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Abstract— The van der Pol equation with a 
distributed time delay and a strong kernel is analyzed. 
Its linear stability is investigated by employing the 
generalized Nyquist stability and Routh–Hurwitz 
criteria. Moreover, local asymptotic stability 
conditions are also derived in the case of the strong 
kernel. By using the mean time delay as a bifurcation 
parameter, the model is found to undergo a sequence 
of Hopf bifurcations. The direction and the stability 
criteria of the bifurcating periodic solutions are 
obtained by the graphical Hopf bifurcation theory. 
Some numerical simulation examples for justifying 
the theoretical analysis are also given. 

Keywords— Van der Pol equation, distributed 
delay, Hopf bifurcation, periodic solutions, a 
polycyclic configuration. 

I. Introduction 
The classical van der Pol equation, which describes 

the oscillations in a vacuum tube circuit, is the 
second-order nonlinear damped system governed by 
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System (1) is considered as one of the most intens

studied systems in nonlinear dynamics (Guckenhei
and Holmes, 1983) and has served as a basic mode
self-excited oscillations in physics, electronics, biolo
neurology and other disciplines. Many efforts have b
made to find its approximate solutions (Buonomo, 19
Frey and Douglas, 1998; Guckenheimer and Holm
1983; Venkatasubramanian and Vaithianathan, 1994
to construct simple maps that qualitatively describe 

important features of its dynamics. Hence, if  and 
 in , the origin is globally asymptotically 

stable and so there is no periodic solution for system (1). 
However, if 

0>a
0>b )(xf

0<a  and , a unique stable periodic 
solution does exist. 

0>b

It would be very useful if we have some knowledge 
about the existence of periodic solutions for delay 
nonlinear differential equations. As we know, in ordinary 
differential equations, one of the simple ways in which a 
non-constant periodic solution can arise is through Hopf 
bifurcation. This occurs when two eigenvalues cross the 
imaginary axis from left to right as a real parameter in the 
equation passes through a critical value (Gopalsamy, 
1992; Hale and Verduyn, 1993; Hassard et al., 1981; 
Iooss and Joseph, 1989; Kung, 1992; MacDonald, 1989). 
In a study of classical van der Pol oscillators, it has been 
shown that oscillations occur when a stable equilibrium 
undergoes the singularity induced bifurcation in the slow 
differential-algebraic model, which, in turn, corresponds 
to the occurrence of supercritical Hopf bifurcations in the 
singularly perturbed models (Venkatasubramanian and 
Vaithianathan, 1994). Frey and Douglas (1998) proposed 
ely 
mer 
l of 
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98; 
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) or 
the 

a class of relaxation algorithms for finding the periodic 
steady-state solution of a van der Pol oscillation. 
Buonomo (1998) gave the periodic solution of the van 
der Pol equation in the form of a series converging for all 
values of the damping parameter. Recently, discrete time 
delay was introduced into system (1) and the following 
pair of delay differential equations obtained (Murakaimi, 
1999). 
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No periodic solution is expected for  and  
for the case where 

0>a 0>b
0>τ . Contrary to this, numerical 

simulations indicate that, under this condition, Eq. (2) 
could have a stable periodic solution. Murakaimi (1999) 
analyzed the existence of a periodic solution in detail by 
using the center manifold approach. However, the 
stability of the periodic solution is not investigated. 

It is well known that dynamical systems with 
distributed delay are more general than those with 
discrete delay. This is because the distributed delay 
becomes a discrete one when the delay kernel is a delta 
function at a certain time. Dynamical systems with 
distributed delay have been found in population 
dynamics and neural networks (Atay, 1998; Bélair and 
Dufour, 1996; Bélair et al., 1996; De Vries and Principe, 
1992; Gilsinn, 2002; Gopalsamy, 1992; Gopalsamy and 
Leung, 1997; Hopfield, 1984; Kung 1992; Liao et al., 
1999; Marcus and Westervelt, 1989; Rasmussen et al., 
2003; Stepan, 1986). In both biological and artificial 
neural networks, time delays arise as a result of the finite 
processing time of information. More specifically, in the 
electronic implementation of analog neural networks, 
time delays occur in the communication between and the 
response of neurons owing to the finite switching time of 
amplifiers. Usually, fixed time delays in models of 
delayed feedback systems can sufficiently approximate 
simple circuits having only a small number of cells. 
However, due to the spatial nature of the dynamical 
system resulting from the parallel pathways of a variety 
of system states, it is desirable to model them using 
distributed delays. 

Liao et al. (2001) introduced the distributed delay with 
weak kernel into the van der Pol equation for studying 
the existence of Hopf bifurcation and the stability of the 
bifurcating periodic solutions. Their study found that 
both of them depend on the parameters  and the 

delay. In this paper, distributed delay with strong kernel 
will be introduced into the van der Pol equation. The 
existence of Hopf bifurcation, as well as the stability and 
the direction of the bifurcating periodic solutions, are 
obtained by applying the graphical Hopf bifurcation 
theory (Moiola and Chen, 1996). It is worth noting that 
information other than on the stability, can be deduced by 
other methods such as the center manifold theorem, the 

Fredholm alternative, implicit function theorem, the 
method of averaging, or the Poincaré-Lindstedt 
algorithm (Marsden and McCracken, 1976). However, 
the approach based on the graphical Hopf bifurcation 
theory has some advantages over the classical 
time-domain methods. A typical one is its pictorial 
characteristic that utilizes advanced computer graphical 
capabilities thereby bypassing quite a lot of profound and 
difficult mathematical analysis. A polycyclic 
configuration in the phase graph will be found by the 
graphical Hopf bifurcation theory (Moiola and Chen, 
1996). This is especially prominent for the case of the 
following Eq. (3) with a strong kernel, since it is very 
difficult to determine the stability of the bifurcating 
periodic solutions by applying the time-domain approach 
in this case. Throughout this paper we substantially 
follow the method and the results (Moiola and Chen, 
1996) and only give brief comments on the theory. The 
interested reader may refer to that book for a complete 
analysis. 

ba,

The organization of this paper is as follows. In Section 
2, the van der Pol equation with distributed delay is 
introduced. Its local stability is also discussed in detail. 
Some sufficient conditions for the existence of Hopf 
bifurcation are derived. The direction of Hopf bifurcation 
and the stability of the bifurcating periodic solutions are 
analyzed by using the graphical Hopf bifurcation theory 
(Moiola and Chen, 1996) in Section 3. In Section 4, 
numerical simulations aimed at justifying the theoretical 
analysis are reported. In Section 5, conclusions are drawn 
and further research directions are also given. 

II. Local Stability and Hopf Bifurcation 
In this section, we consider the following van der Pol 

equation with distributed delay 
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where . 3)( bxaxxf +=
The weight function  is a non-negative bounded 

function defined on 
)(sk
),0[ ∞+  that reflects the influence 

of the past states on the current dynamics. It is assumed 
that in this model the presence of the distributed delay 
does not affect the equilibrium values. Therefore, we 
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normalize the kernel as follows: 

(

(8)

1)(
0

=∫
+∞ dssk . 

Usually, we employ the following form 

!)( 1 pessk spp µµ −+=  

for the kernel. The kernel is called the ‘weak’ when p = 0, 
and ‘strong’ when p = 1, respectively. In this paper, a 
strong kernel is considered only, i.e., 

0,)( 2 >= − µµ µ sessk , 

where µ  reflect the mean delay of the strong kernel. For 

convenience, we set 
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Then Eq. (3) is equivalent to the following model: 
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Suppose that 

0)0(),(4 =∈ fRCf , and  for 0)( >uuf 0≠u . 

We will first consider a general function  that 
satisfies Eq. (8). Then, we can easily apply the 
conclusion to the case . It is clear that 
the origin  is a stationary point of Eq. (3) or Eq. (7). 
As a result, Eq. (7) can be written as 

f
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Using Eq. (10) and taking the derivative with 
respective to t  on both sides of Eq. (9), we obtain: 

⎪⎩

⎪
⎨
⎧

−−=

−+−=

∫
∫

∞−
−

∞−
−

t rt

t rt

drrxeetxtx

drrxfrxeetxtx

)()()(

)]}([)({)()(

1
2

22

12
2

11
µµ

µµ

µµ

µµ

&&&

&&&
. 

Then, we take the derivative again with respective to  
on both sides of Eq. (11). 

t
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Letting )()(),()(),()( 152413 txtxtxtxtxtx &&&& === , and 
)()( 26 txtx &&= , we get a six-dimensional ODE system: 
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We rewrite the nonlinear Eq. (13) in a matrix form: 
(14))()( xHxAx += µ& , 

where ( )Txxxxxxx 654321= , 
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( )TxfxH 0)(0000)( 1
2µ−= . (15)

Now, we use the mean delay µ  as the bifurcation 

parameter. Then by introducing a "state-feedback 
control" );( µygu = , we obtain a linear system with a 

nonlinear feedback as follows: 
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( )000001−=C , u )();( yfyg == µ . 
(10) Next, taking a Laplace transform on Eq. (16), 

obtain the standard transfer matrix of the linear par
the system: 
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Now, if we linearize the feedback system about
equilibrium 0=y , the Jacobian is given by 

aygJ y =∂∂=
=0)(µ . 

where )0(fa ′= . So we have: 

269 
17)
we 
t of 

(17)(18)
 

(

the 
19)



Latin American Applied Research  34:267-274 (2004) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>−±

=
<<−±−

=±

2,4)4(
2,5.0

20,4)448(

2

22

aifaa
aif

aifaaa
µ442

22

)(
)()();(
µµ

µµµµ
++

+
=

ss
ssaJsG . (20)

(30)

Set 

442

22

)(
)(|)();(|det);,(
µµ

µµλµµλµλ
++

+
−=−=

ss
ssaJsGIsh . 

Next, an application of the generalized Nyquist stability 
criterion, with ωis = , provides the following results: 

Lemma 1 (Moiola and Chen, 1996). If an eigenvalue 
of the corresponding Jacobian of the nonlinear system, in 
the time domain, assumes a purely imaginary value 0ωi  
at a particular 0µµ = , then the corresponding 
eigenvalue of the constant matrix )]();([ 000 µµω JiG  in 
the frequency domain must assume the value 01 i+−  at 

0µµ = . 
Let  be the eigenvalue of );(ˆ µωλ i )]();([ µµω JiG  
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By separating this equation into real and imaginary 
parts, we obtain 
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The roots of  are 0124 2 =+− µµ a

4)4( 2 −±=± aaµ , 

and the roots of  are 0)648(16 322 =+−+ aaa µµ

aaa 4)448( 22 −±−=±µ . 

So, we note 

. 

Now, we examine the linearized equation of Eq. (13) at 
the origin. The characteristic equation of the linearized 
system is 
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A set of necessary and sufficient conditions for all
roots of Eq. (32) to have a negative real part is given
the well-known Routh-Hurwitz criteria in the follow
form: 

(29)
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04)(1 >= µµϕ , , 020)( 23
2 >−= µµµϕ a

0)16)(4()( 4
3 >+−= µµµµϕ aa , 

0)42()8012(64)( 738210
4 >+−−−= µµµµϕ aaa , 

0])648(16)[124()( 103222
5 >+−++−= µµµµµµϕ aaaa , 

0)()( 5
4
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Noticing 4/a≤−µ  if , we have 0>a 0)(3 <µϕ

−<< µµ0 . From Eq. (34) it is found that all the root

Eq. (32) have a negative real part if and only if: 
0>a  and +> µµ . 

By the above analysis, we immediately have 
following result. 

Theorem 1.  Local Stability and Existence of H
bifurcation 

If  and 0>a +> µµ , then Eq. (3) is locally asy
totically stable at (0, 0). If 0≤a  or +<< µµ0 , then
(3) is unstable at (0, 0). +µ  is defined as Eq. (30). 

1. If , then 2>a 4)4( 2
0 −+== + aaµµ  is the H

bifurcation of Eq. (3). 
2. If , then 2=a 210 == +µµ  is a codimension 

bifurcation of Eq. (3). 
3. If , then 20 << a ()448( 22

0 aa −+−== +µµ
is the Hopf bifurcation of Eq. (3). 

4. If , then the Hopf bifurcation of Eq. (3) doe
exist. 

0≤a

Remark: When µ  pass though −µ , the number of
positive real eigenvalues will be changed from 4 to
Then the stability of  will not be changed. )0,0(

III. Stability of bifurcating periodic solutions 
In order to study stability of bifurcating perio

solutions, we first define an auxiliary vector 
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Notice that )~;~(ˆ~
µωλλ i=  is a real number. By 

separating Eq. (43) into real and imaginary parts: 
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So, we obtain the following equation: 
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Now, the following Hopf Bifurcation Theorem 
formulated in the frequency domain can be established: 

Lemma 2.  Suppose that the locus of the distinguished 
characteristic function  intersects the negative real 
axis at 
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),( 00 µω , i.e.,  
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where )};,1({);(1 µωµω ihF −ℜ= , )};,1({);(2 µωµω ihF −ℑ= . 
(ii) The intersection is transversal, i.e. 
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(iii) There are no other intersections between any of the 
characteristic loci and the line segment joining the 
point  to )01( i+− P̂ , at least within a small 
neighborhood of radios 0>δ . 

Then, the system given by Eq. (9) has a periodic 
solution  of frequency . Moreover, 
by applying a small perturbation around the intersection 

)(ty )ˆ(ˆ 4θωω O+=

P̂  and using the generalized Nyquist stability criterion, 
the stability of the periodic solution  can be 
determined. 

)(ty

According to Lemma 2, we can determine the 
direction of Hopf bifurcation and the stability of the 
bifurcating periodic solution by drawing the figure of the 
half-line  and the locus . 1L )(ˆ ωλ i

1. If the half-line  first intersects the locus of  
when , then the bifurcating periodic 
solution exists and the Hopf bifurcation is 
supercritical (subcritical).  

1L )(ˆ ωλ i
)(~

00 µµµ <>

2. If the total number of anticlockwise encirclements of 
the point )~(ˆ

11 ωεξ+= PP , for a small enough 0>ε , 
is equal to the number of poles of )(sλ  that have 
positive real parts, then the limit cycle is stable, 
otherwise it is unstable. 

We perturb the bifurcation parameter µ  slightly from 

0µ  to . If  and µ~ 1
~

−>λ 0)~,ˆ(}|ˆ{ ˆ >ℑ = µωωλ ωω Ndd , or 
 and 1

~
−<λ 0)~,ˆ(}|ˆ{ ˆ <ℑ = µωωλ ωω Ndd , then the 

half-line  intersects the locus of .  1L )(ˆ ωλ i
By using µ  instead of  in Eq. (47), and taking the 

derivative with respect to 
µ~

µ  on both sides of Eq. (47), 
and setting 1

~
,0 −=== + λµµµ , and considering 

Theorem 1, we have: 
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So, 0|ˆ <
+=µµµλ dd  if 20 <<a  and 0|ˆ >

+=µµµλ dd  if 

. We consider Eq. (43) 2>a
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Now fixing µ  at , and taking the derivative with 

respect to 
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ω  on both sides of Eq. (43), so we have: 
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Setting 1ˆ,ˆ,~
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Theorem 2.  Set 
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1. If 0>σ , then the Hopf bifurcation 0µµ =  of Eq.
is supercritical. 

2. If 0<σ , then the Hopf bifurcation 0µµ =  of Eq.
is subcritical. 
Now, we set , then 3)( buauuf += f =′ )0(

. So in Eqs. (40), (41) and (44),
have: 
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According to Eqs. (44) and (45), |ˆ >+=µµµλ dd
, and 2>a 0|ˆ <+=µµµλ dd  if .  Therefore
 and , or  and , 

20 << a
2>a 0<b 20 << a 0>b 0)sgn( <σ

+= µµ ; if  and , or  and 2>a 0>b 20 << a <b
0)sgn( >σ  at += µµ . Then 

Corollary 1.  Let ,  and 3)( buauuf += 0>a ≠a
1. If  and , or 2>a 0<b 20 << a  and , the H

bifurcation at 
0>b

+= µµ  of Eq. (3) is subcritical; 

2. If  and , or 2>a 0>b 20 << a  and , the Hopf 
bifurcation at

0<b
 

+= µµ  of Eq.(3) is supercritical. 
Then, one draws the half-line  starting from )~(1 ωξ

)01( i+−  and the locus , and obtains the total 
number  of anticlockwise encirclements of the point 

)(ˆ ωλ i
k

)~(ˆ
11 ωεξ+= PP  for a small enough 0>ε .  

According to Eq. (21), one has 
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54)

Hence, the roots of  are the poles 
of 

0)( 442 =++ µµss
)(sλ . According to the Routh -Hurwitz criteria, the 

number of poles of )(sλ  that have positive real parts is 
two. 

Corollary 2. Let  be the total numberk  of 
anticlockwise encirclements of the point 

)~(ˆ
11 ωεξ+= PP  for a small enough 0>ε , where P̂  is 

the intersection of the half-line  and the locus . 
Then: 

1L )(ˆ ωλ i

1. if 2=k , the bifurcating periodic solutions of Eq. (3) is 
stable; 
) . 

i.e., 
ing 

0  if 
, if 
 at 
0 , 

2 . 
opf 

55)
2. if 2≠k , the bifurcating periodic solutions of Eq. (3

unstable.  

IV. Numerical Examples 

In this section, some numerical examples of Eq. 
with Eq. (5) at different values of a  and , 
discussed. By Corollary 1,  determines the directio
a Hopf bifurcation. If  and , or 

b
b

2>a 0<b 20 << a  
, the Hopf bifurcation 0>b +µ  is subcritical; if 

and , or 
a

0>b 20 << a  and , the Hopf bifurca0<b

+µ  is supercritical. The half-line L  and the lo
 are shown in the corresponding frequency gra

If they intersect, a limit cycle exists, or else, no l
cycle exists. By Corollary 2, the stability of 
bifurcating periodic solutions is determined by the t
number  of anticlockwise encirclements of the p

1

)(ˆ ωλ i

k
)~(ˆ

11 ωεξ+= PP  for a small enough 0>ε . Suppose 
the half-line  and the locus  intersect. If 1L )(ˆ ωλ i =k
the bifurcating periodic solutions is stable; if 2≠k ,
bifurcating periodic solutions is unstable. 

In order to verify the theoretical analysis res
derived above, the half-line  and the locus 
shown in the corresponding frequency graphs, and Eq

1L )(ˆ ωλ i
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is simulated with Eq. (5) in different cases. We can 
observe that a smaller stable and a greater unstable 
periodic solution, i.e., a polycyclic configuration exists in 
the following cases, similar to the one obtained by 
Genesio and Bagni, 2003. However, the strictly 
theoretical analysis must use the high-order harmonic 
balance approximations (Moiola and Chen, 1996). In this 
paper, the analysis about this problem will not be 
presented. The interested reader may refer to (Moiola and 
Chen, 1996). 
(i) Let . Then, 3,1 == ba 4821.3=+µ  is a Hopf 
bifurcation point. As 21<=a  and , then 03 >=b

4821.3=+µ  is a subcritical Hopf bifurcation point. 
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Fig 1.1 4.3,3,1 === µba . The half-line  intersects the 
locus  twice, and  at the first intersection, 

1L
)(ˆ ωλ i 2=k 0=k  

at the second, so a smaller stable and a greater unstable periodic 
solution, i.e. a polycyclic configuration exist. 
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Fig 1.2 6.3,3,1 === µba . The half-line  intersects the 

locus  once, and , so an unstable periodic 

solution exists.  
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Fig 2.1 2.1,2,3 =−== µba . The half-line  intersects 
the locus  twice, and  at the first intersection, 

1L
)(ˆ ωλ i 2=k

0=k  at the second, so a smaller stable and a greater unstable 
periodic solution, i.e. a polycyclic configuration exist.  
 
(ii) Let 2,3 −== ba . Then, 3090.1=+µ  is a Hopf 
bifurcation point. As 23 >=a  and , then02 <−=b  

3090.1=+µ  is a subcritical Hopf bifurcation point. 
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Fig 2.2 4.1,2,3 =−== µba . The half-line  intersect the 
locus  once, and 

1L
)(ˆ ωλ i 0=k , so an unstable periodic 

solution exists. 

V. Conclusions 
The van der Pol equation with delays provides rich 

dynamical behavior. From the viewpoint of nonlinear 
dynamical systems, their analyses are useful in solving 
problems of both theoretical and practical importance. 

By using the average time delay as a bifurcation 
parameter, we have shown that a Hopf bifurcation occurs 
when this parameter passes through a critical value, i.e., a 
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family of periodic orbits bifurcates from the origin. The 
stability and direction of the bifurcating periodic orbits 
have also been analyzed by drawing the amplitude locus 

L1 and the locus, , in a neighborhood of the Hopf 

bifurcation point. Parameter σ or b was used to determine 
the direction of the Hopf bifurcation: if σ > 0, the Hopf 
bifurcation is supercritical; if

)(ˆ ωλ i

  σ < 0, the Hopf bifurcation 
is subcritical; but if σ = 0 (i.e. parameter a = 2, µ = 0.5) 
one cannot determine the direction of the bifurcating 

periodic orbits by only using  L1  and , in fact, µ = 

0.5 for a = 2 is a codimension two bifurcation. The 
analysis of codimension two bifurcation will be 
presented in another paper. 

)(ˆ ωλ i
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