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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Increasing performance requirements on high performance (motion) systems require

novel techniques to deal with performance degrading effects. In contrast to the large

amount of results and methods that deal with with linear effects, this thesis focuses on

the detection, analysis and optimal compensation of performance degrading nonlinear

effects. Although systems may be specifically designed to minimize nonlinear effects

(e.g. waferscanners), nonlinearities such as magnetic fields may be inherently present

in the design. In particular, some applications require the presence of nonlinear effects

such as friction in the motion stage of an electron microscope.

Whether performance is measured by speed, accuracy, reproducibility, smooth-

ness, or other performance measures, the effects of nonlinearities become increasingly

important in high precision applications. To accurately detect, analyze and compensate

performance degrading effects in controlled nonlinear dynamical systems, practically

applicable tools are required. The research presented in this thesis contributes to this

field by introducing new frequency domain based analysis, modeling and performance

optimization techniques for nonlinear systems. By extending frequency domain tech-

niques used for the analysis and control of linear systems, a new, well defined notion of

performance for a class of nonlinear systems is presented. This yields novel methods

to analyze, visualize and optimally compensate performance degrading nonlinear ef-

fects in dynamical systems. The results are accompanied by an industrial case study

of optimal friction compensation in a transmission electron microscope moving at 20

billionths of a meter per second (a speed at which it would take you over 1.5 years to

slide over to the seat next to you).

In the following, the motivation for the application of frequency domain me-

thods to nonlinear systems is discussed first. Specifically, the concepts which make

frequency domain methods so successful for linear systems are used to illustrate the

issues arising when such methods are extended to nonlinear systems. Based on this
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motivation the research objectives and corresponding main contributions of the the-

sis are presented. Finally, the organizational scope of the project is discussed and an

overview of the content of the thesis is presented.

A Frequency Domain Perspective on Nonlinear Systems

Frequency domain methods are widely accepted and have been an impetus for the

development of modeling and control design techniques for Linear and Time Invariant

(LTI) systems (Bode, 1945). Although the linearity assumption can rarely be satisfied

in practice, linear models and analysis often suffice when systems are operated around

a given working point. However, in cases where nonlinearities play a prominent role,

it is required to assess the validity of a linear model and tools and methodologies are

required to detect and compensate performance degrading nonlinear effects. Given

the widespread acceptance and success of frequency domain methods for LTI systems,

several approaches exist that extend frequency domain methods towards nonlinear

systems. Chapter 2 provides an overview and comparison of such methods, which

are therefore not further discussed here. Instead, the discussion is limited to what

makes frequency domain methods so successful for LTI systems and why their extension

towards nonlinear systems is nontrivial.

Why Frequency Domain Analysis Works for Linear Systems

The success and popularity of frequency domain methods for LTI systems is largely due

to the combination of Fourier analysis and the fact that a sine wave in an eigenfunction

of LTI systems, which satisfy the properties of superposition and homogeneity. To

further understand this, consider a deterministic system described by a time invariant

operator N which maps an input1 u(t) ∈ R to an output y(t) ∈ R. Such a system

is linear if the properties of superposition and homogeneity are satisfied (Zhou et al.,

1996). Hence, N is linear if for any admissible inputs u1, u2 and corresponding steady

state outputs y1, y2 the following holds:

αy1 + βy2 = N {αu1 + βu2} ∀ α, β ∈ C (1.1)

Now, note that using Fourier analysis (Philips et al., 2008) almost any input signal can

be described (in mean square sense) as a sum of sinusoidal signals, i.e.

u(t) =

∞∑

k=0

ck cos(2πkξkt) ck ∈ C, ξk ∈ R (1.2)

This allows to combine (1.1) and (1.2), which illustrates the process of frequency do-

main analysis of LTI systems, i.e.

y = N {u} Fourier−−−−→ N

{ ∞∑

k=0

ck cos(2πkξkt)

}

superposition−−−−−−−→
homogeneity

∞∑

k=0

ck N {cos(2πkξkt)}
︸ ︷︷ ︸

frequency domain model

1The scalar case is considered here for simplicity.
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In a nutshell this summarizes why frequency domain methods are so successful when

applied to LTI systems, i.e.

1. Using Fourier analysis, almost any input can be represented by a sum of sinusoidal

signals, i.e. a spectral or frequency domain representation of the signal.

2. A frequency domain model can then be used to describe the response to each

individual spectral component of the input signal.

3. Using the principles of superposition and homogeneity, the response to an arbi-

trary input can be computed from the response to the individual spectral com-

ponents, which follow from the frequency domain model in step 2.

Hence, the key properties of LTI systems: superposition, homogeneity and the fact that

a sine wave is an eigenfunction of LTI systems, allow for frequency domain modeling

of the dynamics of such systems. When these properties are not satisfied, frequency

domain analysis becomes more involved, which is discussed in the next section.

What is Lost and What is Gained for Nonlinear Systems

When considering nonlinear systems, the properties of superposition and homogeneity

are not satisfied and a sine wave is generally not an eigenfunction of the system. Hence,

the response of a nonlinear system to an arbitrary input cannot straightforwardly be

computed from the response to sinusoidal components in the input signal. This dimin-

ishes the prospect of finding a ’conventional’ frequency domain model that captures

the complete nonlinear dynamics. In literature, several approaches are presented which

succeed in deriving frequency domain models for a specific class of nonlinear systems.

However, such models differ significantly from the intuitive models that exist for LTI

systems and generally capture only a subset of the systems dynamics. A detailed dis-

cussion on results available in this area is presented in Chapter 2. In general, the

application of frequency domain methods to nonlinear systems is nontrivial and has a

number of disadvantages. The main drawbacks observed in this work are summarized

below.

• restricted signal type: Excitation signals are generally harmonic (Definition

1.4), which limits online application during regular operation of the system (see

Chapter 4).

• incomplete model: The complete nonlinear dynamics are generally not cap-

tured in the frequency domain. Capturing the relevant effects can be difficult

(see Chapters 2 and 5).

• expert user level: Application of frequency domain methods to nonlinear

systems requires a high level of understanding of the user (see Chapters 2 and 4).

So, what can be gained by applying frequency domain methods to nonlinear systems?

Can useful properties of nonlinear systems still be captured in the frequency domain

and when / how can they be obtained? These questions are addressed in the remainder

of this thesis. The research presented in the following indicates that the increased



4 Chapter 1. Introduction and preliminaries

richness of the response of a class of nonlinear systems can be utilized to optimize

the performance of such systems using frequency domain methods. Specifically, the

following advantages are noted in relation to the research presented in this thesis:

• nonlinearity detection: Frequency domain analysis provides means to quickly

detect nonlinear effects from output measurements (see Chapter 4).

• performance definition and optimization: Frequency domain analysis

allows to define and optimize the performance of nonlinear systems and to assess

the best performance obtainable using a given controller structure (see Chapters

4 and 5).

• separation of (non-)linear effects: Linear and nonlinear effects are sepa-

rable in the frequency domain (see Chapter 5).

• qualification of nonlinearity: The nature of the nonlinearity can be qua-

lified in the frequency domain, yielding valuable information for the selection of

nonlinear compensators (see Chapter 4).

• quantification of nonlinearity: Nonlinear effects are quantifiable in the

frequency domain, allowing assessment of the validity of a linear approximation

(see Chapter 2).

Research Objectives and Contributions

The research presented in this thesis aims to contribute to the unification of frequency

domain techniques and nonlinear dynamical systems. Specifically, the following re-

search objectives are addressed in the following:

O1 : Investigate the application of frequency domain techniques to the modeling

and analysis of nonlinear systems.

O2 : Develop theoretical concepts and practically applicable methods for perfor-

mance optimization of nonlinear systems, based on frequency domain analysis.

The first objective is addressed by a comparative literature study and frequency do-

main analysis of systems with static polynomial nonlinearities. This yields a novel

overview and comparison of existing frequency domain methods for nonlinear systems.

Specifically, the signal / system classes for which each model is defined is discussed and

an overview of the type of nonlinear effects captured in each model is provided. More-

over, new analytical results are derived that allow spectral analysis of block structured

nonlinear systems with polynomial nonlinearities.

The second objective is based on the premise that the observed nonlinear ef-

fects negatively influence the performance of the system. By developing frequency

domain based methods that allow quantification of nonlinear effects, a new frequency

domain based performance measure is defined. This yields a methodology to design

optimized static compensators that minimize performance degrading nonlinear effects.

This method is then utilized to optimize the performance of an industrial transmis-

sion electron microscope. Summarizing, the results presented in the sequel yield the

following main contributions:
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C1 Overview and comparison of different frequency domain based methods for the

modeling and analysis of nonlinear systems (Chapters 2, 3 and (Rijlaarsdam et al.,

2012b)),

C2 Analytical results that allow analysis and numerically efficient computation

of the effects of polynomial nonlinearities in the frequency domain (Chapter 3

and (Rijlaarsdam et al., 2011)),

C3 Theoretical results and practically applicable methodologies that allow opti-

mization of the performance of nonlinear systems by means of novel frequency

domain based detection and compensation techniques (Chapter 4, 5 and

(Rijlaarsdam et al., 2012a)).

Scope of the Project

The research presented in this thesis is part of the Condor project, a joint project be-

tween academia and industry. The carrying industrial partner of the project and owner

of the industrial problem is FEI Company, which develops and produces high end elec-

tron microscope systems. The second industrial partner is Technolution, a company

specializing in embedded systems and technical automation. In addition, four aca-

demic partners are involved in the project: Catholic University of Leuven, University

of Antwerp, Delft University of Technology and Eindhoven University of Technology.

Finally, the project is coordinated by the Embedded Systems Institute which carries

responsibility for the overall project management and knowledge dissemination.

The overall goal of the Condor project is to improve performance and increase

evolvability of the electron microscope system. The project aims to improve the ac-

curacy, productivity and image quality of the system as well as the adaptability with

respect to different use cases. Within that scope, the work presented in this thesis

focuses on the analysis and optimal control of the mechanics of the motion stage in

the electron microscope. These results contribute to the project by supplying a new,

improved methodology to assess and optimize the performance of the system by mi-

nimizing performance degrading nonlinear effects such as friction (Rijlaarsdam et al.,

2012a). Moreover, the project yielded scientific contributions in several other fields

such as: image sharpness analysis (Rudnaya et al., 2010, 2011), characterization of

atomic scale using STEM (van den Broek et al., 2010, 2011) and system and software

architecture (Langsweirdt et al., 2010; Muhammad et al., 2010). Finally, results on

image based defocus control and control of electromagnetic lenses are presented in

Tejada and den Dekker (2011); Tejada et al. (2011); van Bree et al. (2010a,b).

The work presented in the sequel is also part of a dual PhD program, a co-

operation between the Eindhoven University of Technology and the Vrije Universiteit

Brussel. The dual PhD program intends to increase international cooperation and offers

the opportunity to gain research and cultural experience by spending time at a foreign

institute. At the point of publication of this thesis, this collaboration resulted in three

joint journal articles, with a fourth currently under review and four joint contributions

to international conferences (for a full list of publication see page 113).
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Figure 1.1: Overview of the thesis, main research objectives and contributions (dashed lines indicate

the suggested order of reading).

Outline of the Thesis

The work presented in this thesis splits into two main parts: the analysis / modeling of

nonlinear systems in the frequency domain and the optimization of the performance of

such systems. Figure 1.1 presentes an overview of the thesis with respect to the different

research objectives and contributions along with the suggested order of reading.

Chapters 2 and 3 deal with the analysis and modeling of nonlinear systems in

the frequency domain. First, an overview and comparison of the different frequency

domain models for nonlinear systems as well as a discussion on relevant literature is

provided in Chapter 2. Next, in Chapter 3 novel analytical results for the analysis and

computation of the effects of polynomial nonlinearities are presented. These results are

utilized to connect different frequency domain models for nonlinear systems and the

reader is therefore suggested to read Chapter 2 prior to Chapter 3.

The results provided in chapters 2 and 3 are a stepping stone towards the re-

sults presented in Chapters 4 and 5 as they provide an overview of existing results and

the relevant theoretical concepts and yield an increased understanding of the applica-

tion of frequency domain methods to nonlinear systems. This leads to a further analysis

of the performance of nonlinear systems using frequency domain based methods in the

second part of the thesis.

Chapters 4 and 5 present a new, frequency domain based methodology to assess

and optimize the performance of nonlinear systems and may be read independently. In

Chapter 4 a theoretical analysis of the assessment and optimization of the performance
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of nonlinear systems in the frequency domain is discussed. Next, in Chapter 5, these

results are applied to optimize the performance of the high precision motion stage in a

transmission electron microscope by minimizing the performance degrading effects of

friction. Finally, conclusions and recommendations are provided in Chapter 6.

1.2 Nomenclature and Preliminaries

The following concludes this chapter by introducing the nomenclature used in this

thesis. First, the notation used in the sequel is introduced. Next, the class of nonlinear

systems considered in the thesis is defined. Finally, the analysis presented in the

following makes frequent use of various signal classes which are introduced in this

section as well.

Notation

In the sequel, signals are real-valued, scalar and denoted by non-capitalized roman

letters, e.g. u(t). Frequency domain representations of time domain signals, such

as the Fourier transform and other spectra are denoted by corresponding capitalized

calligraphic font, e.g. U (ξ) ∈ C. Furthermore, transfer functions are denoted by

Fractur font, e.g. H(ξ) ∈ C (unless specified otherwise) and matrices are denoted

by capitalized Greek characters. Frequent use is made of vectors containing specific

spectral components U [ℓ] = U
(
(ℓ − 1)ξ0

)
, denoted in capitalized roman letters, such

that U [ℓ] ∈ C contains the spectral component at the k = (ℓ − 1)th harmonic kξ0
of some frequency ξ0. Moreover, signal classes are denoted by single blackboard bold

capital letter, e.g. S and system classes by multiple, overlined blackboard bold capital

letter, e.g. VS . The sets of real, natural and complex numbers are denoted as usual

by R,N and C respectively and finally, differentiation with respect to time is denoted

by ˙ , i.e. ẋ(t) = d
dt
x(t).

System Class

Let Bp denote the space of piecewise continuous, bounded functions2 R≥t0 7→ R, t0 ∈
R. In the following all systems3 considered are continuous time, causal, time invariant

and are assumed to have a realization of the form:

ẋ(t) = f(x(t), w(t)) x(t0) = x0

y(t) = g(x(t), w(t))
(1.3)

where x(t) ∈ Rn are the states, y(t) ∈ Rm the outputs, w ∈ Bp the input of the system

and f : Rn × R 7→ Rn and g : Rn × R 7→ Rm. A solution of (1.3), corresponding

to an input w(t), is denoted by xw(t). The corresponding limit solution (if it exists)

2Where R≥t0 = {t ∈ R|t ≥ t0}.
3In the sequel only single input, multi output systems are considered.
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is denoted by x̄w(t), such that lim
t→∞

‖x̄w(t) − xw(t)‖ = 0 ∀ x0 ∈ Rn. Furthermore,

the output corresponding to the limit solution is denoted by ȳw(t) = g(x̄w(t), w(t)).

Finally, a system (1.3) is called Linear and Time Invariant (LTI) if it satisfies the

principles of superposition and homogeneity (Zhou et al., 1996).

Signal Classes

The analysis presented in the sequel makes use of several signal classes and transforms.

Hence, consider a real valued signal z(t) ∈ R and define the corresponding Fourier

transform as follows:

Definition 1.1 (Z̥(ξ): Fourier transform).

Consider a signal z(t). Then its Fourier transform Z̥(ξ) is given by:

Z̥(ξ) =

∫ ∞

−∞
z(t)e−2πiξtdt (1.4)

with ξ ∈ R the frequency in [Hz], i =
√
−1 and the corresponding scaling of the

transform equal to one. The corresponding inverse Fourier transform is then given by:

z(t) =

∫ ∞

−∞
Z̥(ξ)e

2πiξtdξ (1.5)

Moreover, for real valued signals, all information available in the Fourier transform is

fully captured in the single sided spectrum, i.e.

Definition 1.2 (Z (ξ): single sided spectrum).

Consider a signal z(t) ∈ R and its Fourier transform Z̥(ξ). Then, the single sided

spectrum Z (ξ), equals:

Z (ξ) =







2Z̥(ξ) ξ > 0

Z̥(ξ) ξ = 0

0 ξ < 0

In the following, several signal classes are used extensively. The classes of

Gaussian, multisine and sinusoidal signals are of particular importance and are there-

fore defined below. First consider the sequence z(tk), which equals a Gaussian signal

if it is defined as follows:

Definition 1.3 (G : Gaussian signal).

Let G denote the set of Gaussian signals. A discrete time signal z(tk) is Gaussian if

it is a discrete random sequence drawn from a zero mean, normally distributed process

with a user defined power density spectrum Sz(ξ) = R̥(ξ). Here R̥(ξ) denotes the

Fourier transform of the autocorrelation function of z(t).

Next, consider a real valued signal z(t) which is composed of a finite number of si-

nusoidal components. In general such signal is referred to as a multisine and in the

special case where the sinusoidal components are harmonically related, the resulting

signal is called harmonic, i.e.



1.2. Nomenclature and preliminaries 9

Definition 1.4 (M : multisine).

Let M denote the set of multisine signals. A signal z(t) is a multisine if z(t) =
K∑

k=1

γk cos (2πξk t+ ϕk) , t ∈ R, for some ξk, γk ∈ R>0, and ϕk ∈ R. Furthermore,

a signal z(t) is called harmonic if it is a multisine and ξk = kξ0, k ∈ N for some

ξ0 ∈ R>0.

Finally, a special type of multisine signal is the single sine or sinusoidal signal, which

is defined as follows:

Definition 1.5 (S : sinusoidal signal).

Let S⊂M denote the set of sinusoidal signals. A signal z(t) is sinusoidal if z(t) =

γ cos (2πξ0 t + ϕ0) , t ∈ R, for some γ, ξ0 ∈ R>0, ϕ0 ∈ R. Finally, Sξ0 ⊂ S denotes the

subset of sinusoidal signals with frequency ξ0.





Chapter 2

Frequency Domain Methods

for Nonlinear Systems

For linear and time invariant (LTI) systems, frequency domain techniques resulted

in a widespread acceptance in the engineering community for analysis, modeling and

controller design (Bode, 1945). Correspondingly, the Frequency Response Function

(FRF) and representations such as the Bode, Nyquist and Nichols plot have become

standard engineering tools. However, the linearity assumption can only be satisfied to

a certain extent for physical systems and increasing performance requirements force

systems into regimes where nonlinear effects can no longer be neglected. Hence, the

widespread acceptance of frequency domain techniques for LTI systems has been an

impetus for the extension of these methodologies towards nonlinear systems.

A fundamental property of LTI systems is that the response to a sinusoidal

input with a particular frequency is again sinusoidal with the same frequency as the

input signal. The phase shift and gain relating the input and output are characterized

by the FRF at that particular frequency and as superposition holds for LTI systems, the

response to more general input signals is fully captured by the FRF as well. However,

for nonlinear systems the superposition principle does not hold and the response to

even a simple sinusoid can be a complex, multi harmonic signal. Hence, classical

frequency domain approaches for LTI systems cannot be straightforwardly applied

when nonlinearities are present and additional analysis is required to investigate if,

when and how similar methodologies can be used when analyzing nonlinear systems.

In the frequency domain, nonlinear effects manifest themselves in different

ways. The gain of a nonlinear system may, for example, depend on the amplitude of

the input and the output may contain harmonics of the input frequency. Moreover,

when a nonlinear system is subject to a multisine input, input frequencies may com-

bine producing new frequencies which are not present in the input signal and spectral

components at a given frequency in the output may depend on other frequencies in the

input. These effects are summarized in Table 2.1 and they are used in the following to
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effect description

gain compression / expansion variation in gain for changing input amplitude

desensitization dependence of the response at one frequency

on the input at another frequency

intermodulation frequencies combine to produce new frequencies

harmonics generation of components at multiples of the

fundamental input frequency

Table 2.1: Effects of nonlinearities in the frequency domain.

discuss different frequency domain models for nonlinear systems. To further illustrate

the effects listed in Table 2.1, consider the following example.

Example 2.1 (effects of nonlinearities in the frequency domain).

To illustrate the effects of nonlinearities in the frequency domain summarized in Table

2.1, consider the following harmonic signal with nonzero spectral contributions at 1 [Hz]

and 5 [Hz].

u(t) = a cos(1 · 2πt) + b cos(5 · 2πt)
Now consider a static nonlinear mapping y(t) = 4u3(t), which yields:

y(t) =
(
3a3 + 6ab2

)
cos(1 · 2πt)

︸ ︷︷ ︸

gain comp. / exp. & desensitization

+
(
a3 + 3a2b

)
cos(3 · 2πt)

︸ ︷︷ ︸

harmonics & intermodulation

+
(
6a2b+ 3b3

)
cos(5 · 2πt)

︸ ︷︷ ︸

gain comp. / exp. & desensitization

+ 3a2b cos(7 · 2πt)
︸ ︷︷ ︸

intermodulation

+3ab2 cos(9 · 2πt)
︸ ︷︷ ︸

intermodulation

+3ab2 cos(11 · 2πt)
︸ ︷︷ ︸

intermodulation

+ b3 cos(15 · 2πt)
︸ ︷︷ ︸

harmonics

(2.1)

The expression in (2.1) clearly shows the different effects indicated in Table 2.1. First

of all, multiples of the input frequencies 1 [Hz] and 5 [Hz] appear at 3 [Hz] and 15 [Hz]

(harmonics). Moreover, the 1 [Hz] and 5 [Hz] components in (2.1) depend nonlinearly

on the input amplitude (gain compression / expansion) and depend on the input at

other frequencies as well (desensitization). Finally, the nonlinear mapping combines

input frequencies and their sum and difference frequencies to new frequencies at 3, 7, 9

and 11 [Hz] (intermodulation).

These effects are visualized in Figure 2.1 where the nonlinear deformation of

the signal u(t) is depicted for a = 2 and b = 3. Figure 2.1a,b show the deformation

of the signal in the time domain. The corresponding frequency domain representations

are depicted in Figures 2.1c,d and show the effects described in (2.1) and Table 2.1.

Although different approaches have been independently developed to analyze

and model nonlinear systems in the frequency domain, differences and equivalences

between alternative methods have been minorly addressed. In this chapter an overview

and comparison of the following four well established approaches is presented:
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(a) Input signal in the time domain.
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(b) Output signal in the time domain.
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(c) Input signal in the frequency domain.
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40

80
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(d) Output signal in the frequency domain.

Figure 2.1: Time and frequency domain representation of a nonlinearly deformed harmonic signal.

• Volterra series based approaches (Section 2.1)

• frequency response function and Bode plot for nonlinear systems (Section 2.2)

• describing functions (Section 2.3)

• linear approximations in the presence of nonlinearities (Section 2.4)

Each method / model type is formally introduced in the following sections,

including a definition of the system and signal class for which it is defined. The notation

and terminology used in the different sections is consistent, which allows comparison

between different approaches. A brief overview of relevant literature is provided for

each method and each section is concluded by either an analytical example or an

experimental case study, illustrating the introduced approach. Finally, in Section 2.5

a comparison of the properties of the different model types is provided as well as an

overview of relevant literature.

2.1 Volterra Series Based Approaches

Modeling of nonlinear phenomena is often achieved by identifying a local approxima-

tion of the behavior by an approximative series. In case of continuous functions, a

polynomial or Taylor approximation is often used and the existence and convergence

of such series is analyzed in the Stone-Weierstrass theorem (Weierstrass, 1985; Stone,

1948a,b). An extension of the series approximation for nonlinear dynamical systems is

based on the work of Vito Volterra (Volterra, 1887, 1959) which was further developed

by Norbert Wiener during World War II (Wiener, 1942). This series approximation

is referred to as the Volterra series (Schetzen, 1980; Rugh, 1981). In this section, the

frequency domain representation of the Volterra series developed in the 1950s (George,

1959) is discussed, which is referred to as the generalized frequency response function.
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The Volterra series approximation generalizes the polynomial approximation

of ’static functions’ over a given interval, to the approximation of dynamical systems

around a given working point. This series expansion captures the input-output dyna-

mics of a (nonlinear) dynamical system in a set of Volterra kernels that are a genera-

lization of the impulse response of LTI systems. Provided that a Volterra series exists

and can be identified (Lesiak and Krener, 1978; Sandberg, 1983; Boyd et al., 1983),

the response up to order ℘, i.e. y℘(t) ∈ R of such system to an input u(t) ∈ R is given

by:

yp(t) =

∞∫

−∞

· · ·
∞∫

−∞

hp(τ1, τ2, . . . , τp)

p
∏

m=1

u(t− τm) dτm

y℘(t) =

℘
∑

p=1

yp(t)

(2.2)

where hp(τ1, τ2, . . . , τp) : Rp 7→ R is the pth order Volterra kernel and yp(t) is referred

to as the corresponding pth order output. The Volterra series model (2.2) is defined for

the class of Volterra systems, which is defined as follows.

Definition 2.1 (VS : Volterra system).

A dynamical system is called a Volterra system if there exists a Volterra series repre-

sentation (2.2) that converges uniformly around a given working point, with probability

1 to y(t) for all bounded inputs u ∈ G , i.e.

lim
℘→∞

τ∫

0

E {|y(t)− y℘(t)|} = 0 ∀ τ ∈ R≥0

where the expected value E{·} is the ensemble average over the considered class of

random inputs.

(see: Schetzen (1980); Schoukens et al. (2005))

The frequency domain representation corresponding to (2.2) is obtained by

applying the multiple Fourier transform to the pth order Volterra kernel. This yields

the definition of the pth order Generalized Frequency Response Function (GFRF).

Definition 2.2 (Tp(̟p): generalized frequency response function (GFRF)).

Consider a Volterra system according to Definition 2.1. Then, its pth order GFRF is

denoted Tp(̟p) : Rp 7→ C, with ̟p = (ξ1, ξ2, . . . , ξp) ∈ Rp. The GFRF is defined as

the p-dimensional Fourier transform of the pth order Volterra kernel in (2.2), i.e.

Tp(̟p) =

∞∫

−∞

· · ·
∞∫

−∞

hp(τ1, . . . , τp)

p∏

m=1

e−2πiξmτm dτm (2.3)

(see: George (1959); Eykhoff (1974); Schetzen (1980);

Billings and Tsang (1989a))
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The concept of the GFRF was first introduced in George (1959) as a frequency

domain equivalent of the Volterra kernel, and represents a generalization of the FRF for

LTI systems. Although identification of the FRF for LTI systems is well understood,

identification of the GFRF is nontrivial. Nevertheless, several approaches exist to ob-

tain the GFRF for different classes of nonlinear systems. First of all, for some nonlinear

models the GFRF can be computed analytically. Examples of such approaches are: ra-

tional nonlinear models (Zhang et al., 1995), nonlinear, autoregressive moving average

models with exogenous inputs (NARMAX) (Peyton Jones and Billings, 1989) and non-

linear integro-differential equations (Billings and Peyton Jones, 1990). Moreover, the

GFRF of a known NARMAX model may also be obtained by application of the probing

method as (Billings and Tsang, 1989a; Billings et al., 1990; Bedrosian and Rice, 1971)

and more complex dynamical systems may be modeled by a series of piecewise valid

GFRFs (Li and Billings, 2012). Finally, the GFRF of quadratic and cubic nonlinear

systems can be obtained in a numerically efficient manner by application of a symbolic

expression of the output of such system as discussed in Li and Billings (2011a).

In general, a parametric representation is often used to analyze the GFRF.

For example, in Jing et al. (2006), a parameter extraction operator is discussed that

allows to study the influence of the parameters of a nonlinear model on the GFRFs.

This operator is applied to analyze the relationship between different order GFRFs

(Jing et al., 2008a) and to distinguish between input and output nonlinearities in a

class nonlinear models (Jing et al., 2009a). Moreover, it is used to characterize and

efficiently compute the generalized output frequency response function as discussed in

Jing et al. (2008b, 2009b). Where the GFRF describes the relation between the input

and output of Volterra systems, the generalized output frequency response function

relates the parameters of a nonlinear model to the output spectrum of the nonlinear

system (Lang and Billings, 1996, 2000; Lang et al., 2007).

For Volterra systems, the GFRF allows for spectral analysis of the nonlinear

dynamics. In Lang and Billings (1997), it is shown that it is possible to predict the

output frequency range for an arbitrary input signal using the GFRF. Moreover, a spec-

tral analysis of block structured dynamical systems in terms of the GFRF is presented

in Jing (2011) and the GFRF can be used to attain a user defined frequency domain

performance for a nonlinear system as shown in Jing et al. (2008c, 2010). Finally, ap-

plication of the GFRF allows to compute bounds on the output of Volterra systems

(Billings and Lang, 1996a,b) and assess convergence of the corresponding Volterra se-

ries (Li and Billings, 2011b).

Although the GFRF allows for detailed spectral analysis of the behavior of

Volterra systems their interpretation is nontrivial. In Yue et al. (2005a) an inter-

pretation of the nonlinear effects in Table 2.1 in terms of the GFRF is presented.

Moreover, techniques to visualize the GFRFs up to order three are introduced in

Billings and Tsang (1989b); Yue et al. (2005b). Finally, to illustrate the derivation

of the GFRF the following example, taken from Billings and Peyton Jones (1990),

presents the computation of the GFRF for the Duffing oscillator.



16 Chapter 2. Frequency domain methods for nonlinear systems

Example 2.2 (GFRF of the Duffing oscillator (Billings and Peyton Jones, 1990)).

The GFRFs can be analytically computed for nonlinear systems described by nonlinear

integro-differential equations. A well known example of such nonlinear system is the

Duffing oscillator which dynamics are given by:

ÿ(t) + 2ζωnẏ + ω2
ny(t) + ω2

nεy
3(t) = u(t) (2.4)

with ζ, ωn, ε ∈ R and the input and output are denoted by u(t) and y(t) respectively. As

shown in Billings and Peyton Jones (1990) the GFRFs of the system in (2.4) equal:

T1(ξ1) =
1

ω2
n + 4πζωniξ1 − 4π2ξ21

T2(ξ1, ξ2) = 0

T3(ξ1, ξ2, ξ3) = −εω2
n T1

(
3∑

ℓ=1

ξℓ

)
3∏

m=1

T1(ξm)

Tp(ξ1, ξ2, . . . , ξp) = 0 ∀ p > 3

where T1(ξ1) relates to the linear part of the dynamics in (2.4) and the cubic nonlin-

earity appears in T3(ξ1, ξ2, ξ3). As the nonlinearity is odd, no even components arise

in the description of the dynamics and T2(ξ1, ξ2) = 0.

2.2 Nonlinear Frequency Response Function and Bode plot

In this section a class of frequency response functions for nonlinear systems is intro-

duced that is based on the concept of convergent systems. The idea of convergent sys-

tems originates from Russian literature (Demidovich, 1967) and relates to the existence

of stable and unique limit solutions of nonlinear systems. The notion of convergent

systems is introduced in Pavlov et al. (2004, 2006) as follows:

Definition 2.3 (CS : uniformly convergent systems).

A time invariant system (1.3) is said to be uniformly convergent for a class of input

signals W if for every w ∈ W:

1. all solutions xw(t) are well-defined for all t ∈ [t0 ∞) and all initial conditions

x0 ∈ Rn;

2. there exists a unique solution x̄w(t) defined and bounded for all t ∈ (−∞ +∞);

3. the solution x̄w(t) is uniformly globally asymptotically stable.

To emphasize the dependence on the input w(t), the limit solution is denoted by x̄w(t).

(see: Pavlov et al. (2004, 2006))

In Pavlov et al. (2005, 2007a) convergence is discussed for interconnected and piece-

wise affine systems, which allows to analyze tracking and synchronization in this type
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of nonlinear system (van de Wouw and Pavlov, 2008). For uniformly convergent non-

linear systems, it is possible to relate a sinusoidal input signal to the corresponding

steady-state solution and output of the system. These mappings are referred to as the

nonlinear state and output frequency response function (NSFRF and NOFRF) and

are collectively referred to as the nonlinear frequency response function (NFRF). The

NFRF was first introduced in Pavlov et al. (2007b) and is defined as follows:

Definition 2.4 (NS/O(γ sin(ωt), γ cos(ωt), ω): nonlinear state and output FRF (NFRF)).

Consider the system (1.3) subject to a sinusoidal input1 w(t) = γ sinωt with frequency

ξ = ω/2π and amplitude γ and assume that:

1. f(x, w) is locally Lipschitz with respect to x;

2. the system is uniformly convergent for the class of bounded continuous input

signals;

3. the system is input to state stable.

Then, there exist a continuous function NS(γ sin(ωt), γ cos(ωt), ω) : R3 7→ Rn, called

the Nonlinear State Frequency Response Function (NSFRF), such that for any sinu-

soidal input the steady state solution of (1.3) is given by:

x̄w(t) = NS(γ sin(ωt), γ cos(ωt), ω) (2.5)

Furthermore, the Nonlinear Output Frequency Response Function (NOFRF) is denoted

by NO(γ sin(ωt), γ cos(ωt), ω) : R3 7→ Rm and relates a sinusoidal input to the corre-

sponding steady state output. Using the definition of the NSFRF in (2.5), the NOFRF

is defined as:

NO(γ sin(ωt), γ cos(ωt), ω) = g(NS(γ sin(ωt), γ cos(ωt), ω))

(see: Pavlov et al. (2007b))

Remark. As any sinusoidal signal w(t) = γ sin(ωτ + ϕ) can be written as w(t) =

γ sinωt, with t = τ + ϕ
ω
, Definition 2.4 holds for all w ∈ S .

Remark. Both the NSFRF and NOFRF depend on the sinusoidal signals γ sin(ωt),

γ cos(ωt) and frequency ω which are related to the corresponding response and outputs

respectively. This notation is adapted from Pavlov et al. (2007c).

Numerically efficient methods are required to compute the periodic solutions

required to derive the NFRF. In Pavlov and van de Wouw (2008); Alcorta-Garćıa et al.

(2010) examples of such methods are presented. When using the NFRF, a method for

visualization of the dynamics is required for analysis and controller design. For LTI

1In the remainder of this section the angular frequency ω = 2πξ is used for ease of notation.
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systems, the Bode plot visualizes the FRF and is widely applied in both analysis and

controller design. Using the NOFRF, the concept of the Bode plot is extended to

nonlinear systems in Pavlov et al. (2007b). Therefore, consider the following definition

of the nonlinear Bode plot.

Definition 2.5 (G(ω, γ): nonlinear Bode plot).

Consider the system (1.3), with scalar output y(t) ∈ R and subject to a sinusoidal

input w ∈ S with frequency ξ = ω/2π and assume conditions 1-3 in Definition 2.4 are

satisfied. Then, the nonlinear Bode plot G(ω, γ) : R2 7→ R is defined as:

G(ω, γ) =
1

γ



 sup
t∈[− π

ω
π
ω)

∣
∣NO(γ sin(ωt), γ cos(ωt), ω)

∣
∣





where NO(·) is the NOFRF as in Definition 2.4.

(see: Pavlov et al. (2007b))

The definition of the nonlinear Bode plot in Definition 2.5, although based on

the norm of a time domain signal, relates directly to the gain of the FRF as visualized

in the classical Bode plot for LTI systems. However, where the classical Bode plot

provides information about the phase shift as well, such phase information cannot be

defined for nonlinear systems. Moreover, where system norms can be computed from

the FRF and Bode plot for LTI systems, this is generally not possible for nonlinear

systems based on the NFRF and nonlinear Bode plot. The concept of the nonlinear

Bode plot is used to extend the notion of the sensitivity function to nonlinear systems

in Pavlov et al. (2007c). These generalized sensitivity functions have been applied for

the design of variable gain control for optical storage drives (van de Wouw et al., 2008)

and feed forward design for wafer scanners (Heertjes et al., 2010). Finally, the following

example is taken from (Pavlov et al., 2007b) and concludes this section by illustrating

the computation of the NFRF for a given nonlinear system.

Example 2.3 (nonlinear state and output FRF (Pavlov et al., 2007b)).

Consider the following dynamical system, subject to a sinusoidal input u(t) = γ sin(ωt)

with frequency ξ = ω/2π and amplitude γ.

ẋ1 = −x1 + x22 y = x1

ẋ2 = −x2 + u
(2.6)

As shown in Pavlov et al. (2007b), condition 1-3 in Definition 2.4 are satisfied for

this system. Hence, the NSFRF exists and is unique. Next, using the results from

Pavlov et al. (2007b) and denoting v(t) = [sin(ωt) cos(ωt)]T , the NSFRF, which de-

scribes the steady state solution x̄u(t) = [x̄1,u(t) x̄2,u(t)]
T of (2.6), equals:

NS(γ sin(ωt), γ cos(ωt), ω) = γ

[
γ vT (t) Ψ1(ω) v(t)

Ψ2(ω) v(t)

]

Ψ1(ω) = (1 + ω2)−2(1 + 4ω2)−1

[
2ω4 + 1 ω3 − 2ω

ω3 − 2ω 2ω4 + 5ω2

]

Ψ2(ω) = (1 + ω2)−1
[
1 −ω

]
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Using these results, and as y(t) = g(x(t)) = x1(t), the corresponding NOFRF, which

describes the output corresponding to the steady state solution ȳu(t) = x̄1,u(t) of (2.6),

equals:

NO(γ sin(ωt), γ cos(ωt), ω) = γ2vT (t) Ψ1(ω) v(t)

Finally, the nonlinear Bode plot is obtained by (numerically) computing:

G(ω, γ) =
1

γ



 sup
t∈[− π

ω
π
ω)

∣
∣γ2vT (t) Ψ1(ω) v(t)

∣
∣



 (2.7)

and the result is depicted in Figure 2.2. Hence, the NSFRF relates any sinusoidal input

to the corresponding steady state solution and the NOFRF yields the corresponding

steady state output. Finally, the nonlinear Bode plot yields the maximum gain of the

nonlinear system for a sinusoidal input with a given amplitude and excitation frequency.

γ [−] ω [rad/s]

G
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B
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Figure 2.2: Nonlinear Bode plot (2.7) of system (2.6).

2.3 Describing Functions

For LTI systems the FRF fully captures the systems dynamics as the response to a

single sinusoid can be extended to arbitrary inputs using the principle of superposition.

For nonlinear systems superposition does not hold and the FRF fails to capture the

full dynamics. Hence, an alternative approach is required to extend the concept of

the FRF to nonlinear systems. Describing Functions (DF) aim to do so by describing

the response to a given type of input signal based on some frequency domain mapping
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Figure 2.3: Overview of a selection of different describing functions. The signal and system classes

refer to the definitions used by the authors in the corresponding references.

from input to output. Although different types of describing functions exist (Figure

2.3), their definition is generally similar to that of the FRF for LTI systems. The main

difference between different describing functions originates from the signal and system

class for which they are defined and the type of nonlinear effects captured. In this

section a selection of describing functions is introduced, compared and an experimental

example is provided illustrating the identification of one of the describing functions.

In Figure 2.3, three classes of describing functions are depicted: the sinusoidal

describing function, the generalized describing function and the higher order sinusoidal

describing function. The different branches represent different subclasses of DF such

that for any two consecutive DF, the lower one is always a special case of the upper one.

The classical (two) sinusoidal input describing function (SIDF) models the response

to (two) sinusoidal inputs at the corresponding excitation frequencies. The Genera-

lized Describing Function (GDF) on the other hand, is based on the Volterra series

approximation of nonlinear systems and allows to model the response to multisine in-

puts. Finally, the Higher Order Sinusoidal Describing Functions (HOSDF) model the

response to sinusoidal signals at both the fundamental excitation frequency and higher

harmonics of this frequency. These describing functions are defined for different classes

of input signals and nonlinear systems and capture a different subset of nonlinear ef-

fects. In this section three describing functions are introduced in detail: the SIDF,

GDF and the Higher Order Sinusoidal Input Describing Function (HOSIDF).
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First, consider the SIDF, which is defined for sinusoidal input signals and is

defined as follows:

Definition 2.6 (DS(ξ, γ): sinusoidal input describing function (SIDF)).

Consider a nonlinear system2 (1.3), with y(t) ∈ R, subject to a sinusoidal input u ∈
S with frequency ξ0 and amplitude γ and define the systems steady state output y(t) and

Fourier transforms of the input and output U̥(ξ), Y̥(ξ) ∈ C. Then the sinusoidal

input describing function DS(ξ, γ) : R>0 × R 7→ C is defined as:

DS(ξ0, γ) =
Y̥(ξ0, γ)

U̥(ξ0, γ)

(see: Gelb and Vander Velde (1968))

The SIDF models the response to a sinusoidal input by relating the spectral components

in the input and output at the fundamental excitation frequency. Hence, the SIDF

captures gain compression / expansion (see Table 2.1), but fails to model desensitization

as the input is a single sinusoid. Moreover, intermodulation is not captured for the same

reason and generation of harmonic components is not detected as only the response at

the excitation frequency in considered.

The GDF, on the other hand, captures a wider range of nonlinear phenomena

and allows for a broader class of input signals, but is defined only for Volterra systems.

Consider the following definition of the GDF:

Definition 2.7 (DG(ξ, ς): generalized describing function (GDF)).

Consider a Volterra system (1.3) subject to multisine input (wave form) u ∈ M scaled

by a factor ς and output y(t). Moreover, define the corresponding Fourier transforms

of the input and output U̥(ξ), Y̥(ξ) ∈ C. Then, the generalized describing function

DG(ξ, ς) : R2 7→ C is defined as:

DG(ξ
′, ς) =

℘∑

p=1

ςp−1Y̥p(ξ
′)

U̥(ξ′)

where the GDF is defined for all ξ′ ∈ {ξ ∈ R| |U̥(ξ)| 6= 0} and the uni-dimensional

spectrum Y̥p(ξ
′) is related to the output generated by the order pth order GFRF, Tp(̟p)

by:

Y̥p(ξ
′) =

∞∫

−∞

. . .

∞∫

−∞

Tp

(

ξ1, . . . , ξp−1, ξ
′−

p−1
∑

m=1

ξm

)

U̥

(

ξ′−
p−1
∑

m=1

ξm

)
p−1
∏

ℓ=1

U̥(ξℓ) dξ1 . . . dξp−1

(see: Peyton Jones and Billings (1991))

2The authors in Gelb and Vander Velde (1968) define these describing functions for systems that

’have a single loop configuration with separable linear and nonlinear elements’, here denoted by SL.

However, this describing function can be computed for all system classes considered in this chapter.
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The GDF allows to model the response of Volterra systems to multisine input signals

(Peyton Jones and Billings, 1990, 1991). However, it is specific to the selected input

signal, which limits the validity of the model to the excitation signal used. As the

GDF allows for broadband input signals, both gain compression / expansion and de-

sensitization are captured by the GDF. However, intermodulation and the generation

of harmonics are not modeled as the GDF only models the response at frequencies

present in the input signal.

Finally, the Higher Order Sinusoidal Input Describing Functions model the

response of uniformly convergent nonlinear systems to a sinusoidal input at harmonics

of the excitation frequency and are defined as follows:

Definition 2.8 (Hk(ξ, γ): higher order sinusoidal input describing function (HOSIDF)).

Consider a uniformly convergent, time invariant nonlinear system (1.3) subject to a si-

nusoidal input u ∈ S with frequency ξ0 and amplitude γ. Next, define the systems steady

state output y(t) and single sided spectra of the input and output U (ξ), Y (ξ) ∈ C.

Then, the kth higher order sinusoidal input describing function Hk(ξ, γ) : R>0 × R 7→
C, k = 0, 1, 2, . . . is defined as:

Hk(ξ0, γ) =
Y (kξ0, γ)

U k(ξ0, γ)
(2.8)

where U
k(ξ0, γ) =

k∏

ℓ=1

U (ξ0, γ).

(see: Nuij et al. (2006); Rijlaarsdam et al. (2011))

Remark. Note that H1(ξ0, γ) = DS(ξ0, γ) ∀ ξ0 > 0.

Remark. Compared to the original definition in Nuij et al. (2006), the amplitude

dependency |Fk| ∝ γk inherent to the original HOSIDF model structure is removed in

Rijlaarsdam et al. (2011) such that the HOSIDFs reveal only system characteristics.

The HOSIDFs model the response to a sinusoidal input signal at harmonics of the fun-

damental input frequency. Therefore both gain compression / expansion and the gener-

ation of harmonics are captured in this describing function. However, as the excitation

signal is a single sinusoid, both desensitization and intermodulation are not captured

by the HOSIDFs. The HOSIDFs yield valuable information about nonlinearities that

can be used for modeling and control purposes (Nuij et al., 2008a,b; Rijlaarsdam et al.,

2012a, 2011). Finally, related studies as presented in Nuij et al. (2008c) use the concept

of the HOSIDF to find an input signal that yields a sinusoidal output signal, similar

to Volterra based approaches presented in Jing et al. (2008c, 2010).

A comparison of the describing functions discussed in this section is provided in

Tables 2.3 and 2.5, which are presented in Section 2.5. Finally, this section is concluded

by an example that illustrates the identification of the HOSIDFs in practice.
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Figure 2.4: Industrial high precision stage used in a transmission electron microscope.

Example 2.4 (experimental identification of the HOSIDFs).

In this section the identification of the HOSIDFs of a nonlinear dynamical

system in practice is presented. The system under test in this study is an industrial high

precision stage (Figure 5.2) used in a Transmission Electron Microscope (TEM). At

the high resolution and reproducibility that is required in a TEM, nonlinear effects start

to effect the performance of the system significantly. This motivated the measurements

presented in this section. The motion stage is a single input, single output system with

the voltage to the current amplifier as the input and the position of the stage as its

output. The identification is performed in open loop as in Nuij et al. (2006).

The system is excited with a sinusoidal input and the response is measured

using a SigLab 20-42 dynamic signal analyzer. To measure the response of the system

an encoder system is used that allows high resolution position measurements over the

entire stroke of the set-up. To measure a single HOSIDF Hk(ξ0, γ) for a given frequency

/ amplitude combination, a sinusoidal input signal u ∈ S is applied. Next, the single

sided spectra of the input and output are computed using standard DFT algorithms

and Definition 2.8 is applied. Finally, repeating the experiment multiple times yields

the average HOSIDF and variance on the average which are denoted by Ĥk(ξ0, γ) and

ς2(ξ0, γ) respectively.

By repeating each experiment ten times with frequencies ranging from 5 [Hz]

to 300 [Hz] in steps of 5 [Hz] and input signal powers γ/
√
2, ranging from 0.07 [V ]

to 1.41 [V ] (logarithmically spaced) the HOSIDFs are identified. All measurements

have been performed with a sampling frequency of 5120 [Hz] and a block length of 2048

points, resulting in leakage free measurements.

A typical series of HOSIDFs is depicted in Figure 2.5a. Given the odd nature

of the friction nonlinearity in this case, the even HOSIDFs are very low, hence only

the odd HOSIDFs are considered. Figure 2.5a hints that the system behaves more

linearly for increasing value of γ. This can be observed from the combination of a
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decreasing gradient ∂Ĥ1/∂γ and a decreasing value of Ĥk(ξ, γ) ∀ k > 1 for all measured

frequencies. Finally, in Figure 2.5b |Ĥ1| is depicted as a function of input power and

frequency.

Ĥ
1

magnitude [dB] phase [◦]
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(a) The first three odd HOSIDFs as a function of input amplitude γ, for one

frequency ξ0 = 20 Hz.: (−) Hk, (−−) ς (with ς2 the variance on the average).
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(b) The first HOSIDF as a function of input amplitude γ and frequency ξ.

Figure 2.5: Measured HOSIDF of the motion stage in a TEM.

2.4 Linear Approximation in the Presence of Nonlinearities

In many applications, the use of LTI models is common practice, mainly because

methods to identify and interpret such models are well developed (Ljung, 1999) and

many tools exist that allow controller design and synthesis based on LTI models
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N̥

Y̥U̥

nonlinear

(a) Nonlinear system.

Bu

S̥u N̥

Y̥U̥

nonlinear

(b) BLA and nonlinear distortion.

Figure 2.6: Equivalent representations of a nonlinear system.

(Skogestad and Postlethwaite, 2005). However, most real life systems are not linear and

it is therefore required to asses the validity of a linear approximation (see for example

Schoukens and Dobrowiecki (1998); Pintelon and Schoukens (2012); Schoukens et al.

(2005, 2009)). In this section, the estimation of a linear model in the presence of

nonlinearities is addressed.

Consider a nonlinear system as depicted in Figure 2.6a and assume the sys-

tem can be transformed to a structure as in Figure 2.6b. In Figure 2.6b, the output

Y̥(ξ) is assumed to exist of a component that is generated by an LTI system Bu(ξ),

a distortion S̥u(ξ) due to nonlinearities and an output disturbance N̥(ξ). Note that

the transformation in Figure 2.6 is nontrivial and a (unique) transformation may not

exist. In the sequel, the existence and invariance of this transformation is addressed.

However, for now, consider the representation in Figure 2.6b and note that the nonli-

near system is represented by the combination of an LTI model Bu(ξ) and a nonlinear

disturbance S̥u(ξ), both of which depend on the power spectrum of the input signal.

In literature, Bu(ξ) is referred to as the Best Linear Approximation (BLA)

(Schoukens et al., 2005, 2009). A BLA can be computed for a large class of input signals

and nonlinear systems, but additional assumptions are required to assure invariance of

the approximation with respect to a given class of input signals. In this section the

BLA is therefore introduced in two steps. First, the formal definition of the BLA is

provided and then sufficient conditions are provided for a class of nonlinear systems

and input signals for which the BLA exists and is invariant.

The transformation in Figure 2.6 is defined by the pair (Bu,S̥u), which is

defined along the lines of Enqvist and Ljung (2005); Schoukens et al. (2005).

Definition 2.9 ((Bu,S̥u): Best Linear Approximation).

Consider a nonlinear system (1.3), with y(t) ∈ R and assume the transformation in

Figure 2.6 exists, such that:

Y̥(ξ) = Bu(ξ)U̥(ξ) + S̥u(ξ) + N̥(ξ)

then, the Best Linear Approximation (BLA) is defined by the pair (Bu,S̥u), such

that:

Bu(ξ) = arg min
B(ξ)

E{
(
y(t)−B(ξ)u(t)

)2} (2.9)



26 Chapter 2. Frequency domain methods for nonlinear systems

where the expected value E{·} is the ensemble average over the considered class of

inputs.

(see: Enqvist and Ljung (2005))

Definition 2.9 does not assure the existence of the BLA, i.e. of the minimizer in (2.9).

Moreover, although it is clear that the BLA depends on the power spectrum of the

input signal, invariance of the BLA with respect to a class of input signals needs to be

addressed as well. Therefore, consider the following class of excitation signals.

Definition 2.10 (Geq : Gaussian Riemann equivalent signals).

Consider a power density spectrum Su(ξ), which is piecewise continuous and has a

finite number of discontinuities and consider an excitation signal u(t) that equals:

1. a Gaussian noise excitation G with power density spectrum Su(ξ), or

2. a periodic, real valued signal u(t) ∈ R such that U̥(±ξk) = Ake
±iϕk , k ∈ N>1,

ξk ∈ R>0 and U̥(ξ) = 0 otherwise. Moreover, Ak and ϕk are random and

mutually independent, E{eiϕk} = 0 and either E{A2
k} = f 2

A(ξk) or A2
k = f 2

A(ξk)

with fA(ξ) a piecewise continuous function with a finite number of discontinuities.

Then, the sets of signals 1 and 2 are Gaussian Riemann equivalent if:

∑

k∈K

E{|U̥(ξk)|2} =

ζ2∫

ζ1

Su(ξ) dξ +O(N−1
K

) ∀ ζi ∈ R>0

with K = {k ∈ N>1|ζ1 < ξk < ζ2}, NK the number of elements in K, 0 < ζ1 < ζ2 and

where E{·} denotes the expected value.

(proof: (Schoukens et al., 2005))

To assure that the minimizer in (2.9) and thus the BLA exists, the class of nonlinear

systems is restricted as follows (along the lines of Schoukens et al. (2009)):

Definition 2.11 (WS : special Wiener system).

System (1.3) is called a special Wiener system if there exists a Volterra series represen-

tation (2.2), with continuous multidimensional Fourier transforms (2.3), that converges

in mean square sense, with probability 1 to y(t) for all bounded inputs u ∈ Geq , i.e.

lim
℘→∞

1

τ

τ∫

0

E
{
|y(t)− y℘(t)|2

}
= 0 ∀ τ ∈ R≥0

where the expected value E{·} is the ensemble average over the considered class of

random inputs.

Remark. This class of systems is referred to as special Wiener systems as it is closely

related to the classical Wiener systems (Schetzen, 1980) for which the requirement on

continuity of the Fourier transforms is not imposed and which considers only Gaussian

inputs G ⊂ Geq in the convergence criterium.
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Using Definitions 2.10 and 2.11, the following sufficient conditions for the existence

and invariance of the BLA are derived in Schoukens et al. (2009).

Lemma 2.1 (invariance and existence of the BLA).

Consider a nonlinear system (1.3). If the system:

1. belongs to the class of special Wiener systems WS ;

2. is subject to Gaussian Riemann equivalent input signals, i.e. u ∈ Geq ,

then, the best linear approximation (Definition 2.9) exists and the pair (Bu,S̥u)is

asymptotically invariant under inputs in the equivalence class Geq . Moreover, if con-

dition 1-2 are satisfied, the BLA equals:

Bu(ξ) =
E{Y̥(ξ)U

⋆
̥
(ξ)}

E{U̥(ξ)U ⋆
̥ (ξ)}

(2.10)

where ⋆ indicates the complex conjugate and the expected value E{·} is the ensemble

average over the considered class of inputs which includes averaging over the effect of

the measurement noise N̥.

(proof: see3 Schoukens et al. (2009))

Remark. Although Lemma 2.1 assures invariance of the BLA, the BLA still specific

to the fixed power spectrum of the set of input signals that is used.

Remark. In the sequel, the BLA is considered under the conditions in Lemma 2.1

which assures both invariance and existence of the linear approximation but does not

provide any condition about the quality of the approximation.

Experimental identification of the BLA and the detection of nonlinear effects

in the frequency domain requires careful design of the excitation signal and signal

processing. An overview of techniques for the detection of nonlinearities is presented

in Vanhoenacker et al. (2002). Moreover, excitation signal design is for example ad-

dressed in Godfrey (1993); Schoukens and Dobrowiecki (1998); Guillaume et al. (1991)

and signal processing techniques are discussed in for example Pintelon and Schoukens

(2012); Schoukens et al. (2006); Pintelon et al. (2010a,b).

The concept behind the detection of nonlinear effects in the frequency domain

is often based on two approaches. First, the presence of nonlinearities will cause a

change in linear approximation of the dynamics when the input signal changes. Hence,

a variance analysis on an ensemble of appropriately selected input signals allows to

quantify the effects of nonlinearities (D’haene et al., 2005; Vanhoenacker et al., 2001).

Moreover, nonlinearities can be detected by analyzing the power appearing in the out-

put spectrum at spectral lines that are not excited by the input signal (Pintelon et al.,

2004b,a). This approach both allows quantification of nonlinear effects and characte-

rization of the nature of the nonlinearities. A detailed discussion of these methods is

3See also Pintelon and Schoukens (2012); Schoukens et al. (1998); Pintelon and Schoukens (2002).
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outside the scope of this work but an example is presented at the end of this section

that illustrates both methods.

Both the identification of the BLA and means to detect nonlinearities are

often discussed for single input, single output systems that are identified in open

loop. However, extensions for multi input, multi output systems are presented in

Dobrowiecki and Schoukens (2007); Schoukens et al. (2010). Moreover, identification

of the BLA and estimation of nonlinear effects in closed loop is addressed in for exam-

ple Pintelon et al. (2011a,b). Finally, the following example concludes this section and

illustrates the identification of the BLA in practice.

Example 2.5 (experimental identification of a high precision motion stage).

Consider again the high precision motion stage from a transmission electron micro-
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Figure 2.7: Linear approximation identified with different powers of the input signal. (–) urms =

0.10 [V ], (- grey) urms = 0.50 [V ] and (- black) urms = 1.0 [V ].

scope as in Example 2.4. In the following both the BLA of this system is identified

and the effects of nonlinearities on the dynamics are quantified. However, first con-

sider a conventional identification experiment using band limited white noise with three

different root mean square (rms) values. The estimates depicted in Figure 2.7 clearly

indicate nonlinear behavior as the FRF changes with the rms value of the input sig-

nal. This indicates that further analysis of the validity of a linear model is required.

Therefore, the BLA is identified in a setting that allows to quantify nonlinear effects

and assess the validity of this linear approximation.

In this example the BLA is identified under the assumptions in Lemma 2.1.

Hence, the system is assumed to be in the class of WS systems and using Gaussian

Riemann equivalent input signals yields an invariant estimate of the BLA for a given

power spectrum of the input signal. In the following, random odd multisine exitation

signals are used (Definition B.1, p. 95), which are Gaussian Riemann equivalent.
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Table 2.2: Estimated variables (see Appendix B.1)

variable description

Bu best linear approximation

Y̥̌ output spectrum

σ2
N

variance on Y̥̌ due to noise

σ2
S

variance on Y̥̌ due to nonlinearities

P(ℓo/e) power at non-excited odd (o) and even (e) lines

When using random odd multisines, there are two ways to detect nonlinearities

in the spectral representation of the measured response. First of all, energy may appear

on non-excited lines in the output spectrum, yielding both the level and odd / even

nature of the nonlinearity. Secondly, a variance, larger than to be expected based on

stochastic distortions, is observed on the measured output spectrum, using different

realizations of the multisine. In this example these detection methods are combined to

both quantify the extend of nonlinear effects and classify them.

The identification procedure consists of exciting the system with several peri-

ods of different realizations of a random multisine. Computation of the averages and

variances then yields the BLA and an estimate of nonlinear influences based on both

variance information and energy appearing at non excited lines. The signal processing

involved is discussed in Appendix B.1 and yields the estimated variables in Table 2.2.

Ten realizations of the odd random phase multisine have been generated and the

response has been measured for ten consecutive periods. Furthermore, this experiment

is repeated for twenty different rms values of the multisines which are logarithmically

scaled between 0.3 [V ] and 5.0 [V ]. Measurements are performed using a SigLab mea-

surement system with a measurement frequency of 2560 [Hz] and a block length of 8192

measurement points. The multisine signal is defined according to Definition B.1, with

ξ0 = 0.3125 [Hz]. Finally, signal processing as in Appendix B.1 is applied to each

measurement set, yielding a typical output spectrum as depicted in Figure 2.8a.

Figure 2.8a shows that nonlinear effects have an average level that is 10 [dB]

lower than the power generated in the output spectrum by the BLA of the system.

Analysis of the non-excited lines shows that the nonlinearities have both an odd and

even nature, but the odd components dominate by almost 20 [dB]. Furthermore, it

becomes clear that the variation due to nonlinearities is of the same order of magnitude

as the odd nonlinearities that are detected. Finally the variation due to process and / or

measurement noise is almost 30 [dB] lower than the variation due to nonlinear effects.

Figure 2.8b depicts the BLA of the system as a function of both the rms value

and frequency of the input. This figure indicates that for high input power, the sys-

tem behaves more linear. This becomes clear from the fact that both the gradient

∂|Bu|/∂urms and the value of the variation due to nonlinear influences decreases rela-

tive to the BLA of the gain of the system for increasing input power.
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(a) Output spectrum of a typical multisine experiment. (−) output spectrum Y̥̌,
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Figure 2.8: Estimated output spectrum and BLA for different excitation levels.

2.5 Comparison

In this section a comparison between the different frequency domain models and the

corresponding signal and system classes is provided. First, the different system and

signal classes for which the models are defined and compared. Next, a qualitative

comparison between the frequency domain models is provided yielding an overview of

the applicability of the different models and the nonlinear effects that can be detected

using each of the model types. Finally, Table 2.6 on p. 35 presents an overview of the

relevant literature related each of the models considered in this chapter.



2.5. Comparison 31

mul� sine

sinusoidal

Gaussian Riemann equivalent

Gaussian

e.g. random phase

mul� sine

M

S

Geq

G

(a) Signal classes

Volterra special Wiener

convergent

Wiener

VS WS

CS

(b) System classes

Figure 2.9: Comparison of the system and signal classes.

System and Signal Classes

In Figure 2.9 an overview of the signal and system classes discussed in this chapter is

provided. Both random and deterministic signals are considered. The relation between

different signal classes is straightforward. By definition, the class of sinusoidal signals

(Definition 1.5) is a subset of the class of multisine signals (Definition 1.4). Simi-

larly, the class of Gaussian signals (Definition 1.3) is a subset of the class of Gaussian

Riemann equivalent signals (Definition 2.10).

Next, consider the comparison of the different system classes depicted in Figure

2.9b. The classes of Volterra and special Wiener systems can directly be compared as

both prescribe the same type of mathematical model. The classes of Volterra and spe-

cial Wiener systems partially overlap, but neither is a subset of the other, e.g. Volterra

systems with discontinuous Fourier transforms are in the class of special Wiener sys-

tems. The class of Wiener systems includes the classes of Volterra and special Wiener

systems as the continuity condition on the Fourier transform is relaxed in this case.

The class of convergent systems can not be easily related to the classes of

Volterra and special Wiener systems. Convergence is a property of a state space real-

ization of a system and concerns the existence and stability of a unique limit solution

of the nonlinear system. This requires the definition of initial conditions and a well

defined notion of a limit solution solution. As the Volterra series does not include the

definition of an initial condition it can not straightforwardly be related to the notion

of convergence.
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signal deterministic random

system S (sinusoidal) M (multisine) Geq (Gaussian Riemann eq.)

VS (Volterra) GFRF GFRF GFRF

GDF GDF

SIDF

WS (special Wiener) SIDF BLA

CS (convergent) HOSIDF

NFRF

SIDF

Table 2.3: Model types ordered by signal and system class (according to definitions used in references).

In Boyd and Chua (1985) a concept similar to convergence, called Fading

Memory (FM), is introduced. On the one hand, convergence relates to the existence,

stability and uniqueness of a steady state solution, which is independent of initial con-

ditions and therefore convergence is concerned with the input to state properties of

a state space realization. FM, on the other hand, relates to the dependence of the

steady state solution on the input signals themselves and is concerned with the input

to output properties of an operator. For an operator that has a realization of some sort,

the notion of FM may allow to proof the existence of a unique steady state solution

for a subset of input signals and initial conditions (Boyd and Chua, 1985). However,

the following two arguments illustrate why FM and convergence are not equivalent.

First of all, an operator may not have a state space realization (1.3). Hence, even if an

operator has FM, a state space realization may not exist, such that convergence cannot

be claimed. Secondly, a operator which has a realization (1.3) that includes unstable

non-observable dynamics may still have FM. However, the corresponding realization

cannot be convergent.

Frequency Domain Models

This section concludes the chapter by providing a comparison of the frequency domain

methods for nonlinear systems considered. First, consider the overview presented in

Table 2.3. This table depicts the applicability of each model type for each combination

of input signal and class of nonlinear systems. For all model types, apart from the

SIDF2 (see p. 21), the definitions used in literature are used to generate Table 2.3. The

GFRF is applicable for all signal types considered, but is limited to modeling Volterra

systems. The corresponding GDF is applicable to Volterra systems as well, but valid

for multisine inputs only. For convergent systems the HOSIDF and NFRF allow to

model the systems dynamics, but these are restricted to sinusoidal inputs. The SIDF

can be computed for all system classes considered in this chapter, but is restricted

to sinusoidal inputs as well. Finally, the BLA when considered under the conditions

in Lemma 2.1, is defined for special Wiener systems subject to Gaussian Riemann

equivalent signals.
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information excited frequencies non-excited frequencies

model gain phase gain phase

GFRF + + + +

NFRF NS/OFRF + + + +

NL Bode plot + − − −
DF SIDF + + − −

GDF + + − −
HOSIDF + + + +

BLA + + ± −

Table 2.4: Overview of the information available from different models. (+ available, ±: can be

partially recovered, but additional analysis required, − information not available.)

Moreover, Table 2.4 provides an overview of the information present in each

model type. To fully reconstruct the response of a nonlinear system to a given input

signal the corresponding model needs to model both the response at excited and non

excited frequencies and both phase and gain information needs to be recoverable from

the model. This is the case for the GFRF and this model therefore allows to fully recon-

struct the response of a given Volterra system to a class of input signals. The HOSDIF

and NFRF also allow to fully reconstruct the steady state response of a uniformly

convergent system to any given sinusoidal input signal although the representation of

the nonlinear dynamics in both model types is different. However, the nonlinear Bode

plot corresponding to the NFRF does not allow to reconstruct the full response as all

phase information is lost in this representation. Finally, the SIDF, GDF and BLA do

not allow to fully reconstruct the output of a nonlinear system as information about

spectral components at non-excited frequencies is not available in these models.

Finally, Table 2.5 presents an overview of the ability of the different models

to detect the effects of nonlinearities introduced in Table 2.1. As becomes clear, all

methods considered here are able to detect gain compression and expansion. Detection

of desensitization however, requires multi-tone inputs and detection at exited spec-

tral lines. Hence, only the GFRF, GDF and BLA are able to detect desensitization.

To detect intermodulation, multi-tone inputs are also required, but detection must

appear at non-excited spectral lines as well. Hence, the GFRF is able to capture in-

termodulation and the signal processing related to the BLA can be adapted to detect

intermodulation. For the detection of higher harmonics a sinusoidal excitation suffices,

but detection must appear at non-excited harmonic spectral lines as captured in the

HOSIDF. Moreover, the GFRF models the generation of harmonics and these can be

detected by adapting the signal processing related to the BLA as well. Finally, the

appearance of harmonics in the systems output are captured by the NFRF, but the

effects of gain compression / expansion and the generation of harmonics are hard to

distinguish in the corresponding nonlinear Bode plot.

In the preceding sections an overview and comparison of four main approaches
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GFRF NFRF DF BLA

SIDF GDF HOSIDF

gain compression & expansion + + + + + +

desensitization + − − + − +

intermodulation + − − − − ±
harmonics + + − − + ±

Table 2.5: Effects of nonlinearities visualized by different models. (+ visible, ±: detectable, but

additional analysis required, − not visible.)

to the frequency domain analysis of nonlinear systems was presented. To conclude this

chapter, a discussion concerning the application of the different methods is presented.

The following reflects the personal opinion of the author and may serve as a guideline

for those seeking to use any of the frequency domain methods discussed in this chapter.

First of all, the GFRF provides a useful tool for the analysis of Volterra sys-

tems and allows model the response to an extensive class of input signals. However,

the practical application of the GFRF is limited as identification of high order kernels

/ GFRFs is difficult. Moreover, even if a model is known, the GFRF may be used

for prediction, but the model structure is complex, which limits application to prac-

tical analysis or control design. Secondly, the nonlinear Bode plot provides means to

assess the gain of a nonlinear system and may be used for sensitivity analysis as well

(van de Wouw et al., 2008). However, this model is only valid for sinusoidal inputs and

the corresponding NFRF can be hard to identify in practice.

Thirdly, the HOSIDF are easily identifiable and provide a fast method to assess

nonlinear effects in practice. However, although the HOSIDF provide some means to

assess performance degrading nonlinear effects (see Chapter 5), this model is valid for

sinusoidal inputs only. This limits their (real-time) application when non sinusoidal

inputs are required. Finally, the BLA provides means to attain a well defined linear

approximation of the nonlinear dynamics as well as a measure of the quality of this

linear approximation. This yields a useful method to identify LTI approximations

of weakly nonlinear systems. However, if severe nonlinearities are present or small

nonlinearities negatively influence the performance of the system, the BLA provides

insufficient information to address or model these effects.

Summarizing, if an LTI approximation of the systems dynamics is required,

identification of the BLA is recommended as it is easy to identify, yields a widely

valid linear approximation and provides a corresponding quality measure. If more

information about the nonlinear behavior is required, the nonlinear Bode plot allows for

a gain and sensitivity analysis of the nonlinear system. Finally, if even more information

about the nonlinearity is required, the HOSIDFs provide gain and phase information

about the nonlinear behavior, allowing analysis and control of the nonlinear effects.
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Table 2.6: Suggested references for each research area.

Background Introduction Analysis Applications

GFRF Volterra (1887, 1959) Yue et al. (2005a) Yue et al. (2005a) Billings and Tsang (1989a)

Wiener (1942) Jing et al. (2006) Billings and Tsang (1989b)

George (1959) Lang et al. (2007) Billings et al. (1990)

Eykhoff (1974)

Schetzen (1980)

Rugh (1981)

NFRF Pavlov et al. (2006) Pavlov et al. (2007b) Pavlov et al. (2007c) van de Wouw et al. (2008)

Pavlov and van de Wouw (2008) Heertjes et al. (2010)

DF Gelb and Vander Velde (1968) Gelb and Vander Velde (1968) Peyton Jones and Billings (1991) Nuij et al. (2008a)

Peyton Jones and Billings (1990) Nuij et al. (2008b) Nuij et al. (2008c)

Nuij et al. (2006) Rijlaarsdam et al. (2011)

BLA Pintelon and Schoukens (2012) Pintelon and Schoukens (2012) Schoukens et al. (1998) Pintelon et al. (2004b)

Pintelon and Schoukens (2002) D’haene et al. (2005)

Schoukens et al. (2005) Rijlaarsdam et al. (2010)

Dobrowiecki and Schoukens (2007)

Schoukens et al. (2009)





Chapter 3

Frequency Domain Analysis of

Block Structured Nonlinear Systems†

When analyzing and modeling nonlinear dynamical systems in the frequency domain,

the effects of nonlinearities need to be taken into account. To further investigate the

application of frequency domain methods to nonlinear systems an analysis of block

structured systems with polynomial nonlinearities is provided in this Section. Spe-

cifically, an analysis of static polynomial mappings subject to a sinusoidal input is

presented, which provides insight in the effects of such nonlinearities in the frequency

domain. These results are then utilized to derive a connection between the GFRF

(Definition 2.2) and HOSIDF (Definition 2.8).

First, in Section 3.1, new analytical results are presented that allow for spectral

analysis of the dynamics of nonlinear systems consisting of separable LTI and nonli-

near components. A mapping from the parameters defining the LTI dynamics and

polynomial nonlinearities to the output spectrum and HOSIDFs is derived. Second, in

Section 3.2, these results are used to connect two different frequency domain models

for nonlinear systems: the GFRF and the HOSIDF. Necessary and sufficient conditions

for this novel relation to exist are provided as well as a numerically efficient procedure

to compute the HOSIDF from the GFRF and vice versa. All theoretical results are

accompanied by illustrative analytical and numerical examples.

†The results presented in this chapter are published in:

D. Rijlaarsdam, P. Nuij, J. Schoukens and M. Steinbuch, Spectral analysis of block structured non-

linear systems and higher order sinusoidal input describing functions, Automatica, 47(12):2684-2688,

2011

D. Rijlaarsdam, T. Oomen, P. Nuij, J. Schoukens and M. Steinbuch, Uniquely connecting frequency

domain representations of given order polynomial Wiener-Hammerstein systems, prov. accepted
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3.1 Frequency Domain Analysis of Polynomial Nonlinearities

The analysis presented in the following deals with the frequency domain analysis of

systems with polynomial nonlinearities. These results contribute to the analysis of the

effects of nonlinearities by supplying new analytic results that provide an analytic rela-

tion between the parameters of the nonlinear system and the input-output dynamics in

the frequency domain. The analysis focuses on sinusoidal excitation signals and yields

an intuitive insight into the effect of polynomial nonlinearities in the frequency domain.

First, in Section 3.1, the application of trigiometric analysis to static polynomial non-

linearities is shown to yield a mapping from the parameters defining the nonlinearity

and input signal to the output spectrum. This constitutes the main result of this sec-

tion and is summarized in Theorem 3.1. Next, these results are extended to dynamical

systems which yields an analytic expression for the corresponding HOSIDFs.

Spectral Analysis of Polynomial Nonlinearities

Consider a static polynomial nonlinearity of degree P :

y(t) =

P∑

p=1

αpu
p(t) (3.1)

with u(t), y(t) ∈ R the input and output of the system and αp ∈ R the polynomial

coefficients. Next, an analysis of the output spectrum of (3.1) is presented when the

system is subject to the following sinusoidal input:

u(t) = γ cos(2πξ0t+ ϕ0) (3.2)

with γ, ϕ0 ∈ R the amplitude and phase and ξ0 ∈ R>0 the frequency of the input

signal in [Hz]. If (3.1) is subject to (3.2), the output spectrum consists solely of higher

harmonics kξ0, k = 0, 1, 2, . . . of the input frequency, i.e.

y(t) =

P∑

p=1

αpγ
p cosp (2πξ0t+ ϕ0) =

P∑

k=0

Ak(γ) cos
(
2πkξ0t+ φk(ϕ0)) (3.3)

with Ak(γ), φk(ϕ0) ∈ R the amplitude and phase of the kth harmonic component.

Next, the power series in (3.3) is rewritten to the sum of sinusoids using the following

relationship (Gradshteyn and Ryzhik, 2000):

cos2n−σ (x) =
1

22n−1−σ

{

(1− σ)

(
2n

n

)

+
n−1∑

m=0

(
2n− σ

m

)

cos ((2(n−m)− σ)x)

}

(3.4)

with n ∈ N≥1, σ ∈ {0, 1} and the binomial coefficient such that ( a
b ) =

a!
b!(a−b)!

∀ a, b ∈
N, 0 ≤ b ≤ a and 0 otherwise. Applying (3.4) to each of the terms on the left hand
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side of (3.3) and taking the Fourier transform (1.4) yields::

FT{αpγ
p cosp (·)} = αpγ

p(1− σp)
n

22n

(
2n

n

)

δ(0) (3.5)

+
αpγ

p

22n−σp

n−1∑

m=0

(
2n− σp
m

)
(
cδ(ξ − dξ0) + c⋆δ(ξ + dξ0)

)

with δ(·) the Dirac delta function, σp = p mod 2, n = 1
2
(p+ σp), d = 2(n−m)− σp ∈

N≥1, c = eidϕ0 ∈ C and ⋆ the complex conjugate. Next, consider the contribution of all

polynomial terms to a spectral component Y (kξ0) by considering terms in (3.5) such

that d = 2(n −m) − σp = k, for each power p in (3.1). Summing these contributions

over all p yields the spectral components of the single sided spectrum Y (ξ) ∈ C at

harmonics kξ0 of the input frequency:

Y (0) =
P∑

p=1

(1− σp )

[

αp

(γ

2

)p
(

p
p
2

)
p

2

]

(3.6)

Y (kξ0) =

P∑

p=1

σpk

[

2αp

(γ

2

)p
(

p
p−k
2

)

eikϕ0

]

(3.7)

with k ∈ N≥1 and σp(k) defined in Theorem 3.1. This yields the main result of this

section: a generalized mapping from the system parameters and the properties of the

input signal to the output spectrum.

Theorem 3.1 (polynomial coefficients and output spectra).

Consider a static polynomial mapping (3.1), subject to a sinusoidal input (3.2). Then,

the single sided spectrum of the output y(t) is given by the following mapping RP 7→
CP+1, from the polynomial coefficients α to the single sided output spectrum Y (ξ):

Y = Φ(ϕ0) Ω Γ(γ)α (3.8)

where the different components are defined below.

• output spectrum (vector) Y ∈ CP+1: the output spectrum vector

Y = [Y (0) Y (ξ0) Y (2ξ0) . . . Y (P ξ0)]
T contains the nonzero spectral lines in

the output spectrum, at harmonics of the input frequency.

• input phase matrix Φ(ϕ0) ∈ C(P+1)×(P+1): the input phase matrix relates the

phase of the input signal to the output spectrum and is defined as Φk+1,k+1(ϕ0) =

eikϕ0, k = 0, 1, 2, . . . , P and 0 otherwise.

• input gain matrix Γ(γ) ∈ RP×P : the input gain matrix relates the amplitude

of the input signal to the output spectrum and is defined as Γp,p(γ) =
(
γ
2

)p
, p =

1, 2, . . . , P and 0 otherwise.
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• inter-harmonic gain matrix Ω ∈ R(P+1)×P : the inter-harmonics gain matrix

relates the spectral content of the input and output spectrum and is defined as:

Ω1,p = (1− σp)

(
p
p
2

)
p

2

Ωk+1,p = 2

(
p

p−k
2

)

σpk ∀ k ≤ p and k = 1, 2, . . . , P

and 0 otherwise. With σp = p mod 2, σk = k mod 2 and σpk = σpσk + (1 −
σp)(1− σk).

• polynomial coefficients α ∈ RP : the coefficient vector α = [α1 α2 . . . αP ]
T

contains the coefficients of the polynomial nonlinearity.

Proof. (3.8) follows from (3.6) - (3.7) by rewriting the sums to a matrix product.

Remark. Equation (3.8) can be interpreted as a generalized output frequency response

function (Lang et al., 2007) for static polynomial systems.

Theorem 3.1 allows numerically efficient computation of output spectra of a

class of nonlinear systems and provides insight into the mechanisms that generate these

spectra. The following example illustrates the application of the theorem.

Example 3.1 (output spectrum).

Consider a polynomial mapping (3.1), with P = 3 subject to (3.2).Then, Theorem 3.1

yields the corresponding output spectrum in terms of the system parameters and the

parameters of the input signal:

Y = Φ(ϕ0) Ω Γ(γ)α =








1 0 0 0

0 e1iϕ0 0 0

0 0 e2iϕ0 0

0 0 0 e3iϕ0















0 2 0

2 0 6

0 2 0

0 0 2













(
γ
2

)1
0 0

0
(
γ
2

)2
0

0 0
(
γ
2

)3






which in turn yields the output spectrum:

Y =








Y (0)

Y (ξ0)

Y (2ξ0)

Y (3ξ0)







=








A0(γ) e
iφ0(ϕ0)

A1(γ) e
iφ1(ϕ0)

A2(γ) e
iφ2(ϕ0)

A3(γ) e
iφ3(ϕ0)







=








1
2
α2γ

2

(
3
4
α3γ

3 + α1γ
)
e1iϕ0

1
2
α2γ

2e2iϕ0

1
4
α3γ

3e3iϕ0








Next, the results in Theorem 3.1 are extended to a class of block structured nonlinear

dynamical systems.

Analysis of Block Structured Nonlinear Systems

This section presents the analysis of a class of nonlinear systems called parallel Wiener

- Hammerstein systems with polynomial nonlinearities as, for example, discussed in

Giri and Bai (2010); Schoukens et al. (2011), which are defined as follows.
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Figure 3.1: LPL block structured system.

Definition 3.1 (LPL: block structures).

Consider an N-branch, block structured configuration as depicted in Figure 3.1. Each

branch consists of a series connection of an LTI block G−
n (ξ), a static nonlinear mapping

ρn and another LTI block G+
n (ξ). The system has one input u(t) ∈ R, one output

y(t) ∈ R and intermediate signals qn(t), rn(t) and sn(t). The nonlinearity ρn : R 7→ R

is a static, polynomial mapping of degree Pn:

ρn : rn(t) =

Pn∑

p=1

α[n]
p q

p
n(t) (3.9)

with α
[n]
p ∈ R. If G−

n (ξ) = 1 or G+
n (ξ) = 1 ∀ n ∈ N≥1, the remaining PL or LP system

equals a parallel Hammerstein or Wiener system with polynomial nonlinearities.

The output spectrum of an LPL systems, subject to (3.2), follows from Theorem

3.1. Consider the input u(t) as it passes through the first linear block G−
n (ξ). The

filtered signal qn(t) then serves as an input for the nonlinear block ρn, which yields the

corresponding output spectrum Rn.

Rn(ξ0, ϕ0) = Φ
(
ϕ0 + ∠G−

n (ξ0)
)
ΩΓ
(
γ|G−

n (ξ0)|
)
α

[n]

Next, each signal rn(t) is modified by the corresponding (second) linear block G+
n (ξ),

which yields the output spectrum of the nth branch:

Sn(ξ0, ϕ0) = ∆(ξ0)G
+
n (ξ)Φ

(
ϕ0 + ∠G−

n (ξ0)
)
ΩΓ
(
γ|G−

n (ξ0)|
)
α

[n] (3.10)

where ∆(ξ0) is defined in Lemma 3.1, which yields an analytic description of the output

spectrum of an LPL system.

Lemma 3.1 (spectrum of LPL systems).

Consider an LPL system subject to a sinusoidal input (3.2). Then, the output spectrum

of this system equals:

Y (ξ0, γ, ϕ0) =
N∑

n=1

∆(ξ0)G
+
n (ξ) Φ(∠G

−
n (ξ0)) ΩΓ(γ|G−

n (ξ0)|)α[n] (3.11)

with ∆(ξ0) = diag([δ(ξ−0) δ(ξ−ξ0) δ(ξ−2ξ0) . . . δ(ξ−Pnξ0)]) ∈ R(Pn+1)×(Pn+1) a dia-

gonal matrix of δ-functions, i.e. ∆(ξ0)Gn(ξ) = diag([G(0) G(ξ0) G(2ξ0) . . . G(Pnξ0)]).
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Proof. (3.11) follows from summation of (3.10) over all N branches.

Lemma 3.1 extends the results in Theorem 3.1 to LPL systems. Next, these results

are used to derive an analytical expression for the corresponding HOSIDFs.

Higher Order Sinusoidal Input Describing Functions

In Nuij et al. (2006) the output of a class of nonlinear systems, subject to a sinu-

soidal input (3.2) is considered. This output is composed of K harmonics of the input

frequency and is given by:

y(t) =
K∑

k=0

|Hk(ξ0, γ)|γk cos
(
k(2πξ0t + ϕ0) + ∠Hk(ξ0, γ)

)

where Hk(ξ0, γ) ∈ C is the kth order HOSIDF (Definition 2.8) which describes the

response (gain and phase) at harmonics of the excitation frequency ξ0. Using Definition

2.8 and Lemma 3.1 the HOSIDFs of LPL systems are analytically related to the system

and input signal parameters, i.e.

Lemma 3.2 (HOSIDFs of LPL systems).

Consider an LPL system subject to a sinusoidal input (3.2). Then, the HOSIDFs of

the system are given by:

H(ξ0, γ) = Υ−1

N∑

n=1

∆(ξ0)G
+
n (ξ)

[
Φ(∠G−

n (ξ0))ΩΓ(|G−
n (ξ0)|γ)α[n]

]
(3.12)

with H(ξ0, γ) = [H0(ξ0, γ) H1(ξ0, γ) H2(ξ0, γ) . . . Hmax
n

Pn
(ξ0, γ)]

T and the gain compen-

sation matrix such that Υk+1,k+1(γ) = γk, k = 0, 1, 2, . . . ,max
n

Pn and 0 otherwise.

Proof. see Appendix A.1.1

Remark. The results in Lemma 3.2 show that the HOSIDFs of LPL systems are

independent of the phase of the input signal.

Hence, using Theorem 3.1 the system parameters of LPL systems can be analytically

related to the input-output dynamics in the frequency domain as shown in Lemma 3.1

and Lemma 3.2. Moreover, for PL systems, a subclass of LPL systems, a set of ampli-

tude independent basis functions that fully describe the corresponding HOSIDFs exists.

These are referred to as the fundamental HOSIDF and allow to separate amplitude and

frequency effects in this describing function, i.e.

Definition 3.2 (Fp(ξ): fHOSIDFs of PL systems).

Consider a PL system subject to a sinusoidal input (3.2). Then, the Fundamental

Higher Order Sinusoidal Input Describing functions (fHOSIDF) Fp(ξ) ∈ C of a PL

are defined as:

Fp(ξ0) =

N∑

n=1

G+
n (ξ0)α

[n]
p (3.13)
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Figure 3.2: Two examples of LPL systems.

The fHOSIDFs as defined in (3.13) constitute a set of amplitude independent basis

functions for the HOSIDFs and provide decoupling of amplitude and frequency effects

as well, i.e.

H(ξ0, γ) =
[
Υ−1(γ)∆(ξ0) ΩΓ(γ)

]
F (ξ0)

where the fHOSIDFs are collected in F (ξ) = [F1(ξ0) F2(ξ0) . . . Fmax
n

Pn
(ξ0)]

T .

To conclude this section, two examples are provided illustrating the application

of the preceding results. First, an analytic expression for the output spectrum and the

HOSIDF for an LPL system is presented in Example 3.2. Secondly, Example 3.3

concludes this section by providing an analysis and visualization of the dynamics of a

PL system.

Example 3.2 (spectrum and HOSIDFs of LPL systems).

Consider the two branch LPL system depicted in Figure 3.2a, subject to (3.2). Appli-

cation of Lemma 3.1 yields the analytic expression for the output spectrum:

Y (ξ0, γ, ϕ0) = ∆(ξ0)G
+
1 (ξ)Φ(ϕ0) ΩΓ(γ)α[1] +∆(ξ0)Φ(ϕ0 + ∠G−

2 ) ΩΓ(γ|G−
2 |)α[2]

=








b2γ2

2
|G−

2 (ξ0)|2
γ
[(
a1 +

3
4
a3γ

2
)
G+

1 (ξ0) + b1G
−
2 (ξ0)

]
eiϕ0

b2γ2

2

[
G−

2 (ξ0)
]2
e2iϕ0

a3γ3

4
G+

1 (3ξ0) e3iϕ0








The corresponding HOSIDFs are computed using Lemma 3.2 and require neither com-

putation of the output spectrum, nor knowledge of the phase of the input signal, i.e.

H(ξ0, γ) =








H0(ξ0, γ)

H1(ξ0, γ)

H2(ξ0, γ)

H3(ξ0, γ)







=








b2γ2

2
|G−

2 (ξ0)|2[(
a1 +

3
4
a3γ

2
)
G+

1 (ξ0) + b1G
−
2 (ξ0)

]

b2
2

(
G−

2 (ξ0)
)2

a3
4
G+

1 (3ξ0)
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Example 3.3 (spectral analysis of PL systems).

Consider the PL system depicted in Figure 3.2b, which is an LPL system with N = 2,

α
[1] = [1 ε 1]T , α[2] = [1 1 ε]T and G−

n (ξ) = 1, n = 1, 2. First, Definition 3.2 is applied,

which yields analytic expressions for the fHOSIDFs of this system as given below:

F (ξ) =





F1(ξ)

F2(ξ)

F3(ξ)



 =





G+
1 (ξ) + G+

2 (ξ)

εG+
1 (ξ) + G+

2 (ξ)

G+
1 (ξ) + εG+

2 (ξ)



 (3.14)

The HOSIDFs of this system follow from Lemma 3.2 and Definition 3.2 and equal.

H(ξ, γ) =








γ2

2
F2(0)

F1(ξ) +
3γ2

4
F3(ξ)

1
2
F2(2ξ)

1
4
F3(3ξ)







=








γ2

2

(
εG+

1 (0) +G+
2 (0)

)

G+
1 (ξ) +G+

2 (ξ) +
3γ2

4

(
G+

1 (ξ) + εG+
2 (ξ)

)

1
2

(
εG+

1 (2ξ) +G+
2 (2ξ)

)

1
4

(
G+

1 (3ξ) + εG+
2 (3ξ)

)







(3.15)

Now, consider again the system depicted in Figure 3.2b, with ξ = 0 and define

G+
1 (ξ) as a bandpass filter, such that |G+

1 (ξ)| = 1 ∀ ξ ∈ f1 and 0 otherwise. Further-

more, define G+
2 (ξ) as a bandstop filter, such that |G+

2 (ξ)| = 0 ∀ ξ ∈ f2 and 1 otherwise.

Finally, define the sets f1 = [ξ−1 ξ+1 ], f2 = [ξ−2 ξ+2 ] and assume that the bandstop and

bandpass filters overlap.

First, consider the relation between the second and third (f)HOSIDFs, the LTI

dynamics and the polynomial nonlinearities in (3.14) - (3.15). Substituting ε = 0

yields that F2(ξ) = G+
2 (ξ) and F3(ξ) = G+

1 (ξ). The corresponding HOSIDFs H2(ξ),

H3(ξ) equal the same LTI dynamics, scaled in magnitude by appropriate constants

and contracted in ξ (Figure 3.3a). Second, consider the effect of the nonlinearities

on the first (f)HOSIDF. As all fHOSIDFs, F1(ξ) is an amplitude independent, linear

combination of the LTI dynamics as depicted in Figure 3.3b. Moreover, in this example

the second and third HOSIDF H2(ξ), H3(ξ) are independent of the excitation level as

well. However, (3.15) yields that H1(ξ) is amplitude dependent if G+
1 (ξ) 6= 0. This is

illustrated in Figure 3.3c where the amplitude dependency is present only for ξ ∈ f1.

Furthermore, note that the amplitude dependency |H1(ξ)| ∝ γ2, γ >> 1 which is

predicted by (3.15) can be observed from Figure 3.3c as well.

Hence, the third order term in ρ1 has two distinct effects on the systems dy-

namics, when analyzed in the frequency domain. First of all, harmonics are generated

according to a scaled bandpass filter that analytically relates to the corresponding LTI

dynamics. Second, an amplitude dependent response is observed at the base frequency

within the frequency range on which the original bandpass filter acts. Finally, similar

effects can be observed for the bandstop filter G+
2 (ξ) and the related HOSIDFs H0(ξ)

and H2(ξ).

The results presented in Theorem 3.1, Lemma 3.1 and Lemma 3.2 yield new,

efficient analytical tools that allow spectral analysis of the output of a class of nonlinear

systems. This provides insight in the dynamics of block structured dynamical systems
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Figure 3.3: LTI dynamics and (f)HOSIDFs of the system in Figure 3.2b.

and allows analytic description and analysis of the corresponding HOSIDFs. Given

the systems linear dynamics, the output spectra and HOSIDFs can be described as a

simple polynomial function, which is linear in the parameters defining the nonlinearity.

Moreover, these results allow to derive an analytical mapping between the HOSIDFs

and GFRFs (see Chapter 2) for a subclass of LPL systems. This analysis is presented

in the next section.

3.2 Uniquely Connecting Frequency Domain Representations

of Block Structured Nonlinear Systems

Although seemingly different approaches have been independently developed to analyze

and model nonlinear systems in the frequency domain, the differences and equivalences



46 Chapter 3. Frequency domain analysis of block structured nonlinear systems

u(t) y(t)
G− G+ρ : R 7→ R

q(t) r(t)

Figure 3.4: PWH system.

between alternative methods have not yet been established. In this section an explicit,

analytical relation between the GFRF and HOSIDF is established using the results de-

rived in Section 3.1. Apart from providing valuable insight in the mechanisms that ge-

nerate the HOSIDFs and GFRFs, these results allow to formalize statements on unique-

ness and equivalence of both model types. Finally, they yield a numerically efficient

analytical relation to compute the GFRF from the HOSIDFs and vice versa. First, con-

sider the following subclass of LPL systems, called polynomial Wiener-Hammerstein

systems, which is used throughout this section.

Definition 3.3 (PWH Systems).

Consider the system depicted in Figure 3.4, which consists of a series connection of an

LTI block G−(ξ), a static nonlinear mapping ρ : R 7→ R and another LTI block G+(ξ).

The system has one input u(t) ∈ R, one output y(t) and intermediate signals q(t)

and r(t). The nonlinearity ρ is a static, polynomial mapping of degree P , polynomial

coefficients αp ∈ R and p = 1, 2, . . . , P and is defined as:

ρ : r(t) =

P∑

p=1

αpq
p(t) (3.16)

Frequency Response Functions for Nonlinear Systems

In the following, two notions of frequency response functions for nonlinear systems are

considered: the GFRF (Definition 2.2) and the HOSIDF (Definition 2.8). The connec-

tion between these frequency domain representations for PWH systems is established

through their dependence on the model parameters. However, first consider the follo-

wing intermediate results that yield an analytic relation between the system parameters

and the GFRFs and HOSIDFs respectively. For PWH systems the relation between

the GFRF and the model parameters is presented in Shanmugam and Jong (1975), i.e.

Lemma 3.3 (GFRF of PWH systems).

Consider a PWH system as in Definition 3.3. Then the pth order GFRF Tp(̟p), as

in Definition 2.2, is given by:

Tp(̟p) = αp λp(̟p) (3.17)

λp(̟p) = G+

(
p
∑

ℓ=1

̟p[ℓ]

)
p
∏

ℓ=1

G− (̟p[ℓ]) (3.18)

where ̟p[ℓ] = ξℓ denotes the ℓ
th element of ̟p = (ξ1, ξ2, . . . , ξp).

Proof. see (Shanmugam and Jong, 1975)
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Next, consider a similar relation between the system parameters and the

HOSIDFs as follows from Theorem 3.1.

Corollary 3.1 (HOSIDFs of PWH systems).

Consider a PWH system as in Definition 3.3. Then, the corresponding HOSIDFs of

order one and above are given by:

H̆(ξ0, γ) = Ῠ−1(γ)∆̆(ξ0)G
+(ξ)

[

Φ̆(∠G−(ξ0)) Ω̆ Γ(|G−(ξ0)|γ)α
]

(3.19)

with H̆(ξ0, γ) = [H1(ξ0, γ) H2(ξ0, γ) . . . HP (ξ0, γ)]
T and Ω̆ = T TΩ, Φ̆(∠G−(ξ0)) =

T TΦ(∠G−(ξ0))T , ∆̆(ξ0) = T T∆(ξ0)T and Ῠ(γ) = T TΥ(γ)T . Where, the variables Ω,

Φ(·), ∆(·) and Υ(·) are defined in Theorem 3.1, Lemma 3.1 and Lemma 3.2. The

matrix T ∈ R
(P+1)×P is defined such that Tm,m−1 = 1 for m = 2, 3, . . . , P + 1 and 0

otherwise. Finally, Γ(γ) and α are defined as in Theorem 3.1.

Proof. Corollary 3.1 follows directly from Theorem 3.1.

Connecting the GFRF and HOSIDF

In the following, the GFRFs and HOSIDFs for PWH systems are explicitly related,

which constitutes the main result of this section. Hereto, consider a PWH system with

a polynomial nonlinearity (3.16) of degree P and known linear blocks G±(ξ). Then,

using Definition 2.2 and Lemma 3.3, define:

T = [T1(̟1) T2(̟2) . . . TP (̟P )]
T

Λ = diag([λ1(̟1) λ2(̟2) . . . λP (̟P )])

where T (̟1, ̟2, . . . , ̟P ) : R × R2 × · · · × RP 7→ CP contains the GFRFs up to

order P and Λ(̟1, ̟2, . . . , ̟P ) : R ×R2×· · ·×RP 7→ CP×P is a diagonal expansion

matrix containing the expansion terms λp(̟p), as in (4.6), that map the LTI dynamics

G±(ξ) and polynomial coefficients αp to the GFRFs Tp(̟p). Next, consider the sets

Wp ⊆ Rp, such that:

Wp =

{

(ξ1, . . . , ξp) ∈ R
p

∣
∣
∣
∣
∣
G+

(
p
∑

ℓ=1

ξℓ

)

6= 0 and G− (ξℓ) 6= 0

}

and define W = W1 × W2 × · · · × WP and ̟P = {̟1, ̟2, . . . , ̟P}. The first step

in connecting the GFRF and HOSIDF is to relate the polynomial coefficients to the

GFRF, see also Lemma 3.3.

Lemma 3.4 (polynomial coefficients & GFRF).

Consider a PWH system. If and only if ̟P ∈ W, then the following bijective

mapping RP 7→ CP from the polynomial coefficients to the GFRF exists:

T (̟P ) = Λ(̟P )α (3.20)
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Proof. see Appendix A.1.2

Next, considering Corollary 3.1 and Lemma 3.4 and substitution of the inverse of (3.20)

in (3.19) yields a mapping from the GFRFs to the corresponding HOSIDFs and vice

versa.

Theorem 3.2 (connecting the GFRF and HOSIDF).

Consider a PWH system as in Definition 3.3. If and only if,

1. ̟P ∈ W;

2. ξ0 ∈ R>0;

3. γ 6= 0,

then, the GFRFs and HOSIDFs of a PWH system are uniquely related by the following

bijective mapping CP 7→ CP :

H̆(ξ0, γ) = R̆ (̟P , ξ0, γ)T (̟P , ξ0, γ) (3.21)

with

R̆ (̟P , ξ0, γ) = Ῠ−1(γ)∆̆(ξ0)G
+(ξ)Φ̆(∠G−(ξ0))Ω̆Γ(|G−(ξ0)|γ)Λ−1(̟P ) (3.22)

and where the parameters in (3.21) are defined in Corollary 3.1.

Proof. see Appendix A.1.3

Remark. Although violation of conditions 1-3 implies that (3.21) is not unique, this

does not imply that the GFRFs cannot be otherwise identified.

Although (3.21) can be viewed in an identification setting, the fact that the LTI dy-

namics are assumed to be known, limits the applicability of these results for system

identification. However, the results from Theorem 3.2 yield results on the properties

of the HOSIDF and GFRF for linear systems.

Lemma 3.5 (GFRF and HOSIDF for Linear Systems).

Consider a PWH system and assume conditions 1-3 in Theorem 3.2 are satisfied.

Then the following statements are equivalent:

1. The system is linear.

2. Only the first HOSIDF is nonzero, i.e. Hk = 0 ∀ k 6= 1.

3. Only the first GFRF is nonzero, i.e. Tp = 0 ∀ p 6= 1.

Proof. see Appendix A.1.4.

Theorem 3.2 yields the first connection between the GFRF and HOSIDF.

Moreover, it yields clear insight in the mechanism that generates the GFRFs from the

HOSIDFs and vice versa. Next, a numerical example is provided that illustrates the

application of these results.
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u(t) y(t)
lowpass plant

nonlinear amplifier

Figure 3.5: Example of PWH system representing a nonlinear amplifier driving an LTI plant.

Example 3.4 (analysis of a nonlinear amplifier).

When supplying an excitation signal to an electromechanical system, the signal is often

amplified to reach a sufficient level of excitation. Ideally, the amplifier used to drive

the system is linear. However, in practice many amplifiers suffer from nonlinear effects

such as saturation.

Consider a simplified model of a saturating amplifier driving a fourth order li-

near, time invariant mechanical plant. Such system fits the structure of a PWH system

as depicted in Figure 3.5. The dynamics of the amplifier are modeled by a low-pass

characteristic and a static polynomial nonlinearity is used to model the nonlinear sa-

turation effect. Next, suppose the static polynomial nonlinearity is unknown, but the

linear dynamics G±(s) , G±(2πiξ) are known and given by:

G−(s) =
10000

s2 + 2513s+ 1.579 · 106 G+(s) =
750000s2 + 1.875 · 106s+ 3.75 · 108
s4 + 7.8s3 + 1601s2 + 400s+ 50000

Next, Theorem 3.2 is applied to compute the GFRFs from the HOSIDFs. The

required HOSIDFs H(ξ0, γ) are identified at a single frequency amplitude combination

by exciting the system in Figure 3.5 with a sinusoidal input with amplitude γ = 1 and

frequency ξ0 = 10 [Hz]. Both the excitation signal and the response are depicted in

Figure 3.6a. These results reveal that the response contains second and third harmonics

of the input signal and a DC term. Hence, as an approximation, the first three GFRFs

are selected to model the systems dynamics.

To compute the GFRFs, the results from Theorem 3.2 are applied which re-

quires the identification of the first three HOSIDFs at a single frequency, amplitude

combination. From the simulation depicted in Figure 3.6a, these are readily computed

using Definition 2.8 and equal:

Ȟ(ξ0 = 10, γ = 1) =





H1(10, 1)

H2(10, 1)

H3(10, 1)



 =





−1.7− 0.1i

−1.0 · 10−4 + 1.5 · 10−5i

−6.6 · 10−7 + 1.8 · 10−7i





Next, by application of (3.21) the corresponding GFRFs are computed for a

range of frequencies as depicted in Figures 3.6b - 3.6d. By application of the results in

Shanmugam and Jong (1975), these results are compared to the exact GFRFs, which

yields that the results are very close to the true value. The corresponding first and third

HOSIDFs are depicted in Figure 3.6e - 3.6f for comparison.
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Conclusions

New, efficient analytical tools and results are presented that allow spectral analysis of

the output of a class of nonlinear systems. This provides insight in the dynamics of

block structured dynamical systems and allows analytic description and analysis of the

corresponding HOSIDFs. Given the systems linear dynamics, the output spectra and

HOSIDFs can be described as a simple polynomial function of the parameters defining

the nonlinearity.

Moreover, using the preceding results, a novel connection is presented between

the GFRF and HOSIDF, which both model the dynamics of nonlinear systems in the

frequency domain. An explicit analytical relation between these models is derived for

polynomial Wiener-Hammerstein systems and necessary and sufficient conditions are

derived for this bijective mapping to exist. Moreover, properties of the GFRFs and

HOSIDFs for linear and time invariant systems are presented. This analysis yields clear

insight into the mechanisms that generate the GFRFs and HOSIDFs and provides a

numerically efficient method to compute the GFRFs from the HOSIDFs and vice versa.
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Figure 3.6: The systems response, the GFRF and the HOSIDF.





Chapter 4

Frequency Domain Based Nonlinearity

Detection and Compensation

in Lur’e Systems†

Nonlinearities can lead to performance degradation in controlled dynamical systems.

This chapter provides a new, frequency domain based method, for detection and op-

timal compensation of performance degrading nonlinear effects in Lur’e-type systems.

It is shown that for Lur’e-type, systems a sinusoidal response to a sinusoidal input is

necessary and sufficient to show the existence of an equivalent linear time invariant

dynamical model that fully captures the systems dynamics for a well defined set of

input signals and initial conditions. This allows to quantify nonlinear effects using a

frequency domain performance measure and yields a novel method to design optimized

static compensator structures that minimize performance degrading nonlinear effects.

The theoretical results are accompanied by examples illustrating their application.

For Linear and Time Invariant (LTI) controlled dynamical systems, perfor-

mance is often assessed and optimized using a frequency domain representation of the

dynamics. The application of frequency domain methods has led to significant progress

in linear control design (Bode, 1945). However, most frequency domain methods fail

to capture nonlinear phenomena and the notion of performance is generally nontrivial

to define for nonlinear systems. The results presented in this chapter, however, yield

that, for a class of nonlinear systems, frequency domain analysis provides a clear and

well defined notion of performance as well as means to optimize this performance.

When assessing and optimizing the performance of controlled nonlinear sys-

tems, frequency domain methods have been shown to be applicable in for example

Jing et al. (2008c, 2010), where the Volterra series based GFRF is applied to optimally

†The results presented in this chapter are published in: D. Rijlaarsdam, A. Setiadi, P. Nuij, J.

Schoukens and M. Steinbuch, Frequency domain based nonlinearity detection and compensation in

Lur’e systems, submitted, under review
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utilize nonlinear effects to attain a user defined output spectrum. This is done as

well in Nuij et al. (2008c) by application of a describing function approach. Finally,

in van de Wouw et al. (2008); van de Wouw and Pavlov (2008); Heertjes et al. (2010)

convergence based control design is applied to optimize performance of motion systems

with nonlinearities in the feedback loop.

Whether or not a frequency domain model of a system is available or even

exists, a frequency domain based analysis of the input-output (i/o) behavior can still

yield valuable information about nonlinear effects. This is discussed both in this chap-

ter and in Chapter 5 where an industrial case study is considered. In the sequel,

frequency domain analysis of Lur’e-type systems is shown to yield a well defined per-

formance measure. These results are applied to design static compensator structures

that optimally compensate the performance degrading effects of nonlinearities.

First, in Section 4.1 so called Lur’e type systems are analyzed which yields a

frequency domain performance measure that is applied to optimize the performance

of these nonlinear systems. These results are then illustrated by practical examples in

Section 4.2. Finally, Section 4.3 presents conclusions.

4.1 Frequency Domain Based Performance

The following presents a frequency domain analysis of Lur’e-type systems. Lur’e-type

systems include a variety of practically relevant phenomena such as friction, saturation

in feedback loops, gravitational effects in rotating dynamics and the nonlinear effect of

magnetic and electric fields. First of all, the analysis presented in this chapter yields a

well defined notion of performance of such systems. Secondly, further analysis reveals

that this yields means to optimize this performance by designing optimal nonlinear

compensators as well.

In the following, the class of Lur’e-type systems is defined and sufficient con-

ditions for convergence of this type of systems are provided. Next, it is shown that,

under mild assumptions, a sinusoidal response to a sinusoidal input is necessary and

sufficient to show there exists a linear and time invariant model that fully captures the

dynamics of nonlinear Lur’e-type systems for a well-defined set of inputs and initial

conditions. Finally, these results are applied to develop a methodology to detect, quan-

tify and ultimately compensate performance degrading nonlinear effects by the design

of optimized nonlinear compensators.

Analysis of Lur’e-type Systems

Lur’e systems comprise a large set of nonlinear systems consisting of interconnected

linear and nonlinear components Khalil (2002). In the following nonlinear systems

consisting of a multi input, multi output LTI component and a single input, single

output static nonlinear component in feedback are considered. These are defined as

follows:
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w(t)

u(t)

y1(t)

y2(t)

−φ(y2)

ΣLTI

Figure 4.1: Lur’e-type system.

Definition 4.1 (Lur’e-type systems).

Consider the Lur’e-type system depicted in Figure 4.1 such that:

ẋ(t) = Ax(t) +Buu(t) +Bww(t) x(t0) = x0
[
y1(t)

y2(t)

]

=

[
C1

C2

]

x(t) +

[
D1,w D1,u

D2,w D2,u

] [
w(t)

u(t)

]

(4.1)

u(t) = −φ(y2(t))

with w ∈ Bp an external input, y1(t), y2(t) ∈ R the outputs and x(t) ∈ R
n the states

of the system. Furthermore, A ∈ Rn×n, Bu ∈ Rn×1, Bw ∈ Rn×1, Cℓ ∈ R1×n and

Dℓ,u/w ∈ R, ℓ = 1, 2 constitute a state space representation (4.1) of the dynamics and

u(t) ∈ R is a nonlinear feedback generated by a static nonlinear mapping φ : R 7→ R.

To assure existence, uniqueness and stability of the solutions of (4.1), the

class of uniformly convergent (Definition 2.3) Lur’e-type systems is considered. To this

end, consider the following sufficient condition for uniform convergence of Lur’e-type

systems which follows from Yakubovich (1964); Khalil (2002); Pavlov et al. (2006);

van de Wouw et al. (2008).

Lemma 4.1 (convergence of Lur’e-type systems).

Consider a Lur’e-type system according to Definition 4.1 with input w ∈ Bp. Then,

the system is uniformly convergent (Definition 2.3) with respect to the class of piecewise

continuous signals Bp if there exists a ϑ ∈ R>0 such that:

1. A is Hurwitz;

2. ℜ{C2(2πiξI − A)−1Bu +D2,u} > − 1
ϑ
∀ ξ ∈ R;

3. 0 ≤ φ(y2)−φ(y1)
y2−y1

≤ ϑ ∀ y1, y2 ∈ R;

4. u = −φ(C2x + D2,uu + D2,ww) has a unique solution for every x and w in the

domain of interest.
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For uniformly convergent Lur’e-type systems it is possible to detect nonlinear

effects and design an optimal compensator to minimize performance degrading nonli-

near effects based on frequency domain analysis of the output spectrum. This method

is discussed in the following and aims to linearize the systems dynamics by attaining

a sinusoidal response to a sinusoidal input. To proof that such analysis indeed yields

optimal compensation of the nonlinearity consider the following theorem. This theo-

rem shows that the existence of a sinusoidal response to a sinusoidal input is necessary

and sufficient to show the existence of an LTI model that captures the full dynamics

of the Lur’e-type system, for a well defined class of inputs and initial conditions, i.e.

Theorem 4.1 (linearity of Lur’e-type systems).

Consider a Lur’e-type system according to Definition 4.1 with input w(t), outputs

y1(t), y2(t) and states x(t). Next, let w ∈ Sξ0 be a sinusoidal input with frequency ξ0,

let υ ∈ R>0 and assume that the following holds:

A1 : the system is uniformly convergent with respect to the class of sinusoidal

input signals S;

A2 : the steady state outputs ȳ1,w(t) and ȳ2,w(t) are nonzero for some sinusoidal

input w ∈ Sξ0;

A3 : |Cℓ(2πiξ − A)−1Bu +Dℓ,u)| 6= 0 ∀ ξ ∈ R, ℓ = 1, 2.

Then, the following statements are equivalent:

S1 : ȳ1,w ∈ Sξ0.

S2 : ȳ2,w ∈ Sξ0 with amplitude υ.

S3 : there exist Ã ∈ Rn×n, B̃ ∈ Rn×1, C̃ ∈ R2×n and D̃ ∈ R2×1 that constitute an

LTI state space realization:

˙̃x(t) = Ãx̃(t) + B̃w(t) x̃(t0) = x0

ỹ(t) = C̃x̃(t) + D̃w(t)
(4.2)

such that (4.2) is equivalent to (4.1), in the sense that for all

(x0, w) ∈
{
(x0, w) ∈ R

n × Bp

∣
∣‖y2(t)‖∞ ≤ υ

}

the solution and output of (4.1) and (4.2) satisfy x(t) = x̃(t) and y(t) = ỹ(t)

for all t ∈ R≥t0.

(proof: Appendix A.2.1)

Remark. The results in Theorem 4.1 indicate that using a sinusoidal input allows to

conclusively assess the ’local linearity’ of the systems dynamics from output measure-

ments only. This allows to detect nonlinear effects without requiring a priori knowledge

about the systems dynamics and provides a stepping stone towards compensation of

performance degrading nonlinear effects by linearization based on output measure-

ments.
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Remark. The results in Theorem 4.1 are not dependent on the dimensions of the LTI

dynamics, which allows for the analysis of complex linear models subject to a static

nonlinearity.

Remark. Note that S3 relates the input and initial conditions to the norm of the out-

put. Such condition is both feasible and useful in many applications, such as controlled

systems with a nonlinearity in the feedback loop or systems where the nonlinearity

relates to property that is physically constrained (examples of both are provided in

Section 4.2).

Loosely speaking, Theorem 4.1 states that only if a sinusoidal input yields a

sinusoidal output at either output of a Lur’e-type system, the system behaves linearly

in a given subset of state space. First of all, this allows to detect nonlinearities based

on the output spectrum of either y1(t) or y2(t). Hence, even if y2(t) is not available, this

yields a tool to detect nonlinear effects, but compensation of these effects is generally

difficult as the level υ, at which the nonlinearity is excited, is unknown. Although

compensator design is possible in this case if nonlinear effects only occur at y2(t) = 0,

the (level of the) signal y2(t) is generally required to design meaningful compensators.

In the next section a methodology is developed to design optimal static compensators

that minimize nonlinear effects in Lur’e-type systems based on Theorem 4.1.

Performance Optimization by Linearization

Although existing nonlinearities may be utilized (Jing et al., 2010) or even added to

the control loop (van de Wouw et al., 2008; Heertjes et al., 2010) to optimize the per-

formance of nonlinear systems, such effects often yield performance degrading effects.

In motion systems, for example, nonlinear friction is a common performance degrading

factor and nonlinearities in amplifiers and linear motors lead to performance reduction

in high-end applications. To counteract such effects, optimal (nonlinear) compensation

is required.

In this section the results from Theorem 4.1 are used to design optimized

static nonlinear compensators for Lur’e type systems. By subjecting the system to

a sinusoidal input and optimizing the compensator structure to attain a sinusoidal

output, the nonlinearity is optimally compensated (see Definition 4.2). As all systems

for which Theorem 4.1 is valid are uniformly convergent, the output of such system is

periodic with the same period as the input (Pavlov et al., 2006). When such systems are

subject to a sinusoidal input, nonlinear effects will therefore only appear in the output

spectrum at harmonics of the input frequency. Hence, by application of Theorem 4.1

optimal linearization can be achieved by minimizing these harmonic components and

as such attaining a sinusoidal response to a sinusoidal input. Therefore, a performance

cost is proposed that measures the spectral content at harmonic lines relative to that at

the excitation frequency. This leads to the following, frequency domain based, notion

of performance.



58 Chapter 4. Frequency domain based nonlinearity detection and compensation

Definition 4.2 (optimal performance).

Consider a Lur’e-type system such that assumptions A1-A3 in Theorem 4.1 are satisfied

and assume the dynamics depend on a set of (controller) parameters κ ∈ R
nκ. Now, let

w ∈ Sξ0 be a sinusoidal input with frequency ξ0 and consider the corresponding single

sided spectrum of the steady state outputs ȳℓ,w(t), ℓ = 1, 2, denoted by Ȳℓ,w(ξ) ∈ C.

Then, the performance of the system is defined by the following frequency domain based

cost function:

ℵ(κ) = 1

K

√
√
√
√
√

K∑

k=0
k 6=1

|Ȳℓ,w(kξ0, κ)|2
|Ȳℓ,w(ξ0, κ)|2

(4.3)

where K is the number of harmonic lines included in the cost function. The perfor-

mance defined in (4.3) is said to be optimal for a parameter set κ⋆ if:

κ⋆ = arg min
κ

ℵ(κ) (4.4)

Remark. Theorem 4.1 and Definition 4.2 show that a sinusoidal input of arbitrary

frequency allows to optimally compensate nonlinear effects while the resulting com-

pensation is valid for arbitrary input signals.

Remark. Although Theorem 4.1 implies that if ℵ(κ⋆) = 0 the system is fully line-

arized over a given subset of state space, the optimization in (4.4) may result in an

optimal parameter set such that ℵ(κ⋆) 6= 0. As the cost function value depends on

the characteristics of the LTI dynamics as well as the nonlinearity, a lower value of

the cost function does not necessarily correspond to an improved linearization of the

static nonlinearity. For example, in systems with strong filtering properties, harmonic

content may be attenuated resulting in a decrease in the performance cost function

although the static nonlinearity is not further linearized. However, in the case studies

considered in this thesis, the influence of the LTI dynamics was not found to signifi-

cantly influence the result of the optimization. In cases where the LTI characteristics

are expected to influence the optimization, this may be taken into account when select-

ing the frequency of the excitation signal. However, in general the analysis of nonzero

cost function values is recommended for future research.

Remark. The definition of optimal performance as in Definition 4.2 can be based on

either output of the system. In most cases, the output driving the nonlinearity y2(t)

is required to design meaningful compensators as the level at which the nonlinearity

is excited is required to assess the range of validity of the compensator. In special

cases, however, other outputs may be used to compute the performance measure as

well. Examples of such cases include friction and cases where the excitation level of the

nonlinearity is known but alternative outputs are better suited for optimization (see

the examples in the following and in Chapter 5).

Remark. Note that when applying Definition 4.2 in practice, only statistically relevant

harmonic lines should be included in (4.3). A statistical test is therefore required to

distinguish between relevant harmonics and measurement noise (see Section 5.1).
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Figure 4.2: Compensator configurations for Lur’e-type systems.

In addition to the notion of optimal performance in Definition 4.2, both the

compensator structure and configuration need to be selected. In this chapter, static

cascade and parallel compensator configurations are considered as depicted in Figure

4.2. These configurations imply that the output driving the nonlinearity is known

and the control input either acts directly on the input of the nonlinearity (cascade) or

on the same input of the system as the nonlinearity (parallel). Although, additional

requirements on, or knowledge about the LTI dynamics may be used to design com-

pensators based on alternative outputs acting on different inputs of the system, this is

not considered in this work.

In general the static compensators can be constructed from an arbitrary set of

basis functions. For numerical conditioning it is however recommended to use orthogo-

nal basis functions and polynomial functions may be preferred from an implementation

point of view. The static compensators used in the following are based on Chebyshev

polynomials. It is expected that the orthogonality of these polynomials will improve

numerical conditioning of the optimization problem. However, the orthogonality con-

ditions for these basis functions where not checked in detail and they should therefore

be used with care. The compensators are defined as follows.

Definition 4.3 (Chebyshev based compensator structure).

Consider a Lur’e-type system as in Definition 4.1 and a static compensator χ : R 7→ R

in a cascade or parallel configuration as depicted in Figure 4.2. Next, the compensator

χ is selected to be of polynomial form such that it can be constructed from Chebyshev

polynomials, i.e.

χ(ν) =

N∑

n=0

βnTn(ν) = λν +

N∑

n=0
n≥2

bnν
n ν ∈ R (4.5)
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where κ = {β1, β2, . . . , βN} ∈ R as in Definition 4.2 and Tn(ν) is the nth Chebyshev

polynomial of the first kind, which is defined as follows:

T0(ν) = 1 T1(ν) = ν Tn+1(ν) = 2νTn(ν)− Tn−1(ν)

Finally, bn ∈ R follows from βn and the coefficients of the Chebyshev polynomials and

λ equals the gain of the linear feedthrough of χ .

Although Definition 4.3 yields a well defined compensator structure, (4.5) is

over-parameterized in the sense of Definition 4.2 as any compensator χ yielding a

linear feedback in Figure 4.2 minimizes (4.3). Hence, a constraint is required to arrive

at a unique solution. This constraint can be selected by the user, depending on the

requirement on the compensated system, i.e. the required linear feedback gain after

compensation.

To arrive at a set of applicable constraints, consider the cascade and parallel

compensator configurations depicted in Figure 4.2 and the Chebyshev based compen-

sator structure as in (4.5). Then, it follows that λ in (4.5) equals:

λ =

floor(N/2)
∑

m=1

(−1)m+1 (2m− 1)β2m−1 (4.6)

Furthermore, for any Lur’e-type system, the nonlinearity can be written as φ(ν) =

ρν + fφ(ν) with ρ ∈ R and ∂fφ/∂ν|ν=0 = 0. This yields the following constraints on

the parametrization of χ and the resulting linear feedback gain, after optimization of

the compensator.

Table 4.1: Constraint on parametrization of the compensator χ and the resulting linear feedback gain

after compensation, (with α ∈ R and derivations presented in Appendix A.2.2).

constraint feedback gain

cascade compensation λ = α −αρ
parallel compensation λ = α α− ρ

The constraints in Table 4.1 allow to select the appropriate compensator be-

havior without prior knowledge of the nonlinearity. The application of these results is

illustrated by two examples in the next section.

4.2 Numerical Examples

To illustrate the preceding results, two examples are presented in this section. The

examples focus on the practical application of the performance optimization discussed

in Section 4.1. First, optimal compensation of a nonlinear magnetic field is discussed

to illustrate the application of the methodology in, for example, linear drives. Second,

a case study of a saturating amplifier is considered and it is shown that the linear ope-

rating range of such amplifier can be extended by application of the method introduced

in Section 4.1.
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Figure 4.3: Schematic depiction of a mass subject to a nonlinear magnetic field and the corresponding

representation in Lur’e form.

Linearization of a Magnetic Field

In many high tech applications, such as waferscanners and maglev applications, mag-

netic drives are used as actuators. The magnetic field in such systems depends nonli-

nearly on the distance between the magnet and the object to be actuated. To this end,

consider the simplified case of a mass interacting with a nonlinear magnetic field as

depicted in Figure 4.3. In this case study the aim is to minimize the nonlinear influence

of the magnetic field.

The system depicted in Figure 4.3a consists of a mass m with corresponding

limited displacement y(t) ∈ (−ηδ ηδ), η ∈ (0 1). The mass is connected to a linear

spring with stiffness k and a damper b and the system is subject to a linear feedback

control force fc, that aims to track a reference signal w(t). Moreover, the nonlinear
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magnetic field exerts a force Fm on the mass that varies nonlinearly with the position

of the mass such that:

Fm(y) =
1

α0 + α1y + α2y2

where the parameters αk ∈ R are selected such that Fm(y) is monotonically decreasing.

Next, consider the alternative representation in Lur’e form as depicted in Figure 4.3b,

where −φ(y) = Fm(y) and define

G(ξ) =
K

−4(πξ)2 + 4iπζωnξ + ω2
n

(4.7)

C(ξ) = Kp + 2iπKdξ (4.8)

with ωn =
√

k
m
, ζ = b

2km
the natural frequency and dimensionless damping of the mass-

spring-damper system and Kp, Kd ∈ R the parameters of the Proportional-Differential

(PD) controller. The parameters of the PD controller are selected arbitrarily, while

the static nonlinear block χ is defined as in Definition 4.3 and remains to be designed

in the remainder of this example. Finally, the parameters used in the simulations are

summarized in Table 4.2.

Table 4.2: Parameters of the system depicted in Figure 4.3

parameter value parameter value parameter value

ωn 100 Kp 300 α0 0.151

ζ 5 Kd 0.1 α1 0.102

K 100 δ 1 α2 0.001

η 0.75

Analysis

Prior to applying the method discussed in Section 4.1, the assumptions in Theorem 4.1

need to be verified. First of all, application of Lemma 4.1 yields that for ‖y(t)‖∞ < δ

the system in Figure 4.3 is uniformly convergent for χ(y) = 0 and for the parameters

presented in Table 4.2. Hence, A1 is satisfied. Moreover, as
∣
∣
∣

G(ξ)
1+C(ξ)G(ξ)

∣
∣
∣ 6= 0 ∀ ξ ∈ R,

assumption A3 in Theorem 4.1 is satisfied. Finally, simulations yield a nonzero response

to sinusoidal inputs, which implies A2 is satisfied. Hence, Theorem 4.1 applies and the

method discussed in Section 4.1 can be applied to optimally design the compensator.

Optimization and Results

To minimize the nonlinear effect of the magnetic field, the performance of the system is

optimized in the sense of Definition 4.2 by exciting the system with a sinusoidal signal

w ∈ S with frequency 2 [Hz], such that ‖y(t)‖∞ = ηδ. The selection of the excitation

frequency is arbitrary as long as the nonlinearity is excited at a sufficiently high level,

i.e. ‖y(t)‖∞ = ηδ. Next, an optimal compensator is designed as in Definition 4.3. As

the input to the nonlinearity cannot be directly controlled, compensation in a parallel
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sator and resulting gain after linearization.

Figure 4.4: Comparison between uncompensated and optimally compensated nonlinear magnetic field.

configuration is applied as in (Figure 4.2b). Moreover, as the system has only one

output, the performance cost as in Definition 4.2 is necessarily based on this output

as well. Finally, since the influence of the magnetic field is to be linearized, but not

otherwise changed, the constraint on the parametrization of χ is selected to λ = 0

(Table 4.1).

The optimization (4.4) is performed in Matlab. The compensator is con-

structed using Chebyshev polynomials up to order 10 and the input to the compensator

is scaled by 1
2δ

to improve numerical conditioning of the optimization problem. More-

over, initial conditions were selected to equal βk = 0 ∀ k = 0, 1, 2, . . . , 10 which corre-

sponds to the physical case of the uncompensated situation. In repeated simulations

random initial conditions in the interval [−1 1] yielded the same optimum as the zero

initial conditions, but larger initial conditions are found to converge to local minima.

This non-convex behavior of the cost function is recommended for future research and

the initial conditions are based on the physical case of the uncompensated system in

the sequel.

The results of the optimization are depicted in Figure 4.4. Figure 4.4a shows

that the harmonic components present in the output due to the nonlinearity in the

magnetic field are reduced significantly by the application of the optimized compen-

sator. Moreover, the original nonlinearity and the optimal compensator are depicted

in Figure 4.4b. As λ = 0 the linear feedback gain resulting from the application of

χ equals ρ = −∂φ/∂y|y=0. Hence, by application of the algorithm in Section 4.1,

the nonlinear effect of the magnetic field has been significantly reduced, yielding an

optimized performance by linearization of the systems dynamics.
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Figure 4.5: Hammerstein system with linear output feedback (in Lur’e form).

Detection and Compensation of Saturation Nonlinearities

In many practical applications, amplifiers are used to convert low power control signals

to the high power signals that drive the plant. Although most amplifiers are designed

to provide linear amplification in their operating range, nonlinear effects appear at

the boundaries of the operating range when the amplifier starts to saturate. In this

example the aim is to extend the linear operating range by optimally compensating

these nonlinear effects.

Consider the Hammerstein structure with linear feedback as depicted in Figure

4.5. The system consists of a mass-spring-damper system modeled by the transfer

function G(ξ) and a PD controller with arbitrarily selected parameters, denoted by

C(ξ) as in (4.7)-(4.8). Moreover, χ is a static nonlinear compensator that is to be

designed to optimize the performance of the system. The saturation nonlinearity is a

smooth nonlinearity as depicted in Figure 4.6a (solid grey line). The amplifier has a

linear gain of ρ for |y2| < δ and saturates smoothly towards a maximum output of ̺ at

y2 ≥ ∆. Finally, the parameters used in the simulations are summarized in table 4.3.

Table 4.3: Parameters of the system depicted in Figure 4.5

parameter value parameter value parameter value

ωn 125.7 Kp 1 δ 1.8

ζ 0.9 Kd 0.01 ∆ 2.4

K 100 ρ 100 ̺ 216

Analysis

In order to verify if Theorem 4.1 is applicable, Lemma 4.1 is applied. This yields that

the system in Figure 4.5 is uniformly convergent for χ(y2) = 1, such that assumption

A1 in Theorem 4.1 is satisfied. Moreover, as |G(ξ)| 6= 0 and |C(ξ)G(ξ)| 6= 0 ∀ ξ ∈ R
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Figure 4.6: Comparison between uncompensated and optimally compensated saturation nonlinearity.

assumption A3 is satisfied as well. Moreover, simulations yield nonzero response to

sinusoidal inputs, which implies A2 is satisfied. Hence, Theorem 4.1 applies and the

method discussed in Section 4.1 can be applied to optimally design the compensator.

Optimization and Results

To optimally compensate the nonlinear ’tails’ of the saturation nonlinearity, the perfor-

mance of the system is optimized in the sense of Definition 4.2 by exciting the system

with a sinusoidal signal w ∈ S with a frequency of 2 [Hz] and an amplitude of 3.71

such that ‖y2(t)‖∞ = ∆. The optimization of the performance cost function (4.3) is

performed using the output spectrum of y1(t). Hence, as the level of excitation of

the nonlinearity is known (∆), alternative (easier available) outputs can be used for

performance optimization. The system configuration in this case calls for a cascade

compensation configuration as the user is most likely to have access to the controller
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output for modification. Finally, the remaining gain after compensation is required

to be nonzero to retain a meaningful closed loop structure. In order to extend the

linear operating range of the amplifier to ∆ within the saturation limits, the remaining

linear gain should be less than ρ. This is selected to be 90% and the constraint on the

parametrization of χ is therefore set to λ = 0.9 (see in Table 4.1).

The optimization of (4.4) is again performed in Matlab. The compensator is

constructed using the first 10 odd Chebyshev functions as the saturation nonlinearity

is symmetric. Moreover, the input of the compensator is scaled by 1
∆

to improve the

numerical conditioning of the optimization problem. Initial conditions were selected

to equal βk = 0 ∀ k = 3, 5, . . . , 19 and β1 = 1, which corresponds to the physical case

of the uncompensated situation. In repeated simulations random initial conditions in

the interval [−1 1] yielded the same optimum as the initial conditions corresponding to

the uncompensated system, but larger initial conditions may converge to local minima.

This non-convex behavior of the cost function is recommended for future research and

the initial conditions are based on the physical case of the uncompensated system in

the sequel.

Figure 4.6 shows the results of the optimization. As depicted in figure 4.6b,

detection of nonlinear effects is based on y1, which yields a significant decrease in spec-

tral content at harmonics of the excitation frequency. Figure 4.6a shows the original

saturation nonlinearity, the corresponding compensator and the linearized dynamics.

Moreover, Figure 4.6c shows how the value of the cost function depends on the max-

imum value of the controller output y2. In the uncompensated situation the cost

function clearly indicates the increased effects of the nonlinearity for ‖y2(t)‖ > δ. On

the other hand, after optimization hardly any nonlinear effect is observed. However,

the zoomed window indicates that the compensator causes some nonlinear influences

to appear in the region where the amplifier was originally linear. Summarizing, op-

timal compensator design yields an increased linear operating range of the amplifier,

but also yields a decrease in gain as well as small nonlinear effects in the region where

the amplifier is originally linear.

4.3 Conclusions

A novel, frequency domain based method to quantify and optimize the performance

of Lur’e-type systems is presented. It is shown that, under mild conditions, a sinu-

soidal response to a sinusoidal input is necessary and sufficient to show the existence

of an equivalent linear time invariant dynamical model that fully captures the systems

dynamics for a well defined set of input signals and initial conditions. The preceding

results yield a novel method to detect and compensate performance degrading effects

of nonlinearities. Although the analysis focuses on convergent Lur’e-type systems, the

assessment of nonlinearities based on spectral information is expected to be applicable

to a wider class of convergent systems. Moreover, similar methods have been shown

to yield significant performance improvement for non-convergent systems as well as



4.3. Conclusions 67

discussed in Chapter 5. The methods discussed in this chapter allow to quantify per-

formance of nonlinear systems, based on output measurements only while requiring

little knowledge about the nonlinearity and other system dynamics. This yields a

useful tool to optimize performance in practice without requiring advanced nonlinear

modeling or identification techniques. Finally, due to the well defined and easily mea-

surable performance measure, this methodology is applicable in a real time, automated

setting as well.





Chapter 5

Frequency Domain Based Feed Forward

Design for Friction Compensation†

In Chapter 4, the application of frequency domain techniques for performance assess-

ment and optimization of nonlinear system is introduced. Specifically, the application

of static compensators in Lur’e-types systems is addressed. In this chapter the concept

of frequency domain based performance is applied to detect and optimally compensate

the performance degrading effects of friction in an industrial Transmission Electron

Microscope (TEM) system, using feed forward compensation. It is shown that the

frequency domain approach yields a tool to fast and easily design friction control in

practice with high detection sensitivity and orthogonal tuning of the controller para-

meters, while providing a well defined notion of optimal performance.

Friction is a performance limiting factor in many industrial high precision

motion systems. Both model and non-model based friction compensation techniques

exist, which are applied in feedback as well as in feed forward control strategies

(Armstrong-H’elouvry, 1991; Armstrong-H’elouvry et al., 1994). Non-model based tech-

niques range from the application of integral control to reduce the steady state tracking

error, to more advanced friction compensators based on friction estimators such as dis-

cussed in Ramasubramanian and Ray (2001). Model based friction compensation in

feedback and feed forward is demonstrated in for example Johnson and Lorenz (1992).

Moreover, in Tsai et al. (2004) a feed forward compensator is described that com-

pensates both the performance degrading effects of friction and the error induced by

the command path. Furthermore, in de Bruin et al. (2009) a globally asymptotically

stable controller for systems with non-collocated friction is presented. Model based

feed forward techniques based on the Dahl, LuGre, Leuven and generalized Maxwell

†The results presented in this chapter are published in: D. Rijlaarsdam, P. Nuij, J. Schoukens and

M. Steinbuch, Frequency domain based nonlinear feed forward control design for friction compensation,

Mechanical Systems and Signal Processing, 27(2):551-562, 2012
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slip model1 are discussed in Lampaert et al. (2004) and compared to non-model based

friction compensation using a disturbance observer. Friction compensation at extreme

low velocities is investigated using two model based friction compensation techniques

in Zhang et al. (2002) and model based feed forward design for motion systems is

discussed in Torfs et al. (1998); Tjahjowidodo et al. (2007).

Apart from the above mentioned results, a well known and regularly applied

way to compensate for the effects of friction in practice is the application of Coulomb

(Coulomb, 1785) friction feed forward. In practice, the parameters for this feed for-

ward controller are often identified using time domain data, which has three distinct

disadvantages:

1. the effects of nonlinear Coulomb friction and linear viscous damping are not

independent in the time domain;

2. optimal approximation of the complex, true nonlinear dynamics by the simplified

Coulomb friction model is nontrivial in the time domain;

3. the detection sensitivity of time domain analysis to the effects of friction is limited.

The application of the frequency domain based methodology introduced in this

chapter aims to address these issues. As discussed in Chapter 4, this methodology is

expected to be more widely applicable. However, in this case study, the discussion is

limited to optimization of Coulomb friction feed forward to illustrate the applicability

of this method to the compensation of strong nonlinearities in a setting with industrial

relevance.

The chapter is structured as follows. First, in Section 5.1 the experimental

application is linked to the analysis presented in Chapter 4. Next, the notion of fre-

quency domain based performance is further discussed in relation to the application at

hand. The application of these techniques to optimally control friction in a high preci-

sion, industrial motion stage of a TEM is then presented in Section 5.2. Moreover, in

Section 5.3 the experimental results are discussed and the frequency domain tracking

performance measure is related to the time domain performance of the system. Finally,

conclusions are provided in Section 5.4.

5.1 From Analysis to Application

In this section the theory presented in Chapter 4 is linked to feed forward design for

friction compensation. First of all, differences and similarities between the theoretical

results and the application in practice are highlighted. Next, frequency domain based

analysis for performance optimization is discussed in relation to the practical case study

at hand. Finally, the influence of measurement noise is discussed and the performance

measure is extended to include a measure of statistical significance.

1For more information on these friction models see: Dahl (1968); Canudas de Wit et al. (1995);

Swevers et al. (2000); Lampaert et al. (2002); Al-Bender et al. (2005).
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Figure 5.1: Closed loop system subject to Coulomb friction feed forward.

Comparison with the Results in Chapter 4

Consider a closed loop single input, single output system as depicted in Figure 5.1

and assume the system is stable, causal, time invariant and has a harmonic response

to a sinusoidal input. The plant is a mass-spring-damper system subject to Coulomb

friction in closed loop with a stabilizing controller C. The input and output of the

system are w(t) and y(t) and the output is subject to stationary (colored) measurement

noise n(t). Finally, the system is subject to a feed forward with gain κ [V ] that aims

to compensate for Coulomb friction in the plant. The system depicted in Figure 5.1

has strong similarities to the class of nonlinear systems considered in Chapter 4. For

example, Coulomb friction can be modeled by a Lur’e-type structure as in Figure 4.1.

However, two main differences stand out as well:

1. The system as depicted in Figure 5.1 (κ = 0) is not uniformly convergent, e.g.

for w(t) = 0 there exist multiple limit solutions for initial conditions that start

the system in stick mode.

2. Feed forward compensation is used to address the performance degrading nonli-

near effects, rather than the output feedback considered in Chapter 4.

Firstly, the fact that the system under consideration is not uniformly convergent im-

plies that assumption A1 in Theorem 4.1 is not satisfied. Secondly, the feed forward

compensator can be viewed in light of the Lur’e compensator structures discussed in

Section 4.1. However, the reference velocity is used to drive the feed forward com-

pensator, while the friction depends on the true velocity. Hence, the structures in

Figure 4.2 do not apply. The first problem is inherent to the practical application as it

can generally not be shown that a real life system is uniformly convergent. However,

the results presented in the following indicate that the theory introduced in Chapter

4 can be extended to the non-convergent case of friction compensation. Secondly, a

feed forward structure is selected as this is a common way to compensate friction in

practice and because no stability issues are involved when designing such compensator.

Therefore, the following results are presented under the premise that if sufficient track-

ing is achieved, the feed forward acts similar to a velocity feedback. Experimental

results indicate that application of the concepts introduced in Chapter 4 can indeed

yield significant performance improvement when applied to the design of a feed forward

structure as well.
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Frequency Domain Based Optimal Feed Forward Design

The aim in this case study is to optimally compensate the performance degrading

effects of friction in the plant in Figure 5.1 by the design of a feed forward controller. As

motivated in Chapter 4, the design of the feed forward compensator aims at attaining

a sinusoidal output for sinusoidal inputs. Moreover, as Coulomb friction is a static

nonlinearity that is constant except around zero velocity, it suffices to test the input-

output behavior for an arbitrary sinusoidal input (see Section 4.1). This also allows

to optimize the performance in the sense of Definition 4.2, based on position rather

than velocity measurements. However, as the true friction present in a system is

generally more complex and other types of nonlinearities may be present as well, this

assumption on frequency and amplitude invariance does not generally hold. This is

outside the scope of this work and the following results show that optimization of

the feed forward compensator using a single sinusoidal input signal already yields a

significant performance improvement (see Section 5.3).

To quantify the performance of the nonlinear feed forward compensator in

terms of the methodology introduced in Chapter 4, the system in Figure 5.1 is excited

with a sinusoidal input w ∈ S . The performance of the system is then quantified by

the ratio between higher harmonic components |Ȳw(kξ0)| in the systems steady sate

output and the spectral component at the excitation frequency |Ȳw(ξ0)| in a way that

is similar to Definition 4.2. The following formalizes this definition of optimal tuning

of the feed forward compensator2.

Definition 5.1 (optimal feed forward compensation: n(t) = 0).

Consider the system depicted in Figure 5.1 and assume that n(t) = 0. Then, the feed

forward compensator is said to be optimal if the system is subject to a sinusoidal input

w ∈ Sξ0, all transient effects have vanished and κ = κ⋆opt such that:

κ⋆opt = arg min
κ∈R

1

K − 1

K∑

k=2

|Ȳw(kξ0, κ)|

|Ȳw(ξ0, κ)|
(5.1)

where Ȳw(ξ) is the spectrum of the steady state response of the system.

In practice, the optimal value κ⋆opt depends on the tracking performance of

the system and on the feedback controller. Hence, the feed forward compensator is

designed for a fixed feedback structure and the excitation frequency ξ0 is selected to be

significantly smaller than the bandwidth of the closed loop system to assure sufficient

tracking. Next, the root-mean-square (rms) tracking error is selected as the time

domain performance criterion for comparison with the frequency domain optimality

2The definition of optimal feed forward compensation in Definition 5.1 differs from the definition

of optimal performance in Definition 4.2. This is due to the fact that the results based on Definition

5.1 were developed first and the definition as presented Definition 4.2 was later selected to emphasize

larger spectral components in the cost function. In general, the selection of the cost is an open subject

for investigation.
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condition. In general, the selection of tracking criterium (rms error, maximal error,

etc.) is application depend. However, in the following, the rms tracking error is selected

because it is used in practice to provide a measure of the power of the tracking error,

which is often used as a performance measure for motion systems.

Definition 5.2 (optimal tracking performance).

Consider the system depicted in Figure 5.1. Then, the tracking performance of the

system is called optimal when subject to a sinusoidal input w ∈ S if all transient effects

have vanished and κ = κ⋆track such that:

κ⋆track = arg min
κ∈R

max
n∈N≥1

√
√
√
√
√

1

T0

nT0∫

(n−1)T0

(
w(t)− y(t)

)2
dt (5.2)

with T0 = 1/ξ0. In the following the performance measure is denoted by ǫ(κ).

The preceding discussion yields a frequency domain perspective on the perfor-

mance of dynamical systems with friction, but disregards the influence of measurement

noise. The next section presents an extension of the frequency domain performance

criterion that incorporates the effects of measurement noise in the performance crite-

rion.

Influence of Measurement Noise

This section discusses the application of the time and frequency domain performance

criteria in Definition 5.1 and 5.2 in practice. The influence of noise on both criteria is

analyzed which leads to an extension of the frequency domain performance criterion

taking into account the quality of the measured spectral components, prior to including

them in the performance criterion.

Consider the system in Figure 5.1 subject to a sinusoidal input w ∈ Sξ0. Next,

assume that the measurements performed during this experiment have a sufficiently

high signal to noise ratio (SNR). The rms error is a measure of the power of the tracking

error which predominantly consists of low frequent components of frequencies similar

to the excitation frequency. These components have a high SNR corresponding the

the SNR of the measurements. The influence of noise on the performance measure in

Definition 5.2 is therefore small and is neglected in the remainder of this chapter.

However, the frequency domain criterion in Definition 5.1 is based specifi-

cally on the high frequent components, i.e. multiples of the excitation frequency, that

describe the input-output behavior of the system. The SNR of these high frequent

components is generally lower than those dominating the tracking error and decreases

with increasing frequency. This motivates a quality condition on the measured spectral

lines allowed to be included in the cost function. Hence, to reduce the sensitivity to

noise and the variability on the cost function, Definition 5.1 is adapted for application

to noisy experimental data.



74 Chapter 5. Frequency domain feed forward design for friction compensation

To achieve this, consider the output of the system as in Figure 5.1 subject to

N periods of the sinusoidal input signal w ∈ S after transient effects have vanished.

This yields N output spectra3 Yn(ξ), n = 1, 2, . . . , N , with frequency resolution ξ0.

Next, consider the sample mean Ŷ (kξ0) as in (B.6) and the variance on the sample

mean σ2
Ŷ
(kξ0) as in (B.7). To decide whether a measured harmonic line is sufficiently

accurately measured to be included in the performance measure (5.1) a statistical test is

required (see for example Rabijns et al. (2004)). In Appendix B.2 a statistical analysis

is presented, which yields the following quality condition on a measured harmonic line.

Definition 5.3 (η-significance).

Consider the sample mean Ŷ (kξ0) as in (B.6) and the variance on the sample mean

σ2
Ŷ
(kξ0) as in (B.7). Then, the sample mean is called η-significant, if its expected value

E

{
Ŷ (kξ0)

}
6= 0 with at least an η confidence level, i.e. if:

|Ŷ (kξ0)|2
σ2

Ŷ
(kξ0)

> F η
2,2(N−1) (5.3)

where F η
2,2(N−1), such that the cumulative F2,2(N−1) distribution cdf(F η

2,2(N−1)) = η.

Using these results, Definition 5.1 is extended to include a condition on the measure-

ment quality of the harmonic lines that are included in the performance criterion.

Definition 5.4 (optimal feed forward compensation: n(t) 6= 0).

Consider the system depicted in Figure 5.1 and assume n(t) is stationary (colored)

noise. Then, the feed forward compensator is said to be optimal if the system is subject

to a sinusoidal input signal w ∈ Sξ0, all transient effects have vanished and κ = κ⋆opt,n
such that:

κ⋆opt,n = arg min
κ∈R

1

NK

∑

k∈K

∣
∣E
{
Y (kξ0, κ)

}∣
∣

∣
∣E
{
Y (ξ0, κ)

}∣
∣

(5.4)

K =
{
k ∈ N≥2

∣
∣ E
{
Y (kξ0, κ)

}
6= 0 with η-confidence level

}

where E{·} denotes the expected value, Y (ξ) is the spectrum of the steady state response

of the system and the performance measure is normalized with respect to the number

of significant harmonic lines NK. In the following, the performance measure is denote

by ζ(κ).

In the following the confidence level is selected to be 99.99% as is further dis-

cussed in Section 5.2. This confidence level assures elimination of harmonic components

that are likely to be generated by stochastic disturbances (see Figure 5.3).

3Measured spectra do generally not exactly equal the theoretical spectra of the steady state output

denoted by Ȳw and are therefore denote by Y (ξ) in the remainder of this chapter.



5.1. From analysis to application 75

Time Domain Frequency Domain

Optimal A cos(2πξ0t + ϕ0) minimize

Compensator ⇒ B cos(2πξ0t + ψ) 1
K−1

K∑

k=2

|Ȳw(kξ0)|
|Ȳw(ξ0)|

︸ ︷︷ ︸

harmonic disturbance

Optimal A cos(2πξ0t + ϕ0) minimize

Tracking ⇒ A cos(2πξ0t+ ϕ0)

√
√
√
√
√
√

|Ȳw(ξ0)− W (ξ0)|2
︸ ︷︷ ︸

tracking phase and amplitude

+
K∑

k=2

|Ȳw(kξ0)|2

︸ ︷︷ ︸

harmonic disturbance

Table 5.1: Time domain and frequency domain performance measures for optimal tracking and opti-

mal nonlinear compensation (sinusoidal reference signal w ∈ S ).

Discussion: Time and Frequency Domain Based Performance

In the following the terms frequency and time domain performance are often used.

This terminology refers to the representation of the data used to compute a given per-

formance measure. It should be noted that the information contained in the time or

frequency domain representation of a signal is fully equivalent. Hence, any informa-

tion present in either representation is also present in the other. However, as certain

information is easier accessible in the time domain than in the frequency domain, a

particular representation may be preferable for a given application. This difference is

utilized in the performance analysis discussed in this thesis.

In general, the time and frequency domain performance measures introduced in

the preceding analysis provide different notions of optimality. Hence, the best tracking

performance observed in the time domain does not necessarily correspond to an optimal

setting of the nonlinear feed forward controller and vice versa. Table 5.1 compares the

goal of optimizing tracking performance to that of optimal design of the feed forward

compensator. When aiming at an optimal design of the feed forward compensator

as in Definition 5.4, the goal is to have a sinusoidal response to a sinusoidal input

signal. However, a difference between the amplitude and phase of the input and output

signal at the excitation frequency is not penalized. When optimizing the tracking of

a sinusoidal reference signal in the time domain (Definition 5.2), one aims not only

to have a sinusoidal response to a sinusoidal input, but to have the same sinusoidal

response as the sinusoidal input that is applied to the system. This implies equal

amplitude and phase of the input and output signal at the excitation frequency and

therefore requires the extension of the corresponding frequency domain performance

criterion with a measure of tracking performance. Note that it is the appearance of

this tracking term that clouds the time domain perspective on the nonlinear effects of

friction.

Although the frequency domain optimality conditions do not necessarily imply

optimal tracking in the time domain, the results clearly indicate the optimal setting
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for a given nonlinear controller. Further improvement in tracking should then be

obtained by adding appropriate and additional (non)linear control action. Apart from

yielding an optimal approximation of the true, more complex nonlinear dynamics by

the simplified Coulomb friction feed forward model, the frequency domain method

possesses high detection sensitivity. Moreover, as linear and nonlinear effects appear

’separated’ in the frequency domain, this method allows to independently tune linear

and nonlinear controller parameters related to, for example, nonlinear friction and

linear viscous damping.

5.2 Friction Compensation in a TEM

The results presented in this section demonstrate the application of the preceding the-

ory to optimal design of a feed forward friction compensator for an industrial high

precision motion stage of a Transmission Electron Microscope (TEM). The TEM mo-

tion stage is introduced in more detail in the first part of this section. Next, the

frequency domain based tuning method introduced in the preceding section is applied

to optimally compensate the performance degrading effects of friction.

Set-Up and Problem Statement

The methodology presented in this chapter is used to optimize the performance of a

motion stage of a TEM (Figure 5.2). Performance requirements on such motion stages

are high as the sample positioning determines how accurate and fast the area of interest

can be moved into view. Moreover, apart from speed and accuracy, many applications

require smooth motion as well. Combining these requirements with a system that

operates in high vacuum and is required to be at complete standstill during long term

image acquisition, yields a control loop requiring optimal friction compensation to

achieve the required performance.

Figure 5.2 shows a schematic depiction of the motion stage in a TEM and

the main components in the drive train. The motion stage is used as a one degree of

freedom manipulator and is mounted on the outside of the microscope. As the motion

stage manipulates the position of the sample in the electron beam it determines which

part of the sample is magnified and projected on the projection plane or CCD camera.

A Bosch Rexroth NYCe4000 controller is used for data acquisition and allows

full Matlab/Simulink functionality in the controller and experiment design. The con-

trolled large stroke drive consists of a Maxon DC motor and a precision reduction unit

which facilitates the high gear ratio required. The resulting small motion at the output

of the gearbox is further reduced by a lever on which a quadrature encoder is mounted

to measure the displacement of the rod that drives the sample. This rod then enters

the vacuum chamber through a sealed ball bearing.

In the TEM motion stage, friction becomes a dominant performance limiting

factor during high accuracy point to point motion and slow movement of the stage.
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Figure 5.2: Schematic depiction of the motion stage in a transmission electron microscope.

While many industrial applications use a high gain proportional feedback to cope with

friction, the accuracy required in the TEM stage requires a loop gain that cannot result

in a stable loop, using proportional (and derivative) control only. Although the appli-

cation of more advanced (nonlinear) feedback controllers is possible, the application

of feed forward is to be preferred for two reasons. First, as opposed to feedback, feed

forward does not compromise the stability of the closed loop system. Second, many

industrial controllers have Coulomb friction feed forward available, whereas advanced

nonlinear feedback control is often not available. Next, the theory presented in Section

5.1 is applied to optimally design a feed forward friction compensator for the TEM

motion stage.

Experiment Design

Consider the TEM motion stage in a closed loop with a stabilizing proportional feed-

back controller C = Pc and subject to a feed forward as depicted in Figure 5.1. Next,

the performance measure introduced in Definition 5.4 is used to investigate the influ-

ence of the feed forward parameter κ by applying the following experimental scheme:

1. m = 1: the experiment series starts with no feed forward, i.e. κ[1] = 0,

2. the system is excited for N periods of the sinusoidal signal w ∈ S after transient

effects have vanished, yielding N output spectra Y
[m]
n (ξ),
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3. m = m+1: if the maximum feed forward parameter κmax is not reached, the feed

forward gain: κ[m+1] = κ[m] +∆κ is increased with ∆κ = κmax

M
(return to step 2).

This procedure yields M ·N output spectra Y
[m]
n (ξ), which are analyzed according to

Definition 5.4 to obtain the optimal parameter setting κ⋆opt,n.

The experiment is performed by evaluating κ in the interval [0 0.3] [V ] at

M = 80 equally spaced values, i.e. ∆κ = 0.00375 [V ] and the maximum feed forward

gain κmax = 0.3 [V ] is determined experimentally by slightly overcompensating the

system and the value of M is selected to obtain an accurate estimation of the cost

function over the given interval. Furthermore, the influence of the feedback controller

is investigated by performing two series of experiments: one with a low feedback gain

(Pc = 5 · 106) and one with a high feedback gain (Pc = 2 · 107) which is the maximum

stabilizing proportional feedback. The confidence level in Definition 5.4 is selected to

be 99.99% to reduce the number of non-significant measurement points included in the

cost function.

In all experiments the reference signal is a sinusoidal input signal w ∈ S with

amplitude γ = 6 [µm] and frequency ξ0 = 0.5 [Hz]. While the selection of γ is arbitrary

(as long as the system starts to move), the selection of the excitation frequency depends

on the bandwidth of the controller and on the available time for experiments. On the

one hand, a higher frequency allows for faster experiments, but on the other hand good

tracking is required to assure effective feed forward control. This trade-off is specific to

the application and ξ0 = 0.5 [Hz] was shown to yield good results in this case study.

Finally, although the optimal feed forward gain depends marginally on the excitation

amplitude, the corresponding change in compensator gain and the effect on the systems

performance are small and are not considered in this chapter.

Results

The computation of the performance measure in Definition 5.4 starts with indicating

the relevant harmonic lines based on the quality of the measurement. An example of

the selection of the relevant harmonic lines as prescribed by Definition 5.3 and 5.4 is

provided in Figure 5.3. Figure 5.3a shows the measured output amplitude spectrum

with no feed forward, while Figure 5.3b depicts the output spectrum with optimal feed

forward compensation. In Figure 5.3 the bottom plots indicate the decision variables

that indicate whether a measured point is η-significant according to Definition 5.3 with

η = 0.9999. A diamond indicates a positive result and corresponds to a black circle

in the top plot which indicates a measurement that is included in the performance

measure.

Figure 5.4 - 5.6 show the experimental results for both the high and low feed-

back gain experiment. In Figure 5.4a the performance measure ζ(κ) from Definition

5.4 is depicted as well as the energy at harmonics, relative to the energy at the excita-

tion frequency. Since the observed friction is predominantly an odd nonlinearity, the

dominant behavior of the odd harmonics is to be expected. As the feed forward gain
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(b) Optimal compensatror κ = κ⋆
opt,n.

Figure 5.3: Selection of relevant harmonic lines, based on the η-significance bound in Definition 5.4,

5.3 (η = 0.9999) (low gain feedback).

Bottom: η-significance test: (−): η-significance bound F η
2,2(N−1) and measured test quan-

tities (⋄): η-significant and (×): not η-significant.

Top: Amplitude spectrum: (◦): |Ŷ (kξ0)| modulus of the sample average, (∗): σ2
Ŷ
(kξ0)

variance on the sample average and (•): η-significant harmonics.
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Figure 5.4: Optimization of feed forward control, based on frequency domain data (low gain feedback).

5.4a: Performance measure (Definition 5.4) and average output amplitude spectrum at

harmonics, relative to the amplitude spectrum at the excitation frequency.

5.4b: Average output amplitude spectra with / without optimal feed forward.

is increased, a decrease in the energy observed at the relevant harmonics, relative to

the energy at the excitation frequency, appears until a minimum is reached. As the

minimum of the performance measure combines the behavior of all harmonic lines, this
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(b) High gain feedback Pc = 2 · 107

Figure 5.5: First five higher order sinusoidal input describing functions at ξ0 = 0.5 [Hz], γ0 = 1 [µm]

for varying values of κ.

indicates that κ⋆opt,n = 0.2013 [V ], which yields the optimal feed forward compensator

according to Definition 5.4 in case of low gain feedback. This optimal feed forward

gain is not a physical system parameter as it depends on both the physical friction

parameters and on properties of the systems such as the motor constants.

Figure 5.4b shows the average energy at harmonics of the input frequency

both with and without optimal feed forward. This indicates that optimal feed forward

reduces, for example, the energy level at the third harmonic in the output spectrum

by a factor 10. Moreover, the performance measure in Figure 5.4a drops by a factor

5.3, showing less than 19% of the average amplitude at harmonics when optimal feed

forward is applied.

Next, consider the corresponding HOSIDFs (Definition 2.8), which provide

both amplitude and phase information about the nonlinear behavior of the closed

loop system as a function of the feed forward parameter κ. Figure 5.5 shows the

normalized HOSIDFs for varying feed forward gain. Corresponding to the decreasing

energy at harmonic lines, the HOSIDFs show a minimum close to κ⋆opt,n. Moreover, the

HOSIDFs show a phase shift around the optimum that may be used to efficiently detect

the optimum. Generally, the minima of the different HOSIDF (and the corresponding

harmonics in Figure 5.4a) differ. This phenomena has not been studied in detail.

However, the cost function ζ(κ) combines the effects of all harmonics and yields an

optimum where the total amplitude of the harmonics is minimized.

5.3 Frequency Domain Based Performance in Practice

In this section three observations are discussed with respect to frequency domain based

optimal tuning of a feed forward friction compensator. First, the difference between

time and frequency domain performance, as observed in experiments, is analyzed. Se-
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Figure 5.6: Comparison of time and frequency domain performance measures (Top) optimal feed for-

ward compensation using a frequency domain performance measure ζ(κ) (Definition 5.4).

(Bottom) corresponding time domain tracking performance ǫ(κ) (Definition 5.2).

cond, the effect of the feedback controller on the optimal feed forward setting is dis-

cussed. Finally, optimal feed forward compensator design is shown to significantly

improve the performance of the TEM motion stage by facilitating low speed jogging

motion which is often required by microscopists.

Time Domain Versus Frequency Domain Performance

In Section 5.1 it is indicated that the time and frequency domain optimality conditions

in Definition 5.2 and 5.4 generally yield different controller settings. In Figure 5.6 the

frequency domain performance measure ζ(κ) (Definition 5.4) and the corresponding

tracking performance ǫ(κ) (Definition 5.2) are compared. The top figures show the fre-

quency domain performance measure indicating the optimal value of the feed forward

parameter κ⋆opt,n. The bottom plot depicts the corresponding tracking performance and

indicate a different optimal value of the feed forward parameter κ⋆track. The discrep-

ancy between both performance measures is expected to be caused by the presence of

viscous damping which is not otherwise compensated for during the experiment. As

the Coulomb friction feed forward gain is the only tunable parameter, the minimal

tracking error occurs at a value of κ⋆track > κ⋆opt,n, where the Coulomb feed forward

compensates for part of the viscous damping as well. At first glance, this appears to

yield a better tracking performance. However, the harmonics in the output spectrum

are not minimized for κ > κ⋆opt,n and the effects of linear viscous damping are compen-

sated using a nonlinear friction compensator. The apparent optimum in performance

is therefore local as it depends on the excitation signal and the true optimal value of

the feed forward gain is located at κ⋆opt,n. To further improve tracking performance,

additional control action is required.
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Pc = 5 · 106 Pc = 2 · 107 κ⋆high/κ
⋆
low

κ⋆opt,n 0.2013 0.1785 0.8867

κ⋆track 0.2506 0.2354 0.9393

κ⋆track/κ
⋆
opt,n 1.2449 1.3188

Table 5.2: Experimental results for different values of the feedback gain Pc

Influence of the Feedback Gain

Figure 5.6 depicts the performance measures as in Definition 5.2 and 5.4 for the exper-

iments with high and low gain feedback. The initial amount of energy at harmonics

when using high gain feedback is less than in the low gain experiment as increasing the

feedback gain linearizes the closed loop behavior. However, the optimal values κ⋆opt,n
observed in the high and low feedback gain experiments differ as well.

Table 5.2 summarizes the numerical results from both experiments. It shows

that the optimal feed forward gains κ⋆opt,n for the low and high gain experiment differ

by approximately 11%. Figure 5.6a shows that the decrease in energy at harmonic

lines in the low gain feedback is approximately 80%. When using high gain feedback

this is reduced only slightly to a decrease of approximately 75% as shown in figure

5.6b. The relative difference between the optimal value κ⋆opt,n based on the frequency

domain performance measure and the apparent optimum indicated by the time domain

tracking performance κ⋆track differs from 24% to almost 32% between both experiments.

Application to Low Speed Jogging

In electron microscopy, extreme slow jogging motion (< 100 nm/s) is often required

while retaining good visualization of the sample under investigation. For example,

when the microscope is user operated, good visual inspection of the sample is required

to detect interesting features. Figure 5.7a depicts the measured displacement when

a constant velocity of 20 nm/s is required, the system is subject to a proportional,

integral, differential feedback controller and no feed forward compensation is present.

The stick-slip induced jumps in position make accurate positioning hard to achieve and

severely deteriorate the visualization of the sample. When the feed forward compensa-

tion is optimized according to Definition 5.4, the response is depicted in Figure 5.7b.

Clearly, the application of an optimally designed feed forward compensator yields a

significant improvement in performance in terms of smoothness of motion and allows

for more accurate positioning and better visualization.

5.4 Conclusions

The methodology introduced in Chapter 4 allows to incorporate frequency domain in-

formation in the performance measure of controlled nonlinear systems. In this chapter,

this methodology is applied in a modified setting for optimal feed forward friction com-
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(b) Optimal feed forward compensation

Figure 5.7: Low speed jogging performance improvement by application of optimal feed forward com-

pensation.

pensation in motion systems. The application of the frequency domain methodology

allows to optimally compensate the effects of nonlinear friction and is demonstrated

in an industrial setting, yielding a significant performance improvement. Compared to

conventional time domain methods, the frequency domain approach yields a clear and

well defined performance for nonlinear systems, allows for independent tuning of linear

and nonlinear controller parameters and yields a high detection sensitivity. Although

the frequency domain approach yields a controller design that optimally compensates

nonlinearities, it does not necessarily yield optimal tracking behavior, which may re-

quire additional control action.





Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The research presented in this thesis deals with the application of frequency domain

techniques to nonlinear systems. In particular, frequency domain based modeling,

analysis and performance optimization of a class of nonlinear systems is addressed.

This is reflected in the research objectives presented in Chapter 1:

O1 : Investigate the application of frequency domain techniques to the modeling

and analysis of nonlinear systems.

O2 : Develop theoretical concepts and practically applicable methods for perfor-

mance optimization of nonlinear systems, based on frequency domain analysis.

The first object is mainly addressed in Chapters 2 and 3 by an overview and comparison

of frequency domain methods and a novel analysis of systems containing polynomial

nonlinearities. The second objective is addressed in Chapters 4 and 5 by the theoretical

analysis and practical application of new, frequency domain based techniques for the

quantification and optimization of the performance of a class of nonlinear systems.

Summarizing, the research presented in this thesis yields the following contributions:

C1 Overview and comparison of different frequency domain based methods for

the modeling and analysis of nonlinear systems (Chapters 2, 3 and in particular

Section 2.5).

C2 Analytical results that allow analysis and numerically efficient computation

of the effects of polynomial nonlinearities in the frequency domain (Chapter 3

and in particular Theorem 3.1)

C3 Theoretical results and practically applicable methodologies that allow opti-

mization of the performance of nonlinear systems by means of novel frequency

domain based detection and compensation techniques (Chapters 4, 5 and in par-

ticular Theorem 4.1 and Section 5.3).
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In general it has been shown that frequency domain methods can be applied to several

classes of nonlinear systems and allow to analyze, quantify and optimize the perfor-

mance of these systems. Specifically, for systems with static nonlinearities this perfor-

mance optimization has been addressed in detail. In the following, the results discussed

in Chapters 2 to 5 are addressed in detail.

Modeling and Analysis of Nonlinear Systems

In Chapter 2, four different frequency domain methods for the modeling and analysis

of nonlinear systems are discussed: the Generalized FRF (GFRF), the nonlinear FRF,

the describing function approach and linear approximations in the presence of nonlin-

earities. These methods are compared with respect to the signal and system classes

for which they are valid and an overview of the information contained in each model

is provided as well. Finally, the type of nonlinear effects captured by each model is

compared.

In Chapter 3 new analytical tools and results are presented that allow spectral

analysis of the output of a class of nonlinear systems containing polynomial nonlin-

earities. This provides insight in the dynamics of block structured dynamical systems

and allows analytic description and analysis of the corresponding HOSIDFs. Given

the systems linear dynamics, the output spectra and Higher Order Sinusoidal Input

Describing Functions (HOSIDF) can be described as a simple polynomial function of

the parameters defining the nonlinearity. Moreover, using the preceding results, a

novel connection is presented between the GFRF and HOSIDF, which both model the

dynamics of nonlinear systems in the frequency domain. An explicit analytical rela-

tion between these models is derived for polynomial Wiener-Hammerstein systems and

necessary and sufficient conditions are derived for this bijective mapping to exist.

Performance Assessment and Optimization of Nonlinear Systems

The second part of this thesis, i.e. Chapters 4 and 5, deals with the frequency domain

based analysis and optimization of the performance of a class of nonlinear systems.

First of all, in Chapter 4, a frequency domain based method to quantify and optimize

the performance of Lur’e-type systems is presented. It is shown that, under mild con-

ditions, a sinusoidal response to a sinusoidal input is necessary and sufficient to show

the existence of an equivalent linear and time invariant dynamical model that fully

captures the systems dynamics for a well defined set of input signals and initial condi-

tions. This allows to detect and compensate performance degrading nonlinear effects

based on output measurements only. Based on this new insight, a frequency domain

performance measure is defined which is used to design static nonlinear compensators

that optimally compensate performance degrading nonlinear effects.

Secondly, in Chapter 5 the methodology developed in Chapter 4 is adopted

and applied to optimize friction compensation in an industrial transmission microscope.

The application of frequency domain analysis allows to optimally compensate the ef-
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fects of nonlinear friction and is shown to yield a significant performance improvement.

Compared to conventional time domain methods, the frequency domain approach al-

lows for independent tuning of linear and nonlinear controller parameters and yields a

high detection sensitivity.

Summarizing, the results presented in Chapters 2 - 5 and summarized in con-

tributions C1 - C3 realize the research objectives O1 - O2 set for this thesis. With

these results in mind, a number of open questions and research topics remain. These

recommendations for future research are presented in the following.

6.2 Recommendations

In the following, recommendations for future research are presented. In general, two

main recommendations follow from the research presented in this thesis.

• nonlinear theory and engineering practice: Nonlinear effects become

increasingly important in high tech applications involving, for example, sensor

and actuator nonlinearities, valve systems and magnetic and electric fields. To

address these issues it is recommended to connect the large variety of theoretical

results in the field of nonlinear dynamics with engineering applications. In par-

ticular, a shift from the analytical towards measurable, practically interpretable

results would benefit the application of nonlinear theory in practice.

• application of frequency domain methods: Given the widespread ac-

ceptance of frequency domain methods in the engineering community and the

results presented in Chapters 4 and 5, it is recommended to further explore the

application of such methods when applied to nonlinear systems.

In addition to these general recommendations, the following presents detailed sugges-

tions for future research based on the results presented in Chapters 2 to 5.

Modeling and Analysis of Nonlinear Systems

Based on the results in Chapters 2 and 3, the following recommendations are provided:

• unifying methodologies: Although different frequency domain methods for

the analysis and modeling of nonlinear systems exist, a connection between dif-

ferent methodologies is generally missing. It is therefore recommended to further

investigate the connections, differences and similarities beween different methods

to arrive at a more unified framework for the application of frequency domain

methods to nonlinear systems.

• focus on applicability: When applied to nonlinear systems, frequency do-

main methods are often viewed from a theoretical point of view. It is recom-

mended to complement these results with tools and methodologies that allow

application to identification and control purposes in practice1.

1It should be noted that in a number of studies, such steps are already being taken, e.g. see

van de Wouw et al. (2008); Nuij et al. (2008a); Pintelon and Schoukens (2012).
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• trigiometric analysis: The results presented in Theorem 3.1 provide a novel

and numerically efficient way to perform trigiometric analysis. The application

of these results to trigiometry has not yet been investigated, but presents an

interesting candidate for future research.

Performance Assessment and Optimization of Nonlinear Systems

Both the analysis and the application of the methods presented in Chapters 4 and 5

allow for a number of interesting extensions and additions, which are listed below:

• extensions Lur’e-type systems: The results in Chapter 4 and in particular

Theorem 4.1 provide means to assess and optimize the performance of Lur’e-type

systems. However, performance optimization is only discussed for the case where

the output driving the nonlinearity is known and the control input acts either

directly on the input of the nonlinearity or on the same input of the system

as the nonlinearity (see Figure 4.2). In general compensation may be based on

alternative inputs and outputs which is recommended for future research.

• extensions static nonlinearities: The class of nonlinear systems considered

in this thesis can be extended by considering a more general class of systems

containing static nonlinearities. In particular, the static, single input, single

output nonlinearity can be extended towards the multiple input, multiple output

or the multiple input, single output case. This would, for example, allow for

linearization of magnetic drives where nonlinearities depend on both coil-current

and position.

• non-convergent systems: The results presented in Chapter 5 indicate that

frequency domain based performance analysis is applicable to non-convergent

systems as well. It is therefore recommended to consider applications and analysis

of non-convergent systems for future research.

• non-static nonlinearities: By considering non-static nonlinearities, the class

of systems for which the theory presented in Chapter 4 is valid, can be conside-

rably extended. This would significantly extend the range of applicability and

theoretical significance as nonlinearities are rarely truly static in practice.

• excitation signals: The analysis discussed in Chapters 4 and 5 exclusively

uses sinusoidal excitation signals. Extensions towards more generalized signal

classes such as multisine signals may allow to detect and compensate frequency

dependent nonlinear effects and as such extend the applicability of these results.

• automation: Both in case of uniformly convergent Lur’e-type systems as in

case of the friction compensation considered in Chapter 4, automation of the

tuning procedure would significantly contribute to practical application of the

methodologies. In an extension of the work presented in Chapter 4, it has been

observed that the application of extremum seeking algorithms yields promising

results. However, alternative studies are required, including stability analysis

during online optimization and convexity of the optimization problem.



6.2. Recommendations 89

• cost function: The process of cost function selection as in Chapters 4 and 5

requires further investigation. In particular, the following items are suggested for

future research:

– Optimization of the frequency domain based cost functions (4.3) and (5.4),

e.g. the type and number of spectral lines included in the cost function.

– Design of the shape of the cost function, e.g. the norm taken in (4.3) and

(5.4), analysis of convexity of the cost function and analysis of nonzero

optimal cost function values and optimality of the corresponding solution.

– Including tracking information in the frequency domain performance mea-

sure, e.g. mixed time and frequency domain cost functions.

– Including phase information about the nonlinearity in the frequency domain

performance measure.

• compensator order selection and basis functions: The theory pre-

sented in Chapter 4 does not yet include an analysis of the type and order of

basis function required. Especially, the trade-off between complexity of the (on-

line) optimization problem and the order and type of basis functions used is a

recommended subject for future research.





Appendix A

Proofs

A.1 Proofs in Chapter 3

A.1.1 Lemma 3.2

For deterministic spectra U (ξ),Y (ξ) and input (3.2), Equation (2.8) yields: Hk(ξ0, γ) =
e−ikϕ0Y (kξ0)

|U (ξ0)|k and hence H = Υ−1(γ)Φ−1(ϕ0)Y . Next, (3.11) yields:

H(ξ0, G
±
n ) = Υ−1Φ−1(ϕ0)

N∑

n=1

∆(ξ0)G
+
n (ξ) Φ(ψn) ΩΓ(γn)α

[n]

with γn = γ|G−
n (ξ0)|, ψn = ϕ0 + ∠G−

n (ξ0). Finally, Φ(·) and ∆ are diagonal matrices

and Φ−1(ϕ0)Φ(ϕ0 + ∠G−
n (ξ0)) = Φ(∠G−

n (ξ0)), which yields (3.12) and completes the

proof.

A.1.2 Lemma 3.4

The mapping (3.20) follows directly from (3.17) - (4.6) and is bijective if and only if Λ

is of full rank. Since Λ is a diagonal matrix, it is of full rank if and only if |λp(̟p)| 6=
0 ∀ p. Next, using (4.6), yields |λp(̟p)| = 0, which implies G+

(
p∑

ℓ=1

̟p[ℓ]

)

= 0 or

p∏

ℓ=1

G− (̟p[ℓ]) = 0. Hence, |λp(̟p)| = 0 if and only if ̟p /∈ Wp and therefore the

mapping (3.20) is bijective if and only if ̟P ∈ W.

A.1.3 Theorem 3.2

The mapping (3.21) is bijective if and only if R̆ is of full rank. The matrix R̆ is of

full rank if and only if all matrices in (3.22) have full rank. Matrices Ῠ, ∆̆(ξ0)G
+(ξ),

Φ̆(∠G−(ξ0)) and Γ(|G−(ξ0)|γ) are diagonal and are defined and of full rank for ξ0 ∈ R>0

and γ 6= 0. Moreover, matrix Λ is of full rank if and only if ̟P ∈ W (Lemma



92 Appendix A. Proofs

3.4). Finally, analysis reveals that Ω̆ is upper triangular, see Corollary 3.1. Next,

consider an arbitrary row Ω̆ℓ1 of Ω̆ with its first nonzero element at the kth column

in that row. Now, because of the rule according to which Ω̆ is generated, any row

Ω̆ℓ2 , ℓ2 > ℓ1 has a zero element at the kth position. Hence, there is at least one element

Ω̆ℓ1,k 6= ζΩℓ2,k, ζ ∈ R \ {0} and thus Ω̆ℓ1 6= ζΩ̆ℓ2 . Since ℓ1 and ℓ2 are arbitrary, this

proofs that Ω̆ has full rank. If γ = 0 or ξ0 ≤ 0 or ̟P /∈ W, then R̆ is singular or

undefined since at least one of the matrices in (3.21) is singular or undefined. Hence,

if and only if γ 6= 0 and ξ0 > 0 and finite and ̟P ∈ W, the mapping (3.21) is defined

and is bijective.

A.1.4 Lemma 3.5

Consider a linear PWH system, i.e. ρ : r(t) = α1q(t). Then, as an LTI system has

a sinusoidal steady state response to a sinusoidal input, Hk = 0 ∀ k 6= 1. Next, using

(3.21), the structure of Ω̆ and the fact that all other matrices are diagonal yields that

Tp = 0 ∀ p 6= 1. Inversely, if Tp = 0 ∀ p 6= 1 this implies a linear PWH system and by

the same arguments Hk = 0 ∀ k 6= 1.

A.2 Proofs in Chapter 4

A.2.1 Theorem 4.1

Consider a Lur’e-type system as in Definition 4.1 and assume assumptions A1-A3 in

Theorem 4.1 are satisfied. Next, consider the single sided spectra of the steady state

signals w(t), ūw(t) and ȳℓ,w(t), ℓ = 1, 2, denote these by W (ξ), Ūw(ξ), Ȳℓ,w(ξ) ∈ C and

consider the relation between the input and steady state output as follows from (4.1):

[
Ȳ1,w(ξ)

Ȳ2,w(ξ)

]

=

[
G1,w(ξ) G1,u(ξ)

G2,w(ξ) G2,u(ξ)

] [
W (ξ)

Ūw(ξ)

]

(A.1)

=

([
C1

C2

]

(i2πξI − A)−1 [
Bw Bu

]
+

[
D1,w D1,u

D2,w D2,u

])[
W (ξ)

Ūw(ξ)

]

The proof of equivalency of S1-S3 is based on the following well known property

of LTI systems:

Property A.1. If a system (4.2) is subject to a sinusoidal input w ∈ Sξ0, then all

nonzero steady state outputs are sinusoidal, i.e. ȳℓ,w ∈ Sξ0 ∀ ℓ = 1, 2.

Now let υ ∈ R>0 and define:

I =
{
(x0, w) ∈ R

n × Bp

∣
∣‖y2(t)‖∞ ≤ υ

}

Next, let w ∈ Sξ0 be sinusoidal with frequency ξ0 and consider the following

intermediate results:
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1. (S1 : TRUE → S2 : TRUE) : According to assumption A3, |G1,u(ξ)| 6= 0 ∀ ξ ∈
R. Using (A.1), this implies that if ȳ1,w ∈ Sξ0 , then ūw ∈ Sξ0 or ūw = 0. Next, as

ȳ2,w is nonzero according assumption A2, (A.1) implies that ȳ2,w ∈ Sξ0 . Hence,

S2 is true, which complets this part of the proof.

2. (S1 : TRUE → S3 : TRUE) : From 1 it follows that if S1 is true, then ȳ2,w ∈ Sξ0

and ūw ∈ Sξ0 or ūw = 0, which, as φ : R 7→ R, implies:

φ(y2(t)) = αy2(t) α ∈ R, ‖y2(t)‖∞ ≤ υ

where υ = ‖ȳ2,w‖∞. Hence, for all (x0, w) ∈ I the nonlinear feedback in Figure

4.1 reduces to a linear feedback. As the system is uniformly convergent according

to A1, this implies there exists a representation (4.2) such that x(t) = x̃(t) and

y(t) = ỹ(t) for all t ∈ R and (x0, w) ∈ I. Hence, S3 is true, which concludes this

part of the proof.

3. (S2 : TRUE → S3 : TRUE) : This follows from 2.

4. (S1 : FALSE → S3 : FALSE) : If w ∈ Sξ0, but ȳ1,w /∈ Sξ0, Property A.1 is

violated which implies that a representation (4.2) does not exist. Hence, S3 is

false, which completes this part of the proof.

5. (S1 : FALSE → S2 : FALSE) : According to A3, |G2,u(ξ)| 6= 0 ∀ ξ ∈ R. As

w ∈ Sξ0 , but ȳ1,w /∈ Sξ0 , (A.1) implies ūw /∈ Sξ0 . However, if y2,w ∈ Sξ0 , then,

according to (A.1), uw(t) ∈ Sξ0 , which contradicts the previous statement and

hence y2,w /∈ Sξ0 . This implies that S2 is false, which complets this part of the

proof.

6. (S2 : FALSE → S3 : FALSE) : This proof is identical to the proof in 4.

Hence, the proofs in 1-6 yield that S1 ↔ S2, S1 ↔ S3 and S2 ↔ S3, i.e. it is shown that

S1-S3 are equivalent which completes the proof.

A.2.2 Results in Table 4.1

Consider the Chebyshev based compensator as in (4.5) and note that:

χ(ν) = λν + fχ(ν)

with λ as in (4.6) and ∂fχ/∂ν|ν=0 = 0. Furthermore, note that the nonlinearity φ in

Figure 4.2 can always be written as φ(ν) = ρν + fφ(ν), ρ ∈ R, with ∂fφ/∂ν|ν=0 = 0.

Now, consider two cases:

cascade compensator In case of a cascade compensator configuration as in Figure

4.2a, the output of the compensated nonlinearity equals:

−φ(χ(ν)) = −λρν + f×
χφ(ν)
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with ∂f×
χφ/∂ν

∣
∣
ν=0

= 0. As f×(ν) does not contain a linear term in its Taylor

expansion, optimization of the performance in the sense of Definition 4.2 yields

f×(ν) → 0 as ℵ → 0 in (4.3). Hence, if optimal performance is attained such

that ℵ = 0, then if λ = α, the linear feedthrough equals λ = −αρ.

parallel compensator In case of a parallel compensator configuration as in Figure

4.2b, the output of the compensated nonlinearity equals:

χ(ν)− φ(ν) = (λ− ρ)ν + f+
χφ(ν)

with ∂f+
χφ/∂ν

∣
∣
ν=0

= 0. As f+(ν) does not contain a linear term in its Taylor

expansion, by the same reasoning for in the cascade compensator case, f+(ν) → 0

as ℵ → 0. Hence, if optimal performance is attained such that ℵ = 0, then if

λ = α, the linear feedthrough equals λ = α− ρ.

This yields the results presented in Table 4.1.
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Additional Results

B.1 Computation of the BLA and Signal Processing

Consider the following subclass of Gaussian Riemann equivalent signals.

Definition B.1 (Odd random phase multisine).

A signal u[m](t) is the mth realization of an odd random phase multisine if it is har-

monic according to Definition 1.4 and ξn ∈ {(2n− 1)ξ0| n ∈ N≥1} for some ξ0 ∈ R>0.

Moreover, Ak and ϕk are mutually independent, E{eiϕ[m]
k } = 0 and A2

k = f 2
A(ξk) with

fA(ξ) a user defined piecewise continuous function with a finite number of discontinu-

ities.

The odd random phase multisine is particularly useful for detection of nonli-

near effects when a frequency line is removed approximately every 5 odd frequency lines

(Pintelon et al., 2004b). For convenience the same lines are removed for all realiza-

tions.

Next, consider an experiment with M realizations of the signal defined in

Definition B.1. Furthermore, P periods of the input signal u[m](t) and output signal

y[m](t) are measured. This yields P ×M periodic responses and the same number of

estimates of the Fourier spectra of the output Y
[m]
̥ . Averaging over multiple periods of

the same realization yields the variance originating from stochastic distortions (noise),

but does not yield nonlinear effects.

Ŷ̥

[m]
=

1

P

P∑

p=1

Y̥

[m]
p (B.1)

σ2[m]

N
=

1

P (P − 1)

P∑

p=1

∣
∣
∣Y

[m]
p − Ŷ̥

[m]
∣
∣
∣

2

(B.2)

The average spectra Ŷ̥

[m]
consist both of the excited spectral lines and a possible

response on non-excited spectral lines. Therefore, the analysis splits into two parts.
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First, the response on the excited lines will be analyzed and second, the computation

of the response measured on non-excited lines will be discussed.

For frequency lines where the system was originally excited, the part of the

output spectrum that is generated by the BLA of the system and the corresponding

variance are calculated as follows:

Y̥̌ =
1

M

M∑

m=1

[

U
[m]
̥

|U [m]
̥ |

]−1

Ŷ̥

[m]
(B.3)

Mσ2
S
+ σ2

N
=

1

M − 1

M∑

m=1

∣
∣
∣Ȳ̥

[m] − Y̥̌

∣
∣
∣

2

(B.4)

where σ2
N

is the variance estimate of the disturbing noise (B.2) of the spectrum, ave-

raged over P periods as computed from. Next, σ2
S

is the variance estimate of the

nonlinear noise source on the average over M realizations. This variance is calculated

by analyzing the variance over different realizations since the nonlinearities are excited

differently for different realizations of the multisine. The calculations above yield an

equivalent system in the sense of Figure 2.6 and allow to compute the BLA as in (2.10)

(Lemma 2.1).

The response at non-excited lines is obtained by calculating the variance of the

power in the output spectra, measured at the non-exited lines. A distinction is made

between energy occurring at odd and even lines for classification of the nonlinearities:

P
2(ℓo/e) =

1

M − 1

M∑

m=1

∣
∣
∣ε− Ŷ̥

[m]
(ℓo/e)

∣
∣
∣

2

(B.5)

where ℓo/e denotes the odd and even non-excited frequency lines respectively. The

average value ε is small, since the phases of Ŷ̥

[m]
(ℓo/e) are randomly distributed in the

interval [−π π) and the average therefore tends to zero.

Summarizing, by conducting measurements with P periods ofM realizations of

the random multisine (Definition B.1), the BLA is obtained using (B.1)-(B.4). Further-

more, the variance on this BLA due to stochastic disturbances is computed according

to (B.2). The influence of nonlinearities can be computed as a variance of the out-

put spectrum or FRF by (B.4). Finally, an estimate of nonlinear effects as well as a

classification of these effects is obtained from (B.5).

B.2 Statistics

Consider the output y(t) of the system as in Figure 5.1 subject to N periods of a

sinusoidal input signal w ∈ S , after transient effects have vanished. The measured

stochastic variable yn(t) ∈ R, n = 1, 2 . . . , N is a deterministic signal, distorted by

stationary (colored) noise which implies that the corresponding spectra Yn(ξ) ∈ C are

asymptotically circular complex normally (c.c.n) distributed. Next, consider sample
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mean Ŷ (B.6), the variance on the sample mean σ2
Ŷ

(B.7) and the sample variance

σ2
Y
= Nσ2

Ŷ
.

Ŷ (kξ0) =
1

N

N∑

n=1

Yn(kξ0) (B.6)

σ2
Ŷ
(kξ0) =

1

N(N − 1)

N∑

n=1

∣
∣
∣Yn(kξ0)− Ŷ (kξ0)

∣
∣
∣

2

(B.7)

Then, denote the corresponding (unknown) true variances by ς2 and note that

as Yn is c.c.n. distributed the true sample variance is related to the estimated sample

variance by:

E

{
σ2

Y

}
= ς2Y = 2ς2ℜ{Y } = 2ς2ℑ{Y }

Since Yn is c.c.n. distributed, the normalized estimate of the square of the

absolute value of the sample mean is non central χ2
2,noncentral distributed if E

{

Ŷ

}

6= 0.

Moreover, the normalized estimate of the variance on the sample mean is central χ2
2

distributed. Hence, the ratio of the normalized estimates of the square of the absolute

value and variance of the sample mean is simply noncentral F2,2(N−1) distributed, i.e.

|Ŷ |2
ς2
Y

/(2N)

σ2
Y

ς2
Y

/2

∼
χ2
2,noncentral

χ2
2(N−1)

⇒ N
|Ŷ |2
σ2

Y

=
|Ŷ |2
σ2

Ŷ

∼ F2,2(N−1),simply noncentral

However, if E
{

Ŷ

}

= 0, the normalized square of the absolute value of the

sample mean is central χ2
2 distributed. Hence, the corresponding ratio of the normalized

estimates of the square of the absolute value and variance of the sample mean is central

F2,2(N−1) distributed, i.e.

|Ŷ |2
σ2

Ŷ

∼ F2,2(N−1) (B.8)

Hence, to test if E
{

Ŷ (kξ0)
}

is significantly different from 0 with a confidence

level η, it suffices to test if |Ŷ (kξ0)|2/σ2
Ŷ
(kξ0) is not F2,2(N−1) distributed with the

same confidence level η. This is formalized in Definition 5.3.
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Summary

Frequency Domain Based Performance Optimization

of Systems with Static Nonlinearities

The widespread acceptance and applicability of frequency domain techniques

for linear and time invariant systems has been an impetus for the extension of these

methodologies towards nonlinear systems. However, although the application of fre-

quency domain methods for the analysis, modeling and control of nonlinear systems can

be advantageous it is generally not straightforward. This work contributes to this field

by providing connections between different frequency domain methods for nonlinear

systems using new analytical results with an application to spectral analysis of block

structured systems. Furthermore, practically applicable results that allow frequency

domain based performance optimization of nonlinear systems are presented.

The first part of the thesis deals with the analysis of nonlinear effects in the

frequency domain. The contribution of this part is twofold: First, a comparative litera-

ture review and new analytical results are used to connect different, existing frequency

domain methods for nonlinear systems. Second, new analytical results are presented

that allow spectral analysis of parallel polynomial Wiener-Hammerstein systems. This

yields insight in the mechanism that generates nonlinear effects in the frequency domain

and provides a numerically efficient method to compute these effects.

In the second part of the thesis, a novel frequency domain based approach for

detection, quantification and optimal compensation of performance degrading nonlinear

effects is presented. It is shown that a frequency domain representation of the input-

output dynamics yields a well defined notion of performance for a class of nonlinear

systems. This allows to detect nonlinear effects and optimally design static nonlinear

compensators minimizing the effects of performance degrading nonlinearities, based

on output measurements only, without requiring models of the nonlinearity and other

system dynamics. For Lur’e systems, necessary and sufficient conditions for optimal

performance are provided, based on a spectral representation of the systems output.

Finally, the approach is shown to be effective in an industrial case study of frequency

domain based optimal friction compensation in a transmission electron microscope.





Samenvatting

Frequency Domain Based Performance Optimization

of Systems with Static Nonlinearities

Frequentie domein methoden zijn populair voor de analyse van linear en tijds-

invariante systemen. De toepasbaarheid en brede acceptatie van deze methoden in

de praktijk is een drijvende kracht voor het toepassen van dergelijke methoden op

niet lineaire systemen. Hoewel het gebruik van frequentie domein methoden voor niet

lineaire systemen voordelig kan zijn is een dergelijke uitbreiding niet triviaal. Dit

werk draagt hieraan op twee manieren bij. Ten eerste wordt een vergelijkend overzicht

gegeven van bestaande technieken en wordt een frequentie domein analyse van syste-

men met polymiale niet lineairiteiten gepresenteerd. Ten tweede wordt een praktisch

georiënteerde methode gëıntroduceerd waarmee de prestatie van niet lineaire systemen

in het frequentie domein in kaart gebracht en geoptimaliseerd kan worden.

In het eerste deel van het proefschrift wordt de analyse van niet lineairiteiten in

het frequentie domain besproken. Deze bijdrage bestaat uit een vergelijkend overzicht

van bestaande methoden en een analyze van polynomiale niet lineariteiten in het fre-

quentie domein. Ten eerste worden bestaande methoden in een consistente notatie

gëıntroduceerd wat een onderling vergelijk mogelijk maakt. Daarnaast wordt een fre-

quentie domein analyze van Wiener-Hammerstein systemen met polynomiale niet line-

ariteiten gepresenteerd. Hieruit volgt hoe deze niet lineariteiten zich manifesteren in

het frequentie domein wat leidt tot numerieke methoden om deze effecten te berekenen.

Het tweede deel van het proefschrift behelst de prestatie van niet lineaire sy-

stemen. Het wordt duidelijk dat frequentie domein methoden het mogelijk maken om

prestatieverminderende niet lineaire effecten te detecteren, quantificeren en te com-

penseren. Dit leidt tot de definitie van een nieuwe prestatiemaat en het ontwerp van

niet lineaire compensatoren die deze optimaliseren. Voor Lur’e systemen wordt tevens

aangetoond dat frequentie domein analyse een meetbare, noodzakelijke en voldoende

voorwaarde levert voor optimale prestatie. Tenslotte wordt in een experimentele studie

van een elektronen microscoop aangetoond dat deze technieken effectief zijn voor op-

timale compensatie van prestatieverminderende effecten (wrijving) in de praktijk.
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