the
data loss possibilities occurred at time k. We can capture this
setting with the model (1), (3) with ξk = (xk, xc

k, ŷk, ûk),
wk = rk and

Eσ :=

⎛

⎜⎝

A−ΘBΩDcC BΩCc B(I − Ω) −(I −Θ)BDc

−ΩBcΘC Ac 0 −Bc(I −Θ)
−ΩDcΘC ΩCc (I − Ω) −ΩDc(I −Θ)

ΘC 0 0 (I −Θ)

⎞

⎟⎠ ,

Hσ :=
(
BΩDᵀ

c Bᵀ
c ΩDᵀ

c 0
)ᵀ

,

for σ ∈ {1, . . . , 2m+p}, and Θ, Ω are diagonal matrices
whose entries are functions of σ (this dependence is omitted).
These functions specify if the diagonal entries are 0 or 1,
depending of which sensors and actuators correspond to data
losses in the possibility indicated by σ.

III. FREQUENCY-DOMAIN ANALYSIS

Although (1) is time-varying, the expected value and the
variance of each component of the output can be determined
from the solution to a linear time-invariant system, as stated
in the next two propositions.
Proposition 1: Consider (1), (2) for a deterministic input

{wk}k∈Z and suppose that (3), (4) hold. Then

E[zk] = Fβk +Qwk,

where the βk := E[ξk], k ∈ Z, satisfy

βk+1 = Ēβk + H̄wk, k ∈ Z, (22)

and Ē := E[E(σ)], H̄ := E[H(σ)] for a random vector σ
with probability distribution µ. Moreover, Ē is Schur.

!
We now consider that zk ∈ R for every k ∈ Z and show

how to compute its variance, given by

var(zk) := E[(zk − E[zk])2] = E[(F ξk − E[F ξk])2]. (23)

Note also that

var(zk) = E[(F ξk)2]− E[F ξk]2. (24)
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For a general vector zk, one can compute the variance of
each of its components. The second term on the right hand
side of (24) can be computed from Proposition 1. The next
result shows how to compute the first term. Let T be the
unique matrix such that Ta ⊗ b = b ⊗ a for a ∈ Rnx and
b ∈ Rnw .
Proposition 2: Consider (1), a scalar output zk ∈ R, k ∈

Z, given by (2), and a deterministic input {wk}k∈Z. Suppose
that (3) holds. Then,

E[(F ξk)2] = Gζk, (25)

where G := F ⊗ F and ζk satisfies

ζk+1 = Mζk + Lβk ⊗ wk +Nwk ⊗ wk, (26)

where M is defined in (5), and for a random vector σ with
probability distribution µ,

N := E[H(σ)⊗H(σ)]

L := E[E(σ)⊗H(σ) +H(σ)⊗ E(σ)T ].

!
Since (22) is linear, using standard arguments for linear

time-invariant systems (see, e.g., [22]), we can relate the z-
transforms of the input ŵ(z) :=

∑∞
k=−∞ wkz−k and the

expected value of the output ẑ(z) :=
∑∞

k=−∞ E[zk]z−k by

ẑ(z) = a(z)ŵ(z), (27)

where a(z) := F (zI − Ē)−1H̄ + Q, for z in the inter-
section of the regions of convergence of r̂(z) and a(z).
However, (24), (25), (26) depend non-linearly on the input
wk, k ∈ Z. Yet, as we show next, we can compute (26),
and (24), when w is a scalar sinusoidal input,

wk = ℑ{vejωck} = |v| sin(ωck + ψv), (28)

where v = |v|ejψv ∈ C is the complex amplitude, ωc ∈
(−π,π] is the frequency, and ℑ denotes the imaginary part.
Proposition 3: Consider (1), a scalar output zk ∈ R,

k ∈ Z, given by (2), and the scalar input (28). Suppose
that (3), (4) hold. Then,

var(zk) = b(ejωc)|v|2 −ℜ{c(ejωc)v2e2ωck}, (29)

for every k ∈ Z, where, for z ∈ C,

b(z) :=
1

2
ℜ{G(I −M)−1(N + L(zI − Ē)−1H̄)}− |a(z)|2

2
,

c(z) :=
1

2
G(z2I −M)−1(N + L(zI − Ē)−1H̄)− a(z)2

2
.

Moreover, b(1) = 0 and c(1) = 0, and thus var(zk) = 0 for
every k ∈ Z when ωc = 0.

!
Based on Proposition 3 and (27), we define a new fre-

quency domain plot, in which a(ejω), b(ejω), c(ejω) are
plotted as a function of frequency ω ∈ [0,π). Based on
this plot, as we show next, we can give a bound for the
variance (24) to an arbitrary input signal characterized by
its Fourier transform ŵ(ejω), ω ∈ (−π,π]. This is main

result of our novel approach. Note that ŵ(e jω) exists in
ω ∈ (−π,π] for signals with bounded energy [23]. For
periodic signals with period T , ŵ(ejω) is a generalized
function given by

ŵ(ejω) =
2π

T

T−1∑

ℓ=0

vℓδ(t−
2πk

T
), (30)

where the Fourier coefficients vℓ are given by

vℓ :=
T−1∑

k=0

wke
−j 2πℓ

T k, (31)

and δ denotes the Dirac function [23].
Theorem 4: Consider (1), a scalar output zk ∈ R, k ∈ Z,

given by (2), and a scalar input wk ∈ R, k ∈ Z with Fourier
transform ŵ(ejω). Then, for w with bounded energy it holds
that

var(zk) ≤
2

π

∫ π

0

(
|b(ejω)|+ |c(ejω)|

)
|ŵ(ejω)|2dω, (32)

for every k ∈ Z. Moreover, for T− periodic w it holds that

var(zk) ≤
4

T

⌊T
2 ⌋∑

ℓ=1

(
|b(ejωℓ)|+ |c(ejωℓ)|

)
|vℓ|2, (33)

for every k ∈ Z, where ωℓ := 2πℓ
T , the vℓ are described

in (31), and ⌊ T
2 ⌋ denotes the floor of

T
2 .

!
As for LTI systems, in order to obtain the expected value

of the output, it suffices to multiply a(ejω) and ŵ(ejω) and
obtain the expected value of the output by inverting the
Fourier transform a(ejω)ŵ(ejω), ω ∈ (−π,π]. To obtain
a bound for the variance it suffices to multiply |ŵ(e jω)|2
by |b(ejω)| + |c(ejω)|, for ω ∈ [0,π], and computing (32).
Graphically (see Figure 6), the computation of (32) amounts
to plotting (|b(ejω)|+ |c(ejω)|)|ŵ(jω)|2, for ω ∈ [0,π], and
computing the average over frequency multiplied by a factor
2.

IV. EXAMPLE
We consider the scenario described in Section II-A.2. The

plant (6) is considered to be a double integrator described
by the transfer function p1(s) := 1

s2 and the controller is
described by the transfer function c1(s) := 10(s+1)

s+5
20

s+20 .
The plant and the controller are discretized using a sampling
period τ with the zero-order hold method [22]. Note that this
results in a strictly proper linear time-invariant controller of
the form (13). Let pd,1(z) and cd,1(z) denote the resulting
transfer functions in discrete time.
The delay distribution is assumed to be a truncated gamma

distribution depicted in Figure 3(a). and described by the
probability density Prob[δ ∈ [a, b)] =

∫ b
a f(s)ds, with

f(s) =

{
α1s

2e−λs, if s < 0.1

0, if s ≥ 0.1
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for λ = 100 and a normalization constant α1, where the
maximum delay is assumed to be 0.1. A conservative design
would then pick the sampling period τ = 0.1, which
would avoid deadline misses, resulting in a time-invariant
system and thus could be analyzed by classical control
methods for LTI systems, and in particular by frequency
domain analysis tools. However, this leads to a significant
performance degradation compared to the ideal continuous-
time case. To illustrate this, we plot the step responses of
the closed-loop with the ideal continuous-time controller and
the discretized one in Figure 4(a), as well as the sensitivity
functions 1

1+pd,1(z)cd,1(z)
and 1

1+p1(s)c1(s)
in Figure 5(b).

Using our tools, we investigate the possibilities of reducing
the sampling period τ . By properly choosing τ , this will
result in a closed-loop system with an increased control
update rate, but time-varying, since deadline misses occur
with probability qmiss(τ) =

∫ 0.1
τ f(s)ds. The average control

update period is then given by τ
1−qmiss(τ)

. This function is
plotted in Figure 3(b), achieving its minimum for τ = 0.033.
Note that this plot should serve as a mere indicator on
how to choose τ and does not directly translate into closed-
loop properties. For instance, if the delay distribution were
uniform, the effective control update rate τ

1−qmiss(τ)
would

be constant as a function of τ ∈ [0, 0.1)], although the
variability of the response would increase when τ decreases.
However, it can serve as a guideline. For example, it is
intuitively clear that there should be no advantage on re-
ducing τ to values smaller than 0.033, since this reduces the
average sampling period while still creating variability in the
response.
The matrices from the model (1) can be obtained

from (14), (15). We start by analyzing the system in the
time domain. Figure 4(b)-(d) plots realizations of the output
response to a step, and the expected value of the output for
several values of τ . It also plots two signals obtained by
adding and subtracting the standard deviation to the expected
value. The mean is obtained by running (22) for a step
input. The standard deviation is obtained by running (26)
for a step input and taking the square root of (29). Note
that indeed there is no advantage in making τ very small
(e.g. τ = 0.01). The choice of τ is dictated by the following
trade-off: decreasing τ may lead to faster average control
update rates and thus better control performance but it also
increases the uncertainty about the system which is visible
in the two plots of Figure 4 corresponding to τ = 0.066 and
τ = 0.033.
The time-domain analysis is insightful but limited, as it

allows to reason only in terms of a single input (in this
case a step). One of the advantages of the frequency domain
analysis is that is allows to reason in terms of any input.
Figures 5(b)-(c) plot the frequency response of the mean

and the variance of the error e = y − r proposed in
Section II-C, when τ = 0.033 and when τ = 0.066 and
Figures 5(d) provides a closer look to a frequency range of
interest of Figures 5(a)-(c). As we can see, for τ = 0.033
the sensitivity plot associated with a(ejω) improves but
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0
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20

30

Delay

P
d
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Delay probability distribution

(a) Pdf

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

τ

τ r

Effective sampling period

(b) effective sampling period

Fig. 3. Delay probability density and average (effective) control update
period as a function of sampling period τ

Fig. 6. Computation of the bound for the variance.

the variance increases (see plots of b(ejω), c(ejω)) when
compared to τ = 0.066.
Using these plots and the tools provided in Section IV one

can infer how the expected value of the response is and bound
the variance for any control input with a given frequency
content. For instance, for the following input

rt =

⎧
⎨

⎩
γ
1

2
(1 − cos(

2πt

Tr
)), t ∈ {0, 1 . . . , Tr}

0, otherwise,
(34)

where γ is a normalization factor such that r has unitary
energy, i.e.,

∑∞
t=−∞ r2t = 1 and Tr = 10, the bound for the

variance obtained from (32) is given by 2× 1.82× 10−4 =
3.64 × 10−4, which corresponds to a standard deviation of
0.0190. The maximum value of the actual standard deviation
obtained via simulation is 0.0027, which indicates that the
given bound provides a fairly close estimation of the vari-
ance. The computation of this bound is illustrated in Figure 6,
considering linear scales. As mentioned in Section II-C, we
start by computing |r̂(ejω)|2 and multiplying by |b(jω)| +
|c(jω)|. The variance bound is obtained by computing the
average value across frequency and multiplying by 2.

V. CONCLUDING REMARKS

In this paper, we have shown that the frequency-domain
analysis framework provided in [20] can be extended to
capture a wide range of real-time and networked control
systems with delays and data losses. We illustrated how
these tools can be useful for sampling period selection in
the context of real-time systems subject to delays due to
task scheduling.
A future research direction is to extend the results con-

sidering models taking the form (1), but for which the
assumption given in (3) does not necessarily hold and, in
particular consider scenarios where the random vectors σk

can be correlated.
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Fig. 4. Step responses: one realization, mean and standard deviation for several values of the sampling period τ .
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