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Frequency-Domain Set-Membership
Filtering and Its Applications

Li Guo and Yih-Fang Huang, Fellow, IEEE

Abstract—Frequency-domain adaptive filtering is appealing in
many applications, particularly channel equalization. This paper
presents frequency-domain set-membership filtering (F-SMF) and
derives adaptive algorithms for F-SMF. The F-SMF is employed
to design single-carrier frequency-domain equalizer (SC-FDE).
With an unconventional parameter-dependent error-bound spec-
ification, an F-SMF algorithm is derived and shown to provide
superior performance with sparse updates of parameter estimates.
Exploring the feature of sparse updates, we present an innovative
parallel adaptive architecture that shares the updating processors
and that finds natural appeal in frequency-domain diversity
combining and equalization for very dispersive fading channels
like those found in broadband wireless communications.

Index Terms—Adaptive frequency-domain equalization, fre-
quency-domain filters, parallel adaptive subsystems, set-member-
ship filtering, updator-sharing.

I. INTRODUCTION

S
ET-MEMBERSHIP filtering (SMF) and a class of recursive

algorithms (see, e.g.,[1]–[8]) were developed as an alter-

native to conventional filtering approaches such as recursive

least-squares (RLS) and least-mean-square (LMS) algorithms.

Generally, with an a priori error-bound specification, SMF

algorithms seek filter weights such that the worst case error

is bounded. Numerous investigations (see, e.g., [1]–[3], [6])

have shown those algorithms’ attractive features, highlighted

by data-dependent selective update (of parameter estimates).

The selective updates result from optimizing the step-size at

each data point, which provide a convenient performance-com-

plexity tradeoff. Unlike the traditional algorithms (e.g., LMS

and RLS) that continually update parameter estimates re-

gardless of the benefit of those updates, SMF algorithms can

“intelligently” evaluate the incoming data on their benefit

to improve the quality of the estimates accordingly. Conse-

quently, most SMF algorithms exhibit superior convergence

and tracking performance [1], [6], compared to traditional LS
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and LMS algorithms. These algorithms have been employed

for a variety of applications that include speech coding [9],

adaptive equalization [8], [10], mitigation of multiple access

interference in wireless communications [11], etc.

To date, investigations on SMF have mostly been limited to

time-domain symbol-wise filtering. Implementation of time-do-

main adaptive FIR filters may be prohibitively complex in some

applications such as channel equalization in broadband wireless

communications [12], [13], and echo cancellation [14]–[16].

In comparison, a frequency-domain (FD) filter usually enjoys

lower implementational complexity [17]. In particular, the com-

putational complexity of FD filter is in the order of logarithm of

the filter length, while that of time-domain (TD) filter is at least

linearly proportional to the filter length. The extension of SMF

theory to frequency domain is therefore of much interest. This

paper presents a framework for frequency-domain set-member-

ship filtering (F-SMF). Similarly to its time-domain counterpart

(which is termed T-SMF in this paper), the F-SMF problem is

formulated on the basis of a bounded vector-error specification.

An error-bound specification is imposed on each frequency bin,

which can be varied to assure uniform convergence performance

across all frequency bins. Recursive algorithms for F-SMF are

then derived. These algorithms are shown to offer improved

performance of faster convergence and lower steady-state error

with low computational complexity, and are shown to be appli-

cable to single-carrier frequency-domain equalizer (SC-FDE)

which is suitable for broadband wireless communications. Ac-

cordingly, a framework of set-membership frequency-domain

equalization (SM-FDE) is presented along with some sufficient

and necessary conditions for the existence of feasible equalizers.

A fundamental challenge in SMF is the need to choose

an error bound a priori, which may critically affect the per-

formance. Practically, it is often difficult to choose an error

bound accurately. This problem is even more pronounced when

F-SMF algorithms are employed for FDE. The reason is that

each symbol is transformed into a number of bins and it is

desirable to choose different error bounds for different bins. To

resolve this problem, we derive an F-SMF adaptive algorithm

for FDE with parameter-dependent error bounds. Unlike most

of the existing SMF algorithms, see, e.g., [1], [2], [4], [5], this

algorithm needs no a priori specification on the error bound.

Thus it has less risk of overbounding and underbounding while

enjoying all the advantages of conventional SMF algorithms.

Further, the proposed algorithm can track the time-variant

“true” error bound.

Exploring the selective-update feature of SMF algorithms, an

updator-sharing scheme can be constructed for F-SMF, simi-

larly to its time-domain counterpart [10]. The U-SHAPE adap-
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Fig. 1. Frequency-domain set-membership filtering.

tive filter architecture [10] can potentially offer significant hard-

ware savings. This adaptive filter structure is particularly suit-

able for broadband wireless receivers with multiple antennas

and FDE, e.g., diversity combining and equalization. This pro-

posed scheme can drastically reduce the hardware requirement

(up to 89%, according to our experience) with little performance

degradation.

Notation: Lowercase (uppercase) letters represent time-do-

main (frequency-domain) quantities. Boldface denotes vectors

while a tilde sign denotes matrices. Superscripts repre-

sent complex conjugate, transpose, and Hermitian operations,

respectively. Operators and denote element-by-element

multiplication and division of two vectors, respectively.

is a diagonal matrix with vector on its diag-

onal and denotes the FFT matrix with elements

.

II. FREQUENCY-DOMAIN SET-MEMBERSHIP FILTERING

A. Frequency-Domain Filtering

Consider a general linear-in-parameter frequency-domain

(FD) filter with input vector and desired output

vector , as shown in Fig. 1. The input vector

is first transformed through -point FFT into an FD vector

. The filtering is conducted bin-by-bin in the

frequency domain. Assume the filter coefficient vector in the

frequency domain is . Thus, the FD filter output is

. Then the filter output is transformed back

into the time domain through IFFT, resulting in the time-domain

(TD) filter output . The TD filter error is

defined as , which, in the frequency domain,

is , where is the FFT of . The

FD filters are particularly appealing in those applications where

computational complexity is prohibitively high for TD filters.

Conventional FD filtering schemes are simply converted from

the TD LS or LMS approaches, which select parameter vector

so as to minimize the time-average or ensemble average of

the squared error.

B. Formulation of F-SMF

The frequency-domain set-membership filtering (F-SMF) is

formulated with a bounded error-vector specification. To begin

with, define the model space , which is the set of

all possible input vector-desired output vector pairs . An

equivalent FD model space is defined as the set of all possible

FD input vector-desired output vector pairs . Obviously,

, where the linear transformation matrix is

With the bounded error-vector specification , the objective of

F-SMF is to find a parameter vector such that

(1)

where is the TD filter error, i.e., the difference between

the desired output and the filter output. By the property of IFFT

, criterion (1) is equivalent to:

(2)

In the sequel, (2) will be used as the objective of F-SMF. The

solution to (2) is, in general, a set of parameter vectors. Any

member of this set is a valid F-SMF that satisfies the bounded

error-vector specification. Each pair of induces an

instantaneous set of parameter estimates, termed constraint set,

given by

(3)

The solution of F-SMF, referred to as the feasibility set, is the

intersection of all the constraint sets due to all possible data pairs

in . This set is given by

(4)

The feasibility set and the constraint set of F-SMF have many

properties similar to their TD counterparts (i.e., T-SMF), except

that the constraint set of F-SMF is the interior of a hyperellip-

soid while that of the T-SMF is the region between two parallel

hyperplanes [6].

As is the case in T-SMF, the feasibility set of F-SMF may

be empty when the error-bound specification is too stringent

and is smaller than the smallest feasible specification. This can

be circumvented by increasing or reducing or even in-

creasing the filter length. If is known a priori, we can de-

sign an F-SMF given the choices of and . However, in

practice, the model space is often not completely known and/or

time-varying. Thus adaptive algorithms are needed to design an

effective F-SMF.

C. Adaptive F-SMF Algorithms

To derive an adaptive F-SMF algorithm, we modify the ob-

jective of F-SMF by replacing the scalar specification with

a vector specification, namely

, where , applies to the -th fre-

quency bin. Thus the modified F-SMF objective is to find

such that the error in each frequency bin satisfies

(5)
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It will be shown that this modification would result in adaptive

F-SMF algorithms with a simple structure. With different error-

bound specifications for different bins, the resulting adaptive

algorithm would potentially have more uniform performance

among all frequency bins. Further, this modification can facili-

tate an updator-sharing scheme which will be presented later.

Assume that a sequence of is available for

“training.” The constraint set due to the th observed data pair

is

(6)

which is the region enclosed by a polyhedron described by

with . Given the

observations , define the membership set as

the intersection of the constraint sets, up to and including the

present instant, i.e., . Note that is a superset

of the feasibility set and is the minimal set estimate given the

observations .

An objective of adaptive SMF is to track the membership set

at each instant. One approach is to form a sequence of sets that

converge to the feasibility set by tracking with a point-wise

approach [6]. We now derive an adaptive algorithm, referred

to as F-SM-NLMS, from a point-wise approach based on the

principle of minimal disturbance. Given the previous parameter

estimate , the new estimate is found by

(7)

The update equation for the resulting F-SM-NLMS algorithm is

(8)

where is the adaptive step matrix given by

(9)

with

(10)

In some cases, the output of recursion (8) exhibits some fluctua-

tions. To smooth the output, we could replace with ,

where . Each element in can be

computed recursively by [18]

(11)

(12)

where is usually referred to as the smoothing factor

and is a small positive constant.

A frequency-domain set-membership algorithm was pre-

sented in [19]. The F-SM-NLMS algorithm proposed here is

different from the algorithm of [19] in the following aspects:

1) the algorithm of [19] was derived with a total energy con-

straint (on the noise), as opposed to instantaneous constraint

used in this paper; thus the feasibility set of our F-SM-NLMS

algorithm is a subset of that of the algorithm in [19] as long as

Fig. 2. MSE comparison between F-SM-NLMS and F-NLMS.

, where is the total energy constraint spec-

ification of the algorithm in [19]; 2) the F-SMNLMS algorithm

uses different step-sizes for the update in different bins and

allows for independent update of different bins, which is not

the case for the algorithm in [19]; 3) based on our simulation

experience, F-SM-NLMS seems to always have a faster con-

vergence rate than the algorithm of [19]; and 4) F-SM-NLMS

algorithm has lower computational complexity.

D. Performance of F-SMF

It is clear that one of the significant advantages of F-SM-

NLMS over F-NLMS is that its step-size (for updating param-

eter estimates) varies in accordance with the received data, (10).

Since the step-size can be zero, F-SM-NLMS updates selec-

tively, just like all SMF algorithms (see, e.g., [1] and [6]).

Fig. 2 shows the mean-square error (MSE) learning curves

of identifying a 100-tap complex-coefficient filter with addi-

tive white Gaussian noise (AWGN) for both F-SM-NLMS and

F-NLMS algorithms. The filter to be identified is a truncated

FIR microwave radio channel obtained from actual field mea-

surements [20]. This simulation can also be viewed as an ex-

ample of channel estimation in fixed wireless communications.

We implemented smoothing, (11)–(12), in both F-SM-NLMS

and F-NLMS algorithms. In F-NLMS, the smoothing is used to

ensure that all bins have the same convergence rate. The SNR is

10 dB and the input vector is a correlated Gaussian signal ob-

tained by passing a white Gaussian signal through a first-order

low-pass filter with an eigenvalue spread of 80. A large eigen-

value spread is used for an investigation on the robustness issues.

The bound for each bin is set to be ( is the noise vari-

ance). The reason for choosing same error bound for different

bins is that the output noise is white. The simulation result of

F-SM-NLMS shows a faster convergence and lower steady-state

error than F-NLMS. This is consistent with the results obtained

for time-domain adaptive filtering using SM-NLMS and com-

paring to NLMS [6]. Further examination on the performance

of frequency-domain adaptive equalizers using F-SM-NLMS
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Fig. 3. Receiver with single-carrier frequency-domain equalization.

and F-NLMS is given in the next section where superior per-

formance of F-SM-NLMS is shown.

III. SET-MEMBERSHIP FREQUENCY-DOMAIN EQUALIZATION

In this section, we present an application of F-SMF to

single-carrier frequency-domain equalization (SC-FDE) [12]

which is considered a viable technique for broadband wireless

communications. Compared with multicarrier communication

employing OFDM (orthogonal frequency division multi-

plexing), SC-FDE offers a number of significant advantages

that include, e.g., lower peak-to-average ratio of transmitted

power, robustness with respect to phase noise and frequency

offset, ability to explore multipath diversity, etc. (see, e.g., [12],

[21]–[23]). It is one of the optional techniques for 2–11 GHz

air interface specification in IEEE 802.16 [24].

A. Frequency-Domain Equalization

Consider a single-carrier block transmission with a cyclic

prefix (CP) of symbols (where is the channel order), and

the transmitted data sequence is broken into blocks (i.e., vec-

tors) of symbols. The CP ensures that the block has a cyclic

property at the receiver and it precedes each block to be trans-

mitted. Frequency-domain equalization, Fig. 3, is employed at

the receiver. After the CP is discarded, the th received data

vector is

(13)

where the noise vector is

(14)

and the th transmitted data vector is

(15)

The channel convolution matrix is an circulant matrix

using the channel FIR impulse response

padded with zeros as its first column.

Each received data vector is transformed, using FFT, to

form the FD vector

(16)

where and are the -point FFT of

and , respectively. is the FD channel impulse

response, i.e., the -point FFT of . The FDE is formulated by

, where is the equal-

ization vector, with being the weight for

each frequency bin. So the FD output error vector is

(17)

Then is inverse transformed via IFFT to form the TD output

and detection is done afterward.

B. SM Frequency-Domain Equalization

The objective here is to find according to F-SMF’s

bounded error-vector criterion. Assume that the transmitted

symbols come from a 2-D constellation , and the

equalizer size is . Note that the set of transmit vectors

is . With equalizer , the maximum Euclidean distance

between the transmitted vector and equalized output vector for

each transmit vector is

(18)

where the set consists of all the noise components that are

bounded

(19)

for some noise bound .

With the error-bound specification , the objective of

SM-FDE is to find such that is upper bounded by

for any , i.e.,

(20)

We define the set of all FDE weight vectors that satisfy (20) as

the SM-FDE feasibility set

(21)

Note that the SM-FDE feasibility set is a convex set. This

follows from the fact that, for each

describes the intersection of ellipsoids in the FDE equalization

parameter space. Note that the SM-FDE feasibility set could

be empty for some particular choice of and given the

symbol constellation , noise set , and channel . In general,

a larger will help ensure that the SM-FDE feasibility set is

nonempty. However, a smaller value of usually results in

better equalization performance. From (18)–(21), one can see

that whether or not there exists a feasible SM-FDE solution de-

pends on the channel , constellation , noise set , FFT frame

size , and bound . The following proposition provides suffi-

cient and necessary conditions for the existence of a nonempty

SM-FDE feasibility set. For simplicity of discussion, assume

that the input symbols and noise are zero-mean independent and

identically distributed (i.i.d.) sequences and that the noise and

input symbols are uncorrelated.

Proposition 1: Consider a linear FIR channel model and

a linear frequency-domain equalizer described in (16)–(21).

Let be the maximum amplitude in the constellation and

be defined in (21). For each parameter estimate ,

the following is true.
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1) Sufficiency: is a feasible solution in if

(22)

where

2) Necessity: If is in , then

(23)

where and are the variance of the symbols in the

constellation and noise, respectively.

Proof: See Appendix I.

Remark 1: Similar conditions have been derived for symbol-

wise time-domain linear equalizer and decision feedback equal-

izer in [10] and [25].

Remark 2: From (22), one can see that MMSE-FDE [12],

[13] is a feasible SM-FDE solution if the error bound specifica-

tion [as defined in (20)] satisfies

(24)

where

Thus MMSE-FDE for channel belongs to the SM-FDE fea-

sibility set. In particular, MMSE-FDE can ensure that the norm

of equalized output squared error is upper bounded by which

satisfies (24).

These conditions can help an off-line design of SM-FDE

based on criterion (20). With the knowledge of channel , con-

stellation , equalizer length and performance specification

, the design problem is one of finding a parameter estimate

that belongs to the feasibility set. The design methodology

presented in [25] can be employed here.

In employing SM-FDE for most practical problems (e.g.,

wireless communications), the feasibility set can not be cal-

culated a priori because the channel is not known a priori

and might even be time-varying. An adaptive solution is thus

required, and the F-SM-NLMS algorithm presented in the

previous section can be employed here. To examine the per-

formance of adaptive SM-FDE, consider the same microwave

radio channel as in the previous simulation example. An

FDE with is considered and the channel impulse

response is truncated to 20 most significant coefficients. The

Fig. 4. BER performance with QPSK signaling.

FDE performance using F-SM-NLMS is compared with that

of the F-NLMS algorithm implemented with different values

of step-size. Fig. 4 shows the steady-state BER for the case of

QPSK (Quadrature Phase Shift Keying) signaling. For each

simulation, 10 000 data vectors, each of which consisting of

symbols were transmitted. The bound for each bin

used in F-SM-NLMS is (which implies ).

In the application of adaptive FDE, in F-SM-NLMS should

be different for different bins. The reason is that different

frequency bins generally have different channel response coef-

ficients. However, in adaptive FDE, we can not specify different

for each individual bin because is not known a priori and

can be time-varying. In the next subsection, this problem will

be further discussed and we will present an adaptive algorithm

to resolve this problem. For comparison, we also show the

performance of QPSK signaling in AWGN noise (without ISI).

This is equivalent to using a filter matched to the FIR channel.

We see that F-SM-NLMS results in a lower BER compared to

the F-NLMS, while using only 5% of data to update parameter

estimates. However, as the step-size of F-NLMS is progres-

sively reduced from 0.4 to 0.09, its performance approaches

that of F-SM-NLMS. In practice, the step-size usually varies

from 0 to 1 and its choice is often empirical and ad hoc.

C. An Adaptive Algorithm With Parameter-Dependent

Error-Bound Tuning

One of the critical assumptions of SMF and F-SMF algo-

rithms is the a priori knowledge of an error bound (as in F-SM-

NLMS). The SM algorithms’ performance may depend criti-

cally on this specification. In practice, however, it is often not

easy to determine the error bound accurately due to insufficient

knowledge and/or the time-varying characteristics of the under-

lying system. Choosing error bounds arbitrarily may be unre-

liable and has the risk of overbounding (i.e., the error bound

is too large) and underbounding (i.e., the error bound is too

small); both of which can result in performance degradation.

These situations call for alternative SMF algorithms, e.g., those

with bound-tuning strategies [26]–[30] that have the ability of
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adjusting the error bound in accordance with the changes in the

system.

In this paper, we propose to modify the F-SMF criterion (5)

by replacing the fixed with a variable error-bound vector that

depends on the filter weights. To begin with, denote the error

bound vector as to em-

phasize its dependence on the filter parameter vector. Its value

is the true absolute error if is a true feasible solution for the

filter parameter vector. With the specified error bound function

, the new criterion is to find such that the output error

is not greater than for all possible transmitted

symbol vector-received vector pair , i.e.,

(25)

To derive a recursive solution based on this new criterion, as-

sume that a sequence of input-pilot data pair is avail-

able for “training.” At time , given , the constraint

set is defined as the set of all parameters that satisfy the

error-bound specification

(26)

A recursive solution can be derived with a point-wise approach

[6]. Given the parameter estimate at time , and

the input-pilot pair , a new estimate is found by

. This algorithm is out-

lined here.

1. If , then , and no parameter

update is needed.

2. If is found by

(27)

The algorithm can only be specified according to the specific

functional form of . Assume that the noise distribution

has a variance . For each bin, with the equalization param-

eter , the noise part in the equalization output is

with variance . If is a feasible equalizer weight,

can be used to approximate the error bound for

some positive constant . So we can set ,

where should be greater than 1. It should be noted that

should be large enough to warrant a non-empty feasibility set,

but it should not be too large to slow down convergence. In

general, if is set in the range of [3, 9], the performance is

satisfactory in AWGN case. Practically, the noise variance may

also be unknown. Methods for estimating noise variance can

be found in [31] and [32]. As an example, an online estimation

of the noise variance and signal-to-noise ratio (SNR) of real

processes was presented in [31]. Though it is possible that

(due to the errors in the estimate of ), it does not

usually lead to a catastrophe. Furthermore, that probability is

usually very small in practice. The recursive solution is sum-

marized as follows (here, we drop the bin index in all variables

and the results are equally applicable to all bins).

1) If

then and no parameter update is needed.

2) Else, is found by

(28)

(29)

Define , constraint (29) may lead to different

solutions for with different values of . The adaptive algo-

rithm for FDE is summarized as follows (please see Appendix II

for derivation).

If

(30)

then

else

(31)

(32)

(33)

(34)

This recursive algorithm derived above is referred to here as

SM parameter-dependent error-bound tuning (SM-PET) and it

retains the advantages of conventional recursive SMF solutions,

e.g., data-dependent step-size and selective update. In addition,

the step-size is dependent on the filter parameter vector. The

parameter-dependent error-bound specification and step-size

make the adaptive algorithm less vulnerable to overbounding

and underbounding, thus, providing better convergence and

tracking performance.

D. Performance of Adaptive Algorithms With Variable Bounds

Simulation experiments were performed to examine the

SM-PET algorithm. In all examples presented here, FDE with

a 64-point FFT is employed. The channel model used in the

simulation is again a microwave radio channel obtained from

actual field measurements [20]. A QPSK signaling is assumed.

The value of in defining is set to

be 5. The results of the SM-PET algorithm are compared with

those of the F-SM-NLMS algorithm, which uses a fixed error



1332 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 4, APRIL 2007

Fig. 5. Convergence performance with Gaussian noise: SM-PET algorithm
versus F-SM-NLMS with different error bounds.

bound, and F-NLMS algorithm [18]. For the same reason in the

simulation of Fig. 4, F-SM-NLMS algorithm uses the same

for different bins.

Example 1: Convergence Performance in Gaussian Noise:

In this simulation, the input noise is AWGN with zero mean

and variance . The convergence performance of

SM-PET is compared to that of F-SM-NLMS with various

error bounds, as shown in Fig. 5. To illustrate the effect of

overbounding/underbounding on performance, we have chosen

some extreme values of the error bounds for F-SM-NLMS. As

expected, the performance of F-SM-NLMS varies substantially

with different (extreme) choices of the error bound. Arbitrarily

choosing the error bound with insufficient information could

seriously compromise the performance. Simulation results also

show that SM-PET enjoys sparse data-dependent updates (like

all SMF algorithms) and the update frequency is significantly

less than that of F-SM-NLMS. In this example, the updates

needed for SM-PET were only 4%. In contrast, the updates in

F-SM-NLMS were 46%, 32%, 3.2%, and 2.5% for the bounds

of , and , respectively. The performance

comparison between SM-PET algorithm and F-NLMS algo-

rithm is shown in Fig. 6. The SM-PET algorithm is clearly

shown to have faster convergence and lower steady-state error

than F-NLMS algorithm, which requires a priori setting of the

step-size. Comparing results in Figs. 5 and 6, one sees that

F-SM-NLMS with and F-NLMS with have

the same convergence rate but the F-SM-NLMS has much

lower steady-state than F-NLMS in this case.

Example 2: Equalization of a Time-Variant Channel: The

channel model used in the previous simulation was set as the

initial state of the channel, and the coefficients were then varied

randomly. The time variations in the coefficients were intro-

duced by having random Gaussian jumps every 200 data blocks

and the variations in the first channel tap are shown in Fig. 7.

The curves shown in Fig. 8 are learning curves of SM-PET and

F-SM-NLMS with various error bounds. It is clear that SM-PET

tracked the channel quite well, while F-SM-NLMS with arbi-

trarily chosen error bound could not ensure satisfactory equal-

Fig. 6. Convergence performance with Gaussian noise: SM-PET algorithm
versus F-NLMS algorithm.

Fig. 7. Time variations of channel.

ization performance. The F-SM-NLMS algorithm with

could provide comparable performance to SM-PET in some in-

tervals, but it rendered inferior performance in other intervals.

In essence, for the equalization of time-varying channels, a fixed

value of (as employed in F-SM-NLMS) can not guarantee ro-

bust equalization performance. Other experiments of SM-PET

in non-Gaussian noise showed similar results.

IV. UPDATOR-SHARING SCHEME FOR BROADBAND

WIRELESS COMMUNICATIONS

Due to the unique data-dependent selective update feature of

all SM adaptive algorithms, the adaptation process is essentially

decomposed into two steps: information evaluation (which de-

cides whether or not an update of parameter estimate is needed)

followed by update calculation, if it is needed. When updates are

infrequent, one can conceivably design shared updators among

parallel adaptive filters with SM algorithms, thereby reducing

hardware requirement. This idea was first presented in [10] and

referred to as U-SHAPE there. It will be shown in this sec-
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Fig. 8. Tracking of time-variant channel: SM-PET algorithm (solid line
without markers) versus F-SM-NLMS with different error bounds (dotted lines
with markers).

Fig. 9. Frequency-domain diversity combining and equalization.

tion, with the idea of U-SHAPE, that employing F-SMF in fre-

quency-domain diversity combining and equalization can pro-

vide a very appealing receiver structure with low hardware com-

plexity for broadband wireless communications.

A. Frequency-Domain Diversity Combining and Equalization

Frequency-domain diversity combining and equalization, as

shown in Fig. 9, is considered a robust and efficient receiver

solution for very dispersive channels like those in broadband

wireless communications [13], [33]. Consider a single-carrier

block-wise transmission with CP as described earlier. Assume

that there are receive antennas. At the th receive branch,

each data vector is transformed through FFT after

the CP is removed. Then the combination and equalization

are conducted in frequency domain. The signals at the same

frequency bin from different diversity branches are first com-

bined and the resulting combined signal is then equalized. The

output at the th bin is , where

Fig. 10. Structure of updator-sharing scheme.

is the combination and equalization

parameter vector and is . Then the output

is transformed back into time domain and the decision is made.

This receiver structure can provide the multipath diversity

gain as well as multiple antenna diversity gain, thus yields

excellent performance in very dispersive radio channels. It has

been shown that an -branch receiver with maximal ratio

combining (MRC) and LMMSE equalization performs better

than an -branch maximum likelihood receiver in highly

dispersive fading radio channels with AWGN noise [13].

If the input statistics and the channel information of each sub-

channel are known perfectly, the optimum combining and equal-

ization weight can be obtained from MRC and LMMSE

[13], [33]. However, such information is often unknown in prac-

tice, thus adaptive algorithms would be preferred. The F-SM-

NLMS and SM-PET algorithm can be employed here for adap-

tive combination and equalization.

B. Updator-Sharing Scheme

With the receiver structure presented previously, each bin has

an adaptive filtering subsystem with inputs and one output,

and there are parallel such subsystems with the same filter and

update structure. Employing F-SMF in this receiver structure al-

lows for sharing updators among those subsystems to reduce

the hardware requirement [10]. Decision-directed scheme is em-

ployed in the proposed receiver. The proposed sharing scheme

is illustrated in Fig. 10 and described briefly as follows.

• For each bin , if the error does not satisfy (30) [or

(10)] through the information evaluation, an update request

is sent to the updator switch control.

• If the number of update requests , all requests are

responded to, i.e., the filters which send update requests are

all updated accordingly. If requests will

have to be declined.

To design such an updator-sharing scheme, the following issues

must be addressed [10].

1) The Number of Updators : The goal is to have the min-

imum number of updators without compromising the overall

system’s performance. Determination of would depend on the
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update request probability and the targeted rejection proba-

bility for each bin. The rejection probability for each bin is

defined as

(35)

Denote as the minimum number of updators to satisfy

for all . The value of can be obtained from ([10, Th.

2 and Th. 3]) by searching in the set of possible values

off-line. A higher rejection probability implies

that fewer update requests can be fulfilled and performance may

be compromised. According to our simulation experience, the

BER performance is usually not compromised much if

. Further, since all the bins are from the same user, it makes

sense to use the same value of for all bins.

2) The Update Request Probability : To design , one

needs to specify the update request probability as a system pa-

rameter. There are two relevant issues here. The first is that

is time-varying in practice. Usually, is larger at the be-

ginning of equalization and decreases to a smaller steady-state

value as equalization proceeds. If we set the request probability

according to , the value for the training period, it may be

too conservative and will require an unnecessarily large number

of updators. On the other hand, if we set the request proba-

bility according to the steady-state value , one risks slowing

down convergence. Our experience suggests that using will

be satisfactory, because the SM-PET and F-SM-NLMS algo-

rithms usually reach the steady-state very quickly. Thus, the

initial training period is insignificant in the time frame of in-

terest. While choosing a smaller update probability may slow

down convergence, this is insignificant according to our simu-

lation experience.

The second issue is that different SNRs and channel realiza-

tions would result in different . We propose to specify in

accordance with the smallest acceptable SNR value.

3) Updator Allocation Scheme: As aforementioned, if

, only update requests are fulfilled and a prioritizing allo-

cation scheme is required. We propose a prioritization scheme

to allocate the updators. To begin with, define a priority index

for each update request as

(36)

if the SM-PET algorithm is employed here, or

(37)

if F-SM-NLMS algorithm is employed. Whenever an update is

needed, the update request is sent along with to the switch

control. If , the updators are allocated based on the

values of . In particular, the updators are allocated to those

filters with the highest values of . The updator-sharing

scheme is summarized as follows.

1. Design Procedure:

• Determine the SNR region of interest and the channel

statistics; evaluate the average and among all

possible channel realizations according to the chosen

channel statistical model for the lowest SNR value.

• Choose from and determine the targeted

rejection probability .

• Calculate by searching in the set of

based on ([10, Th. 2 and Th. 3]).

2. Operation:

• For each bin , if the error does not satisfy (32)

through the information evaluation, an update request is

sent along with the priority value to the updator

switch control.

• If the number of update requests , all requests

are fulfilled, i.e., all the filters which send update request

are updated accordingly.

• If , the prioritization scheme (based on ) is

employed to allocate the updators to those filters with

the highest values of and the remaining

filters are declined service.

C. Performance Evaluation

This section examines the effect of sharing updator on the

overall system performance. The performance measures consid-

ered here are the average equalization convergence rate, average

bit error rate (BER) and outage probability. These performance

measures are compared for the sharing and the non-sharing (full

updators) schemes.

In the simulations, the channel model is the “SUI-5” model

for broadband wireless channels with multipath fading, which

is one of the six channel models adopted by IEEE 802.16 for

evaluating broadband wireless systems in 2–11 GHz bands

[34]. “SUI-5” is a high delay model associated with the use of

omnidirectional antennas in suburban hilly environments. The

channel has a maximum delay spread of 10 s, and an rms

delay spread of 3.05 s. It has three echoes, at 0, 4, and 10 s,

modeled as independent complex Gaussian random variables

with the relative power of dB, respectively. An

-branch receiver system was used with FFT length

. Modulation scheme was QPSK with symbol duration

of 1 s. So the channel impulse response model is an FIR with

11 taps. In this set of experiments, we employed the SM-PET

algorithm and implemented it with and without updator sharing.

The training block number was . The SNR of interest

ranged from 5 to 15 dB.

First, by averaging over all channel realizations, the average

update request probabilities were found to be 0.09 for

dB, 0.07 for 10 dB, and 0.065 for 15 dB. So we used 0.09 as

the system parameter to define the updator number . With the

rejection probability set to be , the minimum updator

number was 7.

The average convergence performance of sharing 7 updators

is shown along with that of the non-sharing case (64 updators)

in Fig. 11. The average SNR at each diversity branch is 5 dB.

The results are obtained by averaging the convergence curves

of 20 000 random channel realizations. It may be observed that

both cases have almost the same steady-state MSE level, while

the initial learning curves are slightly different. The reasons may

be as follows.

1) The rejection ratio is small, so most of the update requests

have been satisfied.
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Fig. 11. Learning curves comparison of the sharing case and the non-sharing
case.

Fig. 12. Average BER comparison of the sharing case and the non-sharing case
for QPSK.

2) More importantly, a priority scheme is employed to al-

locate the updators. So those bins whose update requests

are declined usually have smaller equalization errors. Our

experience shows that even when some update requests

are declined, it does not result in significant performance

degradation.

In the training period, the sharing scheme has a larger average

MSE than the non-sharing scheme. However, it is observed

that almost the same number of blocks are required by both

schemes to reach a steady state. To achieve MSE level smaller

than dB, the sharing case with only needs about 5

more data blocks than the non-sharing case. Here those bins

with larger errors have higher priority index and larger proba-

bility of success in obtaining an update of their filter weights.

This results in a uniform convergence over all bins.

Fig. 12 shows the average BER performance comparison be-

tween the non-sharing case and the sharing case with .

Compared with the non-sharing case, the sharing case yields al-

most the same BER performance. Specifically, to achieve the

Fig. 13. Outage probability comparison of the sharing case and the non-sharing
case for QPSK.

same BER of , the sharing case with needs only

about 0.1 dB more than the non-sharing case. Outage proba-

bility is another performance measure of wireless communica-

tion systems over fading channels [35]. It is defined as the prob-

ability that the instantaneous error rate exceeds some threshold

value. Fig. 13 shows the outage probability performance com-

parison between the non-sharing case and the sharing case with

, where the threshold value is . To achieve the same

outage probability of 0.01, the sharing case needs only about

0.2 dB more than the non-sharing case. This is quite appealing:

reducing the hardware complexity drastically ( versus the

full updating processors) with very little performance

degradation.

D. Discussion on Robustness With Respect to the Variation

of

As discussed previously, one of the key parameters in the

design of the updator-sharing scheme is the update request

probability . In practice, model deviation (e.g., SNR variation

and different channel characteristics) may lead to variations of

, which can affect the performance of the updator-sharing

scheme. Usually, a modest decrease in would not result in

performance degradation. However, an increase in would

likely result in the violation of . For a given , a larger

value of would slow down the convergence and compromise

the steady-state MSE performance (and thus compromise the

BER performance). The performance only degrades gradually

with the increase of and the proposed scheme does not lead

to a catastrophe with modest variation in .

The robustness was examined by simulation through either

decreasing or increasing update request probability . The

effect of choosing a smaller on the convergence performance

is also shown in Fig. 11, where was chosen while it is

known that the minimum should be 7. It is seen that the con-

vergence time to dB slowed down by about 10 blocks, com-

pared to 5 for , for the non-sharing case. However the al-

gorithm still converges to almost the same MSE level. It should

be pointed out that for applications where delay is not critical,
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it is possible then to use a smaller without any significant

loss in performance. To demonstrate the robustness of the pro-

posed scheme, Figs. 12 and 13 also include the average BER

and outage probability performance for the updator sharing case

with and SNR dB. We can see that the

performance of the sharing case with is very close to the

non-sharing case. For SNR smaller than 5 dB, the sharing case

(with or ) has comparable performance as com-

pared with the non-sharing case. In essence, the sharing scheme

is fairly robust with respect to the system model violation and it

can be compensated easily by a few more training blocks.

V. CONCLUSION

This paper presented a formulation for frequency-domain

set-membership filtering (F-SMF), and an adaptive F-SMF al-

gorithm with an application to frequency-domain equalization.

We also derived a novel F-SMF algorithm with parameter-de-

pendent error bounds which are more suitable for adaptive

frequency-domain equalization. Results showed that the pro-

posed algorithm has better convergence performance than those

MSE-based algorithms. It also outperforms the conventional

SMF algorithms, and has less risk of overbounding and under-

bounding. Finally, an updator-sharing scheme was presented

for frequency-domain diversity combining and equalization

with reduced hardware complexity requirement.

APPENDIX I

PROOF OF PROPOSITION 1

Proof: The maximum output error of , (18), is equal to

(38)

and is achieved when for

. An upper bound on is

(39)

We know

So we have

(40)

where

(41)

The maximum amplitude in the constellation is , so we have

(42)

Thus an upper bound of is given by

(43)

where

(44)

Then the sufficient condition follows.

For a necessary condition, let’s consider the variance of fre-

quency-domain symbol:

(45)

So we have

(46)

and then the necessary condition follows.

APPENDIX II

DERIVATION OF ADAPTIVE ALGORITHM WITH

PARAMETER-DEPENDENT ERROR-BOUND TUNING

Proof: With the error bound function definition

, the recursive solution is found as follows:

1) If

then and no parameter update is needed.

2) Else, is found by

(47)

(48)

Define . Based on the value of , constraint

(48) may lead to different solutions for .

1) If , constraint (48) can be rewritten as

(49)

The solution for is

(50)
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2) If , constraint (48) can be rewritten as

(51)

The solution for is given by

(52)

where and

.

3) If , constraint (48) can be rewritten as

(53)

The solution for is given by

(54)

where and

.

Then define and after some derivation, the re-

sult follows.
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