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Frequency-Domain Channel Estimation and Equalization
for Broadband Wireless Communications

Yahong Rosa Zheng
Dept. of Electrical & Computer Engineering

University of Missouri, Rolla, MO 65409, USA
Email: zhengyr@umr.edu

Chengshan Xiao
Dept. of Electrical & Computer Engineering

University of Missouri, Columbia, MO 65211, USA
Email: xiaoc@missouri.edu

Abstract— Frequency-domain equalization (FDE) is an effec-
tive technique for high data rate wireless communication systems
suffering from very long intersymbol interference. Most of
existing FDE algorithms are limited to quasi-static or slow time-
varying fading channels, where least mean squares (LMS) or
recursive least squares (RLS) adaptive algorithms were utilized
for channel estimation. In this paper, we employ interpolation
method to develop channel estimation algorithm in the frequency
domain. We show that the new channel estimation algorithm can
significantly outperform LMS and RLS algorithms. Numerical
examples demonstrate that the new algorithm can track time-
varying fading channels with Doppler up to 300 − 400 Hz. This
means, for 1.9 GHz carrier frequency band, the new algorithm
can provide good bit error rate performance even if the mobile
is moving at a high speed of 170 − 228 kilo-meters per hour,
while the fading channel impulse response is 60 taps long.

I. INTRODUCTION

Single carrier frequency-domain equalization (SC-FDE) has
been shown to be an attractive equalization scheme for broad-
band wireless channels which has very long impulse response
memory. Compared to orthogonal frequency division multi-
plex (OFDM), a single carrier system with FDE has similar
performance and signal processing complexity but lower peak-
to-average power ratio and less sensitivity to carrier frequency
errors, and this arises from the use of single carrier modulation.
Moreover, compared to time-domain equalization, SC-FDE
has less computational complexity and better convergence
properties [1] to achieve the same or better performance in
severe frequency-selective fading channels.

Recent years, SC-FDE has received increasing attention in
the literature [2]-[17]. Among the existing techniques, SC-
FDE is often designed according to one of the following three
channel assumptions: 1) the fading channel coefficients are
assumed to be perfectly known at the receiver [6], [8], [10],
[11], [13], [15], [16], then frequency-domain linear equalizers
or decision feedback equalizers are analyzed and/or designed
accordingly; 2) the fading channel are assumed to be constant
for a frame consisting of one training block and many data
blocks, the fading channel is estimated via the training block
and utilized for equalization for the entire frame [2], [3], [4],
without adaptive receiver processing; 3) the fading channel
is assumed to be static for at least one block but varying
within a frame, which consists of a few training blocks (at the
beginning of the frame) and many data blocks, then adaptive
FDE is developed by employing least mean squares (LMS) or
recursive least squares (RLS) adaptive processing in the fre-

quency domain [5], [14], [17]. The equalizers developed based
on the first two assumptions have demonstrated significant
performance gain of frequency-domain equalization over time-
domain equalization, however, they may not be applicable to
practical systems over time-varying channels with satisfactory
performance. The adaptive equalizers derived from the third
assumption has achieved substantial advancement in dealing
with slow time-varying frequency-selective channels compared
with these non-adaptive SC-FDEs. However, as indicated
in the examples of [5], [14], [17], the adaptive SC-FDEs
employing LMS or RLS algorithms can degrade significantly
for moderate and fast moving mobiles.

In this paper, we employ interpolation method to propose
a new algorithm for frequency-domain channel estimation for
severe time-varying and frequency-selective fading channels.
Our new algorithms are developed by employing a frame
structure which consists of one training block and many data
blocks. The training block is utilized to estimate fading chan-
nel transfer function of the block. The fading channel transfer
functions of the data blocks are estimated by interpolating the
channel transfer functions of the training blocks at the current
frame and the next frame. Noise variance is also estimated at
the training blocks. Channel equalization is performed in the
frequency domain by employing the estimated channel transfer
functions and noise variance.

II. SYSTEM MODELS AND PRELIMINARIES

Consider an n
R

-branch diversity system with one trans-
mit antenna and n

R
receive antennas as shown in Fig. 1.

At the transmitter, the baseband data sequence {x(k)} is
periodically added cyclic prefix (CP) and modulated onto
a single carrier frequency for transmission across the time-
varying and frequency-selective fading diversity channel. At
the receiver, the CP is removed at each branch, the fast
Fourier transform (FFT) is utilized to convert the time-domain
signal to frequency-domain signal, frequency-domain channel
estimation, equalization and diversity combining are employed
to mitigate inter-symbol interference. An inverse FFT (IFFT) is
equipped to convert frequency-domain signal to time-domain
signal for demodulating and detecting the baseband data
sequence {x̂(k)}.

To facilitate frequency-domain channel estimation and
equalization for broadband wireless systems over time-varying
and frequency-selective fading channels, we propose that the
baseband signal sequence is partitioned in frames having a
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Fig. 1. The simplified block diagram of a single carrier SIMO wireless system with frequency-domain channel estimation and equalization.

time duration Tf as shown in Fig. 2. Each frame contains Nf

signal blocks, where the first block is a training block designed
for channel estimation and noise variance estimation. Each
block contains Nc symbols of CP and N symbols of data (or
training) sequence. The block time duration Tb = Tc + Td =
(Nc + N)Ts, where Ts is the symbol period.

Block
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Data

Block
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DataCP
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. . . . . .Data
BlockBlock

Data

Block Structure

Frame Structure

Tf Tb

NNc

Fig. 2. The frame structure.

A. Time-Domain System Model

Let xp(k) be the kth transmitted symbol at pth block of a
frame, yp,i(k) be the kth received symbol at pth block of the
frame at the ith receive branch. Then the received pth block
signal of the frame at the ith branch is given by

yp,i(k) =
L∑

l=1

hp,i(l, k)xp(k+1−l)+vp,i(k),

k = −Nc+1,−Nc+2, · · · , N ; p = 1, 2, · · · , Nf (1)

where vp,i(k) is additive white Gaussian noise with average
power σ2 at the ith receive branch, L is the channel length,
hp,i(l, k) is the baseband equivalent channel response of the
composite time-varying frequency-selective fading channel of
the ith branch. The composite channel is the cascade of the
transmit pulse shaping filter, physical fading channel, and
receive matched filter. It is known that the Nc (Nc ≥ L−1)
symbols of CP is chosen to satisfy

xp(k) = xp(k+N), k = −Nc+1, · · · ,−1, 0. (2)

After removing the CP, the pth block received data symbols
at the ith branch can be expressed by (3) on top of next page,
or in a compact matrix-vector form as

yp,i = Tp,ixp + vp,i. (4)

In principle, if the receiver has perfect knowledge of the
time-domain channel matrices {Tp,i}n

R
i=1, then the pth block

transmitted data xp can be estimated and detected via the
minimum mean square error (MMSE) criterion. The standard
solution is

x̂p =

[ n
R∑

i=1

Th
p,iTp,i + σ2IN

]−1 [ n
R∑

i=1

Th
p,iyp,i

]
. (5)

However, this time-domain MMSE equalizer requires the
inversion of an N × N Hermitian matrix that needs Q(N2)
operations, which is infeasible for larger N . On the other hand,
if N is chosen to be small, the data efficiency N

N+L−1 will
be low for large channel length L, which is harmful for high
data rate broadband wireless communication systems.

B. Frequency-Domain System Model

Let F be the normalized FFT matrix of size N × N , i.e.,
its (m, n)th element is given by 1√

N
exp

(
−j2π(m−1)(n−1)

N

)
,

taking the FFT of the received signal and transmitted signal
and keeping in mind that FhF = IN , one can obtain the
frequency-domain representation as follows

Yp,i � Fyp,i = FTp,iFhFxp + Fvp,i

= Hp,iXp + Vp,i (6)

where Hp,i = FTp,iFh is the frequency-domain channel
matrix for the pth block at the ith branch. The frequency-
domain MMSE equalization is given by

X̂p =

[ n
R∑

i=1

Hh
p,iHp,i + σ2IN

]−1 [ n
R∑

i=1

Hh
p,iYp,i

]
. (7)

For general time-varying and frequency-selective fading
channels, the time-domain channel matrix Tpi is not circulant,
and frequency-domain channel matrix Hp,i is not diagonal.
Therefore, the frequency-domain MMSE equalization (7) has
no advantage over its time-domain counterpart in terms of
computational complexity, and the frequency tones of the
received signal Yp,i are not orthogonal. However, if the fading
channel coefficients remain constant within a block, then Tpi

is circulant and Hp,i is diagonal. Consequently, the frequency
tones {Yp,i(m)}N

m=1 of the received signal are orthogonal, and
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vp,i(1)
vp,i(2)

...
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...
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(3)

the frequency-domain input-output relationship and equaliza-
tion are simplified as

Yp,i(m) = Hp,i(m)Xp(m)+Vp,i(m), m = 1, 2, · · · , N (8)

X̂p(m) =

[ n
R∑

i=1

|Hp,i(m)|2+σ2

]−1[ n
R∑

i=1

Hh
p,i(m)Yp,i(m)

]
(9)

where Yp,i(m), Hp,i(m), Xp(m) and Vp,i(m) are the discrete
Fourier transform of the corresponding time-domain signals,
given by

Yp,i(m) =
1√
N

N∑
k=1

yp,i(k) exp
(−j2π(k−1)(m−1)

N

)
(10)

Hp,i(m) =
L∑

l=1

hp,i(l,
N

2
) exp

(−j2π(l−1)(m−1)
N

)
(11)

Xp(m) =
1√
N

N∑
k=1

xp(k) exp
(−j2π(k−1)(m−1)

N

)
(12)

Vp,i(m) =
1√
N

N∑
k=1

vp,i(k) exp
(−j2π(k−1)(m−1)

N

)
. (13)

When the block time duration Tb is smaller than the chan-
nel coherence time, the fading channel coefficients remains
approximately constant for the entire block, and we can
use (8) to approximately describe the time-varying wireless
fading channel in the frequency domain. In this paper, new
algorithms for frequency-domain channel estimation and chan-
nel equalization will be developed based on (8) for time-
varying frequency-selective fading channels, we will show via
numerical examples that this approximation works well for
realistic broadband wireless communication systems with both
low mobility and high mobility users.

III. CHANNEL ESTIMATION AND NOISE VARIANCE

ESTIMATION

In this section, we present an interpolation algorithm for
channel estimation in the frequency domain, and a technique
for noise variance estimation.

A. Frequency-Domain Channel Estimation

For the training block, p = 1, both the transmitted signal
X1(m) and received signal Y1,i(m) are known. The frequency-
domain channel transfer function H1,i(m) at the training block

can be estimated by least squares (LS) criterion as follows:

H̃1,i(m) =
Y1,i(m)
X1(m)

= H1,i(m) +
V1,i(m)
X1(m)

. (14)

The estimate H̃1,i(m) can be improved by a frequency-
domain filter to reduce noise. Although various frequency-
domain filters can be employed, a common technique is to
transform H̃1,i(m) into the time domain with an IFFT, and
use an L-size window mask to remove the noise beyond
the channel length, then transform the time-domain channel
coefficients back to the frequency domain with an FFT. This
procedure was originally proposed in OFDM systems [19].
The noise-reduced channel estimation of the training block
can be represented by

Ĥ1,i(m) = H1,i(m) +
V̂1,i(m)
X1(m)

, m = 1, 2, · · · , N (15)

where V̂1,i(m) is equal to
L∑

k=1

v1,i(k)√
N

exp

(−j2π(k−1)(m−1)

N

)
.

Provided v1,i(k) is AWGN with average power σ2, one
can easily conclude that V1,i(m) and V̂1,i(m) are zero-mean
Gaussian with average power being σ2 and σ2L

N , respectively.
Therefore, the noise average power is reduced by a factor N

L
via the FFT-based frequency-domain filter.

According to eqn. (15), a desired property of the training
sequence is to have constant |X1(m)|2 for all m, so that
noise amplification on certain frequency tones can be avoided.
Although many sequences can achieve this property, a good
solution is to adopt Chu sequences [20] as the training
sequence, because Chu sequences have constant magnitude
in both frequency domain and time domain, which avoids the
peak-to-average power ratio problem at the transmitter. In this
paper, we choose Chu sequences as the training sequence to
ensure |X1(m)|2 = 1, ∀m.

Similar to Ĥ1,i(m) which denotes the noise-reduced esti-
mated channel transfer function at the ith receive branch for
the training block of the current frame, let ĤNf +1,i(m) =

HNf +1,i(m)+
V̂Nf +1,i(m)

X1(m) be the noise-reduced estimated trans-
fer functions of the training block of the next frame. Define
the column vector Ĥi(m) =

[
Ĥ1,i(m) ĤNf +1,i(m)

]t
, and

let Cp,i(m) be an interpolation row vector corresponding to
the pth block in the current frame for the ith receive branch.
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Then the transfer function of the pth block of the current frame
is estimated by

Ĥp,i(m) = Cp,i(m)Ĥi(m), p = 1, 2, · · · , Nf (16)

and the estimation error for the ith branch is given by

Ep,i(m)=Hp,i(m)−Ĥp,i(m)=Hp,i(m)−Cp,i(m)Ĥi(m). (17)

The optimal solution for Cp,i(m) to minimize the mean
square estimation error is given by

Cp,i(m) = E
{

Hp,i(m)Ĥh
i (m)

} [
E

{
Ĥi(m)Ĥh

i (m)
}]−1

(18)

=
[
E {

Hp,i(m)H∗
1,i(m)

} E
{

Hp,i(m)H∗
Nf +1,i(m)

} ]

×

E {|H1,i(m)|2}+ σ2L

N
E

{
H1,i(m)H∗

Nf +1,i(m)
}

E {
HNf +1,i(m)H∗

1,i(m)
} E

{∣∣HNf +1,i(m)
∣∣2}+ σ2L

N



−1

.(19)

We are now in a position to present the frequency-domain
channel estimation and its mean square errors of data blocks
over Rayleigh fading channels.

Proposition 1: For frequency-selective Rayleigh fading, the
interpolation row vector Cp,i(m) and the minimum mean

square error εp,i(m) = E
{∣∣∣Hp,i(m) − Ĥp,i(m)

∣∣∣2} can be

simplified to be

Cp =

[
J0 [ωd(p−1)Tb]

J0 [ωd (Nf +1−p) Tb]

]t
[

1 + σ2L
N

J0 (ωdNfTb)

J0 (ωdNfTb) 1 + σ2L
N

]−1

(20)

εp =1−
[

J0 [ωd(p−1)Tb]
J0 [ωd (Nf +1−p) Tb]

]t
[

1+ σ2L
N

J0 (ωdNfTb)

J0 (ωdNfTb) 1+ σ2L
N

]−1

×
[

J0 [ωdpTb]
J0 [ωd (Nf −p) Tb]

]
(21)

where J0(·) is the zero-order Bessel function of the first kind,
and ωd = 2πfd is the maximum angular Doppler frequency.

Proof: The proof is omitted for brevity.
It is noted that for Rayleigh fading channels, once Nf

and Tb are chosen, Cp depends on the maximum Doppler
frequency fd and the noise average power σ2. The estimation
of fd can be done by the algorithm presented in [22] and the
estimation of σ2 is given in the next subsection.

It is also noted that interpolation-based channel estimation
methods have been previously studied for OFDM systems [23]
and for frequency flat fading channels [24]. The algorithm
presented in this paper is to demonstrate that the interpolation-
based channel estimation can deal with much higher Doppler
than the LMS and RLS algorithms for single-carrier broadband
wireless systems.

B. Noise Variance Estimation

Let h̃1,i(l) and h̃Nf +1,i(l) be the N -point IFFT of H̃1,i(m)
and H̃Nf +1,i(m), respectively, where l = 1, 2, · · · , N . As we
know that the channel length is L and |X1(m)|2 = 1, hence
h̃1,i(l) and h̃Nf +1,i(l) for l = L+1, L+2, · · · , N are noise
with the same variance σ2. Therefore, σ2 can be estimated by

σ̂2 =
1

2(N−L)

N∑
l=L+1

[∣∣∣h̃1,i(l)
∣∣∣2 +

∣∣∣h̃Nf +1,i(l)
∣∣∣2] . (22)

It should be pointed that estimating σ2 needs only small
fractional computations as shown in (22), because h̃1,i(l)
and h̃Nf +1,i(l) are obtained when we estimate Ĥ1,i(m) and
ĤNf +1,i(m) by the frequency-domain filter using IFFT and
FFT.

IV. FREQUENCY-DOMAIN CHANNEL EQUALIZATION

According to eqn. (8), the pth block received signals at the
n

R
branches are given in frequency domain as follows:


Yp,1(m)
Yp,2(m)

...
Yp,n

R
(m)


=




Hp,1(m)
Hp,2(m)

...
Hp,n

R
(m)


Xp(m)+




Vp,1(m)
Vp,2(m)

...
Vp,n

R
(m)


 . (23)

This equation can be written in a compact form as follows:

Yp(m) = Hp(m)Xp(m) + Vp(m). (24)

We are now in a position to state the following result.
Proposition 2: The output of the frequency-domain MMSE

equalizer is given by

X̂p(m)=
[
Ĥh

p(m)Ĥp(m)+εp+σ2
]−1

Ĥh
p(m)Yp(m) (25)

where Ĥp(m) =
[

Ĥp,1(m) Ĥp,2(m) · · · Ĥp,n
R

(m)
]t

is the noise-reduced estimated transfer function vector of the
pth block.

Proof: From (17) we have Hp(m) = Ĥp(m)+Ep(m) with
Ep(m)=

[
Ep,1(m) Ep,2(m) · · · Ep,n

R
(m)

]t
being the

estimation error vector. Replacing Hp(m) by Ĥp(m)+Ep(m),
(24) yields

Yp(m) = Ĥp(m)Xp(m) + Ep(m)Xp(m) + Vp(m). (26)

Let Wp(m) be the frequency-domain equalizer row vec-
tor, the output of the equalizer is given by X̂p(m) =
Wp(m)Yp(m). The equalization error vector is given by

EXp
(m)=Xp(m)−X̂p(m)=Xp(m)−Wp(m)Yp(m). (27)

Adopting the MMSE criterion, we find the equalizer row
vector given by

Wp(m) = E {
Xp(m)Yh

p (m)
} [E {

Yp(m)Yh
p (m)

}]−1

= Ĥh(m)
[
Ĥ(m)Ĥh(m) + E {

Ep(m)Eh
p(m)

}
+E {

Vp(m)Vh
p (m)

}]−1

= Ĥh(m)
[
Ĥ(m)Ĥh(m) + εpIn

R
+ σ2In

R

]−1

=
[
Ĥh(m)Ĥ(m) + εp + σ2

]−1

Ĥh(m) (28)

where the last equality is obtained by using the matrix inver-
sion lemma [25]. This completes the proof.

Finally, applying IFFT on the frequency domain equalized
data sequence X̂p(m), m = 1, 2, · · · , N , we obtain the pth
block estimated data sequence x̂p(k), k = 1, 2, · · · , N in the
time domain.
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V. SIMULATION RESULTS

The performance evaluation of the proposed algorithms
has been carried out by extensive computer simulations with
various system parameters and fading channels. For convenient
comparison, we present numerical examples based on two
previously reported wireless systems.

System A: we adopt the 60-tap frequency-selective
Rayleigh fading channel, where the average power of the
first 20 taps ramps up linearly and the last 40 taps ramps
down linearly, as described in [5], and the fading channel is
normalized to have total average power as one. We choose
FFT size N = 256, symbol interval Ts = 0.25µs and
QPSK modulation, which are the same as these of [5]. We
further choose frame length Nf = 10 to have the same data
efficiency as that of [5] for the LMS and RLS adaptations,
which employed 10 training blocks at the beginning of every
frame and each frame consisted of 100 blocks.
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Fig. 3. Performance of the noise variance estimation algorithm.

The performance of the proposed noise variance estimation
technique is shown in Fig. 3. As can be seen, the estimation
technique provides unbiased estimation for the noise variance
σ̂2, and the variance of the estimated σ̂2 is small, which
indicates that the estimation algorithm is accurate.

Fig. 4 shows the BER performance of a two-antenna re-
ceiver and a four-antenna receiver equipped with our proposed
algorithms when the Doppler is 200 Hz, which is equivalent to
a mobile speed of 114 km/h at carrier frequency of 1.9 GHz.
As can be seen, both diversity receivers with our algorithms
have only about 1 dB degradation from the ideal receiver with
perfect channel fading information. Moreover, for the four-
antenna receiver, our algorithm with 200 Hz Doppler has the
same performance as the LMS and RLS algorithms of [5]
with quasi-static channel, and for the two-antenna receiver,
our algorithm with fd = 200 Hz is slightly better than the
RLS algorithm but slightly worse than the LMS algorithm of
[5] when they are operated with quasi-static channel. The LMS
and RLS algorithms will degrade 3-6 dB at BER = 10−4 when
the Doppler is 200 Hz, as pointed out by the author of [5].
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Fig. 4. BER versus SNR of diversity receivers with our proposed algorithms
at fd = 200 Hz and those of [5] for quasi-static channel.

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

SNR (dB)

BE
R

 

 

Perfect Chnn Est.
New ChEst, f

d
=10 Hz

New ChEst, f
d
=200 Hz

New ChEst, f
d
=300 Hz

New ChEst, f
d
=400 Hz

n
R

 = 4
n

R
 = 2

n
R

 = 1

Fig. 5. BER versus SNR of diversity receivers with various Doppler spreads.

Fig. 5 depicts the BER performance of single-branch re-
ceiver, two-branch diversity receiver and four-branch diversity
receiver over various Doppler spreads up to 400 Hz. From this
figure, it is observed that the BER degradation due to larger
Doppler tends to be smaller when the diversity order increases.

Clearly, our proposed algorithms can effectively cope with
severe fading channels which has very long impulse response
and large Doppler shift.

System B: We adopt the same 11-tap frequency-selective
Rayleigh fading channel whose l-th tap has average power
given by 1.2257 exp (−0.8l), as described in [17]. We choose
frame length Nb = 10, FFT size N = 128, CP length
Nc = 10, symbol interval Ts = 0.5µs, receive antenna number
M = 1 and QPSK modulation. Therefore, the data efficiency
is N

N+Nc
× Nb−1

Nb
= 83.5%, which is slightly higher than the

data efficiency of 82.8% in [17].
Figure 6 shows the BER results of the single-branch receiver

employing our proposed frequency-domain channel equal-
ization incorporated our proposed noise variance estimation
and channel estimation algorithms with various Doppler fre-
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quencies fd = 20, 50, 100, 200 and 300 Hz. For comparison
purpose, the results of MMSE equalizers based on perfect
channel knowledge and RLS adaptive algorithm [17] with
normalized Doppler fdTs = 1×10−5, i.e., fd = 20 Hz are also
included. As can be seen from the BER results, for Doppler
frequency up to 50 Hz, our proposed algorithms is less than 1
dB away from the ideal case with perfect channel knowledge
at BER of 10−5. For Doppler up to 300 Hz, our algorithms
still provide better results than that of the RLS algorithm
in [17] with Doppler fd = 20 Hz. This indicates that our
algorithm can handle 15 times higher Doppler than the RLS
algorithm in [17], and still provides better BER performance
and maintains slightly higher data efficiency. The cost we pay
for the proposed algorithm is using 128-point FFT and IFFT
while the RLS algorithm in [17] employs 64-point FFT and
IFFT. However, our channel estimation algorithm has lower
computational complexity than the channel tracking algorithm
with RLS adaptation.
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Fig. 6. BER versus SNR of a single-antenna receiver.

VI. CONCLUSION

In this paper, we have presented algorithms for fading chan-
nel estimation, noise variance estimation and fading channel
equalization in the frequency domain for diversity channels.
It has been demonstrated via examples that the proposed
algorithms perform very well for broadband wireless commu-
nication systems which encounter very long impulse response
and very fast time-varying fading channels. Numerical results
have shown that our algorithm has 3-6 dB gain over the LMS
and/or RLS algorithms in [5] at 200Hz Doppler, and our
algorithm can handle 15 times higher Doppler than the RLS
algorithm in [17].
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