
1

Frequency-Domain Design of Overcomplete

Rational-Dilation Wavelet Transforms
İlker Bayram, Student Member, IEEE and Ivan W. Selesnick, Senior Member, IEEE

Abstract—The dyadic wavelet transform is an effective tool for
processing piecewise smooth signals; however, its poor frequency
resolution (its low Q-factor) limits its effectiveness for processing
oscillatory signals like speech, EEG, and vibration measurements,
etc. This paper develops a more flexible family of wavelet
transforms for which the frequency resolution can be varied. The
new wavelet transform can attain higher Q-factors (desirable
for processing oscillatory signals) or the same low Q-factor of
the dyadic wavelet transform. The new wavelet transform is
modestly overcomplete and based on rational dilations. Like the
dyadic wavelet transform, it is an easily invertible ‘constant-
Q’ discrete transform implemented using iterated filter banks
and can likewise be associated with a wavelet frame for L2(R).
The wavelet can be made to resemble a Gabor function and
can hence have good concentration in the time-frequency plane.
The construction of the new wavelet transform depends on
the judicious use of both the transform’s redundancy and the
flexibility allowed by frequency-domain filter design.

I. INTRODUCTION

The dyadic wavelet transform (WT) is an easily-invertible

‘constant-Q’ transform that is very effective for the sparse

representation of piecewise smooth signals, like a scan-line

from a typical photographic image [11]. This property has

made the dyadic WT a popular tool for several signal and

image processing applications (coding, denoising, deblurring,

sharpening, etc). However, the dyadic WT is less effective

for processing signals of more oscillatory nature, like speech,

EEG, and physical vibration measurements, etc. Such sig-

nals are quasi-periodic over short-time intervals; and when

analyzing/filtering such signals one generally needs better

frequency resolution than that provided by the dyadic WT.

Indeed, the dyadic WT has a very low Q-factor1 and poor

frequency resolution, as illustrated in Fig. 1. Other transforms,

like the short-time Fourier transform, cosine modulated filter

banks, and wavelet packets, are often used for oscillatory-type

signals instead of the dyadic WT. But these transforms are not

constant-Q. This paper develops a family of wavelet (constant-

Q) transforms attaining a range of Q-factors; in particular,

compared to the dyadic WT, the Q-factor can be made higher

and the frequency resolution can be made finer. (The proposed

WT can also attain the same low Q-factor as the dyadic WT.)
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1The Q-factor of a band-pass filter is the ratio of its center frequency to its
bandwidth.
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(a)

H(ω) ↓2

G(ω) ↓2

H(ω) ↓2 . . .

G(ω) ↓2

(b)

Fig. 1. The critically-sampled dyadic discrete wavelet transform has
a low Q-factor. (a) Frequency decomposition and (b) iterated filter bank
implementation.

For many signal processing applications, overcomplete

wavelet transforms outperform critically-sampled wavelet

transforms. Overcomplete WTs (or ‘frames’) expand an N -

point signal to a set of M -coefficients with M > N [22].

Several overcomplete invertible WTs are available, like the

undecimated WT (UWT), the dual-tree complex WT (CWT),

the double-density WT, and others [29], [19], [30], [14].

However, many of these WTs2 attain over-completeness by

increasing only the temporal sampling in some or all frequency

bands. But, in order to better utilize the redundancy of an

overcomplete WT it can be beneficial to also reduce the

frequency spacing between adjacent frequency bands. Ad-

ditionally, most of the existing overcomplete WTs achieve

either a limited range of redundancy factors (M/N ) or can be

much more overcomplete than is necessary or practical. The

family of wavelet transforms developed in this paper attain

over-completeness by increasing sampling in both time and

frequency. Moreover, the proposed family of WTs provides a

rich range of redundancy factors.

Based on the engineering literature, most current discrete

wavelet transform implementations are based on FIR filters.

Indeed, much of the development of wavelet-based signal

processing algorithms grew from Daubechies’ construction of

FIR-based orthonormal wavelet bases [16]. However, the FFT-

2We exclude the continuous ‘integral’ wavelet transform because we restrict
our interest to fully-discrete transforms that are easily and stably inverted.
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based implementation of filter banks and WTs offers greater

design flexibility; and this flexibility has been exploited in

the development of certain WTs so as to attain attributes not

possible with FIR filters [34], [18], [24]. Likewise, the family

of WTs introduced in this paper is based on a frequency-

domain design (the filters do not have rational transfer func-

tions) and our implementation is based on the FFT. We note

that although the filters are not FIR, the time-domain filter

response decays rapidly and the wavelets are well localized in

time and frequency.

The family of overcomplete wavelet transforms introduced

in this paper is based on rational (non-dyadic) dilations. This

WT is developed for discrete-time data, is approximately shift-

invariant, and is easily invertible (in fact, self-inverting in the

sense of [31] — the frame is a ‘tight’ frame). By using a

dilation factor close to one, one obtains a WT where the

wavelet is gradually dilated from scale to scale. In addition,

the introduced WT is flexible — a range of Q-factors and

redundancy factors can be attained.

Most previous research on wavelet transforms with rational

dilations consider only the critically-sampled case [6], [23],

[12], [5], [7]. An exception is our previous work [3] in which

we developed overcomplete rational-dilation filter banks and

WTs with FIR filters. However, the family of rational-dilation

WTs proposed here, designed in the frequency-domain and

implemented using the FFT, have several advantages over the

WTs developed in [3]. First, in [3] each frequency band (or

‘scale’) is represented by a number of signals produced by

different band-pass filters; the signals need to be interlaced

together to form the subband signal — an inconvenience.

Second, the construction in [3] involves polynomial matrix

spectral factorization, which while being straightforward in

principle, is more involved than the frequency-domain ap-

proach proposed here. Consequently, in [3] we were unable

to produce WTs with good frequency resolution (high Q-

factor), even though that was one of our motivations. Third,

the approach proposed in this paper has greater flexibility;

in particular, the redundancy factor of the transform is not

completely determined by the dilation factor as it is in [3].

The close relationship, between invertible wavelet trans-

forms for discrete data and multiresolution anaylsis (MRA)

on the real line, is well recognized and appreciated. For the

dyadic case, self-inverting FIR FBs are related to compactly-

supported tight wavelet frames on the real line. Unfortunately

for rational-dilation WTs, no MRA with rational dilation

factors can be constructed based on self-inverting FIR FBs [6];

that is, there is no unique well defined wavelet on the real line

associated with discrete rational-dilation wavelet transforms

implemented using FIR filters. However, in this paper we will

show that a tight rational-dilation wavelet frame on the real

line can be constructed using the proposed bandlimited filters3

using a single wavelet. This is an extension of the construction

by Auscher [1] of an orthonormal MRA with q − p wavelets.
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Fig. 2. The time-frequency sampling lattice of a discrete wavelet transform
implemented via an iterated two-channel filter bank, as in Figs. 1 and 3. The
parameters A and B are determined by the sampling factor of the low-pass
branch and the redundancy of the filter bank respectively.

A. Sampling the Time-Frequency Plane

The manner in which the analysis/synthesis functions cover

the time-frequency (T-F) plane, as illustrated in Fig. 2, pro-

vides a useful way to understand the relationships among

various wavelet transforms. For example, the dyadic WT,

realized using the filter bank illustrated in Fig. 1b, can be

understood to sample the T-F plane with {A = 2, B = 2} in

Fig. 2. In contrast, the critically-sampled rational-dilation WT,

realized using the iterated FB in Fig. 3a, sets {A = q/p,B =
q/(q − p)}.

Overcomplete wavelet transforms sample the T-F plane

more densely. For example, the double-density WT [29] dou-

bles the temporal density of the dyadic WT and maintains its

frequency spacing, leading to {A = 2, B = 1} in Fig. 2. In

this paper, we propose a family of WTs realized using the

iterated FB in Fig. 3b, which sets {A = q/p,B = s}.

Our previous work on overcomplete rational-dilation

wavelet transforms [3] sets {A = q/p,B = 1} and is therefore

less flexible than the WT proposed here (s = 1 in [3]).

In particular, the proposed WT can sample the T-F plane

more coarsely than the WT of [3] and it can therefore be

less redundant. Indeed, the proposed WT is redundant by

p/(s (q−p)), whereas the WT of [3] is redundant by p/(q−p).
The latter redundancy can be large even for modest rational

sampling factors. For example, with p = 7, q = 8, which is

relevant for classification of audio signals [12], the WT of [3]

is redundant by a factor of 7. Such a high redundancy might

be higher than is desired or necessary. Using s = 3 reduces

the redundancy to 7/3.

In addition to affecting the redundancy, s, in the filter bank

of Fig. 3b, also affects the Q-factor and the time-bandwidth

product. We will demonstrate that, for a given rational dilation

factor, q/p, there is a trade-off between the Q-factor and the

time-bandwidth product.

3For the filter bank in Fig. 4, we will show that perfect reconstruction (PR)
cannot be achieved using filters with rational transfer functions.
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↑p H(ω) ↓q

↑p′ G(ω) ↓q

↑p H(ω) ↓q . . .

↑p′ G(ω) ↓q

(a)

↑p H(ω) ↓q

G(ω) ↓s

↑p H(ω) ↓q . . .

G(ω) ↓s

(b)

Fig. 3. Rational-dilation discrete wavelet transforms. (a) The critically-
sampled rational WT (with p′ = q − p), (b) The overcomplete rational WT
investigated in this paper. The dilation factor is q/p.

B. Prior Constant-Q Transforms

Numerous methods have been proposed to obtain constant-

Q transforms with high Q-factors (see [8] and the references

therein). For example, Oppenheim et al. describe a method

that maps a discrete sequence to another whose discrete-time

Fourier transform (DTFT) is related to the former via a fre-

quency warping, thereby allowing one to obtain an unequally

spaced frequency sampling [28]. In this direction, Smith and

Abel [32] use a bilinear map as the warping function to

approximate the Bark frequency warping. Makur and Mitra

discuss in [25] the warped DFT which samples the unit circle

on points that are not equally spaced as required by the

conventional DFT. In this regard, the constant-Q transform

introduced by Brown in [8] may be interpreted (even though

Brown’s work precedes [25]) as a short-time Fourier transform

that uses a sliding window with the warped DFT instead of

the conventional DFT (also see [9] for an implementation of

the inverse transform).

A second approach to obtaining constant-Q transforms with

variable Q-factor is to approximate the T-F lattice with simpler

building blocks. For instance, Diniz et al. [17] provide an effi-

cient implementation of a transform called the bounded-Q fast

filter bank, inspired by the bounded-Q transform introduced

by Mont-Reynaud [27]. The bounded-Q transform first splits

the spectrum into geometrically distributed frequency bins and

then splits each of these bins uniformly, achieving a piecewise

linear frequency decomposition. In a similar vein, Karmakar

et al. [21] propose a criterion to select optimal wavelet packet

trees to approximate the Bark scale.

The rational-dilation wavelet transform proposed in this

paper provides an alternative, with attractive properties, to the

methods above that set out to achieve a constant-Q analysis

with a high Q-factor. First, it is a tight frame, hence the inverse

is given by the transpose of the forward transform and can

be implemented as efficiently, a property lacked by the first

group of transforms. Second, it is a true constant-Q transform,

in contrast to the methods in the second group. Therefore,

we believe that the introduced rational-dilation WT may be a

useful addition to the inventory of transforms designed for the

task of constant-Q analysis.

↑p H(ω) ↓q

G(ω) ↓s

↑q H∗(ω) ↓p

+

↑s G∗(ω)

Fig. 4. Analysis and synthesis filter banks for the implementation of the
proposed rational-dilation wavelet transform. The dilation factor is q/p, a
rational number.

C. Notation and Conventions

We denote discrete-time sequences by lower case letters

as in a(n) with n ∈ Z. The discrete-time Fourier transform

(DTFT) of a(n) is denoted by A(ω) and is given by A(ω) =
∑

n a(n) exp(−jωn). Note that A(ω) is 2π periodic in ω.

Unless otherwise stated, we assume all discrete-time signals

are real valued, so that specifying a DTFT on ω ∈ [0, π] will

determine the DTFT on ω ∈ [−π, π]. Therefore, we restrict our

attention to ω ∈ [0, π] so as to simplify some of the notation.

The Fourier transform of a function f(t), with t ∈ R, is given

by f̂(ω) =
∫

∞

−∞
f(t) e−jωtdt.

D. Organization

In Section II, we derive the perfect reconstruction conditions

and propose a specific set of perfect reconstruction filters. In

Sections III and IV, we show that for the proposed filters, the

rate changer and related iterated filter banks can be written so

as to simplify the analysis of their behavior. In Section V we

provide examples. In Section VI we examine the Q-factor and

time-bandwidth product of the proposed WT. In Section VII,

we present another interpretation of the rational rate changer

and discuss the underlying wavelet frame for L2(R).

II. PERFECT RECONSTRUCTION CONDITIONS

In this section we derive the perfect reconstruction condi-

tions for the filter bank in Fig. 4. This FB is the basic element

of the proposed wavelet transform. The parameters p, q, and s
are positive integers satisfying 1 ≤ p < q and p/q+ 1/s ≥ 1.

We also assume p and q are coprime. We will show that PR

cannot be attained using filters with rational transfer functions.

Hence our filter bank implementation will be based on the

FFT. For this reason, we formulate the PR conditions in the

frequency domain.

Let us consider the system in Fig. 5. We have,

U(ω) = X(aω), (1)

V (ω) =
1

b

[

F (ω)U(ω) + F
(

ω +
2π

b

)

U
(

ω +
2π

b

)

+ · · ·

+F
(

ω + (b− 1)
2π

b

)

U
(

ω + (b− 1)
2π

b

)

]

F ∗(ω), (2)

and

Y (ω) =
1

a

[

V
(ω

a

)

+ V
(ω

a
+

2π

a

)

+ · · ·

+V
(ω

a
+ (a− 1)

2π

a

)

]

. (3)
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Noting that

U
(ω

a
+ k

2π

b
+ n

2π

a

)

= X
(

ω + a k
2π

b

)

, (4)

we obtain

Y (ω) =
b−1
∑

k=0

Ck(ω)X
(

ω + a k
2π

b

)

(5)

where

Ck(ω) =
1

ab

[

F
(ω

a
+ k

2π

b

)

F ∗

(ω

a

)

+ F
(ω

a
+ k

2π

b
+

2π

a

)

F ∗

(ω

a
+

2π

a

)

+ · · ·

+F
(ω

a
+ k

2π

b
+ (a− 1)

2π

a

)

F ∗

(ω

a
+ (a− 1)

2π

a

)

]

.

(6)

We can now write the output of the FB in Fig. 4 as,

Y (ω) =

q−1
∑

k=0

Lk(ω)X
(

ω+p k
2π

q

)

+

s−1
∑

k=0

Mk(ω)X
(

ω+k
2π

s

)

,

(7)

where

Lk(ω) =
1

p q

p−1
∑

n=0

H
(ω

p
+ k

2π

q
+ n

2π

p

)

H∗

(ω

p
+ n

2π

p

)

,

(8)

Mk(ω) =
1

s

[

G
(

ω + k
2π

s

)

G∗(ω)

]

. (9)

Proposition 1: For the FB in Fig. 4, there exist filters with

non-zero rational transfer functions achieving PR if and only

if p+ 1 = q = s.
Proof: See Appendix A.

Notice that p + 1 = q = s implies the FB is orthonormal.

Therefore, in order to obtain perfect reconstruction filters for

the overcomplete case, we must use filters which do not have

rational transfer functions.

We remark that if,

Lk(ω) = 0 for k = 1, 2, . . . , q − 1, (10)

Mk(ω) = 0 for k = 1, 2, . . . , s− 1, (11)

L0(ω) +M0(ω) = 1, (12)

then PR is granted4.

A. Proposed perfect reconstruction filters

In this section we propose a low-pass filter H(ω) and

a high-pass filter G(ω) satisfying the perfect reconstruction

conditions derived above. The two filters will have ideal pass-

bands and ideal stop-bands; however, the filters will not be

ideal ‘brick-wall’ filters because of the presence of transition

bands. In fact, the transition bands are important because a

‘brick-wall’ filter will have a sinc-type time-domain response

with poor decay, which we wish to avoid.

4It can be shown that these conditons are also necessary if q and s are
coprime.

0 π

H(ω)
√

pq

√

s

(s−1)π
p s

π

q
(s−1)π

s

pπ

q

G(ω)

ω

(a)

0 !/4 !/3 !/2 2!/3 !
0

"

H(ω)

G(ω)
√

2

√

6

(b) p = 2, q = 3, s = 2.

Fig. 6. (a) Properties of proposed perfect reconstruction filters for the filter
bank in Fig. 4. (b) Proposed filters with dilation factor q/p = 3/2 and s = 2.

If we let,

H(ω) = 0, for ω ∈
[π

q
, π

]

, (13)

then it can be shown that,

Lk(ω) = 0, k = 1, 2, . . . , q − 1 (14)

L0(ω) =
1

p q

∣

∣

∣H
(ω

p

)∣

∣

∣

2

for ω ∈ [0, π]. (15)

Similarly, if

G(ω) = 0, ω ∈
[

0,
(

1 − 1

s

)

π
]

, (16)

then,

Mk(ω) = 0, k = 1, 2, . . . , s− 1 (17)

M0(ω) =
1

s
|G (ω)|2 for ω ∈ [0, π]. (18)

In other words, with the choices (13) and (16), the only

condition for PR is, by (12),

1

p q

∣

∣

∣
H

(ω

p

)∣

∣

∣

2

+
1

s
|G (ω)|2 = 1 for ω ∈ [0, π]. (19)

Equations (13) and (19) imply that

|G(ω)| =
√
s for ω ∈

[p

q
π, π

]

. (20)

Similarly, (16) and (19) imply

|H(ω)| =
√
p q for ω ∈

[

0,
(

1 − 1

s

)π

p

]

. (21)

Notice that (13) and (21) determine |H(ω)| on all ω except

[(1− 1/s)π/p, π/q]. Likewise, (16) and (20) determine G(ω)
on all ω except [(1−1/s)π, pπ/q]. These will be the transition

bands of H(ω) and G(ω). From (19), the transition band of

|G(ω)| is completely determined by the transition band of

|H(ω)|. These constraints on the filters are depicted in Fig. 6a

for reference.
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X(ω) ↑a
U(ω)

F (ω) ↓b ↑b F
∗(ω)

V (ω)
↓a Y (ω)

Fig. 5. One channel of the rational filter bank in Fig. 4.

It is easy to check that, provided

p

q
+

1

s
> 1, (22)

the transition bandwidths in Fig. 6 are positive. That is,

provided the FB is overcomplete, H(ω) and G(ω) really do

have transition bands. The width of the transition band will

be important because it will influence the decay of h(n) and

g(n) and of the analysis/synthesis functions of the designed

wavelet transform.

Even though Fig. 6 defines transition bands for the filters

H(ω) and G(ω), with different widths, we remark that for the

low-pass branch, the filter H(ω) acts not on the input signal

but on the up-sampled input signal. In Section IV, we rewrite

the low-pass branch so as to clarify the filtering operation.

B. Transition Bands

The transition band of H(ω) should be carefully specified so

that both h(n) and g(n) are reasonably well time-localized, es-

pecially because the proposed frequency responses H(ω) and

G(ω) have ideal stop-bands and pass-bands. On its transition

band, [(1 − 1/s)π/p, π/q], the frequency response H(ω) can

be set arbitrarily, as long as |H(ω)| ≤ √
pq. We define the

transition function θ(ω) on ω ∈ [0, π] with |θ(ω)| ≤ 1, and

set

H(ω) =
√
pq θ

(ω − a

b

)

for ω ∈
[(

1 − 1

s

)π

p
,
π

q

]

, (23)

where a and b are such that (ω − a)/b maps [0, π] to the

transition band of H(ω). Specifically,

a =
(

1 − 1

s

) π

p
, (24)

b =
1

q
−

(

1 − 1

s

) 1

p
. (25)

We also define the complementary transition function θc(ω)
as

θc(ω) :=
√

1 − θ2(ω).

Then, the proposed PR filters can be written as

H(ω) =











√
pq ω ∈

[

0,
(

1 − 1
s

)

π
p

)

,
√
pq θ

(

ω−a
b

)

ω ∈
[(

1 − 1
s

)

π
p ,

π
q

)

,

0 ω ∈
[

π
q , π

]

,

(26)

G(ω) =











0 ω ∈
[

0,
(

1 − 1
s

)

π
)

,√
s θc

(

ω−pa
pb

)

ω ∈
[(

1 − 1
s

)

π, p
qπ

)

,
√
s ω ∈

[

p
qπ, π

]

.

(27)

Furthermore, we propose for the transition function, θ(ω),
that the Daubechies filter [16] with two vanishing moments be

used (to be precise, the DTFT magnitude thereof, restricted to

[0, π] and normalized so that θ(ω) ≤ 1). Specifically, we set

θ(ω) =
1

2
(1 + cos(ω))

√

2 − cos(ω) for ω ∈ [0, π]. (28)

We make this choice for θ(ω) because then the transition bands

of H(ω) and G(ω) will have the same behavior, namely for

θ(ω) in (28) we have θc(ω) = θ(π − ω). Figure 6b illustrates

H(ω) and G(ω) with this transition function for p = 2, q = 3,

and s = 2.

Using for θ(ω) a Daubechies filter having a higher number

of vanishing moments will increase the differentiability of

H(ω). However, if the number of vanishing moments is large,

then the frequency response H(ω) will be closer to a ‘brick

wall’ and the time-domain response h(n) will be closer to a

sinc function which has poor (slow) decay. Because we wish

that the analysis/synthesis functions of the constructed wavelet

transform have good time-frequency localization properties,

we use a Daubechies filter with a small number of vanishing

moments. Note that the proposed construction need not use a

Daubechies filter — any set of perfect reconstruction filters

could be used in the construction.

FFT filter bank implementation. Our implementation of the

proposed rational-dilation filter bank for finite-length input

signals is based on the FFT. Specifically, our implementation

consists of using the FFT to implement circular convolution for

low-pass and high-pass filtering. Our implementation provides

perfect reconstruction for signals of any length.

For perfect reconstruction of the wavelet transform, the

length of the input signal at each level should be a multiple

of q and of s; that is, the signal length should be a multiple

of the least common multiple of q and s, denoted lcm(q, s).
This condition can be understood as follows: If a discrete-

time periodic signal with period N is down-sampled by q,

the resulting signal will be periodic with period N/q only

if N is divisible by q. Because the two-channel analysis

filter bank contains down-samplers by both q and s, the

input signal should be divisible by both q and s. Otherwise,

circular convolution filtering does not readily lead to the

perfect reconstruction property.

In case the signal length is not a multiple of lcm(q, s),
we zero-pad the signal to the next multiple of lcm(q, s).
We perform the necessary zero-padding at each level of the

wavelet transform. As a consequence of the zero-padding,

each subband signal may be a few samples longer than the

minimum; however, the transform is already overcomplete so

the additional few samples caused by zero-padding at each

level will usually be negligible. As a second consequence of

the zero-padding, the length of the reconstructed signal may

be a few samples longer than the original signal but these

additional signal values will be equal to zero in the absence

of wavelet-domain processing.

Instead of zero-padding at each stage of the wavelet trans-

form we could zero-pad the original signal. However, zero-

padding the original signal instead of level-by-level would

require zero-padding to the next multiple of lcm(qJ, s) where

J is the number of levels. This can lead to much more

zero-padding than level-by-level zero-padding. Avoiding that
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↑2 H(ω) ↓3

(a)

↑2 H̄(2ω) R(ω) ↓3

(b)

H̄(ω) ↑2 R(ω) ↓3

(c)

Fig. 7. Provided that H(ω) is bandlimited to π/3, and H̄(ω) and R(ω)
are defined as in (30) and (31), the three systems are equivalent.

length extension is especially important for the high Q-factor

case because a high Q-factor transform will generally have

more levels (large J) and q will be greater in comparison

to a low Q-factor transform — leading to excessive zero-

padding. Our implementation avoids this. On the other had,

our implementation can aggravate the artificial discontinuity

introduced by periodic boundary extensions. We assume the

signal is sufficiently longer than the wavelet at each level so

that periodic boundary artifacts are minor.

Although the described FFT-implementation may be compu-

tationally suboptimal for some lengths, it does provide perfect

reconstruction without requiring the signal be of a special

length. We have used this implementation for speech and EEG

signals longer than 10,000 samples.

III. REWRITING THE FILTER BANK

In order to make more explicit the filtering operation the

low-pass channel performs on the input signal, in this section

we rewrite the filter bank in Fig. 4 so that the filtering precedes

the up-sampler. In general, the order of the up-sampler and

the low-pass filter H(ω) in Fig. 4 can not be exchanged.

However, for the proposed low-pass filter H(ω) in Section

II-A, the exchange of the up-sampler and low-pass filter is

possible because the proposed low-pass filter is appropriately

bandlimited.

Rewriting the filter bank in Fig. 4 so that the filter acts

directly on the input signal instead of on the up-sampled input

signal clarifies the behavior of the filter bank. For, when a p-

fold up-sampling precedes the filter H(ω) as in Fig. 4, the

input signal is convolved not with the impulse response h(n),
but with each of the down-sampled sub-sequences h(qn+ k)
for 0 ≤ k ≤ q − 1. Therefore, each sub-sequence should be

assessed (its frequency response, frequency-resolution, time-

domain ringing, time-frequency localization, etc). The band-

limited property of the proposed low-pass filter H(ω) not

only simplifies the perfect reconstruction equations, it also

facilitates the assessment of the designed filter bank.

Consider the rate changer in Fig. 7a. For clarity, we set

p = 2 and q = 3. Suppose that H(ω) is bandlimited to π/3,

H(ω) = 0 for ω ∈ [π/3, π], (29)

as illustrated in Fig. 8. If we define H̄(ω) as a 2π-periodic

−π
−

2π

3
−

π

3
0 π

3

2π

3

ππ

3

−π
−

2π

3
−

π

3
0 π

3

2π

3

ππ

3

H̄(2ω)

R(ω)

H̄(ω)

−π
−

2π

3
−

π

3
0 π

3

2π

3

ππ

3

−π
−

2π

3
−

π

3
0 π

3

2π

3

ππ

3

H(ω)

Fig. 8. The frequency response H(ω) may be written as H̄(2ω)R(ω), if
it is bandlimited to π/3.

function,

H̄(ω) :=
1

2
H

(ω

2

)

for ω ∈ [0, π], (30)

and R(ω) as an ideal low-pass filter,

R(ω) :=

{

2 ω ∈ [0, π/3],

0 ω ∈ (π/3, π].
(31)

then we can write, as illustrated in Fig. 8,

H(ω) = H̄(2ω)R(ω), (32)

as depicted in Fig. 7b. Using noble identities, this system is

equivalent to the one shown in Fig. 7c. Hence we can interpret

the system in Fig. 7a as filtering followed by an ideal rate

changer,5 provided H(ω) is bandlimited to π/3.

This filter bank identity is valid for general p and q, provided

H(ω) is bandlimited to π/q. Figure 9 illustrates the general

FB identity where H̄(ω) and Rp,q(ω) are defined as

H̄(ω) =
1

p
H

(ω

p

)

for ω ∈ [0, π], (33)

Rp,q(ω) =

{

p ω ∈ [0, π/q],

0 ω ∈ (π/q, π].
(34)

Because the filter H(ω) proposed in Section II-B is bandlim-

ited to π/q, we can apply the identity to the rational-dilation

filter bank in Fig. 4. We obtain the FB in Fig. 10. The filter

H̄(ω) is bandlimited to pπ/q. The system following H̄(ω) is

an ideal rate changer.

5By an ideal rate changer we mean a p-fold up-sampler, followed by an
ideal low-pass filter, followed by a q-fold down-sampler. The cut-off frequency
of the low-pass filter should be min{π/p, π/q}. See for example Eqn. 13.27
in [26].
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H̄(ω) ↑p Rp,q(ω) ↓q

G(ω) ↓s

↑q Rp,q(ω) ↓p H̄∗(ω)

+

↑s G∗(ω)

Fig. 10. An equivalent filter bank to the one in Fig. 4 provided H(ω) is bandlimited to π/q.

↑p H(ω) ↓q

(a)

H̄(ω) ↑p Rp,q(ω) ↓q

Ideal rate changer

(b)

Fig. 9. If H(ω) is bandlimited to π/q, then the two systems are equivalent.
The frequency responses, H̄(ω) and Rp,q(ω), are defined in (33) and (34).

0 π

H̄(ω)
√

q

p

√

s

(s−1)π
s

pπ

q

G(ω)

ω

(a)

0 !/2 2!/3 !
0

"

H(ω)
G(ω)

√

2√

3/2

(b) p = 2, q = 3, s = 2

Fig. 11. (a) Properties of the filters H̄(ω) and G(ω). The transition bands
are the same. (b) Proposed filters with dilation factor 3/2 and s = 2.

Rewriting the filter bank in Fig. 4 as in Fig. 10 reveals the

role of the low-pass filter in the system. Notice that, because

the low-pass filter H̄(ω) in Fig. 10 band-limits the input signal

to pπ/q, the ideal rate changer causes no aliasing. This is

in contrast to a critically-sampled filter bank. It is the filter

H̄(ω) that acts directly on the input signal. Thus it is the

transition band of H̄(ω) and not that of H(ω), that plays a

direct part in determining the analysis/synthesis functions of

the implemented DWT. In fact, if we replace H(ω) with H̄(ω)
in Fig. 6, then the transition bands coincide, as illustrated in

Fig. 11.

Note also, that for fixed p and q, reducing s will widen the

transition band, which in turn will lead to a faster decay of

the time-domain response h(n). The influence of s will be

illustrated by examples in Section V.

IV. ITERATED FILTER BANKS

In Section III, we rewrote the filter bank in Fig. 4 as the

filter bank in Fig. 10 so that the low-pass filter acts directly on

the input signal instead of on an up-sampled version thereof.

In this section, we will similarly rewrite the iterated filter bank.

First, we consider the iterated rate changer with a generic low-

pass filter. Second, we assume the filters are bandlimited like

the filters proposed in Section II-B.

Consider the rate changer iterated for j stages, as illustrated

in Fig. 12a. It can be shown using noble identities [33] that

this system is equivalent to the one in Fig. 12b where

Hj(ω) =

j−1
∏

k=0

H
(

qj−1−k pk ω
)

. (35)

In using this formula to obtain Hj(ω), one must keep in mind

that H(ω) is periodic by 2π.

To further simplify the system in Fig. 12b, we wish to

rewrite it as in Fig. 7c; namely, we wish to exchange the order

of the up-sampler and the low-pass filter. Provided H(ω) is

bandlimited to π/q we have such a result in the following

proposition. The proposition is expected because H(ω) is

bandlimited to the Nyquist rate for the rate changer.

Proposition 2: Suppose H(ω) is bandlimited to π/q. Then,

Hj(ω) as defined in (35) is bandlimited to π/qj . More

precisely, we have

Hj(ω) =

{

∏j−1
k=0H

(

qj−1−k pk ω
)

ω ∈ [0, π/qj ],

0 ω ∈ (π/qj , π].
(36)

Proof: See Appendix B.

We remark that (36) is not the same as (35). In general, (35)

does not ensure that Hj(ω) is bandlimited, whereas (36) does.

Defining

H̄j(ω) =
1

pj
Hj

( ω

pj

)

for ω ∈ [0, π], (37)

Rpj ,qj (ω) =

{

pj ω ∈ [0, π/qj ],

0 ω ∈ (π/qj , π]
(38)

and using the filter bank identity in Fig. 9, we have that all

three systems in Fig. 12 are equivalent. The filter H̄j(ω) is

bandlimited to (p/q)j π.

We now consider a band-pass channel of the iterated filter

bank, as illustrated in Fig. 13a. In this case, if we define

Gj+1(ω) = Hj(ω)G(qjω), (39)

then the two systems in Fig. 13a and 13b are equivalent (using,

again, the noble identities). In addition, if H(ω) is bandlimited

to π/q, then by Prop. 2, Hj(ω) is bandlimited to π/qj , and

in turn, Gj+1(ω) is also bandlimited to π/qj . Therefore,

Gj+1(ω) =

{

Hj(ω)G(qj ω) ω ∈ [0, π/qj ],

0 ω ∈ (π/qj , π].
(40)
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↑p H(ω) ↓q ↑p H(ω) ↓q . . . ↑p H(ω) ↓q

j stages

(a)

↑pj Hj(ω) ↓qj H̄j(ω) ↑pj Rpj ,qj (ω) ↓qj

(b) (c)

Fig. 12. The systems in (a) and (b) are equivalent. If H(ω) is bandlimited to π/q then all three systems are equivalent.

↑pj Hj(ω) ↓qj G(ω) ↓s

(a)

↑pj Gj+1(ω) ↓qjs

(b)

Ḡj+1(ω) ↑pj Rpj ,qj (ω) ↓qj ↓s

(c)

Fig. 13. The systems in (a) and (b) are equivalent. If H(ω) is bandlimited
to π/q then all three systems are equivalent.

Using the filter bank identity illustrated in Fig. 9, we define

Ḡj+1(ω) as

Ḡj+1(ω) =
1

pj
Gj+1

( ω

pj

)

for ω ∈ [0, π], (41)

and we rewrite the system in Fig. 13b as Fig. 13c. All three

systems in Fig. 13 are equivalent. The filter Ḡj+1(ω) in

Fig. 13c acts directly on the input signal instead of an up-

sampled version thereof. The filtered signal is then processed

with an ideal rate changer, and subsequently down-sampled

by s.

The wavelet. For the rational-dilation wavelet transform, we

define the wavelet in the frequency-domain as

ψ̂(ω) = lim
j→∞

(p

q

)j/2

Ḡj

(

(p

q

)j

ω

)

. (42)

We will show in Section VII that specific shifts and dilations

of the wavelet ψ(t) yield a tight frame for L2(R).

Redundancy factor. The redundancy of the overcomplete

rational-dilation wavelet transform is found as follows. We first

define the redundancy factor of the iterated FB with j stages,

Redj(p, q, s), as the number of analysis FB coefficients per

input sample, which can be shown to be

Redj(p, q, s) =
1

s

1 − (p/q)
j+1

1 − p/q
+

(p

q

)j+1

. (43)

The redundancy of the wavelet transform (iterated FB) is given

by

Red(p, q, s) = lim
j→∞

Redj(p, q, s) =
1

s

1

1 − p/q
. (44)

V. EXAMPLES

This section presents four examples to illustrate the fre-

quency responses of the iterated filter bank, the wavelet, and

the effect of the parameters p, q, and s thereon. Each example

is based on the iterated filter bank in Fig. 4 and the filters

proposed in II-B. The transition function θ(ω) is given by

(28).

Example 1: In this example, we set p = 2, q = 3, s = 2.

The dilation factor is 3/2 and the redundancy is 3/2. Iterating

the FB yields the frequency responses Ḡj(ω) shown in Fig. 14.

Note that each frequency response is exactly constant over

part of its pass-band (i.e. has a flat top). The wavelet ψ(t)
and its Fourier transform ψ̂(ω) are also shown in the figure.

The wavelet somewhat resembles a sinc wavelet; however, it

decays more rapidly.

Example 2: We set p = 2, q = 3, s = 1. The dilation

factor is 3/2 and the redundancy is 3. Iterating the FB

yields the frequency responses shown in Fig. 15. Compared

with Example 1, the frequency responses are less frequency

selective. In addition, the band-pass filters are not exactly

constant over any part of the pass-band (except for the high-

pass filter at stage 1, which is constant for 3π/4 ≤ ω ≤ π).

The wavelet ψ(t) and its Fourier transform ψ̂(ω) are also

shown in the figure. Compared with Example 1, the wavelet

has fewer oscillations and much less ‘ringing’. In fact, the

wavelet closely resembles the Mexican hat function (the

second derivative of the Gaussian function). This example

mirrors the example in [3] with 2 vanishing moments; in that

example the redundancy was also 3 and the analysis/synthesis

functions also resembled the Mexican hat function. (For the

FIR solutions in [3] there is no uniquely defined wavelet, so we

refer instead to the discrete-time analysis/synthesis functions.)

Example 3: We set p = 7, q = 8, s = 5. The dilation

factor is 8/7 ≈ 1.14 and the redundancy is 8/5 = 1.6.

The iterated frequency responses, the wavelet ψ(t) and its

Fourier transform ψ̂(ω) are shown in Fig. 16. Compared with

Examples 1 and 2, the Q-factor is higher; there are more band-

pass filters covering the same frequency range. Like Example

1, each frequency response is exactly constant over part of its

pass-band. The wavelet has more oscillations than the wavelets

of Examples 1 and 2; accordingly, this wavelet has a higher

Q-factor. Also, note that this wavelet has some ringing; that

is, there are several oscillations present outside the primary

oscillatory interval.

Example 4: We set p = 7, q = 8, s = 3. The dilation

factor is 8/7 ≈ 1.14 and the redundancy is 8/3 ≈ 2.67.
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Fig. 14. Example 1: The iterated frequency responses, the wavelet ψ(t), and

its Fourier transform ψ̂(ω).
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Fig. 15. Example 2: The wavelet resembles the ‘Mexican hat’ function.

The iterated frequency responses, the wavelet ψ(t) and its

Fourier transform ψ̂(ω) are shown in Fig. 17. Like Example

2, the band-pass filters do not have flat tops; their shape

is more Gaussian. This is because the smaller value of s,
compared with Example 3, leads to H(ω) and G(ω) having

wider transitions bands. The wavelet does not have the ringing

behavior present in Example 3. The wavelet resembles a

cosine function multiplied by a Gaussian function; that is, a

Gabor function. The approximate Gaussian shape is present

in both the time-domain and frequency-domain. Accordingly,

the wavelet in this example is better localized in the time-

frequency plane (the Gabor function being optimally localized)

than Example 3. Compared to Examples 1 and 2, the Q-factor

is higher (the wavelet has more oscillations than the wavelets

of Examples 1 and 2). Note that these properties (good time-

frequency localization, resemblance of the wavelet to a Gabor

0 0.2 0.4 0.6 0.8 1
0

2

4

6

ω / π

P = 7, Q = 8, S = 5, DILATION = 1.14, REDUNDANCY = 1.60
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ω / π

FOURIER TRANSFORM OF WAVELET

Fig. 16. Example 3: The wavelet has a higher Q-factor than Examples 1
and 2.
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FOURIER TRANSFORM OF WAVELET

Fig. 17. Example 4: The wavelet has a higher Q-factor than Examples 1
and 2, and less ‘ringing’ than Example 3.

function, absence of ringing, and high Q-factor) are attained

with a modest factor of redundancy (less than 3).

Note that for both dilations factors, q/p = 3/2 and

q/p = 8/7, increasing the redundancy (decreasing s) reduced

the ringing present in the wavelet and reduced the Q-factor.

Finding the best parameters p, q, and s so at so obtain

(approximately) a desired Q-factor and desired absence of

ringing, may require inspecting the wavelet generated by

several different sets of parameter.

VI. QUALITY-FACTOR AND TIME-BANDWIDTH PRODUCT

A. The Quality-Factor

One motivation for developing a rational-dilation wavelet

transform is the ability to achieve a high Q-factor fully-

discrete self-inverting wavelet transform. Example 4 in Section

V illustrates that for suitably chosen parameters p, q, and s



10

the proposed transform can achieve high Q-factors with good

time-frequency localization. In this section, we examine the

Q-factor as a function of the parameters.

To find the Q-factor of the proposed wavelet transform

we find the Q-factor of the band-pass filters Ḡj(ω). We will

use the filters H(ω) and G(ω) proposed in Section II-B and

the formulas developed in Section IV. For H(ω) and G(ω),
bandlimited as in (13) and (16), it can be shown using (36),

(40), and (41) that the frequency support of Ḡj(ω) is

supp{Ḡj(ω)} =

[

pj−1

qj−1

(

1 − 1

s

)

π,
pj−1

qj−1
π

]

, j > 1.

(45)

In addition, if

1 − 1

s
>

(p

q

)2

, (46)

then Ḡj(ω) will be exactly constant over part of its pass-band

(it will have a flat top) as in Examples 1 and 3.

When (46) is satisfied (i.e. when Ḡj(ω) has a flat top), then

the two transition bands of Ḡj(ω) are
[

pj−2

qj−2

(

1 − 1

s

)

π,
pj−1

qj−1
π

]

and

[

pj−1

qj−1

(

1 − 1

s

)

π,
pj

qj
π

]

(47)

for j > 1. If the transition function θ(ω) is chosen such that

|θ(ω)|2 is half-band (for example (28)) then the pass-band

edges, defined by the half-power frequencies, are the midpoints

of the transition bands (47). The resonant frequency of Ḡj(ω),
denoted RFj and defined as the geometric mean of the left and

right pass-band edges, is given by

RFj =
pj−2

qj−2

1

2

(

1 − 1

s
+
p

q

) √

p

q
π. (48)

Using (47), the bandwidth of Ḡj(ω) is given by

BWj =
pj−2

qj−2

1

2

(

1 − 1

s
+
p

q

) (

1 − p

q

)

π. (49)

The Q-factor, given by the ratio of the resonant frequency to

the bandwidth, is

Qj =
RFj

BWj
=

√

p

q

1

1 − p/q
, j > 1. (50)

Since Qj is a constant, independent of the stage index j,
the iterated FB is a constant-Q transform (excluding the first

stage).

The Q-factor formula (50) is valid only when (46) is

satisfied, ie. when Ḡj(ω) has a flat top, as in Examples 1

and 3. When the band-pass filters do not have flat tops, it is

difficult to find a formula for the Q-factor and we calculate

the Q-factor numerically. Note that the formulas (44) and

(46) imply that Ḡj(ω) will never have a flat top when the

redundancy is greater than two. If one wishes that the wavelet

be well localized in time-frequency and relatively free of

ringing, then one should select the parameters p, q and s so

that the redundancy is great than two in order to avoid the

‘flat-top’ behaviour.

Figure 18 illustrates the Q-factor for numerous sets (p, q, s).
In the figure, each set of connected points corresponds to a

single (p, q) pair and represents the Q-factor as a function
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Fig. 18. The quality-factor of the proposed wavelet transform for various
parameter sets (p, q, s). Given a p and q, the Q-factor decreases as the
redundancy increases. Examples 1-4 are highlighted in the figure.
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Fig. 19. The time-bandwidth product of the wavelet ψ(t) for various
parameter sets (p, q, s). Given p and q, the time-bandwidth product decreases
as the redundancy increases. The dashed line at 0.5 is the lower bound for
the time-bandwidth product. Examples 1-4 are highlighted in the figure.

of redundancy (44). The parameters (p, q, s) used to produce

Examples 1-4 in Section V are indicated in the figure. The

figure indicates that increasing the redundancy (by reducing s)
has the effect of reducing the Q-factor, a behaviour reflected

in Examples 1-4.

B. Time-Frequency Localization

For the proposed wavelet transform, Section VI-A examined

the frequency resolution as a function of the parameters

p, q, and s, by computing the Q-factor for numerous sets

(p, q, s). We can also examine the wavelets’ time-frequency

localization as a function of the parameters by computing the

time-bandwidth product [15]. Figure 19 illustrates the time-

bandwidth product, σt σω, for numerous sets (p, q, s). The
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x1(n) ↑p F1(ω) ↓q y1(n)

(a)

x2(n) F2(ω) ↓r y2(n)

(b)

Fig. 20. The role of the filter in the first system in (a) is more implicit
compared to the one in (b).

frequency variance σ2
ω is computed using only the positive ω-

axis because the wavelet ψ(t), being a real-valued band-pass

function, has a two-sided spectrum. We compute the time-

bandwidth product numerically.

As Fig. 19 illustrates, as we increase the redundancy (de-

crease s) the time-bandwidth decreases and approaches its

optimal value of 1/2. (Note σt σω ≥ 1/2.) The examples in

Section V reflect the behavior illustrated in Fig. 19. Examples

1 and 2 have the same dilation factor of 1.5, with Example 2

having the higher redundancy (lower s). Accordingly, Example

2 has the lower Q-factor and the smaller time-bandwidth

product; in fact, its time-bandwidth product is practically

optimal.

VII. REINTERPRETING THE RATE CHANGER

In this section, we provide another interpretation for the

system comprised of an up-sampler, filter and a down-sampler.

This is slightly more general than the interpretation in Section

III and allows us to define fractional down-samplers, leading

to an understanding of rational FBs parallel to integer down-

sampled FBs. This in turn proves useful for deriving the

underlying wavelet frame for L2(R) and understanding its re-

lation with the introduced rational DWT, similar to the relation

between the integer-dilation wavelet frames and integer down-

sampled DWTs.

In Fig.20a, the output signal values are the inner products

of the input signal values with the filter’s impulse response

values. Specifically, we can write,

y1(n) = 〈x1(k), f1(qn− pk)〉. (51)

Notice that f1(pn + q) for q = 1, 2, . . . , p − 1 give the

polyphase components of f1(n). We thus see that the output of

the system in Fig. 20a is obtained by sampling the convolution

of the input with not the filter, but its polyphase components.

In general, it is not easy to determine the relationship among

the polyphase components of the filter. However, the particular

choice (13) leads to a certain relation that in turn will allow us

to interpret the low-pass analysis channel of the rational FB as

a filtering followed by a fractional down-sampling operation,

which we will describe now.

Once again, to gain insight, let us start with the simple

system shown in Fig. 21a. Defining the polyphase components

of F (z) via,

F (z) = F0(z
2) + z−3 F1(z

2), (52)

it can be shown that this system is equivalent to the one shown

in Fig. 21b. Now, if we choose F (ω) such that F (ω) = 0

↑2 F (ω) ↓3

(a)

F0(ω) ↓3 ↑2 +

F1(ω) ↓3 ↑2
e
−jω

(b)

F̄ (ω) ↓3 ↑2 +

↓3 ↑2
e
−jω

e
j3ω/2

(c)

F̄ (ω) ↓ 3

2

(d)

Fig. 21. The analysis channel. F0(z) and F1(z) are polyphase components
of F (z). Setting F̄ (ω) = F (ω/2), the systems in (a), (b), (c) are equivalent.
We define the fractional down-sampler by 3/2 to be the system following
F̄ (ω). This implies that all the systems are equivalent.

for ω ∈ [π/2, π], and define F̄ (ω) = (1/2)F (ω/2) for ω ∈
[0, π], then it turns out that F0(ω) = F̄ (ω) and F1(ω) =
ej3ω/2 F̄ (ω). This establishes the equivalence of Fig. 21b and

21c.

Now consider the system following F̄ (ω) in Fig. 21c. Sup-

pose we apply this system to an input x(n), and call the output

y(n). For integer n, the upper channel sets y(2n) = x(3n).
Interpreting ej3ω/2 as an advance operator by 3/2, we can like-

wise say that the lower channel sets y(2n+1) = x(3n+3/2).
Combining these, we get, formally, y(n) = x(3n/2). This

observation motivates us to define a fractional down-sampling

operation by 3/2. Using this definition, we thus say that the

system in Fig. 21a is equivalent to the one in Fig. 21d.

For general sampling factors p, q, we have,

Proposition 3: For p, q coprime, suppose that the p
polyphase components of H(z), namely Hk(z), are defined

via

H(z) =

p−1
∑

k=0

z−qk Hk(zp). (53)

Then,

Hk(ω) =
ejkqω/p

p
H

(ω

p

)

for ω ∈ [0, π]. (54)

if and only if

H(ω) = 0 for ω ∈ [π/p, π] . (55)

Proof: See Appendix 3.

By Prop. 3, a generalization of the fractional down-sampler

for arbitrary coprime pairs p, q can be made as shown in

Fig. 22a. Once again interpreting ej kqω/p as a fractional

advance operator by kq/p, we see that, for an input x(n),
this system sets the output y(n) = x(qn/p). An equivalent

system to the fractional down-sampler is given in Fig 22b.

This equivalency follows from Prop. 3. By the definition in
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↓
q

p := ↓q ↑p +

↓q ↑p

e
−jω

e
j

q

p
ω

+

↓q ↑p

e
−jω

e
j2 q

p
ω

+

.

.

.

↓q ↑p
e
−jω

e
j(p−1) q

p
ω

.

.

.

(a)

↑ p
−

π

p

π

p

↓ q

(b)

Fig. 22. Two equivalent definitions for a fractional down-sampler by q/p.

↑p H(ω) ↓q

H(ω/p)/p ↓
q

p

.

Fig. 23. The two systems are equal if and only if (55) holds.

Fig. 22a and Prop. 3, we see that the two systems in Fig. 23

are equivalent.

We can now rewrite the FB in Fig. 4. Noting that H(ω)
(by (13)) satisfies (55), we define H̄(ω) as in (33). Using this,

we conclude that the FBs in Fig. 4 and 24 are equivalent. In

Fig. 24 the filtering is applied directly to the input signal, not

to the up-sampled input signal. Fig. 24 shows more explicitly

the discrete-time sequences with which the input signal is

convolved — namely the fractional time-shifts of h̄(n) and

ḡ(n).
The definition of the fractional down-sampler makes pro-

vides a clearer understanding of the spectral analysis provided

by the iterated rational FBs as well. In fact, by Proposition

2 and (41) the iterated FB with n stages is equivalent to the

system in Fig. 25 where H̄n(ω) and Ḡn(ω) are defined by

(37) and (41).

A. Underlying Wavelet Frame

Using the low-pass filter H̄(ω) in (33) we define the scaling

function via the infinite product as

φ̂(ω) =
∞
∏

k=1

√

p

q
H̄

(

ω
(p

q

)k)

=

√

p

q
H̄

(p

q
ω
)

φ̂
(p

q
ω
)

. (56)

H̄(ω) ↓
q

p

G(ω) ↓s

↑
q

p H̄∗(ω)

+

↑s G∗(ω)

Fig. 24. This FB is equivalent to the FB in Fig. 4.

x(n)

H̄n(ω) ↓
q

n

pn
↑

q
n

pn H̄∗

n
(ω)

+ x̂(n)

Ḡn(ω) ↓
q

n−1
s

pn−1 ↑
q

n−1
s

pn−1 Ḡ∗

n
(ω)

...
...

Ḡ1(ω) ↓s ↑s Ḡ∗

1
(ω)

Fig. 25. The iterated FB can be interpreted as a constant-Q transform.

It follows by Prop. 2 that φ(t) is bandlimited to [−π, π]. The

scaling function satisfies the scaling equation

φ(t) =

√

q

p

∑

n

h̄(n)φ
(q

p
t− n

)

, (57)

obtained by taking the inverse Fourier transform of (56). Based

on the scaling function, we define the wavelet function as

ψ(t) =

√

q

p

∑

n

g(n)φ
(q

p
t− n

)

. (58)

Equivalently,

ψ̂(ω) =

√

p

q
G

(p

q
ω
)

φ̂
(p

q
ω
)

(59)

=

√

p

q
G

(p

q
ω
)

∞
∏

k=2

√

p

q
H̄

(

ω
(p

q

)k)

. (60)

Equivalence of this definition to the definition in (42) follows

readily. We also see from (42) that ψ(t) is bandlimited to

[(1−1/s)qπ/p, qπ/p] (see Figs. 14-17). These definitions lead

to,

Proposition 4: For f(t) ∈ L2(R), suppose we are given

x(k) =

〈

f(t),

√

q

p
φ
(q

p
t+ k

)

〉

. (61)

Then, (i)

1) y1(k) = 〈f(t), φ(t + k)〉 is obtained by applying the

low-pass analysis system in Fig. 24 to x(k).

2) y2(k) =
〈

f(t), ψ
(

t+ sp
q k

)〉

is obtained by applying

the high-pass analysis system in Fig. 24 to x(k).

Proof: Part (ii) follows readily from the definition of the

wavelet function. For the proof of part (i), see Appendix 4.

Using this result we also have

Proposition 5: The set
{

(q

p

)k/2

ψ
((q

p

)k

t+
sp

q
n
)

}

k,n∈Z

is a tight frame for L2(R).
Proof: See Appendix E.

These propositions suggest that the rational-dilation DWT is

a ‘fast algorithm’ for computing the coefficients of a rational-

dilation wavelet frame expansion of a finite energy function

(also see [2] for the critically-sampled case).
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Besides redundancy, this wavelet frame differs from

Auscher’s orthonormal MRA with a rational dilation factor

in the number of wavelets required. With the removal of the

up-sampler in the high-pass channel, the introduced wavelet

frame is constructed by a single wavelet function, whereas the

orthonormal MRA required q−p wavelets to span L2(R) (also

see [20] where non-refinable frame sequences are constructed,

which yield an FB scheme with rational sampling factors).

VIII. CONCLUSION

This paper shows that the development of self-inverting

overcomplete wavelet transforms based on rational dilations

can be conveniently accomplished using the frequency-domain

design of over-sampled filter banks. Even though the design

and implementation is performed in the frequency domain

and the discrete-time analysis/synthesis functions are not of

compact support, they decay rapidly and are well localized in

the time-frequency plane.

As shown in the paper, the proposed rational-dilation

wavelet transform can attain a range of redundancies and

Q-factors — making the transform more flexible than the

dyadic wavelet transform. In particular, the proposed wavelet

transform can have a substantially higher Q-factor than the

dyadic wavelet transform; equivalently, it can attain improved

frequency resolution. It is therefore expected that the pro-

posed wavelet transform will provide an efficient represen-

tation of a broader class of signals: including short-time

periodic/oscillatory signals like EEG, speech, and other signals

arising from physical vibration phenomena. Using the pro-

posed wavelet transform with a low Q-factor yields wavelets

similar to the Mexican hat wavelet, a dense sampling of the

time-frequency plane, and an exactly invertible approxima-

tion to the continuous wavelet transform. This may facilitate

wavelet-based signal processing algorithms that utilize the

time-scale structure of wavelet coefficients such as [10].

Additionally, in contrast to other rational-dilation discrete

wavelet transforms, the proposed discrete wavelet transform

corresponds to a wavelet frame for the real line based on

a single wavelet, ψ(t), defined through an infinite product

formula.

We have used the proposed transform to decompose an EEG

signal into a sum of rhythmic and transient components; one

goal of this application is to improve the accuracy of the phase

locking value between two EEG channels. The transform may

also be useful for speech enhancement and for the restoration

of clipped speech. For these applications it is typical to use the

short-time Fourier transform (STFT); however, the frequency

resolution of a constant-Q transform (unlike the STFT) scales

with frequency. A constant-Q filter bank is a ‘uniform filter

bank on a log scale’ which is a natural frequency spacing for

analyzing and processing sounds and other oscillatory signals.

For example, the human ear has a near constant-Q frequency

resolution property above 500 Hz.

APPENDIX A

PROOF OF PROPOSITION 1

Notice that p + 1 = q = s implies that the FB is critically

sampled. There exist orthonormal FIR FBs with such sampling

factors. Now suppose p + 1 = q = s is not valid. Then, we

need the FB to have at least as many output samples as the

input samples. This requires that, p/q+1/s > 1 implying s <
q. Suppose there exist filters with rational transfer functions

achieving PR. To obtain a contradiction, we will provide an

input that cannot be recovered. Let D = min(2π/q, 2π/s −
2π/q) and define the set B = [2π/q, 2π/q +D). Now if,

X(ω) =

{

1 for ω ∈ [0, D),

0 for ω ∈ [D, 2π].
(62)

then there exists a unique k ∈ {1, 2, . . . , q − 1} s.t.

X

(

ω + n
p2π

q

)

= δn,k for ω ∈ B, n = 0, 1, . . . , , q − 1.

(63)

Also,

X

(

ω + n
2π

s

)

= 0 for ω ∈ B, n = 0, 1, . . . , s−1. (64)

Hence we have, by (7), Y (ω) = Lk(ω) for ω ∈ B. Since

Lk(ω) is the DTFT of a filter with a non-zero rational transfer

function, it cannot be zero on a finite measure. Thus, Y (ω) 6= 0
on a subset of B with non-zero measure. Since X(ω) = 0 on

B, the FB is not PR.

APPENDIX B

PROOF OF PROPOSITION 2

We begin with a lemma.

Lemma 1: Let N,M be coprime and define the sets,

S1 =
N−1
⋃

k=0

[

k

N
− a

2N
,
k

N
+

a

2N

]

, (65)

S2 =
M−1
⋃

k=0

[

k

M
− b

2M
,
k

M
+

b

2M

]

. (66)

Also set c = min (a/2N, b/2M) . Then,
(

S1

⋂

S2

)

= [−c, c] (67)

if and only if aM + bN < 2.
Proof: aM + bN < 2 implies that

a

2N
+

b

2M
<

1

MN
< min

(

1

M
,

1

N

)

. (68)

This ensures that [−a/2N, a/2N ] and [−b/2M, b/2M ] do

not intersect with [1/M − b/2M, 1/M + b/2M ] and [1/N −
a/2N, 1/N + a/2N ] respectively.

For the remaining part, we will prove the contrapositive of

the statement. Suppose (67) is not true. This is equivalent to

saying that there exist integers n, k with 1 ≤ n ≤ M − 1,

1 ≤ k ≤ N − 1 s.t.

k

N
− a

2N
− b

2M
≤ n

M
≤ k

N
+

a

2N
+

b

2M
, (69)

or,
Mk

N
− aM

2N
− b

2
≤ n ≤ Mk

N
+
aM

2N
+
b

2
. (70)

For M , N coprime, since {(Mk mod N)}N−1
k=1 =

{1, 2, . . . , N}, we see that (70) is true if and only if,
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↑c F1(ω) ↓d ↑ l F2(ω) ↓m

Fig. 26. Two rate changers in cascade, used in Corollary 1.

aM/2N + b/2 ≥ 1/N, which is equivalent to aM + bN ≥ 2.

As a corollary, we have,

Corollary 1: Suppose that F1(ω) and F2(ω) are filters

bandlimited to π/d and bπ (with b < 1/l), respectively.

Suppose also that l < m. Then, F1(lω)F2(dω) is bandlimited

to bπ/d.

Proof: Notice that the frequency support of F1(lω) is a

subset of

S1 =
l−1
⋃

k=0

[

2πk

l
− π

dl
,
2πk

l
+
π

dl

]

(71)

Similarly, the frequency support of F2(dω) is a subset of

S2 =
d−1
⋃

k=0

[

2πk

d
− bπ

d
,
2πk

d
+
bπ

d

]

. (72)

For a = 1/d, N = l and M = d, we also have aM+bN < 2.
The corollary now follows by Lemma 1.

Using this corollary, Prop. 2 follows by an induction argu-

ment.

APPENDIX C

PROOF OF PROPOSITION 3

In this appendix we will deviate from the convention

adopted in the rest of the paper and take the domain of the

DTFT to be [−π, π]. We remark that the domain was [0, π] in

the statement of the Prop. 3.

Proof: Notice that Hk(ω) can be obtained from H(ω)
via,

Hk(pω) =
1

p

p−1
∑

n=0

Ak

(

ω + n
2π

p

)

H
(

ω + n
2π

p

)

for ω ∈
[

−π
p
,
π

p

]

, (73)

where Ak(ω) is the 2π-periodic function equal to ej kqω/p on

ω ∈ [−π, π]. Now notice that,

Ak

(

ω + n
2π

p

)

= ej kqω ej nkq2π/p for ω ∈
[

−π
p
,
π

p

]

. (74)

Inserting this in (73), we get

Hk(pω) =
ej kqω

p
H(ω)+

ej kqω

p

p−1
∑

n=1

ej nkq2π/pH
(

ω+n
2π

p

)

for ω ∈
[

−π
p
,
π

p

]

. (75)

Thus (54) holds if and only if

p−1
∑

n=1

ej nkq2π/pH
(

ω + n
2π

p

)

= 0

for ω ∈
[

−π
p
,
π

p

]

and k = 1, 2, . . . , p− 1, (76)

or equivalently,

W

















H
(

ω + 2π
p

)

H
(

ω + 2 2π
p

)

...

H
(

ω + (p− 1) 2π
p

)

















= 0 for ω ∈
[

−π
p
,
π

p

]

(77)

where W is a (p−1)× (p−1) matrix whose (k, n)th entry is

ej nkq2π/p. Noting that W is an orthonormal matrix, we see

that (77) is equivalent to

H
(

ω + n
2π

p

)

= 0

for ω ∈
[

−π
p
,
π

p

]

, n = 1, 2, . . . , p− 1, (78)

which is equivalent to (55).

APPENDIX D

PROOF OF PROPOSITION 4

First let us note that,

F
{√

q

p
φ

(

q

p
t+ k

)}

=

√

p

q
ejωkp/q Φ

(

pω

q

)

, (79)

where F denotes the Fourier transform operator. Using the

Plancherel formula, we can write x(k) as,

x(k) =
1

2π

∫

∞

−∞

f̂(ω)

√

p

q
e−jωkp/q Φ∗

(

pω

q

)

dω (80)

=
1

2π

∫

∞

−∞

f̂

(

qω′

p

) √

q

p
Φ∗(ω′) e−jω′kdω′ (81)

=
1

2π

∫ π

−π

{√

q

p
f̂

(

−qω
p

)

Φ∗(−ω)

}

ejωkdω (82)

In the last line we used the fact that φ(t) is bandlimited to

[−π, π]. We recognize the term in the brackets as the DTFT

of x(k), that is X(ω). Now,

〈f(t), φ(t+ pk +m)〉

=
1

2π

∫

∞

−∞

f̂(ω)

√

p

q
H̄∗

(

p

q
ω

)

φ̂∗
(

pω

q

)

e−j(pk+m)ω dω

=
1

2π

∫ π

−π

f̂

(

−qω
q

) √

q

p
Φ∗(−ω)

· H̄∗(−ω) ejqmω/p ejqkω dω

=
1

2π

∫ π

−π

{

X(ω)H(ω) ejqmω/p
}

ejqkω. (83)

where we used H̄∗(−ω) = H̄(ω) in the last line. This means

that

y1(pk +m) = (↓q)T qm/p{x(k) ∗ h(k)}. (84)

where (↓ q) denotes the down-sampling operator by q and

T qm/p denotes the fractional shift operator by qm/p. Notice

that one obtains the low-pass system in Fig. 24 by interlacing

{y(pk +m)}k∈Z.
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APPENDIX E

PROOF OF PROPOSITION 5

The proof is an adaptation of the proof of the unitary

extension principle given by Benedetto and Treiber in [4]. We

will invoke the following lemma from [13].

Lemma 2 (Lemma 5.1.7 in [13]): Suppose that {fk}k∈Z is

a sequence of elements in H and that there exist constants

A,B > 0 s.t.

A‖f‖2 ≤
∑

k∈Z

|〈f, fk〉|2 ≤ B‖f‖2 (85)

for all f in a dense subset V of H. Then {fk}k∈Z is a frame

for H with bounds A,B.

Proof of Prop. 5: First notice that

φ̂(ω) = 1 for ω ∈
[

−q
p

(

1 − 1

s

)

π,
q

p

(

1 − 1

s

)

π

]

. (86)

Noting also that φ̂(ω) = 0 for |ω| > π, we have

∞
∑

n=−∞

|φ̂(ω + n 2π)|2 = 1

for ω ∈
[

−q
p

(

1 − 1

s

)

π,
q

p

(

1 − 1

s

)

π

]

. (87)

This implies (see [13], Chp. 7) that {φ(t− n)}n∈Z
is a tight

frame sequence for functions bandlimited to q/p (1 − 1/s)π.

Likewise we have that
{

(q/p)
k/2

φ
(

(q/p)
k
t− n

)}

n∈Z

is a tight frame sequence for functions bandlimited to

(q/p)
k+1

(1 − 1/s)π.

Now take a bandlimited function f(t) with unit norm,

otherwise arbitrary. For this function, define the sequences

ck(n), dk(n) as,

ck(n) =
〈

f(t), (q/p)
k/2

φ
(

(q/p)
k
t+ n

)〉

, (88)

dk(n) =
〈

f(t), (q/p)
k/2

ψ
(

(q/p)
k
t+ (sp/q)n

)〉

. (89)

By the fact previously stated, we can find an integer K s.t.

for integer r ≥ 0,
∑

n∈Z

|cK+r(n)|2 = 1. (90)

Since ψ̂(ω) is bandlimited to [(1 − 1/s)qπ, qπ/p], we also

have that

dK+r(n) = 0 for r ≥ 0. (91)

Now let us take a look at the other end of the integer lattice.

Pick an ǫ > 0. For this ǫ, we can find integer N s.t. for integer

l ≥ 0,
∑

n∈Z

|cN−l(n)|2 < ǫ. (92)

Now, given cN , by Prop. 4, we can obtain

cN−l, dN−l, dN−l+1, . . . , dN−1 by applying the l-stage

FB to cN . Since this FB is also a tight frame for l2(Z), we

have

∑

n∈Z

|cN−l(n)|2+
l

∑

m=1

∑

n∈Z

|dN−m(n)|2 =
∑

n∈Z

|cN (n)|2 . (93)

Thus we have, for arbitrary l,
∑l

m=1

∑

n∈Z
|dN−m(n)|2 < ǫ,

implying
N−1
∑

k=−∞

∑

n∈Z

|dk(n)|2 < ǫ. (94)

Now let us look at dk(n) for N < k < K. Again applying a

K −N stage FB, and noting that this FB is a tight frame for

l2(Z), we get

1 >
K−1
∑

k=N

∑

n∈Z

|dk(n)|2 =
∑

n∈Z

|cK(n)|2−
∑

n∈Z

|cN (n)|2 > 1−ǫ.

(95)

By (91), (94) then

1 + ǫ >
∞
∑

k=−∞

∑

n∈Z

|dk(n)|2 > 1 − ǫ. (96)

By the arbitrariness of ǫ, we conclude that
{

(q/p)
k/2

ψ
(

(q/p)
k
t+ (sp/q)n

)}

k,n∈Z

is a tight frame

for bandlimited functions. Since bandlimited functions are

dense in L2(R), the statement follows by Lemma 2.
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[22] J. Kovačević and A. Chebira. Life beyond bases: The advent of frames

(Part I). IEEE Signal Processing Magazine, 24(4):86–104, July 2007.
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