
IEEE TRANSACTIONS ON MAGNETICS, VOL. XX, NO. Y, MONTH 2005 101

Frequency-Domain Homogenization of Bundles of
Wires in 2D Magnetodynamic FE Calculations

Johan Gyselinck and Patrick Dular

Abstract— A general approach for the frequency-domain
homogenization of multi-turn windings in 2D FE calcula-
tions is presented. First a skin and proximity effect charac-
terization of the individual conductors, of arbitrary cross-
section and packing, is obtained using a representative 2D
FE model. Herein three excitation modes are considered,
viz current and flux density in two perpendicular directions.
In practical cases, the three modes are independent and the
obtained frequency-dependent impedance and complex re-
luctivity tensor can be readily used in a FE model of the
complete device. By way of example and validation, the
method is applied to an inductor having an airgap and one of
three different windings. The homogenized model produces
global results (impedance versus frequency) that agree well
with those obtained with a more precise FE model. In the
latter each turn of the winding is explicitly modelled and
finely discretized.

Keywords— Skin effect, proximity effect, eddy currents,
finite element methods.

I. Introduction

Multiturn windings in electromagnetic devices operated
at sufficiently high frequency may display considerable
eddy current losses. This constitues a major design aspect
for, e.g., swiched mode power supply (SMPS) transform-
ers. Unfortunately, the analytical approaches proposed in
literature over the last decades do not garantee satisfac-
tory results for all practical applications [1], [2], [3], [4],
[5]. They may therefore be advantageously combined with
numerical methods, in particular the finite element (FE)
method [6], [7].

The brute-force FE approach, which consists in explic-
itly modelling and finely discretizing each separate turn
of a winding in a (2D of 3D) FE model, remains to date
too computationally expensive for it to be a practical de-
sign tool. The use of homogenization methods is impera-
tive, see, e.g., [8] for a general and mathematical approach.
Their application to windings is not yet common practice.
In the frequency domain, proximity effect and associated
losses can be effected by adopting a complex permeabil-
ity (or reluctivity), the (frequency-dependent) expression
of which is either obtained analytically [4] or using an el-
ementary FE model [7], [9]. The latter method has been
mainly used for a rectangular packing of round conductors.

In this paper we propose a generalization of this ap-
proach, allowing for an arbitrary packing (rectangular,
hexagonal, . . . ) and conductors of an arbitrary cross-
section (round, rectangular, . . . ) [10]. By way of exam-
ple, this approach is used for characterising two different
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conductors and packings, and will allow to homogenize the
winding in a 2D axisymmetric model of an inductor. The
results obtained are compared to those obtained with a fine
FE model in which each turn is modelled and discretized.

II. Skin and proximity effect

A. Definitions and notations

A sinusoidal regime at frequency f (or pulsation ω =
2πf) is assumed throughout this paper. A sinusoidally

varying quantity, e.g. a current I(t) =
√

2Ie cos(ωt + φ), is
represented by the complex number (in bold) I = Iee

iφ,
where Ie is the r.m.s. or effective value of the current (Ie =√

II∗, * denotes conjugate value) and i the imaginary unit
(i =

√
−1).

A winding of n periodically spaced identical conductors
(wires, turns) is considered. The conductors have a cross-
sectional surface area Ωc, length l, conductivity σ (or re-
sistivity ρ = 1/σ) and permeability µ = µ0 (or reluctivity
ν = ν0 = 1/µ0). The insulating space between the conduc-
tors is nonmagnetic (ν = ν0); the fill factor of the winding
is denoted by λ.

The n conductors, connected in series, carry the same
(net) current I. For low frequencies, or for a direct cur-
rent, the Joule losses P are given by RDC I2

e = RDC |I|2,
where RDC is the DC resistance, i.e. ρl/Ωc for one conduc-
tor and nρl/Ωc for the complete winding. Due to the time-
variation of the current I(t) and the transverse magnetic in-
duction B(t) “seen” by the conductors, the current density
j(x, y, t) is non-uniform in their cross-section (in the xy-
plane), which leads to higher Joule losses P = nl

∫

Ωc

ρj2
edΩ.

Commonly, two effects are distinguished and the associated
losses simply added: skin effect (I 6= 0, B = 0) and prox-
imity effect (I = 0, B 6= 0).

The analytical expressions for round conductors, given
hereafter, will further serve as reference for the more gen-
eral case. The equivalent radius of the conductors, of ar-
bitrary cross-sectional shape, is given by r =

√

Ωc/π. By

dividing this radius by the skin depth δ =
√

2/(σωµ0), we
obtain the unitless parameter X = r/δ =

√
f · r

√
πσµ0,

which will further be referred to as reduced frequency [3].

B. Isolated circular conductor: analytical solution

We consider a single, isolated round conductor of (equiv-
alent) radius r. The increase of Joule losses due to skin
effect is a function of the reduced frequency X [9]:

pI(X) =
RAC

RDC

=
X

2
Re

(

(1 + i)
J0

(

(1 + i)X
)

J1

(

(1 + i)X
)

)

, (1)

with Jα the Bessel function of the first kind and order α.
The conductor is now placed in a spatially uniform in-
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duction B. The proximity losses are [9]

PB = pB(X)
π

4
σlr4ω2B2

e , (2)

where the dimensionless factor pB is given by

pB(X) =
4

X2
Im

(

J2

(

(1 + i)X
)

J0

(

(1 + i)X
)

)

. (3)

For sufficiently low frequency (X → 0), pB tends to 1.

C. Conductors of arbitrary cross-section: FE model

In view of a complete eddy current effect characterization
of conductors of arbitrary cross-section, a representative 2D
FE model comprising a limited number of elementary cells
is used. Each such elementary cell, of cross-sectional area
Ω, contains one conductor cross-section and the surround-
ing insulation (with λ = Ωc/Ω). The FE model consists of
a central cell and nl surrounding layers of cells, with nl ≥ 0.
Figs. 1 and 2 show the FE model with nl = 1 for the two
different winding types that will be considered in the fol-
lowing: round conductors with hexagonal packing and rect-
angulars conductors with rectangular packing respectively.
The conductor surface area Ωc = 1mm2 (or equivalent ra-
dius r = 0.5642mm) and the fill factor λ = 0.8225 are
the same in both cases. A conductivity σ = 6 · 107 S/m is
further assumed.

Fig. 1. Round conductors (radius r = 0.5642 mm) with hexagonal
packing – elementary flux pattern for skin effect (left) and proximity
effect (right), both for X = 2

Fig. 2. Rectangular conductors (1.4142 × 0.7071 mm2) with rectan-
gular packing (1.4827 × 0.82 mm2) – elementary flux pattern for skin
effect (left) and proximity effect (right), both for X = 2

Time-harmonic finite eddy current calculations using the
well-known magnetic vector potential (MVP) formulation
[11] are carried out. The three (scalar) quantities of interest
for the homogenization are the net current I in the con-
ductors and the two components of the average induction
in the central cell , {Bx, By}. The current I is straightfor-
wardly enforced in each conductor [11]. By means of the
following condition on the outer boundary

a(x, y) = yB′

x − xB′

y , (4)

where a(x, y) is the z-component of the MVP, the aver-

age induction {B′

x, B′

y} in the complete FE model can
be imposed. In general, this latter induction value dif-
fers (slightly) from {Bx, By}. In practice, by exploiting
symmetry and/or linearity, a quickly converging iterative
scheme can be used to find the excitation {I, B′

x, B′

y} pro-
ducing the wanted values {I, Bx, By}.

With {I, Bx, By} equal to {1, 0, 0}, {0, 1, 0} and {0, 0, 1}
respectively, three elementary solutions (k = 1, 2, 3)
and the associated current density jk(x, y) and induc-
tion {bx(x, y), by(x, y)}k in the central cell, are readily ob-
tained.

The complex power S absorbed by the central cell, see
e.g. [4], given by

S = P + iQ = l

∫

Ω

(

ρj2
e + i ων0b

2
e

)

dΩ , (5)

is a quadratic form in {I, Bx, By}, the complex coefficients
of which are obtained by integrating the product of the
corresponding two elementary solutions over the central
cell. With both the real and the imaginary part of S,
active power P and reactive power Q, can be associated a
3 × 3 complex Hermitian matrix (transposed matrix equal
to conjugate). These two matrices give a complete skin
and proximity effect characterization of the winding. In the
general case where the conductor does not have any sym-
metry, the matrices have no other property besides the fact
that they are Hermitian. Such a (rather academic) case,
viz a round conductor with an eccentric hole, is treated
in [10]. The coupling between skin and proximity effect is
evidenced.

D. Conductors of symmetric cross-section

In more practical cases, as the ones treated in this paper
(Figs. 1 and 2), the conductors are symmetric with respect
to x and y axes. Thanks to the spatial orthogonality of the
three elementary solutions, there is no coupling between
the three excitation modes, and, in particular, skin and
proximity effect are uncoupled.

With the complex power absorbed in the central cell due
to the current I flowing in the conductors can be associated
a complex impedance Zskin (X) :

Zskin =
Sskin

I2
e

= pI(X) RDC + i qI(X) ω
µ0l

8π
. (6)

The expression for the imaginary part in (6), which is usu-
ally negligible (see below), is based on the inductance of a
round conductor (internal field only). The unitless factors
pI(X) and qI(X) follow from the first elementary solution.

Analogously, for an induction B in a certain direction,
the complex power S can be written as

Sprox

lΩ B2
e

= pB(X)
1

4
λσr2ω2 + i qB(X) ων0, (7)

where the expression for the real part is based on the an-
alytical expression (2) for low-frequency proximity losses
in a round conductor (πR2 = λΩ). The unitless factors
pB(X) and qB(X) for induction in x and y direction follow
from the second and third elementary solution respectively.

Figs. 3 and 4 give the frequency dependence (0.1 ≤ X ≤
3) of the skin and proximity effect coefficients obtained with
the FE models depicted in Figs. 1 and 2 respectively. (Note
that for the dimensions chosen, X equal to 0.1, 1, 2 and
3 corresponds to f equal to 132.6Hz, 13.26kHz, 53.05kHz
and 119.4kHz.) These results are obtained with one layer
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of cells around the central cell (nl = 1). This is sufficiently
accurate for the cases considered: e.g., for the round con-
ductor and pB(X = 2), nl = 0 gives a 1.4% higher value,
and nl = 2 a 0.015% lower value.

The anisotropy of the round conductor with hexagonal
packing has been found to be negligible, which is obviously
not the case for the rectangular conductor.
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Fig. 3. Skin effect coefficients pI and qI versus reduced frequency X

for the two conductors
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Fig. 4. Proximity effect coefficients pB and qB versus reduced fre-
quency X for the two conductors (for the rectangular conductors, flux
along either x-axis or y-axis)

Further calculations confirm some observations done in
[9], namely that the skin effect losses (coefficient pI) de-
pend little on the fill factor λ, unlike the proximity losses
(coefficients pB and qB).

III. Homogenization of winding 2D FE model

In a 2D FE model, with either translational or axial sym-
metry and either in the time or the frequency domain,
the eddy currents in a multi-turn winding can be mod-
elled directly and precisely by defining each conductor as
a so-called massive conductor [11]. As a rule of thumb, the
characteristic length of the discretization of the conductors,
denoted by lc, has to be at least three times smaller than
the skin depth δ. This quickly results in a prohibitively
large number of unknowns. Furthermore, the additional
electrical circuit equations for allowing a voltage supply of
the winding or the coupling with an external circuit, have a
detrimental effect on the conditioning of the system matrix
and thus on the computation time.

In the frequency domain, the eddy current effects can
be easily taken into account by means of a homogenization
technique [9], [4]. The complete winding is then modelled
as a so-called stranded conductor, in which a uniform cur-
rent density j = nI/Ωw, with n the number of conductors
(wires, turns) and Ωw = nΩc/λ the overall surface area, is
adopted [11]. A fine discretization of the winding domain
Ωw, linked to the skin depth, is not required. On the basis
of the above complex power considerations (5), the prox-

imity losses can be simply effected by means of a complex
and frequency dependent reluctivity tensor νprox :

νprox = qB(X) ν0 + i pB(X)
1

4
λσr2ω (8)

For round conductors, this tensor can be reduced to a scalar
quantity. For rectangular conductors, with the sides paral-
lel to x and y axes, the tensor is diagonal.

Further, in the electrical circuit equation linking the ter-
minal voltage of the winding, U , to the current I and the
vector potential a [11], the DC resistance RDC has to be
replaced by impedance Zskin defined in (6).

IV. Application example

The homogenization method will now be applied to a 2D
axisymmetric FE model of an inductor. Its 144-turn wind-
ing is made of either of the two conductors characterized in
section II (same cross-section and fill factor). The induc-
tor model with round conductors and hexagonal packing is
depicted in Fig. 5. In case of rectangular conductors and
rectangular packing, the longest side of conductor cross-
section is either in radial direction (along x-axis) or vertical
(along y-axis), as shown in Fig. 6.

Fig. 5. 2D axisymmetric model of inductor (round conductors and
hexagonal packing, total inductor height 38 mm, outer radius 25 mm,
height of winding window 27 mm, outer radius 20 mm, airgap thick-
ness 3 mm and radius 10 mm) – flux lines (real part) with imposed
unit current I = 1, at X = 0.1 (left) and X = 2 (right)

This results in three different windings (having the same
DC resistance of 0.22Ω), for which time-harmonic calcu-
lations with imposed unit current I = 1 are carried out,
with the reduced frequency X ranging from 0.1 to 2. Both
a fine model and a homogenized model are used. In the for-
mer model, each of the 144 conductors is finely discretized
(lc = r/8), leading to a total of 84000 to 92000 real un-
knows and a computation time of 200 CPUs (on a Pen-
tium 4, 2GHz) for one time-harmonic calculation. In the
homogenized model, the discretization of the winding cells
is much coarser (lc = r),which results in ten times less un-
knowns, viz 8000 to 9000, and a calculation time of only
1.5 s.

Some flux patterns are shown in Figs. 5 and 6. In the lat-
ter figure, one clearly observes the anisotropic eddy current
effect.

Figure 7 represents the vertical induction component
along a radial line (10mm ≤ x ≤ 20mm, y = 0) situated
in the horizontal symmetry plane and cutting the winding.
The induction obtained with the fine model clearly shows
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Fig. 6. Winding with rectangular conductors (two orientations) –
flux lines (real part, with imposed unit current I = 1, X = 2) in
winding window, obtained with fine and homogenized model

the trace of the individual conductors located on the line
or adjacent to it.
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Fig. 7. Vectical induction component (real and imaginary part)
versus x-coordinate, with round conductors and X = 2, obtained
with fine model (thin line) and homogenized model (thick line)

The impedance of the inductor, Z = S/I2 = R+ iωL, is
calculated via the complex power S. For the fine model, S
is directly evaluated using (5); for the homogenized model,
this is done using νprox and Zskin . Figure 8 shows the resis-
tance R and the inductance L as a function of the reduced
frequency X . For all three windings a very good agreement
is observed between the impedance obtained with the fine
model and with the homogenized model.

Note that with increasing frequency, the contribution of
the skin effect losses to the total Joule losses quickly be-
comes negligible (compare pI(X)RDC with the total induc-
tor resistance R for e.g. X = 1). One also verifies that the
contribution of the qI -term in (6) to the total inductance
is negligible: 1 µH (or less) compared to 3.5mH (or more).

V. Conclusions

For windings with round and rectangular conductors, the
homogenization method presented amounts to the usage of
a frequency-dependent resistance and a complex frequency-
dependent reluctivity tensor. The value of both is obtained
using a computationally cheap 2D FE model. The real-life
application example clearly demonstrates the ease of im-
plementation, the accuracy and the favorable computation
time of the homogenization method. After this numerical
validation stage, future work will comprise experimental
valdation and extension of the homogenization method to
the time domain.
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quency X, obtained with fine model (markers 3, +, ×) and homog-
enized model (lines)
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