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Abstract—In this study, the weighted integral method for iden-
tifying differential equation models is extended to a discrete-time
system with a difference equation (DE) model and a finite-length
sampled data sequence, and obtain a frequency-domain algorithm
for short-time signal analysis and frequency estimation. The deriva-
tion consists of three steps. 1) Provide the DE (autoregressive model)
with unknown coefficients, which is satisfied in a finite observation
interval. 2) Discrete Fourier transform (DFT) the DE to obtain
algebraic equations (AEs) among the Fourier coefficients. Two
mathematical techniques are introduced to maintain the circulant
nature of time shifts. 3) Simultaneously solve a sufficient number of
AEs with least squares criterion to obtain unknowns exactly when
the driving term is absent, or to obtain unknowns that minimize the
driving power when it is present. The methods developed enable
a decomposed processing of identification and estimation in the
frequency domain. Thus, they will be suitable for maximizing sta-
tistical efficiency (smallness of estimation error variance), reducing
the computational cost, and use in a resolution-enhanced time-
frequency analysis of real-world signals. The performance of the
proposed methods are compared with those of several DFT-based
methods and Cramer–Rao lower bound. Also, the interference
effect and its reduction in frequency-decomposed processing are
examined.

Index Terms—Prony method, autoregressive model, sinusoidal
parameter estimation, weighted integral method, FFT.

I. INTRODUCTION

T
HE Prony method [1], [2] is a procedure proposed more

than two hundred years ago for determining the parameters

of multiple damped sinusoids via the identification of an autore-

gressive (AR) model satisfied by their samples, and algebraic

solutions of the characteristic equation. As a short-time exact

direct method, it outperforms Fourier analysis in resolution and

accuracy of signal modeling and parameter estimation. How-

ever, the Prony method behaves poorly against noise; the error

keeps far away from the Cramer–Rao lower bound (CRLB).

To overcome the ill conditions of the Prony method, a number

of techniques have been proposed, including iterative filtering

[3], [4], truncated singular value decomposition [5], [6], and

the subspace-based methods [7], [8]. The subject has also been
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studied in the modern framework of compressed sensing and

low-rank approximation [9], [10]. Several attempts have been

made to find a closed-form formula that approximates the si-

nusoidal frequency using the discrete Fourier transform (DFT)

results [11]–[13].

The problem of identifying and estimating signal models

and parameters has been extensively studied and described in

the literature [14]–[16]. It also has a wide range of emerging

applications, including communications [17], power delivery

[18], radar/sonar signal processing [19], instrumentation [20],

and autonomous driving [21]. The data can either be real- or

complex-valued, the model can either be stochastic or determin-

istic, and the sinusoids can either be single, ordered harmonics,

or a random mixture. Our goal is to realize practical and superior

performances in the analysis of real-world, real-valued signals

with a rich deterministic nature such as music and speech,

without any loss of the exactness and directness of the Prony

method.

In recent years, we have developed the weighted integral

method (WIM) for model parameter identification based on a

differential equation formulation and finite duration observation

[22]–[25]. A method for sinusoidal frequency estimate [22]

has been shown to provide a statistical efficiency (smallness

of estimation error variance) very close to CRLB. In this study,

the principle is extended to a discrete-time system with differ-

ence equation (DE) modeling and finite-length sampled data

sequence, and obtain a novel theory and algorithm for short-

time signal analysis and spectral estimation. The performance

is confirmed by comparing our method with other methods

and CRLB. Also, the interference effect and its reduction in

frequency-decomposed processing are examined.

II. FREQUENCY-DOMAIN PRONY METHOD

A. Autoregressive (AR) Model

The AR model of order k is expressed as

f [t] = a1f [t− 1] + a2f [t− 2] + · · ·+ akf [t− k] + ξ[t],
(1)

where t (integer) is the sample time, and f [t] and ξ[t] respectively

are the signal and driving terms at t.
Given a finite sequence f [t](0 ≤ t ≤ N − 1, N ≫ k) satisfy-

ing this model as observation data, the coefficientsa1, a2, . . . , ak
are estimated. This is the AR model identification. Frequencies

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4618-5293
mailto:Shigeru_Ando@ipc.i.u-tokyo.ac.jp


3462 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

and damping coefficients are obtained as algebraic solutions

of the characteristic equation of DE. This is the sinusoidal

parameter estimation based on the AR model.

B. Time-Domain Least Squares Identification

Typical methods for the AR model identification are in the

time domain. The driving term ξ[t] is assumed to be zero or

sufficiently small in the observation interval [0, N − 1]. Then,

the simultaneous equation of (1) substituting the observed data

is expressed as
⎡

⎢

⎢

⎢

⎣

f [k − 1] f [k − 2] · · · f [0]
f [k] f [k − 1] · · · f [1]

...
...

...

f [N − 2] f [N − 3] · · · f [N − 1− k]

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

a1
a2
...

ak

⎤

⎥

⎥

⎥

⎦

≃

⎡

⎢

⎢

⎢

⎣

f [k]
f [k + 1]

...

f [N − 1]

⎤

⎥

⎥

⎥

⎦

, (2)

which can be solved by the least squares method. When the

driving term is zero and the observation is free of noise, the above

equation provides an exact solution of a1, . . . , ak. This is the AR

model identification in the Prony method. Since the data length

N is finite, the left-hand-side matrix in the normal equation is

not Toeplitz, in contrast with the Yule–Walker equation for the

stationary stochastic process [15].

C. Frequency-Domain AR Model

From here, we describe how to convert the identification

problem into the frequency domain, and obtain two methods

inheriting the exactness and directness of the Prony method.

Assuming that Eq. (1) is satisfied in the observation in-

terval, we apply a discrete version of mathematical tech-

niques of WIM to this DE. Let the Fourier bases in the in-

terval [0, N − 1] be {Ωnt}(Ω ≡ e−2πj/N , n = 0, 1, . . . , N −
1, j: imaginary unit). Then, the time-domain equalities are

transformed identically to the frequency domain as

f [t]−
k

∑

i=1

aif [t− i] = ξ[t] ∀t ∈ [0, N − 1]

←→
N−1
∑

t=0

Ωnt{f [t]−
k

∑

i=1

aif [t− i]} =

N−1
∑

t=0

Ωntξ[t]

∀n ∈ [0, N − 1]. (3)

Thus, among f [t] and Fourier coefficients gn and ηn of f [t] and

ξ[t], respectively, N -tuple equalities hold that

gn −
N−1
∑

t=0

Ωnt
k

∑

i=1

aif [t− i] = ηn
∀n ∈ [0, N − 1], (4)

where

gn ≡
N−1
∑

t=0

Ωntf [t], ηn ≡
N−1
∑

t=0

Ωntξ[t]. (5)

Fig. 1. Illustration of the interchange of summation of the contradictive
component term of Eq. (8).

Unfortunately, however, the second term on the left-hand side

of Eq. (4) involves signal samples f [−1], . . . , f [−k] outside the

observation interval [0, N − 1]; hence, it is not expressed by

only the Fourier coefficients gn and ηn observable to determine

ai(i = 1, 2, . . . , k).

D. Method 1: Circulantness via Extra Unknowns

To express the second term of Eq. (4) using gn requires a

circulant nature (circulantness, hereafter) of the shift operation in

the observation interval. To incorporate this property, we rewrite

the term as a sum of circulant (circularly shifting) terms and other

extra terms as (see Fig. 1)

N−1
∑

t=0

Ωnt
k

∑

i=1

aif [t− i]

=

k
∑

i=1

ai

N−1
∑

t=0

Ωntf [(t− i) mod N ]−
k

∑

i=1

ai

i−1
∑

t=0

ΩntFt−i

=

k
∑

i=1

aiΩ
ni

N−1
∑

t=0

Ωn(t−i)f [(t− i) mod N ]

−
k−1
∑

t=0

Ωnt
k

∑

i=t+1

aiFt−i, (6)

where

Ft ≡ f [t mod N ]− f [t](t = −k,−k + 1, . . . ,−1) (7)

are contradictive components for circulantness. By using the

above, we express Eq. (4) as

gn −
k

∑

i=1

aiΩ
nign −

k−1
∑

i=0

Ωnipi = ηn, (8)

where we define

pi ≡ −
k

∑

j=i+1

ajFi−j (i = 0, 1, . . . , k − 1) (9)

as newly introduced unknowns including products of Ft(t =
−k,−k + 1, . . . ,−1) and ai(i = 1, 2, . . . , k). The minimiza-

tion criterion of the driving term to determine unknowns from a
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system of Eq. (8) for several different n is expressed as

(a1, a2, . . . , ak, p0, p1, . . . , pk−1)

= argmin
∑

n

∣

∣

∣

∣

∣

gn −
k

∑

i=1

aiΩ
nign −

k−1
∑

i=0

Ωnipi

∣

∣

∣

∣

∣

2

, (10)

where
∑

n indicates a summation of all n used in the criterion.

Since Eq. (8) is complex, a number of different n(n > 0) larger

than or equal to k is necessary. When the driving term is

absent, this criterion provides the least squares solution (not

in the rigorous sense, see the next paragraph), and provides an

exact solution if observation noise is also absent. Therefore, by

applying Eq. (10) regardless of the knowledge of the driving

term, we can always expect a desirable solution in practical

sense: the least squares solution when the driving term is absent

and a minimizing solution of the driving term plus noise when the

driving term is present. The residual sum after these optimization

corresponds roughly to the squared sum of noise involved in gn
and/or the driving term.

Eq. (10) has the form of linear least squares problem with

a direct (non-iterative) solution. It does not, however, imply

the solution provides the least squares estimate or the min-

imum variance estimate. This is because the coefficients of

unknowns ai(i = 1, 2, . . . , k) are observed quantities involving

noise. Since theoretical treatment is hard, we evaluate the good-

ness of estimate by numerical simulation (see Sections IV-A

and IV-B). To achieve the maximum likelihood estimate of sinu-

soidal parameters, iterative procedure for nonlinear optimization

is required [26]. The direct algebraic solution of these parameters

obtainable without iteration via Eq. (10) and the characteristic

algebraic equation will provide a good initial estimate for the

iteration.

E. Method 2: Circulantness via Windowing of Equations

Let us rewrite the system of AR model equations in the interval

[0, N − 1] as

⎡

⎢

⎢

⎢

⎣

f [0] f [−1] · · · f [−k]
f [1] f [0] · · · f [1− k]

...
...

...

f [N − 1] f [N − 2] · · · f [N − 1− k]

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

−1
a1
...

ak

⎤

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

ξ[0]
ξ[1]

...

ξ[N − 1]

⎤

⎥

⎥

⎥

⎦

, (11)

and express the left-hand-side N × (k + 1) matrix as a sum of

the circulant N × (k + 1) matrix and other N × k matrix (the

first all-zero column is omitted) as

⎡

⎢

⎢

⎢

⎣

f [0] f [N − 1] · · · f [N − k]
f [1] f [0] · · · f [N + 1− k]

...
...

...

f [N − 1] f [N − 2] · · · f [N − 1− k]

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

−1
a1
...

ak

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

f [N − 1]− f [−1] · · · f [N − k]− f [−k]
0 · · · f [N + 1− k]− f [1− k]
...

...

0 · · · 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎣

a1
...

ak

⎤

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎣

ξ[0]
ξ[1]

...

ξ[N − 1]

⎤

⎥

⎥

⎥

⎦

. (12)

TheN × k matrix in the second line is nonzero only from its first

to kth rows. Therefore, by multiplying from the left an N ×N
diagonal matrix

W = diag(0, . . . , 0, wk, . . . , wN−1) (13)

whose elements from (1, 1) to (k, k), i.e., w0, w1, . . . , wk−1, are

zero, eliminates all the nonzero terms of the N × k matrix, and

results in the equation

W

⎡

⎢

⎢

⎢

⎣

f [0] f [N − 1] · · · f [N − k]
f [1] [(0] · · · f [N + 1− k]

...
...

...

f [N − 1] f [N − 2] · · · f [N − 1− k]

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

−1
a1
...

ak

⎤

⎥

⎥

⎥

⎦

= −W

⎡

⎢

⎢

⎢

⎣

ξ[0]
ξ[1]

...

ξ[N − 1]

⎤

⎥

⎥

⎥

⎦

, (14)

in which noncirculant terms are all removed (windowing op-

eration of AR model equations). Actually, the above equa-

tion is equivalent to a system of AR equations expressed

only by samples in [0, N − 1]. Newly introduced parameters

wk, wk+1, . . . , wN−1 are the weights for each equation. A

method to determine them is shown in the next section.

Here, we introduce the Fourier transform matrix

F ≡
[

Ω(i−1)(j−1)
]

,Ω ≡ e−2πj/N , (15)

where i, j in the exponent ofΩ(i−1)(j−1) are the column and row

orders of F . Since F/
√
N is unitary, it follows that

F
−1
F = I, F

∗
F = NI, F

−1 =
1

N
F

∗. (16)
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Therefore, by multiplying F from the left, and replacing W

with WF
−1
F , we obtain

FWF
−1
F

⎡

⎢

⎢

⎢

⎣

f [0] f [N − 1] · · · f [N − k]
f [1] f [0] · · · f [N + 1− k]

...
...

...

f [N − 1] f [N − 2] · · · f [N − 1− k]

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

−1
a1
...

ak

⎤

⎥

⎥

⎥

⎦

= −FWF
−1
F

⎡

⎢

⎢

⎢

⎣

ξ[0]
ξ[1]

...

ξ[N − 1]

⎤

⎥

⎥

⎥

⎦

, (17)

Hence, denoting Q ≡ FWF
−1, we obtained

Q

⎡

⎢

⎢

⎢

⎣

g0 g0 · · · g0
g1 Ωg1 · · · Ωkg1
...

...
...

gN−1 ΩN−1gN−1 · · · Ω(N−1)kgN−1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

−1
a1
...

ak

⎤

⎥

⎥

⎥

⎦

= −Q

⎡

⎢

⎢

⎢

⎣

η0
η1
...

ηN−1

⎤

⎥

⎥

⎥

⎦

, (18)

in which only the Fourier coefficients gn and ηn of f [t] and ξ[t],
respectively, in the interval [0, N − 1] are involved. The matrix

Q in Eq. (18) has the form

Q = Fdiag(0, . . . , 0, wk, . . . , wN−1)F
−1

=
1

N

⎡

⎢

⎢

⎢

⎣

∑

wt

∑

wtΩ
−t · · · ∑wtΩ

−t(N−1)
∑

wtΩ
t

∑

wt · · · ∑wtΩ
−t(N−2)

...
...

...
∑

wtΩ
t(N−1)

∑

wtΩ
t(N−2) · · · ∑

wt

⎤

⎥

⎥

⎥

⎦

(19)

and is an N ×N circulant matrix with rank N − k whose (i, j)
element is expressed as

qij =
1

N

N−1
∑

t=k

wtΩ
(i−j)t ≡ q̃i−j . (20)

To simplify further, we express the Fourier coefficients after a

circular convolution by Q as

⎡

⎢

⎢

⎢

⎣

q̃0 q̃−1 · · · q̃1
q̃1 q̃0 · · · q̃2
...

...
...

q̃N−1 q̃N−2 · · · q̃0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

g0
Ωig1

...

Ωi(N−1)gN−1

⎤

⎥

⎥

⎥

⎦

≡

⎡

⎢

⎢

⎢

⎢

⎣

g
[i]
0

g
[i]
1
...

g
[i]
N−1

⎤

⎥

⎥

⎥

⎥

⎦

, (21)

(q̃−1 = q̃N−1), or equivalently as

g[m]
n =

N−1
∑

j=0

qn+1,j+1Ω
jmgj =

N/2−1
∑

j=−N/2

q̃−jΩ
(n+j)mgn+j ,

(22)

where in g
[m]
n , the subscriptn is the frequency and the superscript

m is the delay time. Then, Eq. (18) is rewritten as the system of

frequency-wise AR equations:

⎡

⎢

⎢

⎢

⎢

⎣

g
[0]
0

g
[0]
1
...

g
[0]
N−1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

g
[1]
0 g

[2]
0 · · · g

[k]
0

g
[1]
1 g

[2]
1 · · · g

[k]
1

...
...

...

g
[1]
N−1 g

[2]
N−1 · · · g[k]N−1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

a1
a2
...

ak

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

η
[0]
0

η
[0]
1
...

η
[0]
N−1

⎤

⎥

⎥

⎥

⎥

⎦

. (23)

The criterion for the least squares solution when the driving term

is absent or for the minimization of an unknown driving term is

expressed as

(a1, a2, . . . , ak) = argmin
∑

n

∣

∣

∣

∣

∣

g[0]n −
k

∑

i=1

aig
[i]
n

∣

∣

∣

∣

∣

2

, (24)

where
∑

n is a summation of all n in the minimization. To

construct criterion (24), no negative frequency is necessary

because for real signals,

g
[m]
N−n = (g[m]

n )∗ (25)

Thus, they do not provide independent equations.

Note that the window sequence (0, . . . , 0, wk, . . . , wN−1)
introduced above differs from the conventional window function

multiplied directly with data. Windowing of data corrupts their

fitness to the AR model. In contrast, the windowing of equations

does not affect the consistency between them; thus, the exactness

of the Prony method is still maintained.

F. Design of Window Sequence wk, wk+1, . . . , wN−1

In Eq. (18), multiplication of Q and the N × (k + 1) matrix

is a convolution of the Fourier coefficients. Therefore, quite

similarly to conventional window functions, choosing Q hav-

ing a minimum extent of convolution will reduce the mixing

among frequency components. This is advantageous for selec-

tivity and isolation in the frequency domain of g
[m]
n , η

[m]
n (0 ≤

m ≤ k), and an equation expressed by each row of Eq. (23).

This condition is satisfied when we construct the sequence

0, . . . , 0, wk, wk+1, . . . , wN−1 with a minimum number of

lowest-frequency Fourier bases.

When the order is k (multiple of 2), the weight sequence with

the minimum extent being symmetric in its nonzero interval is
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expressed as

wt =

k/2
∑

i=0

ci cos

(

i

(

t− k − 1

2

)

∆ω

)

, (26)

hence, the elimination conditions of non-circulant terms are

w0 = wk−1 =

k/2
∑

i=0

ci cos

(

i

(

k − 1

2

)

∆ω

)

= 0, (27)

w1 = wk−2 =

k/2
∑

i=0

ci cos

(

i

(

3k − 1

2

)

∆ω

)

= 0, (28)

...

wk/2−1 = wk/2 =

k/2
∑

i=0

ci cos

(

i
∆ω

2

)

= 0. (29)

Simultaneously solving these equations and a normalization,

e.g., c0 = 1, uniquely provides the coefficients c0, c1, . . . , ck/2.

From these coefficients, the circulant elements ofQ are obtained

as

q̃j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c0 = 1 (j = 0)
1
2cjΩ

j(k−1)/2 (0 < j ≤ k/2)
1
2c−jΩ

j(k−1)/2 (−k/2 ≤ j < 0)
0 (otherwise)

. (30)

Fig. 2 shows an example of frequency and time distributions of

the window sequence when N = 64 and k = 8.

For designing the window sequence, the use of k larger than

the required value (double the number of sinusoids to be simul-

taneously estimated) is possible. In this case, the zero portion of

the sequence is extended and the rising and falling edges from it

becomes smoother (the higher-order difference becomes zero).

This is useful for enhancing the interference reduction capability

between proximate sinusoids (see Section IV-C).

III. PARALLEL ARRAY OF SINGLE-TONE ESTIMATORS

As shown in Eqs. (8) and (23), the frequency domain Prony

method works nearly frequency-wise. This means that a mixture

of sinusoidal components in the observed signal can be sepa-

rated and aggregated into different peaks during the frequency

analysis for the calculation of gn or g
[m]
n . Therefore, unlike a

total estimate of all sinusoids in the Prony method, a practical

approach of component-wise estimation is possible, in which

an isolated sinusoid is determined using a minimum number

of Fourier coefficients involving the component. Around the

peak, the sinusoidal parameters are estimated with the best

signal-to-noise ratio (SNR) and isolation from other sinusoids.

Even between peaks, parameters of a proximate sinusoid con-

tributing most to the Fourier coefficients can be estimated. This

component-wise approach also solves the order estimation prob-

lem in the Prony method and greatly reduces the computational

cost of a high-order algebraic equation.

Another benefit of this approach is the geometrical freedom

to construct the time-frequency space. By making the procedure

as an estimation unit that is independent and localized both in

Fig. 2. An example of window sequence in time domain (bottom) and circulant
convolution sequence in frequency domain (top) of the windowing-of-equation
method (k = 8,N = 64). Black bar: real part, red bar: imaginary part.

time and frequency, we can carry out the parallel and variable

construction of time-frequency space. To discriminate proxi-

mate sinusoids, if found, we can apply a multi-tone estimation

method (combination of Eqs. (8) or (23)) there.

A. Equations for Single Sinusoid

The target is a single damped sinusoid

f [t] = Ae−ζt cos(ωt+ φ), (31)

where ω, ζ, A, and φ are the frequency, damping coefficient,

amplitude, and phase, respectively. The sinusoid is the general

solution of

f [t]− (2e−ζ cosω)f [t− 1] + e−2ζf [t− 2] = 0, (32)

which is the case when k = 2, a1 = 2e−ζ cosω, a2 = −e−2ζ ,

and ξ[t] is absent in Eq. (1). Therefore, Eq. (8) for Method 1

using extra unknowns for circulantness is expressed as
[

Ωngn Ω2ngn 1 Ωn
] [

a1 a2 p0 p1
]t

= gn. (33)

It has four real unknowns and the equality is complex providing

two real constraints. Therefore, two or more equations with

different n are required to determine the unknowns. In the case

of Method 2 based on the windowing of equations, the unknowns

a1 and a2 are obtained by solving

[

g
[1]
n g

[2]
n

]

[

a1
a2

]

= g[0]n , (34)
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where

g[m]
n = q̃1Ω

(n−1)mgn−1 + q̃0Ω
nmgn + q̃−1Ω

(n+1)mgn+1,

q̃1 = −1

2

(

1− j tan

(

∆ω

2

))

, q̃0 = 1,

q̃−1 = −1

2

(

1 + j tan

(

∆ω

2

))

, (35)

which provides two real constraints for two real unknowns.

Therefore, a single n is sufficient to determine ω and ζ. Note

that three Fourier coefficients gn−1, gn, and gn+1 are required

to calculate g
[0]
n , g

[1]
n , and g

[2]
n .

B. Three Fourier Coefficients Real-Constrained

(3F-R) Method

In order to obtain Method 1 for the single-tone estimate,

the use of three adjacent frequencies, n− 1, n, and n+ 1, is

a natural choice. This provides the same condition of inputs,

gn−1, gn, and gn+1 as the windowing method (Method 2). The

simultaneous equation is written as

⎡

⎣

Ωn−1gn−1 Ω2(n−1)gn−1 1 Ωn−1

Ωngn Ω2ngn 1 Ωn

Ωn+1gn+1 Ω2(n+1)gn+1 1 Ωn+1

⎤

⎦

⎡

⎢

⎢

⎣

a1
a2
p0
p1

⎤

⎥

⎥

⎦

≃

⎡

⎣

gn−1

gn
gn+1

⎤

⎦ , (36)

which is solved in the least squares sense constraining all the

solutions to be real. The FFT is used to fast obtain the Fourier

coefficients gn−1, gn, and gn+1 from observation data for all n.

The damping coefficient and frequency are obtained using the

relations a1 = 2e−ζ cosω and a2 = −e−2ζ as

ζ = −1

2
log(−a2), ω = cos−1

(

a1
2
√−a2

)

. (37)

After ζ and ω are determined, the amplitude and phase of

the sinusoid are estimated by a linear least squares fitting of

corresponding Fourier coefficients [22].

To obtain reliability measures, express Eq. (36) as Ax = b.

Then, the residual error of the least squares estimate is

JRES ≡ b†b− (A†b)†x, (38)

where † denotes the conjugate transpose. JRES becomes large

when the fitness of the AR model without driving becomes

worse; e.g., mixture condition of two or more sinusoids or the

presence of the driving term in the observation interval. For

judging these conditions, the estimation error covariance matrix

can be predicted from JRES as

JERR =
JRES

3
(A†A)−1, (39)

which provides a measure of unreliability of the estimate. As-

suming ζ ≃ 0, and thus a2 ≃ −1, the estimation errror variance

σ2
ω of ω is obtained as

∂ω

∂a1
= − 1

2
√

1− a21/4
thus σ2

ω =
1

4− a21
σ2
a1, (40)

where σ2
a1 is a (1, 1) element of JERR.

C. Double Tone Extention of 3F-R Method

For use in experimental comparison, we define here the six

Fourier coefficients, two sinusoidal frequency, real-constrained

(6F2-R) method. Let n and m > n be the orders of the Fourier

coefficient at two proximate peaks. If m− n ≤ 2, they are

increased or decreased so that the six Fourier coefficients have

no overlaps. Then, the system of equations is expressed as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ωn−1gn−1 · · · Ω4(n−1)gn−1 1 · · · Ω3(n−1)

Ωngn · · · Ω4ngn 1 · · · Ω3n

Ωn+1gn+1 · · · Ω4(n+1)gn+1 1 · · · Ω3(n+1)

Ωm−1gm−1 · · · Ω4(m−1)gm−1 1 · · · Ω3(m−1)

Ωmgm · · · Ω4mgm 1 · · · Ω3m

Ωm+1gm+1 · · · Ω4(m+1)gm+1 1 · · · Ω3(m+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1
...

a4
p0
...

p3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≃

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

gn−1

gn
gn+1

gm−1

gm
gm+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

which is solved by the least squares method. Two sinusoidal

parameters (ζ1, ω1) and (ζ2, ω2) are obtained from the roots

α1, α
∗
1, α2, and α∗

2 of the characteristic algebraic equation

a4z
4 + a3z

3 + a2z
2 + a1z − 1 = 0, (42)

where α1 = e−ζ1+jω1 and α2 = e−ζ2+jω2 .

D. Three Fourier Coefficients Windowing (3F-W) Method

As Method 2 for the single-tone estimate with windowing of

equations, the unique solution of Eq. (34) is obtained as follows:

a1 =
ℑg[2]n ℜg[0]n −ℜg[2]n ℑg[0]n

ℜg[1]n ℑg[2]n −ℜg[2]n ℑg[1]n

, (43)

a2 =
ℜg[1]n ℑg[0]n −ℑg[1]n ℜg[0]n

ℜg[1]n ℑg[2]n −ℜg[2]n ℑg[1]n

, (44)

where ℜ and ℑ indicate the real part and imaginary part, respec-

tively. The conversion from a1, a2 to ζ, ω and the estimation of

the amplitude and phase of the sinusoid are the same as those in

the 3F-R method.

E. Condition for Unique Solution

To simplify the problem, we assume ζ = 0 or ζ is known.

Then, the determinant of the left-hand-side matrix to obtain
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Fig. 3. A graph of frequency-difference dependence of the discriminant D
(N = 64, n = 8) between the target frequency of sinusoid and the center
frequency of the estimator.

TABLE I
COMPARISON OF COMPUTATION OPERATIONS AMONG THE PROPOSED

METHODS AND TYPICAL DFT-BASED METHODS. EACH CELL INDICATES

NUMBERS OF: MULTIPLY (DIVIDE, MATH-FUNCTION) IN TYPICAL

IMPLEMENTATION. OPERATIONS FOR FFT ARE NOT INCLUDED

(∗“nearly optimal three-sample interpolator” method).

a1, p0, p1 has the form

det

⎡

⎣

Ωn−1gn−1 Ωn−1 1
Ωngn Ωn 1

Ωn+1gn+1 Ωn+1 1

⎤

⎦

= Ω2n−1/2(Ω− 1)
(

−Ω−1/2gn−1 + (Ω1/2 +Ω−1/2)gn

− Ω1/2gn+1

)

. (45)

Therefore, the condition is expressed as

D ≡ −Ω−1/2gn−1 +
(

Ω1/2 +Ω−1/2
)

gn − Ω1/2gn+1

= 2

N−1
∑

t=0

(

cos

(

∆ω

2

)

− cos

(

∆ω

(

t+
1

2

)))

f [t]Ωnt

�= 0, (46)

whichis in proportion to the Fourier coefficient of the observed

signal multiplied by a weight distribution similar to the Hann

window function expressed as

cos

(

∆ω

2

)

− cos

(

∆ω

(

t+
1

2

))

(0 ≤ t ≤ N − 1). (47)

Fig. 3 shows plots of the frequency-difference dependence of D
for a unit-amplitude sinusoid

f [t] = cos((n+ δ)∆ωt), (48)

whereδ is the normalized frequency difference from the central

frequency order n of the estimator. Since D is zero at integer

Fig. 4. Comparison of proposed method 3F-R (black) with Quinn’s (red),
Macleod’s (green), Candan’s (blue), and Prony (dark yellow) methods. Approxi-
mation methods (Quinn’s, Macleod’s, Candan’s) show saturation of accuracy (no
decrease in estimation error variance) under high-SNR conditions. The proposed
method (3F-R) does not show saturation and is close to CRLB in all conditions.

δ except for −1, 0, 1, and is nonzero between them, D remains

nonzero for −2∆ω < δ < 2∆ω . This means that if we choose

n such that either n− 1, n, or n+ 1 is at the peak of the Fourier

coefficient distribution, the estimator can provide a unique so-

lution. Of course, it is not always the case if significant noise is

present. Since

g[1]n =
Ωn

2 cos(∆ω/2)
D, (49)

the above uniqueness condition also applies to the 3F-W method

to estimate a1 assuming a zero or known ζ.

IV. NUMERICAL EVALUATION

A. Comparison with Other Methods and CRLB

Repetitive numerical simulation was performed using dif-

ferent waveforms with varying phase and added white noise

variance. Fig. 4 shows graphs of the estimation error variance

of frequency ω versus noise variance in various DFT-based

methods for a single sinusoid. The observation interval N was

from 16 to 1024, as indicated in the graph. For the target sinusoid

f [t] = cos(ωt+ φ) + η[t](0 ≤ t ≤ N − 1) with noise η[t], fre-

quenciesω = (N/8 + i/4)∆ω(i = 0, 1, 2, 3), zero damping co-

efficient, and unit amplitude were assumed. For each condition,

phase φ ∈ [0, 2π] was varied in π/180 steps and the results

were averaged. The graphs of CRLB for amplitude A and noise
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Fig. 5. Frequency dependence of accuracies of 3F-R, 3F-W, Prony, and
autocorrelation (AC) methods under medium- to low-SNR conditions: 3F-R
(black), 3F-W (red), Prony (blue), and AC (green) methods. N = 256, and
frequency ω = π/2, π/4, π/8, and π/16. In the Prony and AC methods, the
deviations from CRLB become larger at low sinusoidal frequencies. In the
proposed methods (3F-R and 3F-W), no frequency dependences are evident
and the accuracies are always close to CRLB. Abrupt increases in error of the
proposed methods are due to a false choice of noise peak for estimation.

variance σ2 expressed as [27]

CRLB =
√
24(σ/A)(N3 −N)−0.5 (50)

are also shown as thin solid lines. The DFT interpolation

methods, i.e., Quinn’s [11], Macleod’s [12], and Candan’s [13]

methods, provide estimation error variance comparable to CRLB

under low SNR conditions. However, the reduction in error

variance under high SNR conditions comes to an end, which

is due to a systematic error (bias) involved in these methods. In

the Prony method, no accuracy saturation takes place because of

its exactness, but its error variance is far larger than CRLB par-

ticularly for large N . In contrast to these methods, the accuracy

of the 3F-R method shows no saturation and approaches CRLB

very closely in all conditions. As shown in Table I, computational

operations for estimation are almost comparable to those of the

DFT-based methods with an excellent computational efficiency.

Note that the close proximity to CRLB at any data length and

SNR assures an ideal accuracy regardless of the tradeoff between

time and frequency resolutions.

B. Comparisons under Wide Frequency and

Low-SNR Conditions

Fig. 5 shows the estimation error variances of the 3F-R, 3F-W,

Prony, and autocorrelation (AC) methods for a single sinusoid

with frequency ω = π/16, π/8, π/4, and π/2 (π = N∆ω/2
is the Nyquist frequency) and N = 256. The range of noise

variances was shifted from those in Fig. 4 to include low-SNR

conditions. In the AC method, the left-hand side matrix of the

Yule–Walker equation is calculated as Toeplitz. In the Prony and

AC methods, the lower the frequency is, the larger the deviation

from CRLB becomes. This is due to the use of a proximate set of

data that are largely correlated. Deviations of the AC method are

almost always larger than the Prony method. It will be because an

additional step for constructing an autocorrelation function from

finite data intoduces a bias. In contrast, the frequency-domain

Prony, 3F-R, and 3F-W methods are free from the frequency-

dependent deviation from CRLB. This is because they rely on

the changes in Fourier coefficients that are mostly uncorrelated

with each other. The deviations of the curves obtained by the

3F-W method (red lines) from CRLB are slightly larger than

those obtained by the 3F-R method (black lines). This is due to

a windowing loss of data and lack of real-value constraints on

noncirculant terms in the 3F-W method.

Under low-SNR conditions (right side of Fig. 5), the 3F-R

and 3F-W methods suffer an abrupt increase in error. This is due

to a false peak of Fourier coefficients caused by larger power of

noise than the sinusoid. In the Prony and AC methods, no such

increases take place.

C. Comparison of Single- and Double-Tone Estimators under

Mixture Condition

Fig. 6(a) shows the interference between proximate sinusoids

when single-tone estimators (3F-R, 3F-W) are applied peak by

peak in the Fourier coefficient distribution, and the result of

the application of a double-tone estimator (6F2-R) around the

two peaks. As the signal, two unit-amplitude sinusoids with

the frequency range [π/8, 3π/8] and frequency difference range

[−5∆ω, 5∆ω] are added to each other with 1% white Gaussian

noise. The phase of the second sinusoid was uniformly varied

in [−π, π]. When the frequency difference is smaller than about

3∆ω , the interference, i.e., bias and phase dependence of esti-

mated results, becomes significant in both the 3F-R and 3F-W

methods. The estimates of damping coefficient ζ are also non

zero in this range. Outside of 3∆ω , the interference decreases

very rapidly. The decrease observed in the 3F-W method seems

to be faster than in the 3F-R method. In contrast, in the 6F2-R

method, no interference is found for almost all frequency dif-

ferences. When two frequencies are nearly identical, however,

the results show a large bias and phase dependence. This is

due to a disagreement between the given and actual numbers

of sinusoids because two frequencies are degenerating into a

single one.

Fig. 6(b) shows the spectral distribution of estimated sinusoids

calculated as

|H(ω)| =
∣

∣

∣

A1e
jφ1

ejω − e−ζ1+jω1

+
A2e

jφ2

ejω − e−ζ2+jω2

∣

∣

∣
,

where ζ1, ω1, A1, φ1 and ζ2, ω2, A2, φ2 are the damping coef-

ficient, frequency, amplitude, and phase of the first and second

sinusoids, respectively. To illustrate the estimated amplitude,

the peak height of each sinusoid is clipped at the corresponding

level. In the 6F2-R results, peaks of sinusoids are clearly sepa-

rated except for the degenerating case. Further consideration will
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Fig. 6. Interference between proximate sinusoids with 3F-R and 3F-W methods, and its resolution with 6F2-R method (N = 32, 1% noise). (a) Distributions
of estimated parameters. Vertical bars: error bars of results under various phase differences (3F-R: red, 3F-W: green, 6F2-R: black). Central graphs: estimated
frequency ω (left axis scale). Top-side graphs: estimated damping coefficient ζ for upper-frequency sinusoid (top-right axis scale). Bottom-side graphs: estimated
ζ for lower-frequency sinusoid (bottom-right axis scale). (b) Spectral distribution of estimated results of (a) (3F-R: red, 6F2-R: black). Peak heights indicate the
estimated amplitudes of sinusoid.

be needed, however, regarding the use of spectral expressions

in the Prony and proposed method, which are valid for finite

duration data without a stationarity assumption.

D. Examination Using Musical and Speech Data

We show some experiments of examining practical perfor-

mances towards future applications of the proposed method.

Figs. 7(a) and (b) show results of the short-time Fourier

transform (STFT) and the single-tone estimator array (3F-W)

to a musical sound (flute solo and orchestra). In both results, the

vertical axis is log frequency and the horizontal axis is time.

To observe the change in sound streams, ∼4 s is decimated

into the range of the horizontal axis. For the 3F-W method,

the results are plotted as dots at the estimated frequencies.

The brightness and hue of a dot indicate the amplitude and

unreliability measure, respectively, from blue (high reliability)

to red (low reliability). With the interval N = 2048 and thus

T = 46.4 ms, high-frequency harmonic sequences are captured

well by both the STFT and 3F-W methods. In the low frequency

range, however, peaks of STFT become unclear because of

insufficient frequency resolution of Fourier bases for describ-

ing the harmonics of low-fundamental sounds. In contrast, the

3F-W method (b) shows significant improvements in captur-

ing the harmonics as traces of condensed dots of estimated

frequencies.

Figs. 7(c) and (d) show results for a male voice “a-i-u-e-o”

(∼1 s). In (c), by taking a shorter observation interval than the

pitch interval (N = 64, T = 4 ms), we extract formant frequen-

cies directly as the traces. Large scatter and large unreliability

measures being synchronous to pitch are caused by the impulsive

excitation sequence. In (c) for a longer observation interval

(N = 256, T = 16 ms), traces of pitch and its harmonics are

extracted in a modulated manner: the amplitudes of traces of

Fig. 7. Applications to musical and speech signals. (a), (b): Results of applying
STFT and 3F-W methods at ∼4 s into the opening of J. S. Bach, BWV1067
no. 5. (central two traces are the 1st and 2nd harmonics of flute solo). The
vertical and horizontal axes are log frequency and time (1/256 down-sampled
from fs = 44.1 kHz). The color indicates ζ2 of the estimate (blue: small, red:
large). (c), (d): Results for NII SRC [28] speech data “a-i-u-e-o” (fs = 16 kHz,
down-sampling rate of time axis is 1/32), the color indicates the unreliability
measure σ2

ω
of the estimate (blue:small, red:large). A bit scattered traces of

formants in (c) and combined traces of pitch and formants in (d) are extracted.
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pitch harmonics become larger where they cross the formant

traces.

V. SUMMARY

The frequency-domain Prony method was proposed. It is

an exact DFT-based method for AR model identification and

sinusoidal parameter estimation. It is based on the AR model

expressed by Fourier coefficients, and describes algebraic rela-

tions of sinusoid among Fourier coefficients. It uses Fourier coef-

ficients as observables, which describe the overall changes in the

waveform in the observation interval. Therefore, it performs well

in noise and realizes higher statistical efficiency. Owing to the

frequency decomposition capability of the method, it provides

both single-tone estimators for isolated sinusoids and multi-tone

or overall estimators for proximate or unresolvable sinusoids. In

the frequency-decomposed procedures around selected peaks

of Fourier coefficients distribution, the computation is low in

cost and well conditioned. All of these will be important for

applications to real-world signals with plural harmonics and

their mixtures.
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