
RIGHT:
URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:Frequency Domain Min-MaxOptimization of Noise-ShapingDelta-Sigma Modulators

Nagahara, Masaaki; Yamamoto, Yutaka

Nagahara, Masaaki ...[et al]. Frequency Domain Min-Max Optimization of Noise-ShapingDelta-Sigma Modulators. IEEE Transactions on Signal Processing 2012, 60(6): 2828-2839

2012-06

http://hdl.handle.net/2433/171272
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in anycurrent or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component ofthis work in other works.; This is not the published version. Please cite only the published version.; この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012 1

Frequency Domain Min-Max Optimization of
Noise-Shaping Delta-Sigma Modulators

Masaaki Nagahara, Member, IEEE, Yutaka Yamamoto, Fellow, IEEE

Abstract—This paper proposes a min-max design of noise-
shaping delta-sigma (∆Σ) modulators. We first characterize
the all stabilizing loop-filters for a linearized modulator model.
By this characterization, we formulate the design problem of
lowpass, bandpass, and multi-band modulators as minimization
of the maximum magnitude of the noise transfer function (NTF)
in fixed frequency band(s). We show that this optimization mini-
mizes the worst-case reconstruction error, and hence improves the
SNR (signal-to-noise ratio) of the modulator. The optimization is
reduced to an optimization with a linear matrix inequality (LMI)
via the generalized KYP (Kalman-Yakubovich-Popov) lemma.
The obtained NTF is an FIR (finite-impulse-response) filter, which
is favorable in view of implementation. We also derive a stability
condition for the nonlinear model of ∆Σ modulators with general
quantizers including uniform ones. This condition is described
as an H

∞ norm condition, which is reduced to an LMI via the
KYP lemma. Design examples show advantages of our design.

Index Terms—Delta-sigma modulators, min-max optimization,
noise-shaping, quantization.

I. INTRODUCTION

DELTA SIGMA (∆Σ, see Table I on the next page for the

list of acronyms) modulators are widely used in over-

sampling AD (Analog-to-Digital) and DA (Digital-to-Analog)

converters, by which we can achieve high performance with

coarse quantizers [1], [2]. They have applications in digital

signal processing systems, such as digital audio [3], [4] and

digital communications [5], [6], [7]. More recently, the notion

of ∆Σ modulators is extended to several research areas related

to signal processing. In [8], [9], [10], the ∆Σ scheme is

introduced for quantizing coefficients in finite but redundant

frame expansion of signals, and is proved to outperform the

standard PCM (pulse code modulation) scheme. Based on this

study, ∆Σ scheme is also applied to compressed sensing [11],

[12]. In [13], [14], dynamic quantizers as ∆Σ modulators

are proposed for controlling linear time-invariant systems

with discrete-valued control inputs. The ∆Σ scheme is also

applied to obtain an approximate solution of large discrete

quadratic programming problems [15]. For independent source

separation [16] and manifold learning [17], machine learning

is combined with Σ∆ modulation, called the Σ∆ learner.

In designing ∆Σ modulators, noise shaping is a fundamental

issue [2]. To describe the issue of noise shaping, let us consider

a general ∆Σ modulator shown in Fig. 1. In this figure, Q
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Fig. 1. ∆Σ modulator with loop-filter H = [H1, H2] and quantizer Q.

is a quantizer and H = [H1,H2] is a linear filter with 2

inputs and 1 output. The filter H1 shapes the signal transfer

function (STF) from the input u to the output y to have a

unity magnitude in the frequency band of interest. On the

other hand, the filter H2 eliminates the in-band quantization

noise by shaping the noise transfer function (NTF). Then, if

the input signal u is sufficiently oversampled, the frequency

components in u are concentrated in the band of interest, and

hence one can effectively extract the original signal u from

the quantized signal y by applying a lowpass filter to y with a

suitable cutoff frequency. In fact, it is theoretically shown that

the reconstruction error decreases rapidly as the oversampling

ratio increases [8], [18].

A usual solution to noise shaping is to insert accumulators

(or integrators) in the feedback loop to attenuate the mag-

nitude of the NTF in low frequency. To improve upon the

performance, accumulators are cascaded in various ways such

as the MASH (multi-stage noise-shaping) modulators [19],

[20]. This methodology is analogous to a PID (Proportional-

Integral-Derivative) control [21], in which the performance of

the designed system depends on the experience of the designer.

That is, the conventional design is of ad hoc nature.

To obtain a systematic design method, one can adopt a more

general type of transfer functions than accumulators for H(z)
in Fig. 1. From this point of view, the NTF zero optimiza-

tion [22], [2] was proposed to shape the NTF optimally in

the frequency band of interest, say [0,Ω]. This optimization is

done by changing the zeros of the NTF so as to minimize the

normalized noise power given by the integral of the squared

magnitude of the NTF over [0,Ω]. While this method gives a

systematic way to design ∆Σ modulators, it can yield a peak in

the magnitude of the NTF at a certain frequency, since such a

peak cannot be captured by an integrated or averaged objective

function. A recent paper [23] has investigated this problem and

proposed to use semi-infinite programming for constraining

the maximum value of a function over the frequency band.

This method, however, does not necessarily optimize the

overall performance but only minimizes the denominator of a

loop-filter. That is, the method [23] does not necessarily reduce

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



2 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012

peaks in the NTF magnitude. Also, the computational cost for

the optimization is very high due to its infinite dimensionality.

Alternatively, the present authors has proposed to adopt H∞

optimization for attenuating the NTF magnitude itself with

a frequency-domain weighting function [24]. This method

gives a good performance if a suitable weighting function

was chosen. For general notion of H∞ optimization in signal

processing, see [25], [26]. The well-known Remez exchange

method (aka Parks-McClellan method) [27] is related to the

H∞ optimization. The method gives a near-optimal filter that

minimizes the maximum error between a given desired filter

and the filter to be designed. Strictly speaking, this is not

H∞-optimal since the response is ignored on the transition

frequency band.

In contrast to these methods, we propose1 a novel design

based on min-max optimization, which can be reduced to finite

dimensional convex optimization. That is, we directly mini-

mize the maximum magnitude of the NTF over the frequency

band of interest. In other words, we design ∆Σ modulators in

order to uniformly attenuate the magnitude over the prespeci-

fied band. This uniform minimization improves the worst-case

SNR (signal-to-noise ratio) to be defined in Section III-A, of

the modulator in the band of interest. Conversely, a peak of the

NTF magnitude as above can deteriorate the worst-case SNR

and also the dynamic range of the modulator. We propose in

this paper a more effective method that does not require a

selection of a weighting function.

To this end, we first characterize all stabilizing loop-filters

for a linearized modulator. Then, by using this parametrization,

we formulate the design problem as an optimization via a lin-

ear matrix inequality (LMI) for lowpass and bandpass modula-

tors using the generalized Kalman-Yakubovich-Popov (KYP)

lemma [30], [25]. Furthermore, we can assign arbitrarily zeros

of the NTF on the unit circle in the complex plane by adding

a linear matrix equality (LME) constraint to the LMI. These

techniques are mostly adopted from control theory. Recently,

control theory is effectively applied to ∆Σ modulator design

with finite horizon predictive control [31], [32], sliding mode

control [33], and robust control [34], [35], to name a few. In

particular, the idea of applying the generalized KYP lemma

to ∆Σ modulator design is proposed in [36], in which they

assume a one-bit quantizer for Q and optimize the average

power of the reconstruction error in low frequency for lowpass

modulators. In contrast, our approach minimizes the worst

reconstruction error, which can improve the overall SNR as

mentioned above.

Stability analysis of ∆Σ modulators is another fundamental

issue. For first-order [37] and second-order [38], [39] modula-

tors, stability is well-studied in terms of invariant set. On the

other hand, we derive a stability condition taking account of

nonlinearity in ∆Σ modulators of arbitrary order with general

quantizers including uniform ones. This condition is derived in

terms of a state-space representation, and is described by the

ℓ1 norm of a linear system. This can be transformed into an

1This method was first proposed in our conference articles [28], [29]. The
present paper organizes these works with new results on SNR performance
(Section III-A), bandpass modulator design (Section III-C), and stability
theorems (Section IV). Simulation results in Section VI are also new.

TABLE I
ABBREVIATIONS

abbrev. full name
∆Σ Delta Sigma
NTF Noise Transfer Function
STF Signal Transfer Function
OSR Over-Sampling Ratio
SNR Signal-to-Noise Ratio
KYP Kalman Yakubovich Popov
LMI Linear Matrix Inequality
LME Linear Matrix Equality

H∞-norm condition of the NTF as a sufficient condition. This

H∞-norm constraint can be equivalently expressed as an LMI

via the KYP lemma [40], [41], [25]. In summary, the proposed

method can be described by LMI’s and LME’s, which can be

solved effectively by numerical optimization softwares such

as YALMIP [42] and SeDuMi [43] with MATLAB.

The organization of this paper is as follows: Section II gives

characterization of all loop-filters that stabilize a linearized

feedback modulator. Section III is the main section of this

paper, in which we motivate the min-max design in view of

SNR improvement, and then we formulate the design as a

min-max optimization, which is reduced to LMI’s and LME’s.

Section IV discusses stability of the ∆Σ modulator model

without linearization. Section V introduces a cascade structure

for high-order modulators. Section VI gives design examples

to show advantages of our method. Section VII concludes our

study.

Notation and Convention

Throughout this paper, we use the following notations.

Abbreviations in this paper are summed up in Table I.

S, S ′ S is the set of all stable, causal, and rational transfer

functions with real coefficients, and S ′ := {R ∈ S :
R is strictly causal}.

ℓ1 the Banach space of all real-valued absolutely

summable sequences. For {v(k)}k≥0 ∈ ℓ1, the ℓ1

norm is defined by ‖v‖1 :=
∑

k≥0 |v(k)|.
ℓ∞ the Banach space of all real-valued bounded se-

quences. For {v(k)}k≥0 ∈ ℓ∞, the ℓ∞ norm is

defined by ‖v‖∞ := supk≥0 |v(k)|.
v ∗ w convolution of two sequences {v(k)}k≥0 and

{w(k)}k≥0, that is,

(v∗w)(m) :=
∑

k≥0

v(m−k)w(k), m = 0, 1, 2, . . . .

For this computation, we set v(m−k) = 0 if m < k.

II. CHARACTERIZATION OF LOOP-FILTERS

In this section, we characterize all H(z)’s that stabilize the

linearized model shown in Fig. 2. This characterization is a ba-

sis for the proposed min-max design formulated in Section III.

For a stability condition taking account of the nonlinear effect

of the quantizer, see the discussion in Section IV.

We first define causality, stability, well-posedness and inter-

nal stability of linear systems.
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H(z)
yψ

u
n

+

Fig. 2. Linearized model for ∆Σ modulator with loop-filter H = [H1, H2].

Definition 1 (Causality and Stability): A rational transfer

function P (z) is said to be (strictly) causal if the order

of the numerator of P (z) is (strictly) less than that of the

denominator, and said to be stable if the poles of P (z) are all

in the open unit disk D = {z ∈ C : |z| < 1}.

Definition 2 (Well-posedness): The feedback system in

Fig. 2 is well-posed if there is at least one clock of delay in

H2(z), that is, the transfer function H2(z) is strictly causal.

Definition 3 (Internal stability): The feedback system

Fig. 2 is internally stable if the four transfer functions from

[u, n]⊤ to [ψ, y]⊤ are all stable.

We here characterize the filter H(z) that makes the lin-

earized feedback system well-posed and internally stable. All

stabilizing filters are characterized as follows:

Proposition 1: The linearized feedback system in Fig. 2 is

well-posed and internally stable if and only if

H1(z) =
P (z)

1 + R(z)
, H2(z) =

R(z)

1 + R(z)
,

P (z) ∈ S, R(z) ∈ S ′,

(1)

where S denotes the set of all stable, causal, and rational

transfer functions with real coefficients, and S ′ := {R(z) ∈
S : R(z) is strictly causal}.

Proof: See Appendix A.

By using the parameters P (z) ∈ S and R(z) ∈ S′, we

obtain the STF and NTF respectively as TSTF(z) = P (z) and

TNTF(z) = 1+R(z). From this, it follows that the input/output

equation of the system in Fig. 2 is given by

y = TSTF u + TNTF n = Pu + (1 + R)n. (2)

By equation (2), the ∆Σ modulator can be realized by

means of the design parameters P (z) ∈ S and R(z) ∈ S′

as shown in Fig. 3. This structure, called error-feedback

structure [2] or noise-shaping coder [1], is often applied in

the digital loops required in ∆Σ DA converters [2]. By this

block diagram, we can interpret the filter P (z) as a pre-filter

to shape the frequency response of the input signal, and R(z)
as a feedback gain for the quantization noise Qψ − ψ.

III. OPTIMAL LOOP-FILTER DESIGN VIA LINEAR MATRIX

INEQUALITIES AND EQUALITIES

In this section, we propose a min-max design of the loop-

filter H(z) by using the parametrization in Proposition 1.

First, we introduce the worst-case analysis of reconstruction

errors in ∆Σ modulators to motivate the min-max design to

be proposed. We then present design procedures for lowpass

and bandpass modulators.

P (z) Q

R(z)

y = Qψψu +

+

− +

n

Fig. 3. Error-feedback structure of ∆Σ modulator with design parameters
P (z) ∈ S and R(z) ∈ S′.

A. Worst-case analysis of reconstruction errors

In oversampling lowpass ∆Σ converters with oversampling

ratio NOSR (see Table I) [2], the authors attempt to attenuate

the magnitude of the NTF in the frequency band IB = [0,Ω] ⊂
[0, π] where Ω = π/NOSR. In a bandpass converter, the band

will be IB = [ω0 −Ω, ω0 +Ω] where ω0 ∈ (0, π) is the center

frequency. We here consider a general interval IB ⊂ [0, π]
in which the magnitude of the NTF is designed to be small.

In a conventional design [22], [2], the attenuation level of the

magnitude is measured by the average or the root mean square

Naverage(TNTF, IB) :=

√

1

|IB|

∫

IB

|TNTF(ejω)|2dω. (3)

On the other hand, we consider the worst-case measure

Nworst(TNTF, IB) := max
ω∈IB

∣

∣TNTF(e
jω)

∣

∣ . (4)

It is easy to see that Nworst gives an upper bound of Naverage,

that is,

Naverage(TNTF, IB) ≤ Nworst(TNTF, IB).

Hence, minimization of Nworst(TNTF, IB) leads to small

Naverage(TNTF, IB), but not conversely. One can give an NTF

with the same average Naverage but much larger maximum

magnitude Nworst. That is, a small Naverage does not necessarily

yield a small Nworst.

Another advantage of minimizing Nworst is the worst-case

optimization of the reconstruction error y − u (see Fig. 3).

Define the worst-case reconstruction error Eworst by

Eworst := max
ω∈IB

∣

∣ŷ(ejω) − û(ejω)
∣

∣ ,

where ŷ and û are, respectively, the discrete-time Fourier

transforms of y and u in Fig. 3. Then this quantity can be

described by the maximum magnitude Nworst(TNTF, IB) of

TNTF(z) over IB. In fact, we have the following proposition:

Proposition 2: Assume that the magnitude |n̂(jω)| of the

quantization noise n = Qψ − ψ is bounded on IB, that is,

there exists C0 > 0 such that maxω∈IB
|n̂(ejω)| = C0. Assume

also that

|TSTF(e
jω)| = 1, ∀ω ∈ IB. (5)

Then the worst-case reconstruction error is given by

Eworst = C0 · Nworst(TNTF, IB). (6)
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|ŷ(ejω)| in dB

SNRpp(u) ≈

Ω0

ω

Fig. 4. Peak-to-peak SNR for a narrow-band signal.

Proof: By the relation

ŷ(ejω) = TSTF(e
jω)û(ejω) + TNTF(e

jω)n̂(ejω)

= û(ejω) + TNTF(e
jω)n̂(ejω), ∀ω ∈ IB,

we have

|ŷ(ejω) − û(ejω)| = |TNTF(e
jω)n̂(ejω)|, ∀ω ∈ IB.

By taking the maximum over the interval IB, we obtain (6).

Note that the assumption (5) holds if we choose the pre-

filter P (z) that has a unity magnitude response over IB. In

particular, if we take P (z) = 1 then we have TSTF(z) = 1. By

Proposition 2, optimization of Nworst improves the worst-case

reconstruction error Eworst. Minimizing Nworst also improves

the peak-to-peak SNR (signal-to-noise ratio) of the modulator

defined by

SNRpp(u) :=
maxω∈IB

|û(ejω)|2
maxω∈IB

|ŷ(ejω) − û(ejω)|2 . (7)

Let us consider the following set of input signals:

U :=

{

u : max
ω∈IB

|û(ejω)|2 = 1

}

.

Suppose that the assumptions in Proposition 2 hold. Then, by

Proposition 2, we have

SNRworst := min
u∈U

SNRpp(u) =
1

C0Nworst(TNTF, IB)
.

It follows that smaller Nworst leads to better worst-case SNR.

Note that if condition (5) holds and if the input signal is

sufficiently narrow-banded, SNRpp can be estimated by the

difference2 between the peak of ŷ(jω) and the peak of noise,

or the maximum noise level in |ŷ(ejω)|, over the frequency

range IB (see Fig. 4).

Conversely, if Eworst is as large as maxω∈IB
|û(ejω)|, then

the SNRpp will be very poor, and the dynamic range will also

be very narrow. As seen above, minimizing Naverage can yield

a large NTF magnitude at a certain frequency, and hence the

performance may be degraded. See examples in Section VI

where we illustrate that minimizing Nworst improves the SNRpp

better than minimizing Naverage.

2The difference is also known as the spurious-free dynamic range (SFDR).

|TNTF(e
jω)|

ω

Ω

γ

0 π
Fig. 5. Min-max optimization of the lowpass NTF in the frequency domain:
minimize the maximum magnitude γ in the band Ilow = [0, Ω].

In what follows, we set P (z) = 1 for simplicity, and show

design methods of the loop-filter R(z). Since the STF and

the NTF can be designed independently by relation (2), one

can design P (z) after obtaining the loop-filter R(z) such that

|P (ejω)| = 1 over IB and |P (ejω)| ≪ 1 over [0, π] \ IB to

achieve better reconstruction performance.

B. Min-max design of lowpass modulators

We now consider the design of lowpass modulators based on

the discussion given in the previous section. Our objective here

is to find the loop-filter R(z) that minimizes the magnitude

of the frequency response of TNTF(z) over Ilow := [0,Ω] as

shown in Fig. 5. Our problem is formulated as follows:

Problem 1 (Lowpass modulator): Given Ω (0 < Ω < π),
find R(z) ∈ S ′ that solves the following min-max optimiza-

tion:

Jlow := min
R(z)∈S′

Nworst(TNTF, Ilow)

= min
R(z)∈S′

max
ω∈[0,Ω]

|TNTF(e
jω)|,

or equivalently,

minimize γ subject to R(z) ∈ S ′ and

max
ω∈[0,Ω]

|TNTF(e
jω)| < γ. (8)

To solve this problem, we assume that R(z) is a finite

impulse response (FIR) filter, that is, we set

R(z) =

N
∑

k=0

αkz−k, α0 = 0. (9)

Note that the constraint α0 = 0 ensures R(z) ∈ S ′. Note

also that FIR filters are often preferred to IIR filters that

may cause instability attributed to quantization and recursion

when they are implemented in digital devices. Therefore, the

assumption to use FIR filter for R(z) is not too restrictive. We

then introduce a state-space realization {A,B,C(α)}, such

that R(z) = C(α)(zI−A)−1B, where α := [α0, α1, . . . , αN ],

A :=

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0
. . .

. . .

. . . 1
0 0

⎤

⎥

⎥

⎥

⎥

⎦

, B :=

⎡

⎢

⎢

⎢

⎣

0
...

0
1

⎤

⎥

⎥

⎥

⎦

,

C(α) := [αN , αN−1, . . . , α1].

(10)
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|TNTF(e
jω)|

ω

ω0 + Ω

γ

0 πω0 − Ω ω0

Fig. 6. Min-max optimization of the bandpass NTF in the frequency domain:
minimize the maximum magnitude γ in the band Imid = [ω0 − Ω, ω0 + Ω].

Then inequality (8) can be described as a linear matrix

inequality (LMI) by using the generalized KYP lemma [30]:

Theorem 1: Inequality (8) holds if and only if there exist

symmetric matrices Y > 0 and X such that
⎡

⎣

M1(X,Y ) M2(X,Y ) C(α)⊤

M2(X,Y )⊤ M3(X, γ2) 1
C(α) 1 −1

⎤

⎦ < 0, (11)

where

M1(X,Y ) = A⊤XA + Y A + A⊤Y − X − 2Y cos Ω,

M2(X,Y ) = A⊤XB + Y B,

M3(X, γ2) = B⊤XB − γ2.

Proof: By the generalized KYP lemma [30, Theorem 2]

for the low frequency range Ilow = [0,Ω] in the discrete-time

setting, inequality (8) is equivalent to
[

M1 M2

M⊤
2 M3

]

+
[

C(α) 1
]⊤[

C(α) 1
]

< 0.

Then applying the Schur complement [40, Sec. 2.1] to this

inequality gives inequality (11).

By Theorem 1, the optimal coefficients α1, . . . αN of the filter

R(z) in (9) are obtained by minimizing γ subject to (11). This

LMI optimization is a convex optimization problem [40], [44],

and hence can be efficiently solved by standard optimization

softwares e.g., MATLAB. For optimization softwares and

MATLAB codes, see Appendix C.

Remark 1: The obtained NTF TNTF(z) = 1+R(z) is an FIR

filter, which is more preferred in view of implementation. On

the other hand, a conventional optimal design [22], [2] yields

an IIR (infinite-impulse-response) filter that has a problem of

stability in digital implementation. This is an advantage of the

proposed design.

C. Min-max design of bandpass modulators

Bandpass modulators are used in digital demodulation of

frequency modulated analog signals, e.g., [45], [46].

We can formulate the bandpass modulator design as a min-

max optimization in the same light of lowpass modulators.

Fig. 6 illustrates noise shaping for bandpass modulators, where

ω0 ∈ (0, π) is the center frequency and 2Ω is the bandwidth

of interest. Our objective here is to minimize the magnitude

of the NTF over the frequency band Imid := [ω0 −Ω, ω0 +Ω].
Our design process is formulated as follows:

Problem 2 (Bandpass modulator): Given ω0 ∈ (0, π) and

Ω > 0 such that Imid = [ω0 − Ω, ω0 + Ω] ⊂ [0, π], find

R(z) ∈ S ′ that solves the following min-max optimization:

Jmid := min
R(z)∈S′

Nworst(TNTF, Imid)

= min
R(z)∈S′

max
ω∈[ω0−Ω,ω0+Ω]

|TNTF(e
jω)|,

or equivalently,

minimize γ subject to R(z) ∈ S ′ and

max
ω∈[ω0−Ω,ω0+Ω]

|TNTF(e
jω)| < γ. (12)

As in the lowpass modulator design, we here constrain R(z) to

be an FIR filter defined in (9). Let {A,B,C(α)} be state-space

matrices as defined in the previous section. Then the bandpass

modulator problem is also reducible to an LMI optimization

via the generalized KYP lemma [30].
Theorem 2: Inequality (12) holds if and only if there exist

symmetric matrices Y > 0 and X such that
⎡

⎣

M4(X,Y, ω0,Ω) M5(X,Y, ω0) C(α)⊤

M5(X,Y, ω0)
⊤ M6(X, γ2) 1

C(α) 1 −1

⎤

⎦ < 0, (13)

where

M4(X,Y, ω0,Ω) := A⊤XA + Y Ae−jω0 + A⊤Y ejω0

− X − 2Y cos Ω,

M5(X,Y, ω0) := A⊤XB + Y Be−jω0 ,

M5(X,Y, ω0) := A⊤XB + Y Bejω0 ,

M6(X, γ2) := B⊤XB − γ2.

(14)

Proof: By the generalized KYP lemma [30, Theorem 2]

for the mid frequency range Imid := [ω0 − Ω, ω0 + Ω] in the

discrete-time setting, inequality (12) is equivalent to
[

M4 M5

M
⊤

5 M6

]

+
[

C(α) 1
]⊤[

C(α) 1
]

< 0.

Then applying the Schur complement [40, Sec. 2.1] to this

inequality gives inequality (13).
Remark 2: LMI (13) is complex-valued, however, for some

LMI solvers, a real-valued LMI is required. An equivalent real-

valued LMI for (13) is given in Appendix B.
Remark 3: LMI (13) with the center frequency ω0 = 0

is equivalent to LMI (11) for lowpass modulator. That is,

Theorem 1 can be obtained as a special case of Theorem 2.
Theorem 2 can be directly extended to the following multi-

band bandpass modulator design:
Problem 3 (Multi-band bandpass modulator): Given ωl ∈

(0, π) and Ωl > 0, l = 1, 2, . . . , L such that

Il = [ωl − Ωl, ωl + Ωl] ⊂ [0, π], l = 1, 2, . . . , L,

find R(z) ∈ S ′ that solves the following min-max optimiza-

tion:

Jmb := min
R(z)∈S′

L
∑

l=1

Nworst(TNTF, Il)
2

= min
R(z)∈S′

L
∑

l=1

max
ω∈[ωl−Ωl,ωl+Ωl]

|TNTF(e
jω)|2,
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Fig. 7. Uniform quantizer Q with M = 5 (number of steps) and ∆ = 2δ = 2
(step size).

or equivalently,

minimize γ2
1 + · · · + γ2

L subject to R(z) ∈ S ′ and

max
ω∈[ωl−Ωl,ωl+Ωl]

|TNTF(e
jω)| < γl, l = 1, 2, . . . , L. (15)

Theorem 3: Inequalities (15) hold if and only if there exist

symmetric matrices Yl > 0 and Xl, l = 1, 2, . . . , L such that

⎡

⎣

M4(Xl, Yl, ωl,Ωl) M5(Xl, Yl, ωl) C(α)⊤

M5(Xl, Yl, ωl)
⊤ M6(Xl, γ

2
l ) 1

C(α) 1 −1

⎤

⎦ < 0,

(16)

l = 1, 2, . . . , L,

where M4, M5, M5, and M6 are defined in (14).

Proof: A direct consequence of Theorem 2.

D. NTF zeros

To ensure perfect reconstruction of the DC input level, and

to reduce low-frequency tones, TNTF(z) should have zeros at

z = 1, or the frequency ω = 0 [2]. A similar requirement is

for a bandpass ∆Σ modulator; we set NTF zeros at a given

frequency ω0 ∈ (0, π), or z = e±jω0 . The zeros of TNTF(z)
can be assigned by linear equations (linear constraints) of

α1, . . . , αN . Define ν(z) := zN +
∑N

k=1 αkzN−k. Then,

TNTF(z) has µ zeros at z = z0 if and only if

dkν(z)

dzk

∣

∣

∣

∣

z=z0

= 0, k = 0, 1, . . . , µ − 1,

where
d0ν(z)

dz0 := ν(z). The LMI with these linear constraints

can also be effectively solved.

IV. STABILITY OF NONLINEAR FEEDBACK SYSTEMS

Although the linearized model in Fig. 2 is useful for analyz-

ing and designing noise-shaping ∆Σ modulators as above, the

stability of ∆Σ modulators should be analyzed with respect

to their nonlinear behaviors induced by the quantizer Q. We

here discuss the stability of the ∆Σ modulator model without

linearization.

n = Qψ − ψ

ψ1

3

5

−1

−3

−5

2 4−2−4 0

Fig. 8. Quantization error n = Qψ − ψ of the quantizer Q in Fig. 7.

A. Stability analysis in state space

Let us first make the following assumptions:

Assumption 1: The linearized model shown in Fig. 2 is

internally stable. That is, the filter H(z) = [H1(z),H2(z)]
satisfies (1).

Assumption 2: There exist real numbers M > 0 and δ > 0
such that if |ψ| ≤ M + 1 then |Qψ − ψ| ≤ δ.

Note that the first assumption is necessary for the stability

of the nonlinear system. The second assumption considers

general quantizers including uniform ones. For example, the

uniform quantizer shown in Fig. 7 has M = 5 and δ = 1; see

also Fig. 8. For uniform quantizers, the number ∆ = 2δ is

called the step size and the interval [−M −1,M +1] is called

the no-overload input range [2]. Under these assumptions, we

have the following lemma:

Lemma 1: Assume that Assumptions 1 and 2 hold. If

ψ(0) ≤ M + 1 and if ‖p‖1‖u‖∞ + δ‖r‖1 ≤ M + 1, then

we have

|n(k)| ≤ δ, |ψ(k)| ≤ M + 1, k = 0, 1, 2, . . . , (17)

where p and r are respectively the impulse responses of P
and R, and ‖ · ‖1 and ‖ · ‖∞ denote, respectively, the ℓ1 norm

and ℓ∞ norm of sequences.

Proof: Since the filter H = [H1,H2] satisfies (1), we

have ψ = Pu + Rn where n := Qψ − ψ. Then, we have

ψ(k) = (p ∗ u)(k) + (r ∗ n)(k) for k = 0, 1, 2, . . . . It follows

that

|ψ(k)| ≤ |(p ∗ u)(k)| +
k

∑

i=1

|r(i)||n(k − i)|

≤ ‖p ∗ u‖∞ +

(

max
0≤i≤k−1

|n(i)|
) k

∑

i=1

|r(i)|.

If |ψ(0)| ≤ M + 1, then by Assumption 2, we have |n(0)| =
|Qψ(0) − ψ(0)| ≤ δ, and hence

|ψ(1)| ≤ ‖p ∗ u‖∞ + δ

k
∑

i=1

|r(i)|

≤ ‖p‖1‖u‖∞ + δ‖r‖1 ≤ M + 1.

Again by Assumption 2, we also have |n(1)| ≤ δ. By induction

on k, we deduce that |ψ(k)| ≤ M + 1 implies |ψ(k + 1)| ≤
M + 1 and |n(k + 1)| ≤ δ. We thus have inequality (17).
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This lemma gives a sufficient condition for the input ψ
of the quantizer Q to be always in the no-overload range

[−M − 1,M + 1]. A ∆Σ modulator is conventionally said

to be stable if ψ(k) ∈ [−M − 1,M + 1] for all k ≥ 0 [47],

[2]. However, since the modulator involves feedback, this does

not necessarily guarantee boundedness of all signals in the

feedback loop. To show the boundedness, we introduce a state-

space model of the ∆Σ modulator for analyzing the stability

of the feedback system.

First, invoke a minimal realization of the filter H(z) be

{AH , [B1, B2], CH , [DH , 0]}, as follows:

H1(z) = CH(zI − AH)−1B1 + DH ,

H2(z) = CH(zI − AH)−1B2.

Then a state-space model of the closed-loop system shown in

Fig. 1 is given by the following formulas:

x(k + 1) = Aclx(k) + Buu(k) + Bnn(k),

n(k) = (Qψ − ψ)(k),

ψ(k) = CHx(k) + DHu(k), k = 0, 1, 2, . . . ,

Acl := AH + B2CH ,

Bu := B1 + B2DH , Bn := B2.

(18)

The nonlinear effect of Q is represented by the signal n(k).
Consider the ideal state xI(k), which is the state when there

is no quantization, that is, when Q is identity (or n ≡ 0).

Define the state error e := x−xI. We then have the following

theorem:

Theorem 4: Suppose that the ∆Σ modulator shown in

Fig. 1 satisfies Assumptions 1 and 2. If ψ(0) ≤ M + 1 and if

‖p‖1‖u‖∞ + δ‖r‖1 ≤ M + 1, (19)

then there exists a bounded, real and monotone increasing

sequence {βk} such that

|e(k)| ≤ βk, k = 0, 1, 2, . . . , (20)

where |e(k)| denotes the Euclidean norm of vector e(k).
Proof: By the state-space representation (18), we have

x(k) = Ak
clx(0) +

k−1
∑

i=0

Ai
clBuu(k − i) +

k−1
∑

i=0

Ai
clBnn(k − i)

= xI(k) +

k−1
∑

i=0

Ai
clBnn(k − i).

From this, we obtain

e(k) = x(k) − xI(k) =
k−1
∑

i=0

Ai
clBnn(k − i).

By the triangle inequality, we have

|e(k)| ≤
k−1
∑

i=0

‖Ai
clBn‖ · |n(k − i)|.

From Lemma 1, we have |n(k)| ≤ δ for all k ≥ 0. Put

βk := δ

k−1
∑

i=0

‖Ai
clBn‖.

k

βk

|e(k)|

β∞

Fig. 9. Boundedness of quantization error |e(k)|, where β∞ is the limiting
value of {βk}.

Since matrix Acl is stable by Assumption 1, the sequence

{βk}k≥0 is bounded and monotone increasing, and we have

|e(k)| ≤ βk for all k = 0, 1, 2, . . . .

Stability condition (19) depends on the maximum amplitude

of the input u. This is different from stability condition (1) for

the linearized model that is independent of u. The difference

is due to the nonlinearity (in particular, saturation) in the

quantizer Q. Therefore, one should limit the level of inputs

before it is quantized. See also the example in Section VI-A.

From Theorem 4, it follows that when a ∆Σ modulator

satisfies the condition in Theorem 4, the error |e(k)| in the

state space is bounded as shown in Fig. 9. As a result, the state

x(k) is also bounded, and we can conclude that the system

is stable in a weak sense (i.e., bounded but not guaranteed to

converge to zero). By Theorem 4, we derive a generalization of

the stability condition given in [47] as the following corollary:

Corollary 1: Suppose that the ∆Σ modulator shown in

Fig. 1 satisfies Assumptions 1 and 2. Define the noise-to-state

transfer function G(z) by G(z) = (zI − Acl)
−1Bn, and its

impulse response by g. If ψ(0) ≤ M + 1 and if inequality

(19) holds, then we have ‖e‖∞ ≤ δ‖g‖1.

Proof: By Theorem 4, we have

|e(k)| ≤ lim
k→∞

βk = δ

∞
∑

i=0

‖Ai
clBn‖ = δ‖g‖1,

for all k = 0, 1, 2, . . . .

B. Stability condition by an H∞ norm inequality

Assume that ‖p‖1 = 1. Then, we can rewrite condition (19)

in Theorem 4 as

‖r‖1 ≤ 1

δ
(M + 1 − ‖u‖∞). (21)

By (9), we have ‖1+r‖1 = 1+
∑N

k=1 |αk| = 1+‖r‖1, and we

can show that (21) is equivalent to the condition given in [47],

[2]:

‖1 + r‖1 ≤ 1

δ
(M + 1 + δ − ‖u‖∞). (22)

Let N be the order of R(z). Then by the following inequality

(see [48, Theorem 4.3.1]),

‖1 + r‖1 ≤ (2N + 1)‖1 + R‖∞,
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Fig. 10. Cascade of Error Feedback

we have a sufficient condition for (22):

‖TNTF‖∞ = ‖1 + R‖∞
≤ 1

(2N + 1)δ
(M + 1 + δ − ‖u‖∞).

(23)

For the stability of binary ∆Σ modulators, the following

criterion3, called the Lee criterion, is widely used [49], [2]:

‖TNTF‖∞ = ‖1 + R‖∞ < 1.5. (24)

From conditions (23) and (24), attenuation of the H∞ norm

of TNTF = 1+R improves the stability. Therefore, we add the

following stability constraints to the design of modulators:

‖TNTF‖∞ = ‖1 + R‖∞ < γ0,

where γ0 > 0 is a constant (e.g., γ0 = 1.5 for the Lee

criterion). Assuming that R(z) is the FIR filter defined by

(9) and also that its state-space matrices are given in (10),

the above inequality is also reducible to an LMI via the KYP

lemma, also known as the bounded real lemma [40], [41]:

Lemma 2: The inequality ‖TNTF‖∞ < γ0 holds if and only

if there exists a symmetric matrix Z > 0 such that
⎡

⎣

A⊤ZA − Z A⊤ZB C(α)⊤

B⊤ZA B⊤ZB − γ2
0 1

C(α) 1 −1

⎤

⎦ < 0.

Proof: The equivalence is a direct consequence of the

KYP lemma (aka, bounded real lemma) [40, Sec. 2.7] and the

Schur complement [40, Sec. 2.1].

V. CASCADE OF ERROR FEEDBACK FOR HIGH-ORDER

MODULATORS

To design a high-order modulator, we can use the cascade

construction of the error feedback modulators in Fig. 3. The

proposed cascade structure is shown in Fig. 10. By using this

structure, we have TSTF(z) = P (z) and

TNTF(z) =
(

1 + R(z)
)m

,

where m denotes the number of filters R(z). This can be

proved by the following equations:

ψm = Pu + R(y − ψm),

y − ψk = (1 + R)(y − ψk−1), k = m,m − 1, . . . , 2,

y − ψ1 = n.

If R(z) ∈ S ′, then the linearized feedback system is stable.

An advantage of this structure is that the number of taps of

R(z) can be reduced, and hence the implementation is much

easier than a filter with a large number of taps. This structure

can be applied to ∆Σ DA converters.

3Note that this is neither sufficient nor necessary for stability.
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Fig. 11. NTF’s: proposed (solid) and the NTF zero optimization (dash).

To satisfy the stability condition ‖TNTF‖∞ < γ0, the filter

R(z) is designed to limit ‖1 + R‖∞ < m
√

γ0. If this is

satisfied, we have ‖TNTF‖∞ ≤ ‖1 + R‖m
∞ < γ0, by the sub-

multiplicative property of the H∞ norm [48].

VI. DESIGN EXAMPLES

In this section, we show two design examples of lowpass

and bandpass ∆Σ modulators by the proposed method.

A. Lowpass modulator

We here show a design example of a high-order lowpass

modulator with the cascade structure shown in Fig. 10. We

set P (z) = 1, that is, TSTF(z) = 1, and R(z) be an FIR filter

with 32 taps. The cutoff frequency Ω is set to be π/32. The

FIR filter R(z) is designed to minimize Nworst(TNTF, [0,Ω])
defined in (4) and the coefficients are obtained by the LMI in

Theorem 1, with the stability condition ‖TNTF‖∞ < 1.5, which

is also described by an LMI in Lemma 2. The number m of

cascades is 2, that is, the order of the modulator is 32×2 = 64.

We also design a modulator by the NTF zero optimization [22],

[2] that minimizes the average Naverage(TNTF, [0,Ω]) defined

in (3). This modulator is designed by the MATLAB function

synthesizeNTF in the Delta-Sigma Toolbox [2], [50],

where the order of TNTF is 4, the over sampling ratio NOSR is

32, and the stability condition ‖TNTF‖∞ < 1.5.

Fig. 11 shows the frequency responses of the proposed

modulator and that by optimizing the NTF zeros. By this

figure, we see that the magnitude of the proposed NTF is

uniformly attenuated over [0, π/32] while the conventional

one shows peaks in this band. The difference between the

two maximal magnitudes at the frequency ω = π/32 is

approximately 11.2 (dB), and the difference at low frequencies

is about 12.4 (dB).

Then we run a simulation to evaluate the obtained mod-

ulators. We used MATLAB functions simulateDSM and

simulateSNR in the Delta-Sigma Toolbox. Fig. 12 shows

the spectrum of the output when the input is the sinusoidal

wave with frequency 0.0325 (rad/sec) and amplitude 0.5. We

assume a uniform quantizer with M = 1 and δ = 1/2 (see
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Fig. 12. The spectrum of the output of the ∆Σ modulators: proposed (solid)
and conventional (dash), pp-SNR denotes the peak-to-peak SNR.
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Fig. 13. The SNR versus the amplitude of the input: proposed (solid) and
conventional (dash). -6.439 is the stability bound for the proposed modulator,
and -3.722 is for the conventional modulator.

Assumption 2). We observe that the quantization noise is

well attenuated in both cases. Note that the frequency 0.0325

(rad/sec) is taken around the first notch of the conventional

NTF gain (see Fig. 11). The notch frequency is expected to

give much better performance to the conventional modulator

than the proposed modulator. However, the simulation shows

this does not necessarily hold. In fact, the peak-to-peak SNR,

SNRpp defined in (7), of our modulator is 95.5 (dB), while that

of the conventional modulator is 91.5 (dB). That is, our design

is superior to the conventional one in SNRpp by approximately

4.0 (dB).

Fig. 13 shows the SNR, the ratio of the signal power to

the quantization noise power (SQNR), of the modulators as a

function of the amplitude of the input sinusoidal wave with

the frequency 0.0325 (rad/sec). For almost all amplitudes,

the proposed modulator shows better performance than the

conventional one, in particular, the difference of the peak

SNR, or the maximum SNR is about 4.8 (dB). The figure

also shows the stability bounds estimated by inequality (19) in

Theorem 4. That is, the bound for the conventional modulator
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−40

−20
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)

 

 

0.4765
0.6514

Fig. 14. Enlarged plot of Fig. 13 with linear scale for input levels.

TABLE II
COMPARISON IN FIGS. 11–13.

max NTF (dB) SNRpp (dB) peak SNR (dB)
Conventional -49.4 91.5 79.6

Proposed -60.6 99.5 84.4
Improvement 11.2 4.0 4.8

is given by M +1−δ‖r‖1 ≈ 0.6514 (-3.722 dB), and that for

the proposed modulator is M + 1 − δ‖r‖1 ≈ 0.4765 (-6.439

dB). The degradation of the SNR for high input levels is due

to saturation in the quantizer that leads to instability in the

modulator. We can say that if the input level is limited to the

stability bound, the degradation is avoidable. We note that the

conventional modulator can accept higher level of inputs. To

see the difference more precisely, we show an enlarged plot in

Fig. 14. The difference however does not matter if the inputs

are limited to the pre-estimated bound by Theorem 4. These

simulation results show that the proposed min-max (or worst-

case) design gives a better SNR as mentioned in Section III-A.

We summarize the results in Table II.

B. Bandpass modulator

We next show a design example of a bandpass modulator.

We set P (z) = 1, and R(z) be an FIR filter with 32 taps.

The center frequency ω0 is set to be π/2, and the bandwidth

parameter Ω is π/16. The FIR filter R(z) is designed by

using the LMI in Theorem 2, with the stability condition

‖TNTF‖∞ < 1.5. We design two modulators, with zeros at

ω0 = ±π/2 and without assignment of zeros there. We also

design a modulator by the NTF zero optimization [22], [2],

designed by the MATLAB function synthesizeNTF in the

Delta-Sigma Toolbox, with the order of TNTF is 6, the over

sampling ratio NOSR is 16, the center frequency f0 = 1/4,

and ‖TNTF‖∞ < 1.5.

Fig. 15 shows the frequency responses of the two pro-

posed modulators and that by optimizing the NTF zeros. We

can see that the proposed modulator without assignment of

zeros shows the smallest magnitude over the band [π/2 −
π/16, π/2+π/16], and that of the proposed modulator with a

zero at π/2 is slightly larger. To see these precisely, enlarged

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



10 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 6, JUNE 2012

0 0.5 1 1.5 2 2.5 3
−60

−50

−40

−30

−20

−10

0

10

Frequency (rad/sec)

M
ag

n
it

u
d
e 

(d
B

)

 

 

 proposed (w/o zero)

 proposed (w zero)

 conventional

π/2+π/32π/2−π/32

Max. gain = 1.5 (3.2 dB)

Fig. 15. Bandpass NTF’s: proposed with zeros at ω0 = ±π/2 (solid), pro-
posed without assignment of zeros (dash-dots) and the NTF zero optimization
(dash).
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Fig. 16. Enlarged view of bandpass NTF’s in Fig. 15.

figure of Fig. 15 around the center frequency is shown in

Fig. 16. By this figure, the magnitudes of the proposed NTF’s

are uniformly attenuated over the band, while the conventional

one shows a peak on the edges of the band. The differences

between the magnitudes of the proposed NTF’s and that of the

conventional one are about 12.9 (dB) and 15.3 (dB).

Finally, we give an example of a multi-band modulator

proposed in Section III-C. We set P (z) = 1, and R(z) be

an FIR filter with 32 taps. The center frequencies are set

by ω1 = π/4, ω2 = π/2, and ω3 = 3π/4. The bandwidth

parameter is Ωl = π/16, l = 1, 2, 3. We also impose the

infinity norm condition ‖TNTF‖ < 1.5 and place zeros at ω1,

ω2, and ω3. Fig. 17 shows the magnitude frequency response

of the NTF designed via Theorem 3. The figure shows that

our design method works well.

VII. CONCLUSION

We have proposed a min-max design method of ∆Σ mod-

ulators. First we have characterized all stabilizing loop-filters

for a linearized model. Then, based on this result, we have

formulated our problem of noise shaping in the frequency

0 0.5 1 1.5 2 2.5 3
−60

−50

−40

−30

−20

−10

0

10

Frequency (rad/sec)

M
ag

n
it

u
d
e 

(d
B

)

π/4 π/2 3π/4

Max. gain = 1.5 (3.2dB)

Fig. 17. Multi-band bandpass NTF designed by Theorem 3 with zeros at
ω1 = π/4, ω2 = π/2, and ω3 = 3π/4.

domain as a min-max optimization. It is seen that the proposed

min-max design has an advantage in improving SNR.
The proposed design problem is reduced to an LMI opti-

mization, using the generalized KYP lemma, and this has a

computational advantage. The assignment of NTF zeros can

be taken care of by an LME. We have given a stability analysis

of the ∆Σ modulator model without linearization and derived

an H∞-norm condition for stability, which is also described

as an LMI via the KYP lemma. The obtained NTF is an FIR

filter, which is favorable from the implementation viewpoint.

Design examples have shown effectiveness of our method.
Future work includes STF optimization as in [23], or

adaptive quantization as in [51] combined with the proposed

optimal filter.
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APPENDIX

A. Proof of Proposition 1

In this proof, we adopt a standard technique of control

theory [52].
First assume that H1(z) and H2(z) are given by (1) for

some P (z) ∈ S and R(z) ∈ S ′. Since R(z) ∈ S ′, R(z)
is strictly causal and so is H2(z) = R(z)/(1 + R(z)). This

implies that the system is well-posed. For internal stability, we

need to show that the four transfer functions 1/(1 − H2(z)),
H1(z)/(1−H2(z)), and H2(z)/(1−H2(z)) are all stable (i.e.,

their poles are inside the unit circle in the complex plane). By

the equalities in (1), we have 1/(1 − H2(z)) = 1 + R(z) ∈
S, and hence H1(z)/(1 − H2(z)) = P (z) and H2(z)/(1 −
H2(z)) = R(z) are stable.

Next assume that the feedback system is well-posed and

internally stable. Define R := H2/(1 − H2) and P :=
H1/(1 − H2). Since H2(z) is strictly proper from the well-

posedness, so is R(z). Then by the internal stability of the
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feedback system, R = H2/(1 − H2) and P = H1/(1 − H1)
are stable, that is R(z) ∈ S ′ and P (z) ∈ S.

B. Real-valued LMI for Theorem 2

For a Hermitian matrix F ∈ C
n×n the inequality F < 0 is

equivalent to ([44])
[

Re F − Im F
Im F Re F

]

< 0.

Hence we obtain the following real-valued LMI for (13):
[

Mr(X,Y, α) −Mi(Y )
Mi(Y ) Mr(X,Y, α)

]

< 0,

where

Mr(X,Y, α) :=

⎡

⎣

Mr1(X,Y ) Mr2(X,Y ) C(α)⊤

Mr2(X,Y )⊤ Mr3(X, γ) 1
C(α) 1 −1

⎤

⎦ ,

Mr1(X,Y ) := A⊤XA + (A⊤Y + Y A) cos ω0

− X − 2Y cos Ω,

Mr2(X,Y ) := A⊤XB + Y B cos ω0,

Mr3(X, γ) := B⊤XB − γ2,

Mi(Y ) :=

⎡

⎣

Mi1(Y ) Mi2(Y ) 0
−M⊤

i2 0 0
0 0 0

⎤

⎦ ,

Mi1(Y ) := (A⊤Y − Y A) sin ω0,

Mi2(Y ) := −Y B sin ω0.

C. MATLAB codes for optimal NTF

We here introduce MATLAB codes for executing numerical

computation of the design proposed in this paper. The codes

are downloadable from the following web site:

http://www-ics.acs.i.kyoto-u.ac.jp/˜nagahara/ds/

This site provides a MATLAB function NTF_MINMAX,

which is the main function to design optimal modulators.

Note also that to execute the codes in this section, Control

System Toolbox [53], YALMIP [42], and SeDuMi [43] are

needed. We use Control System Toolbox for defining state-

space representation of systems. YALMIP is a parser for LMI

description and SeDuMi is a solver for convex optimization

problem including LMI’s with the self-dual embedding tech-

nique. This function computes the optimal NTF and R(z)
minimizing γ > 0 subject to LMI (11) for lowpass modulators

and (13) for bandpass modulators. The H∞-norm condition

of the NTF and assignment of the NTF zeros can be also

included using Lemma 2.

For example, the optimal lowpass NTF shown in Sec-

tion VI-A is obtained by

[ntf2,R]=NTF_MINMAX(32,32,1.5ˆ(1/2),0,0);

ntf=ntf2ˆ2;

The optimal bandpass NTF with zeros at z = e±jπ/2 shown

in Section VI-B is obtained by

[ntf,R]=NTF_MINMAX(32,16,1.5,1/4,1);

For the optimal multi-band bandpass NTF shown in

Section VI-B is also obtained by using another function

NTF_MINMAX_MB as

ff=[1/8,1/4,3/8];

[ntf,R]=NTF_MINMAX_MB(32,64,1.5,ff,1);

Remark 4: When one runs the codes, a message “Run

into numerical problems” may appear. This means

that there was some kind of a numerical problem encountered

in optimization, and the usefulness of the returned solution

should be judged by the designer. This may happen occasion-

ally in numerical LMI optimization. For example, in numerical

optimization with an LMI condition M > 0, the minimum

eigenvalue of M may be slightly negative due to numerical

problems. In many cases, this does not matter. To avoid this,

one can adopt very small ε > 0 and rewrite M > 0 as

M > εI .
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[42] J. Löfberg, “YALMIP : A toolbox for modeling and optimization

in MATLAB,” in Proc. IEEE International Symposium on Computer

Aided Control Systems Design, 2004, pp. 284–289. [Online]. Available:
http://users.isy.liu.se/johanl/yalmip/

[43] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones,” 2001. [Online]. Available:
http://sedumi.ie.lehigh.edu/

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[45] S. Jantzi, R. Schreier, and M. Snelgrove, “Bandpass sigma-delta analog-
to-digital conversion,” IEEE Trans. Circuits Syst., vol. 38, no. 11, pp.
1406–1409, Nov. 1991.

[46] S. Jantzi, K. Martin, and A. Sedra, “Quadrature bandpass ∆Σ modula-
tion for digital radio,” IEEE J. Solid-State Circuits, vol. 32, no. 12, pp.
1935–1950, Dec. 1997.

[47] J. G. Kenney and L. R. Carley, “Design of multibit noise-shaping data
converters,” Analog Int. Circuits Signal Processing Journal, vol. Vol. 3,
pp. 259–272, 1993.

[48] M. A. Dahleh and I. J. Diaz-Bobillo, Control of Uncertain Systems.
Prentice Hall, 1995.

[49] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A higher order
topology for interpolative modulators for oversampling A/D conversion,”
IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309–318, 1990.

[50] R. Schreier, “Delta sigma toolbox.” [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/19

[51] J. Østergaard and R. Zamir, “Multiple-description coding by dithered
delta-sigma quantization,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp.
4661–4675, Oct. 2009.

[52] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control

Theory. Maxwell Macmillan, 1992.
[53] Mathworks, “Control system toolbox users guide,” 2010. [Online].

Available: http://www.mathworks.com/products/control/

Masaaki Nagahara (S’00–M’03) received the
Bachelor’s degree in engineering from Kobe Univer-
sity in 1998, the Master’s degree and the Doctoral
degree in informatics from Kyoto University in 2000
and 2003. He is currently an Assistant Professor
at the Graduate School of Informatics, Kyoto Uni-
versity. His research interests include digital signal
processing and digital control systems. He was a
recipient of Outstanding Paper Awards from the
Society of Instrument and Control Engineers (SICE)
in 1999. He is a member of IEEE, ISCIE, SICE, and

IEICE.

Yutaka Yamamoto (M’83–SM’93–F’98) received
the Ph.D. degree in mathematics from the Uni-

versity of Florida, Gainesville, in 1978, under the
guidance of Professor Rudolf E. Kalman. He is
currently a Professor in the Department of Applied
Analysis and Complex Dynamical Systems, Gradu-
ate School of Informatics, Kyoto University, Kyoto,
Japan.

His current research interests include the theory
of sampled data control systems, its application
to digital signal processing, realization and robust

control of distributed parameter systems and repetitive control.
Dr. Yamamoto was the recipient of G. S. Axelby Outstanding Paper Award

of the IEEE Control Systems Society in 1996, the Commendation for Science
and Technology by the Minister of Education, Culture, Sports, Science and
Technology, Prize for Science and Technology, in Research Category in 2007,
Distinguished Member Award of the Control Systems Society of the IEEE in
2009, and several other awards from the Society of Instrument and Control
Engineers (SICE) and the Institute of Systems, Control and Information
Engineers (ISCIE). He has served as Senior Editor of the Trans. Automatic
Control (TAC) for 2010–2011, and as an AE for several journals including
TAC, Automatica, MCSS, SCL. He was a chair of the Steering Committee of
MTNS for 2006–2008, and the General Chair of the MTNS 2006 in Kyoto.

He is currently President-Elect of the Control Systems Society (CSS) of
the IEEE, and was a vice president for 2005–2008 of CSS, and President of
ISCIE of Japan for 2008–2009. He is a fellow of the IEEE and SICE, Japan.

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp


