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ABSTRACT 

Bilateral control architectures include multiple control elements. 

In general, the relation between a single control element and the 

stability of the entire system is non-linear. Therefore, stability is 

standard evaluated a posteriori, rendering the control design 

process to be complex and highly iterative. A priori understanding 

of stability constraints would simplify the design of control 

elements and, as performance is fundamentally limited by 

stability, could provide specific guidelines whether and how 

performance of the bilateral teleoperation system can be 

optimized. This paper presents a numerical visualization method 

that enables stability-based control design using classical loop-

shaping techniques: Frequency-domain Mapping of Bilateral 

Stability (FMBS). Unlike current stability-based control design 

approaches, the FMBS method i) is not limited to a fixed control 

element, a fixed control architecture or system dynamics and ii) 

enables the implementation of all often used stability criteria. The 

advantages of the FMBS method are theoretically validated 

through the use of two test cases, extracted from literature. Using 

the FMBS method, it is shown that control elements can be 

redesigned to achieve superior performance. 

KEYWORDS: Haptics, Bilateral control, Stability, Passivity, Loop 

Shaping, Bode diagram. 

INDEX TERMS: Haptic interfaces. 

1 INTRODUCTION 

A teleoperation system allows a human operator to manipulate an 

environment from a distance. Standard, teleoperation systems 

consist of a master, a communication channel and a slave. The 

master is controlled by the human operator and regulates the slave 

through the communication channel. A bilateral teleoperation 

system includes the feedback of the interaction force between the 

slave and its environment to the master. This so-called haptic 

feedback contributes to the perception of manipulating the 

environment directly. Current applications of teleoperation 

systems include remote handling, e.g., for nuclear waste or during 

space exploration, and surgery, e.g., minimally invasive surgery 

[1].  

Generally, for a given master and slave, the communication 

channel is designed to optimize performance of the system while 

guaranteeing stability. The performance of a bilateral 

teleoperation system is most commonly measured in terms of the 

ability of the teleoperation system to present the dynamics of the 

environment to the human operator, so-called “transparency” 

[2],[3],[4]. The stability of a bilateral teleoperation system, i.e., 

bilateral stability, is evaluated for time-varying or for time-

invariant control architectures. For time-varying control 

architectures, time-domain passivity control can be used [5],[6]. 

The most used stability criteria for time-invariant control 

architectures are Raisbeck’s passivity, Llewellyn’s absolute 

stability, Bounded Environment Passivity (BEP) [7] and the 

Nyquist criterion [2], [8]. In this paper, focus lies on time-

invariant control architectures. 

Figure 2 presents a general bilateral control scheme. The 

bilateral control architecture consists of 8 control elements 

      , for               and where   is frequency and   
denotes the complex number [9]. The influence of a single control 

element to the aforementioned stability criteria is non-linear [2], 

[7], [8]. Standard, due to this non-linear influence, bilateral 

stability is evaluated after the control element has been designed, 

i.e., a posteriori stability evaluation. This leads to a complex and 

iterative design procedure for each control element. In addition, as 

stability fundamentally limits performance, not understanding the 

non-linear influence of the control element on stability generally 

leads to sub-optimal performance [2], [4], [7], [8], [10]. 

To design control elements that will contribute to a stable 

teleoperation system with optimal performance, methods have 

been developed that use stability constraints to design control 

elements, i.e., stability-based control design instead of a posteriori 

stability evaluation. Two types of stability-based control design 

can be distinguished:   -synthesis and loop-shaping. 

This paper focuses on loop-shaping based methods. Application 

of   -synthesis to bilateral control is often complex [11] and 

implementation is difficult due to the loss of insight in the 

correlation between defined weighting functions and the resulting 

control elements. Also, if the designer has much insight into the 

design problem,    might be unnecessary for optimization [11]. 

In current literature, two loop shaping approaches exist that 

enable a stability-based control design. First, stability can be 

formulated in terms of an unknown control parameter, e.g., 

scaling factors, cut-off frequencies for low-pass filters or injected 

damping [4], [7], [8]. With such formulations, the control 

parameters are chosen to optimize performance while 

guaranteeing stability. Second, based on a given control 

architecture and stability criterion, recommendations are provided 

for the magnitude and the phase of a single control element. 

Hence, classic loop shaping techniques can be applied to design 

this control element [2], [12]. 

However, these control design methods are not generic, i.e., 

they are restricted to only one type of control element within one 

type of control architecture and for a particular set of master and 

slave dynamics. Moreover, loop-shaping approaches have been 

found only for the most simple subset of all bilateral teleoperation 

systems [2], [7], [8], [12]. The available methods cannot be 

applied to more complex control architectures or higher order 

master and slave dynamics. 
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The contribution of this paper is twofold. Firstly, a mapping 

methodology is derived which is both generic and enables 

stability-based control design using classical loop-shaping 

techniques: Frequency-based Mapping of Bilateral Stability 

(FMBS). The FMBS method enables both the implementation of a 

variety of stability criteria and the application to any control 

architecture, any LTI control element, and LTI master and slave 

dynamics. Secondly, the FMBS method is applied to two test 

cases from literature, improving upon the existing performance, 

thus demonstrating the advantage of using the FMBS method. 

The FMBS method is explained in Section 2. In Section 2.5, the 

FMBS method is applied to two test cases extracted from 

literature, hereby optimizing performance. This paper finalizes 

with conclusions and recommendations. 

 

 

Figure 2: General bilateral control scheme [9] including    and   . 
With position   , force    and impedance    of the master       , 
the slave      , the environment       and the human      . 
The superscript   indicates an exogenous force. For clarity, the 
dependency on the Laplace operator      is omitted. 

2 FREQUENCY-BASED MAPPING OF BILATERAL STABILITY 

The Frequency-based Mapping of Bilateral Stability (FMBS) 

method is a mapping methodology that provides stability-based 

control design recommendations for a single control element 

      , enabling classical loop-shaping techniques. A generic 

frequency-based approach is used, allowing the evaluation of each 

single control element        within each LTI control architecture 

including any LTI system dynamics, while allowing the 

implementation of a wide variety of often used stability criteria. 

The following sections elaborate further on the FMBS method. 

First, the type of stability criteria that can be implemented is 

discussed. Second, the formulation and discretization of these 

stability criteria is handled, enabling a generic approach. Third, 

the mapping methodology that visualizes these discretized 

stability criteria is presented. Fourth, this visualization provides 

the interpretation of stability constraints in terms of classical loop 

shaping recommendations for an individual control element. The 

last section presents an overview of the FMBS approach. 

 

2.1 Stability Criteria 

Raisbeck’s passivity, Llewellyn’s absolute stability, Bounded 

Environment Passivity (BEP) and the Nyquist criterion against 

infinite environment stiffness are the most commonly used 

stability criteria for time-invariant bilateral control design. They 

pose requirements i) on the location of the poles of a transfer 

function, i.e., pole-location stability requirements, and ii) on the 

real and the imaginary properties of transfer functions per 

frequency, i.e., frequency-based stability requirements.  

For Llewellyn’s absolute stability, BEP and the Nyquist 

criterion against infinite environment stiffness, the pole-location 

stability requirements imply passivity of the master and the slave 

when they are uncoupled [3], [7], [8]. In practice, the master and 

the slave are passive. Hence, in general, for these stability criteria 

it is sufficient to evaluate the frequency-based stability 

requirements only.  

Raisbeck’s passivity includes pole-location stability 

requirements that evaluate effects that are dependent on the 

unknown control element. Nevertheless, in current literature, the 

pole-location stability requirements have always been satisfied 

(for positive impedance parameters, e.g., mass and damper of the 

master or slave) regardless of the control elements [7], [13].  

Human 

operator   
 

      

         

 

    
  

         

     

      

 

    
  

   

  
 

    

   

   

+ - Master 

Slave 

Environ-

ment 

Comm. 

Channel 
   

- + 

+ 

+ 
+ 

+ + 

- 

+ 
- 

- 
- 

T
e

le
o
p
e
ra

ti
o

n
 s

y
s
te

m
 

80

100

120

0

90

180

80 100 120 0

90

180

          

 

Figure 1: Mapping of the frequency-dependent magnitude-phase stability grid (b) onto a 3D stability diagram (a) and onto a Bode diagram (c). 
The solid and dotted rectangles (in b) represent the bounds on the sets       and      , respectively.  

        

 

      

 

(a) 3D Stability diagram. 
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To evaluate the pole-location dependent stability requirements, 

assumptions about the structure of the unknown control element 

are necessary. As the FMBS does not pose these assumptions, 

only frequency-based stability requirements are included. The 

pole-location stability requirements are evaluated only afterwards 

and only when required, e.g., for Raisbeck’s passivity. The FMBS 

method follows a frequency-based approach which allows the 

implementation of all frequency-based stability requirements.  

Typical examples of frequency-based stability requirements, 

which are used in Section 3, are the BEP criterion and the Nyquist 

criterion against infinite stiffness, corresponding to Eq. (1) and 

Eq. (2), respectively. The Nyquist criterion against infinite 

environment stiffness is a generalized formulation of the original 

stability requirement, proposed by Daniel [8], 

                 (1) 

  
                             

         
        (2) 

where   and    represent the real and imaginary part, 

respectively,     is the impedance transmitted to the operator,   is 

frequency,   denotes the complex number and     are the hybrid 

elements,  

                
                    

               
  (3) 

where    denotes the impedance of the environment and 
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2.2 Formulation and Discretization 

A priori, only one control element is unknown, whereas the 

remaining elements of the teleoperation system (e.g. control 

elements and dynamics of the master and the slave) are already 

defined. Therefore, the frequency-based stability requirements, 

e.g., Eq. (1) or Eq. (2), are formulated as a function of the 

frequency and the unknown – to be designed – control element 

      . As the frequency-based stability requirements depend on 

the real and the imaginary properties of transfer functions per 

frequency, no assumptions concerning the structure of        are 

required a priori, only that it can be represented in terms of a real 

and imaginary part per frequency. The frequency-based stability 

requirements can be examined analytically or numerically. 

Currently, only the simplest cases have been examined 

analytically successfully and these approaches require 

assumptions about        a priori [4], [7], [8]. To enable the 

evaluation of more complex bilateral control architectures without 

having to pose these assumptions, a numerical approach is taken. 

The real and the imaginary part of a control element        are 

represented by the magnitude       and the phase      , i.e., 

             
      . The magnitude and the phase can be 

straightforwardly tuned through classical loop-shaping techniques. 

Therefore, understanding the stability constraints in terms of the 

magnitude      , the phase       per frequency   results to 

loop-shaping recommendations per frequency.  

The numerical approach of the FMBS method requires the 

discretization of the frequency  , the unknown magnitude       
and the unknown phase       in   ,    and    discretization 

points, respectively. The phase range is subdivided linearly and 

the magnitude and the frequency ranges are subdivided 

logarithmically. For each frequency   , where             , 
the evaluation of the discretized frequency-based stability 

requirements leads to a 2D magnitude-phase stability grid, 

consisting of stable and unstable grid points. This grid is shown in 

Figure 2.b.  

Inherent to discretization, only a bounded number of points is 

discussed for a bounded range. For the choice of these ranges, 

there are two guidelines. First, similar to the plotting of a Nyquist 

diagram, the frequency range should be chosen large enough to 

cover all frequencies for which constraints on stability exist. If 

any control element exists that leads to a stable teleoperation 

system, the frequency range in which stability constraints are 

present is, in practice, confined. Second, the magnitude and the 

phase of the – to be designed – control element        should lie 

in the user-defined magnitude range and phase range, 

respectively, for the entire frequency range. As the magnitudes 

and the phase of        are unknown a priori, these ranges might 

have to be adapted during the loop-shaping process. In this case, 

based on the known phase and magnitude of the designed control 

element, these ranges can be adapted straightforwardly. The 

choice for these ranges are based on user expertise, e.g., it is 

known that, typically, control elements that concern position 

control, e.g.        and        have a much larger magnitude 

than control elements that deal with force control, e.g.        and  

      . 
The FMBS method evaluates whether the discretized 

formulation is an accurate representation of the actual stability 

boundaries. If the discretized function is said to be smooth, one 

can assume that in between two subsequent stable or unstable grid 

points the actual function is also stable or unstable, respectively. 

The level of smoothness depends on the choice for the number of 

discretization points: more discretization points leads to more 

smoothness. The FMBS evaluates the smoothness in terms of 

frequency, magnitude and phase using smoothness indicators [14].  

 

2.3 Mapping Methodology 

A mapping methodology is required to visualize the 2D 

magnitude-phase stability grid of Figure 2.b. Two mapping 

methodologies are applied in parallel: a 3D mapping approach and 

a 2D mapping approach. As both mapping methodologies present 

the frequency-based stability requirement in terms of the phase 

and the magnitude of the unknown control element       , 
interpretation of the discretized frequency-based stability 

requirements in terms of classical loop shaping recommendations 

is straightforward. 

The 3D mapping approach is straightforward. First, per 

frequency, the boundary between stable and unstable grid points is 

found, see Figure 2.b. Hereafter, this boundary is mapped onto the 

magnitude-phase plane for that particular frequency in a 3D 

stability diagram, shown in Figure 2.a. Hence, the 3D stability 

diagram is an exact representation of the magnitude-phase 

stability grid.  

In parallel, a 2D mapping approach is used. With respect to the 

3D stability diagram, the 2D mapping approach is less complex 

due to its 2D format. The 2D mapping approach of the FMBS 

method maps the magnitude-phase stability grid onto a Bode 

diagram. A Bode diagram consists of a separate plot for the phase 

and the magnitude. Hence, to map the boundary between stable 

and unstable grid points of the frequency-dependent magnitude-

phase grid onto the Bode diagram, separate bounds on the phase 

and the magnitude are required. These separate bounds 



correspond to rectangular fits, which are visualized in Figure 2.b. 

Hence, the Bode diagram demands the approximation of 

rectangular bounds on the magnitude-phase stability grid.  

For the 2D mapping approach, two sets of grid points are 

defined: an inner set      , approximating the unstable region, 

and an outer set      , approximating the stable region. The 

inner set is, by definition, included in the outer set, i.e.       
     . The inner set        is maximized to include as many 

unstable grid points as possible, without including stable grid 

points. The outer set       is minimized, including all unstable 

grid points, i.e., all grid points outside       are stable grid 

points. The sets       and       are rectangular approximations 

of the unstable and stable regions, such that mapping of these sets 

onto the Bode diagram is straightforward. The boundaries of the 

inner set       and the outer set       are shown in the white 

area and the dark grey area, respectively, as illustrated in Figure 

2.c. The bounds on the sets       and       are determined 

through the evaluation of all (finite number of) rectangular 

approximations.  

This rectangular approximation of the boundary between stable 

and unstable grid points is not an exact representation of the 

actual stability boundary and adds uncertainty. This added 

uncertainty is represented by the set of grid points between the 

inner and the outer set            . This set is shown by the 

light grey area shown in the Bode diagram in Figure 2.c. To 

minimize this uncertainty, the sets       and       are chosen 

so             is minimized while preserving the requirement 

of rectangular bounds.  

 

2.4 Interpretation 

The 3D stability diagram is an exact representation of the stability 

boundaries. For each frequency, a detailed representation of the 

stability bounds on the magnitude and the phase of the control 

element      
   is provided. With respect to the 3D mapping 

approach, the 2D mapping approach leads to a more easy to 

understand visualization on the expense of added uncertainty. The 

2D mapping approach provides more basic guidelines, whereas 

the 3D mapping approach can be used for the most detailed loop-

shaping recommendations. In frequency regions where the 2D 

mapping approach adds too much uncertainty, only the 3D 

mapping approach can be used. 

The Bode diagram resulting from the 2D mapping methodology 

is interpreted in loop-shaping recommendations in terms of the 

inner set       and outer set      , as follows.  

1.     
        : frequency-based stability requirements 

are satisfied. The magnitude or the phase (or both) of 

    
   lie in the dark grey area.  

2.     
        : frequency-based stability requirements 

are violated. Both the magnitude and the phase of     
   lie 

in the white area.  

3.     
              : it is unknown whether the 

frequency-based stability requirements are satisfied. The 

magnitude of     
   lies in the light grey area and the 

phase of     
   lies in the white area or the light grey area 

(or vice versa).  

To satisfy the frequency-based stability requirements, according 

to the Bode diagram, for the discretized ranges,     
         

for             , i.e., the control element       should be 

shaped to lie in the dark grey area for either the magnitude or the 

phase (or both). For Raisbeck’s passivity, the pole-location 

dependent stability requirements need to be validated a posteriori. 

 

2.5 FMBS Method 

The FMBS method enables stability-based control design using 

classical loop-shaping techniques. The FMBS method consists of 

four steps: i) given a stability criterion, a known teleoperation 

system and one unknown control element, the frequency-based 

stability requirements are formulated as a function of the 

frequency and the unknown control element in terms of its 

magnitude and its phase; ii) the frequency, the magnitude and the 

phase of the unknown control element are discretized. The 

discretized formulation of the stability criterion leads to the 

magnitude-phase stability grid, presented in Figure 2.b. This grid 

consists of discretized points that either satisfy or violate the 

stability criterion, so-called stable and unstable grid points, 

respectively; iii) these stable and unstable grid points are 

visualized through a 2D and a 3D mapping methodology; iv) these 

visualizations are easily interpreted in control design 

recommendations because the stable and unstable grid points are 

described in terms of the magnitude and the phase of a control 

element: properties that are easily tuned through classical loop-

shaping.  

 

3 THEORETICAL VALIDATION 

The visualization of stability through the FMBS method provides 

classical loop shaping recommendations that allow performance 

optimization with respect to stability bounds. In this section, it is 

shown that for two cases from literature, in which the desired 

performance is not met, the performance of the system can be 

increased. Following these recommendations, in Section 3.1 the 

PF architecture of Willaert is considered, maximizing the 

environment stiffness for which the teleoperation system is 

passive [7]. Section 3.2 discusses the optimization of the force 

feedback control element,        [8].  

 

3.1 Optimizing Slave Position Control on Maximum 
Allowable Environment Stiffness 

For the first test case, the Position-Force (PF) architecture 

presented by Willaert is considered [7]. Originally, the slave is 

controlled by 

  
        

             , (5) 

where              and             . The impedances 

of the master and the slave are governed by               
    and                 . 

In addition to a single control element, the FMBS method 

enables the formulation of the frequency-based stability 

requirement into a pair of control elements too, if a relation 

between them exists. In this case, the slave position is controlled 

via the control elements.              . Consequently, the 

corresponding frequency-based stability criterion is formulated in 

terms of the phase and the magnitude of        only. 

Willaert targets to acquire a maximum allowable environment 

stiffness of   
              up to which the teleoperation 

system is passive according to the BEP criterion, see Eq. (2). 

However, the original PF architecture is only passive up to  

  
             [7].  

Given an environment stiffness of   
             , Figure 

3 shows the 2D mapping of the BEP criterion in terms of the 

control elements              . This diagram indicates that 

the original PF architecture is indeed active for   
    

         ; the magnitude and the phase of the control elements 

  
        

      lie in the white domain for frequencies 



             . To stabilize this system, an increase in phase 

and/ or magnitude of               around         is 

necessary. Therefore, in addition to the PD control element, a 

lead-lag filter is applied with frequencies             and 

          . This provides the required phase margin, while 

low-frequent tracking characteristics are maintained. The new 

control elements thus become 

  
        

      

 
       

    

 
      

    
           (6) 

 

Figure 3: The 2D mapping approach evaluates passivity up to 
  
              in terms of              . The original control 

elements   
      (dotted lines) and the proposed control elements 

  
      (solid lines) violate and satisfy passivity, respectively.  

 

For        the resulting control elements   
        

      
satisfy the BEP criterion according to the Bode diagram. This is 

shown in Figure 3:     
        , for           . 

Using the corresponding 3D stability diagram,    can be lowered 

to       . 

 

3.2 Optimizing Force Feedback 

The second test case discusses the Shared Compliance Control 

(SCC) architecture, used by Daniel [8]. The original architecture 

can be reformulated in terms of the control elements:        
  

     
,             

        

        
 and the force feedback control 

element 

  
      

        

              
  (7) 

The impedance of the master and the slave equal        
                      and                 
          , respectively [8]. The teleoperation system is 

evaluated on stability against all spring-like environments through 

the use of the Nyquist criterion against infinite environment 

stiffness.  

The goal of Daniel is to design        such that the Nyquist 

criterion is satisfied, that          for         and 

         for       , where      . However, the 

original bilateral controller violates the Nyquist criterion between 

       and       , which is shown in Figure 4. In addition, 

performance is limited:         
         is only achieved for 

frequencies        .  
 

 

Figure 4: The 3D stability diagram of       indicates that the 
original control element   

     violates the Nyquist criterion. 

 

Figure 5 illustrates the 2D mapping of the stability boundaries 

in terms of the control element        onto a Bode diagram, 

indicating the aforementioned problems. Three approaches can be 

followed to shape        to satisfy the Nyquist criterion. First, 

the control element can be placed inside the stable area in the 

phase plot for all frequencies. Second, the control element can be 

placed inside the stable area in the magnitude plot for all 

frequencies. Third, the control element can be placed in the stable 

phase area up to        and placed in the stable magnitude area 

for frequencies larger than       . Only the third approach is 

able to meet the performance requirement that            in the 

low-frequency domain. Hence, this approach is adopted. 

A second order increase in magnitude is optimal: for       : 
a stronger increase would violate the Nyquist criterion due to the 

limitation of the +2 slope in the magnitude plot, whereas a weaker 

increase would lower the frequency at which               , 

thereby deteriorating performance. This motivates the use of a 

second order lead filter with frequencies             ,        

     .  
For       , negative phase is allowed. Therefore, a lag-filter 

can be applied to increase the low-frequent magnitude to 
           on the expense of a negative (allowed) low-frequent 

phase, using a second order lag filter with frequencies         
     and 

              
      

       
  (8) 

Consequently, the proposed control element   
      becomes 
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Figure 5: The 2D mapping approach indicates the regions that 

satisfy or violate the SIES criterion for the control element   . The 
original control element   

  and the proposed control elements   
  

are represented as the solid and dotted lines, respectively. 

 

The improved control element   
      satisfies the Nyquist 

criterion: Figure 5 shows that control element   
      lies in the 

dark phase area for        and lies in the dark magnitude area 

for       . Also, performance is improved:    
            is 

achieved at 27 Hz, instead of 60 Hz for the original control 

element   
      . 

 

4 CONCLUSION 

This paper presents a control design method that enables the use 

of standard loop-shaping techniques for the design of a single 

control element       , while taking into account stability criteria 

during the loop-shaping process. The iterative nature of standard 

bilateral control design approaches is replaced by a 

straightforward stability-based design method. This iterative 

nature is a result of the, often highly complex, nonlinear relations 

between the stability criteria and the control elements. In the 

presented method, this nonlinear relation is reformulated and 

subsequently discretized in terms of the frequency and the 

unknown control element       . The unknown control element 

is formulated in terms of its phase and its magnitude: properties 

that are straightforwardly tuned through classical loop-shaping. 

Consequently, the presented method provides an easily 

interpretable translation of these nonlinear relations into control 

design recommendations. As performance is fundamentally 

limited by stability, the method provides insight in the optimality 

of the design of the control element for a given stability criterion. 

To validate the method, two examples from literature are 

considered in which the desired performance is not met. In both 

cases, the method provides the required insight in the optimality 

of the original control elements with respect to the applied 

stability criterion. Using this insight, recommendations for 

redesign of the control elements are visualized by the method, 

allowing to improve the performance such that the desired 

performance can be met. 

The method is generic, posing no a-priori requirements on 

either the bilateral controller architecture, the structure of the 

control element, the complexity of the teleoperation system 

dynamics or the stability criterion that is used. Future work 

includes evaluation of the method for the design of a bilateral 

controller for a practical setup, improved boundary approximation 

techniques for the 2D mapping approach and further theoretical 

foundation of the formulation of the frequency-based stability 

requirements in terms of a single control element. For each 

combination of stability criterion and control element, the 

existence of a theoretical solution can be explored, in- or 

excluding assumptions concerning the control architecture. 
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