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We propose a new spectral elementmodel for 	nite rectangular plate elements with arbitrary boundary conditions.�enew spectral
elementmodel is developed bymodifying the boundary splittingmethod used in our previous study so that the four corner nodes of
a 	nite rectangular plate element become active.�us, the new spectral element model can be applied to any 	nite rectangular plate
element with arbitrary boundary conditions, while the spectral element model introduced in the our previous study is valid only
for 	nite rectangular plate elements with four 	xed corner nodes. �e new spectral element model can be used as a generic 	nite
element model because it can be assembled in any plate direction. �e accuracy and computational e
ciency of the new spectral
element model are validated by a comparison with exact solutions, solutions obtained by the standard 	nite element method, and
solutions from the commercial 	nite element analysis package ANSYS.

1. Introduction

�e plate is a representative structural element that is widely
used in many engineering 	elds such as mechanical, civil,
aerospace, shipbuilding, and structural engineering. Severe
or unwanted vibration of a plate is a very important engi-
neering problem. �us, it is required to accurately predict
the vibration characteristics of a plate during the design
phase. Exact solutions are available only for Levy-type plates
[1, 2]. �us, numerous computational methods have been
developed for the vibrations of plates during the last two
centuries.

�e 	nite element method (FEM) is one of the most
widely used computational methods that can be applied to
various complex structures including the plates. �e FEM
in general provides reliable solutions in the low frequency
range, but poor solutions in the high frequency range. �us,
to improve the solution accuracy in the high frequency range,
a 	nite element must be divided into many smaller 	nite
elements so that their sizes are smaller than the wavelengths
of the highest vibration mode of interest. However, this will
result in a signi	cant increase in computation cost. �us, as
an alternative to FEM, we can consider the spectral element
method (SEM) for the vibration analysis of plates.

�e SEM considered in this study is the fast Fourier
transform- (FFT-) based frequency domain analysis method
[3, 4].�e spectral elementmatrix (or exact dynamic sti�ness
matrix) used in the SEM is formulated from free wave solu-
tions that satisfy governing di�erential equations of motion
in the frequency domain. �us, compared with FEM, the
SEM can provide exact solutions by representing a uniform
structure as a single 	nite element, regardless of the size of
the uniform structure. Accordingly the SEM is known as an
exact solution method that has the exibility of FEM and the
exactness of continuum elements [3].

Despite the outstanding features of the SEM, it is mostly
used in one-dimensional (1D) structures [3, 4]. �e SEM
application to two-dimensional (2D) structures such as plates
has been limited to very speci	c geometries and boundary
conditions, for example, Levy-type plates [6–10] and in	nite
or semi-in	nite plates [11–15]. Some researchers [16, 17] have
introduced the spectral super element method (SSEM) for
rectangular plates with prespeci	ed boundary conditions on
two parallel edges in one direction (say, the �-direction).
However, as their spectral element models can be assembled
only in another direction (the �-direction), their applica-
tions must be limited to very speci	c boundary condi-
tions. Recently, Park et al. [5, 18, 19] developed spectral
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element models for rectangular membrane, isotropic plate,
and orthotropic laminated composite plate elements by
using two methods in combination: the boundary splitting
method [20] and the spectral super element method (SSEM)
[16]. �ey derived frequency-dependent shape functions by
applying a Kantorovich method-based 	nite strip element
method in one direction and the SEM in another direction
in combination, and vice versa. Accordingly, their spectral
element models can be assembled in both the �- and �-
directions. However, the spectral element models by Park
et al. [5, 18, 19] still have some limitations because they are
valid only for 	nite rectangular membranes or plate elements
whose four corner nodes are 	xed. To the authors’ best
knowledge, there have been no reports on a generic type of
spectral elementmodel that can be assembled in any direction
of a plate subjected to arbitrary boundary conditions.

�us, the purpose of this study is to develop a new spectral
element model for 	nite rectangular plate elements that can
be applied to any plate subjected to arbitrary boundary
conditions. �e new spectral element model is developed
by modifying the boundary splitting technique used in our
previous study [5] so that the four corner nodes of a 	nite
rectangular plate element become active.�e performance of
the new spectral element model is evaluated by comparison
with exact solutions, FEM solutions, and solutions using the
commercial 	nite element analysis package ANSYS [21].

2. Spectral Element Model for
a Finite Plate Element

2.1. Governing Equations in the Frequency Domain. �e time
domain equation of motion and the boundary conditions of
plate structures with transverse vibrations are described in
[2]. �e time domain equation of motion of a plate can be
transformed into a frequency domain equation of motion of
the plate by using the FFT as follows [5]:

�(�4���4 + 2 �4���2��2 + �4���4 ) − 	
2� = � (�, �) , (1)

where�(�, �) is the transverse displacement in spectral form,�(�, �) is the external force in spectral form, 	 is the mass

per unit area of the plate, and � = �ℎ3/[12(1 − ]
2)] is the

exural bending rigidity of the plate where � is the modulus
of elasticity, ] is Poisson’s ratio, and h is the plate thickness.
Similarly, the time domain boundary conditions can be
transformed into frequency domain boundary conditions as
follows:

�� (�, −12��) = −��1 (�)
or �� (�, −12��) = ��1 (�) ,

�� (�, −12��) = −��1 (�)
or �(�, −12��) = �1 (�) ,

�� (�, 12��) = ��2 (�)
or �� (�, 12��) = ��2 (�) ,

�� (�, 12��) = ��2 (�)
or �(�, 12��) = �2 (�) ,
�� (−12��, �) = −��1 (�)

or �� (−12��, �) = ��1 (�) ,
�� (−12��, �) = −��1 (�)

or �(−12��, �) = �3 (�) ,
�� (12��, �) = ��2 (�)

or �� (12��, �) = ��2 (�) ,
�� (12��, �) = ��2 (�)

or �(12��, �) = �4 (�) ,
(2)

where �� and �� are the dimensions of a 	nite plate in the �-
and �-directions, respectively; �� and �� are the resultant
moments; and �� and �� are the resultant transverse shear
forces de	ned by

�� = −�(�2���2 + ]
�2���2 ) ,

�� = −� ��� (�2���2 + ]
�2���2 ) − 2� (1 − ]) �3�����2

�� = −�(�2���2 + ]
�2���2 ) ,

�� = −� ��� (�2���2 + ]
�2���2 ) − 2� (1 − ]) �3���2�� .

(3)

And �� and �� are the slopes de	ned by

�� = ���� ,
�� = ���� . (4)

We need to obtain frequency domain free wave solutions
for a homogeneous equation of motion in order to formulate
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Figure 1: Boundary splitting method used in the previous study [5] to derive �(�, �) for a rectangular plate element subjected to arbitrary
boundary conditions (e: active nodes; O: 	xed nodes).

wB(x, y)
w(x

x

y

, y)
)wA(x, y

wy2(x)

wy wy wy1(x)

wy2(x) − wy2(x)

1(x) − wy1(x)

+ ==

(a) Original problem (b) Problem A (c) Problem B (d) SEM model

(−
L

x
/2

,y
)=

1
(y

)

(L
x
/2

,y
)=

2
(y

)

A (x, Ly/2) =

A
(−

L
x
/2

,y
)=

1
(y

)

A
(L

x
/2

,y
)=

2
(y

)

�yB (x, Ly/2) =

B
(−

L
x
/2

,y
)=

0

B
(L

x
/2

,y
)=

0

(x, −Ly/2) = 1(x) A (x, −Ly/2) = B (x, −Ly/2) =wy wy

x
w

x
w

x
w

x
w

x
w

x
w

x
w

x
w

x
w

x
w

(x, Ly/2) = 2(x)wy wy

wy

wy

Figure 2: Boundary splitting method used in this study to derive �(�, �) for a rectangular plate element subjected to arbitrary boundary
conditions (e: active nodes).

the spectral element model for a 	nite plate element. To real-
ize this, the homogeneous equation of motion is considered
by removing external force �(�, �) in (1) as follows:

�(�4���4 + 2 �4���2��2 + �4���4 ) − 	
2� = 0. (5)

�e weak form of (5) can be obtained in the following
form:

∫
�
∫
�
{�(�2���2 + ]

�2���2 )�(�2���2 )
+ 2 (1 − ]) � �2������( �2�����)
+ �(�2���2 + ]

�2���2 )�(�2���2 )
− 	
2���}���� = 0.

(6)

A free vibration solution satisfying the weak form given
in (6) can be obtained approximately by using two combined
methods: the boundary splitting method [20] and the spec-
tral super element method (SSEM) [16]. �e SSEM uses a
combination of the Kantorovich method (based on the 	nite
strip element method) and the frequency domain 1D spectral
element method.

�e concept of the boundary splitting method is illus-
trated in Figures 1 and 2. Figure 1 indicates the concept used
in our previous study [5]. Figure 2 indicates the concept used
in the present study.�e original problems, shown in Figures
1(a) and 2(a), are represented by the sum of two partial
problems, Problem � and Problem �. In Figures 1 and 2, the
geometric boundary conditions of the original problems are
presented in simple forms by using the following de	nitions:

w� (�, �) = {� (�, �) , �� (�, �) = ���� }�

w� (�, �) = {� (�, �) , �� (�, �) = ���� }�

w�� (�, �) = {�� (�, �) , ��� (�, �) = ����� }�

w�� (�, �) = {�� (�, �) , ��� (�, �) = ����� }�

w�� (�, �) = {�� (�, �) , ��� (�, �) = ����� }�

w�� (�, �) = {�� (�, �) , ��� (�, �) = ����� }� .

(7)

In our previous study [5], Problem �, shown in Fig-
ure 1(b), has 	xed (null) boundary conditions on the parallel



4 Mathematical Problems in Engineering

edges at � = −��/2 and ��/2. Problem �, shown in
Figure 1(c), has 	xed (null) boundary conditions on the
parallel edges at � = −��/2 and ��/2. As a result, the
spectral element model developed in [5] is valid only for
	nite rectangular plate elements whose four corner nodes are
	xed, as shown in Figure 1(d). Accordingly, an application of
this approach should be limited to very speci	c problems as
considered in [5].

We propose a new boundary splitting method by mod-
ifying the boundary splitting method used in [5] such that
the four corner nodes of a 	nite plate element become active.
Problem �, shown in Figure 2(b), has arbitrary boundary
conditions rather than 	xed boundary conditions on the
parallel edges at � = −��/2 and ��/2, and its solution is
represented by ��(�, �). Problem �, shown in Figure 2(c),
has 	xed (null) boundary conditions on the parallel edges
at � = −��/2 and ��/2. However, the boundary conditions
at � = −��/2 and ��/2 in Problem � must be speci	ed
such that the sum of the boundary conditions at � = −��/2
and ��/2 in Problem � and those in Problem � is identical
to the boundary conditions at � = −��/2 and ��/2 in the
original problem.�e solution of Problem� is represented by��(�, �). �en, the solution �(�, �) of the original problem
can be obtained by summing the solutions to Problem � and
Problem � as follows:

� (�, �) = �� (�, �) + �� (�, �) . (8)

Accordingly, compared to the spectral element model devel-
oped in our previous study [5] based on the boundary
splitting shown in Figure 1, the present spectral element
model that was developed based on the boundary splitting
shown in Figure 2 has four active corner nodes.�us, it can be
used as a generic 	nite element model that can be assembled
in both the �- and �-directions of a plate with arbitrary
boundary conditions.

2.2. Derivation of ��(�, �). To obtain the solution ��(�, �)
for Problem � by using the SSEM, a rectangular 	nite plate
element is divided into �� 	nite strip elements in the �-
direction, as shown in Figure 3(a).�e  th 	nite strip element,

which has a width of !(�)� = �� − ��−1 in the �-direction, is
shown in Figure 3(b).

�e displacement 	eld in the  th 	nite strip element can
be represented by

�(�)� (�, �) = Y
(�)
� (�)w(�)� (�) (��−1 ≤ � ≤ ��) , (9)

where Y
(�)
� (�) is a one-by-four interpolation function matrix

and w
(�)
� (�) are the nodal line degree of freedom (DOF)

functions de	ned by

Y
(�)
� (�) = [Y(�)�1 (�) ,Y(�)�2 (�)]

w
(�)
� (�) = {{{

w
(�−1)
�� (�)
w
(�)
�� (�)
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, (10)
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Figure 3: Finite strip element representation of a rectangular 	nite
plate element subjected to arbitrary boundary conditions at � =−��/2 and ��/2 (e: nodes; grey circles: nodal values).

where

Y
(�)
�1 (�) = [!(�)−3� (� − ��)2
⋅ (2� + �� − 3��−1) , !(�)−2� (� − ��)2 (� − ��−1)]

Y
(�)
�2 (�) = [−!(�)−3� (� − ��−1)2
⋅ (2� + ��−1 − 3��) , !(�)−2� (� − ��−1)2 (� − ��)] ,

(11)

w
(�−1)
�� (�) = w�� (�, ��−1)
= {�� (�, ��−1) , ��� (�, ��−1)}�

w
(�)
�� (�) = w�� (�, ��) = {�� (�, ��) , ��� (�, ��)}� .

(12)

By using (9), the displacement 	eld ��(�, �) over the
entire domain of the 	nite plate element can be represented
as

�� (�, �) = Y� (�)w� (�) (−12�� ≤ � ≤ 12��) , (13)
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where

w� (�) = {w(0)��� (�) ,w(1)��� (�) , . . . ,w(�)��� (�) , . . . ,
w
(��−1)�
�� (�) ,w(��)��� (�)}� , (14)

Y� (�) = [L(0)� (�) , L(1)� (�) , . . . , L(�)� (�) , . . . , L(��−1)� (�) ,
L
(��)
� (�)] (15)

with

L
(0)
� (�) = ℎ(1)� Y(1)�1 (�)

L
(�)
� (�) = ℎ(�)� (�)Y(�)�2 (�) + ℎ(�+1)� (�)Y(�+1)�1 (�)

( = 1, 2, . . . , �� − 1)
L
(��)
� (�) = ℎ(��)� Y

(��)
�2 (�) .

(16)

In (16), ℎ(�)� (�) are functions de	ned by

ℎ(�)� (�) = ?(� − ��−1) − ?(� − ��) , (17)

where?(�) is the Heaviside unit step function.
Substituting (13) into (5) yields

A4
�4w���4 + A2

�2w���2 + (A0 − 
2M�)w� = 0, (18)

where


 = 
√ 	�,
A0 = Λ�4,
A2 = ] (Λ�3 + Λ��3) − 2 (1 − ])Λ�2
A4 = Λ�1,
M� = Λ�1

(19)

with the following de	nitions:

Λ�1 = ∫+(1/2)	�
−(1/2)	�

Y
�
�Y� ��,

Λ�2 = ∫+(1/2)	�
−(1/2)	�

�Y���� �Y��� ��
Λ�3 = ∫+(1/2)	�

−(1/2)	�
Y
�
�
�2Y���2 ��,

Λ�4 = ∫+(1/2)	�
−(1/2)	�

�2Y����2 �2Y���2 ��.

(20)

�e constant matrices Λ�1, Λ�2, Λ�3, and Λ�4 are provided
in Appendix A.

Next, we assume solutions of (18) to be in the following
form:

w� (�) =
{{{{{{{{{{{{{{{

1
B(2)�...

B(2(��+1))�

}}}}}}}}}}}}}}}
D�E+
��−(1/2)
�	�

= r�D�E+
��−(1/2)
�	� ,

(21)

where D� is a constant, F� is the wavenumber in the �-
direction, and

F� =
{{{{{{{{{

+F� if Re (F�) > 0
−F� if Re (F�) < 0
0 if Re (F�) = 0.

(22)

Substituting (21) into (18) gives the following eigenvalue
problem:

[A4F4� + A2F2� + (A0 − 
2M�)] r� = 0 (23)

or

[A�I2� + A2I� + (A0 − 
2M�)] r� = 0

(I� = F2�) . (24)

�e dispersion relation (i.e., the frequency-wavenumber
relationship) can be obtained from (24) as follows:

det [A4I2� + A2I� + (A0 − 
2M�)] = 0. (25)

From (25), the wavenumbers can be computed as

F�(�) = +√I�(�)
F�(4(��+1)+�) = −√I�(�) = −F�(�)

( = 1, 2, . . . , 4 (�� + 1)) .
(26)

By using the wavenumbers F�(�) given by (26), we can
write the general solution of (18) in the following form:

w� (�) = R�E� (�; 
) a�, (27)
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where

a� = {D�(1) D�(2) D�(3) ⋅ ⋅ ⋅ D�(�) ⋅ ⋅ ⋅ D�(8(��+1))}� ,
R� = [R� R�]
E� (�; 
) = [E�1 (�; 
) 0

0 E�2 (�; 
)]
(28)

with

R� = [r�(1), r�(2), r�(3), . . . , r�(�), . . . , r�(4×(��−1))]
E�1 (�; 
) = diagonal [E+
�(�)�−(1/2)
�(�)	�]

( = 1, 2, . . . , 4 (�� + 1))
E�2 (�; 
) = diagonal [E−
�(�)�−(1/2)
�(�)	�]

( = 1, 2, . . . , 4 (�� + 1)) .

(29)

In (29), r�(�) is the  th eigenvector, which can be readily
computed from (23) using F� = F�(�).

�e nodal DOFs at the nodes de	ned on the edges at � =−��/2 and ��/2 can be written in vector form as

d� = {{{
d
	

d
�
}}}

, (30)

where

d
	 = {{{{{

w� (−12��)�w� (− (1/2) ��)��
}}}}}

,

d
� = {{{{{

w� (12��)�w� ((1/2) ��)�� ��
}}}}}

.
(31)

Here, the superscripts L and R denote the nodal values on
the le� edge (i.e., at � = −��/2) and the right edge (i.e., at� = ��/2) of the plate, respectively. Superscript A denotes
the quantities related to or contributed by ��(�, �).

By substituting (27) into (31), the nodal DOF vector d�
can be written in terms of the constant vector a� as follows:

d� =
[[[[[[[[[
[

R�E� (−12��)
R�K�E� (−12��)
R�E� (+12��)

R�K�E� (+12��)

]]]]]]]]]
]

a� ≡ H� (
) a�, (32)

where

K� = [�� 0

0 −��]
�� = diagonal [F�(�)] ( = 1, 2, . . . , 4 (�� + 1)) .

(33)

�e constant vector a� can be removed from (27) by using
(32) to obtain the following expression:

w� (�) = X� (�; 
) d�, (34)

where

X� (�; 
) = R�E� (�; 
)H−1� . (35)

From (12), by using the nodal DOFs de	ned in Figure 4,
we obtain the following expressions:

w
(�)
�� (−12��) = {{{{{

�� (−12��, ��)��� (−12��, ��)
}}}}}

= {�	(�+1)
�	�(�+1)}

�w(�)�� (− (1/2) ��)�� = {{{{{
��� (−12��, ��)���� (−12��, ��)

}}}}}
= {�	�(�+1)

�	��(�+1)} ,

w
(�)
�� (12��) = {{{{{

�� (12��, ��)��� (12��, ��)
}}}}}

= {��(�+1)
���(�+1)}

�w(�)�� ((1/2) ��)�� = {{{{{
��� (12��, ��)���� (12��, ��)

}}}}}
= {���(�+1)

����(�+1)} .

(36)
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Figure 4: Spectral nodal degrees of freedom (DOFs) of a rectangular 	nite plate element (e: nodes).

By applying (36) to (14), we obtain the following expressions:

w� (−12��) = {�	(1), �	�(1), �	(2), �	�(2), . . . , �	(�+1), �	�(�+1),
. . . , �	(��), �	�(��), �	(��+1), �	�(��+1)}�

�w� (− (1/2) ��)�� = {�	�(1), �	��(1), �	�(2), �	��(2), . . . ,
�	�(�+1), �	��(�+1), . . . , �	�(��), �	��(��), �	�(��+1),
�	��(��+1)}�

w� (12��) = {��(1), ���(1), ��(2), ���(2), . . . , ��(�+1), ���(�+1),

. . . , ��(��), ���(��), ��(��+1), ���(��+1)}�

�w� ((1/2) ��)�� = {���(1), ����(1), ���(2), ����(2), . . . , ���(�+1),
����(�+1), . . . , ���(��), ����(��), ���(��+1), ����(��+1)}� .

(37)

Applying (37) to (31) gives

d
	 = {{{

�	(1), �	�(1), �	(2), �	�(2), . . . , �	(�+1), �	�(�+1), . . . , �	(��), �	�(��), �	(��+1), �	�(��+1)�	�(1), �	��(1), �	�(2), �	��(2), . . . , �	�(�+1), �	��(�+1), . . . , �	�(��), �	��(��), �	�(��+1), �	��(��+1)
}}}
�

d
� = {{{

��(1), ���(1), ��(2), ���(2), . . . , ��(�+1), ���(�+1), . . . , ��(��), ���(��), ��(��+1), ���(��+1)���(1), ����(1), ���(2), ����(2), . . . , ���(�+1), ����(�+1), . . . , ���(��), ����(��), ���(��+1), ����(��+1)
}}}
�

.
(38)

We rearrange the order of nodal DOFs in (38) to de	ne a
new nodal DOF vector as follows:

d� = {d
	

d
�}

d
	 = {�	(1), �	�(1), �	�(1), �	��(1), �	(2), �	�(2), �	�(2), �	��(2), . . . ,
�	(�+1), �	�(�+1), �	�(�+1), �	��(�+1), . . . , �	(��), �	�(��), �	�(��),

�	��(��), �	(��+1), �	�(��+1), �	�(��+1), �	��(��+1)}�
d
� = {��(1), ���(1), ���(1), ����(1), ��(2), ���(2), ���(2), ����(2), . . . ,
��(�+1), ���(�+1), ���(�+1), ����(�+1), . . . , ��(��), ���(��), ���(��),
����(��), ��(��+1), ���(��+1), ���(��+1), ����(��+1)}� .

(39)
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�e nodal DOF vector d� can be related to the new nodal
DOF vector d� as follows:

d� = {{{
d
	

d
�
}}}

= [T� 0

0 T�
]{d
	

d
�} ≡ T1d�, (40)

where T1 is the transformation matrix de	ned by

T1 = [T� 0

0 T�
] , (41)

where

T� = [T�1
T�2

] . (42)

�ematricesT�1 andT�2 in (42) are (��+1)-by-(��+1)
block diagonal matrices de	ned by

T�1 = diagonal [t�1] ,
T�2 = diagonal [t�2] , (43)

where

t�1 = [1 0 0 0
0 1 0 0] ,

t�2 = [0 0 1 0
0 0 0 1] .

(44)

Applying (40) to (34) gives

w� (�) = X� (�; 
) d�, (45)

where

X� (�; 
) = R�E� (�; 
)H−1� T1. (46)

Finally, substituting (45) into (13) gives

�� (�, �) = N� (�, �; 
) d�, (47)

where

N� (�, �; 
) = Y� (�)X� (�; 
) . (48)

2.3. Derivation of��(�, �). We can 	nd the solution��(�, �)
to Problem � by using a procedure similar to that used to
obtain the solution for ��(�, �) in Problem �. Problem �
can be obtained from Problem � by rotating the coordinate
system (�, �) 90∘ clockwise. However, the di�erences for
Problem � are as follows: (1) the 	xed (null) boundary
conditions are placed at � = −��/2 and ��/2; (2) the 	nite
plate element is divided into �� 	nite strip elements in the�-direction, as shown in Figure 5; and (3) ��(�, �) should
be determined to satisfy the boundary conditions at � =−��/2 and ��/2 in combination with the boundary values
contributed by ��(�, �).

By following the solution procedure used for Problem �,
the displacement 	eld in the ith 	nite strip element, which

has a width of !(�)� = �� − ��−1, can be written in the following
form:

�(�)� (�, �) = X
(�)
� (�)w(�)� (�) (��−1 ≤ � ≤ ��) , (49)

where X(�)� (�) is a one-by-four interpolation function matrix

and w
(�)
� (�) are the nodal line DOF functions de	ned by

X
(�)
� (�) = [X(�)�1 (�) ,X(�)�2 (�)]

w
(�)
� (�) = {w(�−1)�� (�)

w
(�)
�� (�) } , (50)

where

X
(�)
�1 (�) = [!(�)−3� (� − ��)2
⋅ (2� − 3��−1 + ��) , !(�)−2� (� − ��)2 (� − ��−1)]

X
(�)
�2 (�) = [−!(�)−3� (� − ��−1)2
⋅ (2� − 3�� + ��−1) , !(�)−2� (� − ��−1)2 (� − ��)] ,

w
(�−1)
�� (�) = w�� (��−1, �)
= {�� (��−1, �) , ��� (��−1, �)}�

w
(�)
�� (�) = w�� (��, �) = {�� (��, �) , ��� (��, �)}� .

(51)

By using (49), the displacement 	eld ��(�, �) in the
whole domain of the 	nite plate element can be represented
by

�� (�, �) = X� (�)w� (�) (−12�� ≤ � ≤ 12��) , (52)

where

w� (�) = {w(1)��� (�) ,w(2)��� (�) , . . . ,w(�)��� (�) , . . . ,
w
(��−2)�
�� (�) ,w(��−1)��� (�)}� , (53)

X� (�) = [L(1)� (�) , L(2)� (�) , . . . , L(�)� (�) , . . . , L(��−2)� (�) ,
L
(��−1)
� (�)] . (54)

In (54), the following de	nition is used:

L
(�)
� (�) = ℎ(�)� X(�)�2 (�) + ℎ(�+1)� X

(�+1)
�1 (�)
(^ = 1, 2, . . . , �� − 1) , (55)

where

ℎ(�)� (�) = ? (� − ��−1) − ? (� − ��) (56)

and ?(�) is the Heaviside unit step function. Note that the
null boundary conditions at � = −��/2 and � = ��/2 have
been applied to obtain (52).
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Figure 5: Finite strip element representation of a rectangular 	nite plate element subjected to null boundary conditions at � = −��/2 and��/2 (e: nodes).

Substituting (52) into (5) gives

B4
�4w���4 + B2

�2w���2 + (B0 − 
2M�)w� = 0, (57)

where

B4 = Λ�1,
B2 = ] (Λ�3 + Λ��3) − 2 (1 − ])Λ�2
B0 = Λ�4,
M� = Λ�1

(58)

with the following de	nitions:

Λ�1 = ∫+(1/2)	�
−(1/2)	�

X
�
�X� ��,

Λ�2 = ∫+(1/2)	�
−(1/2)	�

�X���� �X��� ��
Λ�3 = ∫+(1/2)	�

−(1/2)	�
X
�
�
�2X���2 ��,

Λ�4 = ∫+(1/2)	�
−(1/2)	�

�2X����2 �2X���2 ��

(59)

�e constant matricesΛ�1,Λ�2,Λ�3, andΛ�4 are provided in
Appendix B.

Now we assume solutions to (57) in the following form:

w� (�) =
{{{{{{{{{{{{{{{

1
B(2)�...

B(2(��−1))�

}}}}}}}}}}}}}}}
D�E+
��−(1/2)
�	�

= r�D�E+
��−(1/2)
�	� ,

(60)

where D� is a constant, F� is the wavenumber in the �-
direction, and

F� =
{{{{{{{{{

+F� if Re (F�) > 0
−F� if Re (F�) < 0
0 if Re (F�) = 0.

(61)

Substituting (60) into (57) gives the following eigenvalue
problem:

[B4F4� + B2F2� + (B0 − 
2M�)] r� = 0 (62)

or

[B4I2� + B2I� + (B0 − 
2M�)] r� = 0 (I� = F2�) . (63)
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�e dispersion relation can be obtained from (63) as
follows:

det [B4I2� + B2I� + B0 − 
2M�] = 0. (64)

From (64), the wavenumbers can be readily computed in the
following forms:

F�(�) = +√I�(�)
F�(4(��−1)+�) = −√I�(�) = −F�(�)

( = 1, 2, . . . , 4 (�� − 1)) .
(65)

By using the 8 × (�� − 1) wavenumbers computed from
(64), we canwrite the general solution of (57) in the following
form:

w� (�) = R�E� (�; 
) a�, (66)

where

a� = {D�(1) D�(2) D�(3) ⋅ ⋅ ⋅ D�(�) ⋅ ⋅ ⋅ D�(8(��−1))}� ,
R� = [R� R�]
E� (�; 
) = [E�1 (�; 
) 0

0 E�2 (�; 
)]
(67)

with

R� = [r�(1), r�(2), r�(3), . . . , r�(�), . . . , r�(4×(��−1))]
E�1 (�; 
) = diagonal [E+
�(�)�−(1/2)
�(�)	�]

( = 1, 2, . . . , 4 (�� − 1))
E�2 (�; 
) = diagonal [E−
�(�)�−(1/2)
�(�)	�]

( = 1, 2, . . . , 4 (�� − 1)) .

(68)

In (61), r�(�) is the  th eigenvector that can be readily
computed from (63) using F� = F�(�).

By using (47), the nodal values contributed by��(�, �) at
the ^th nodes on the bottom edge at � = −��/2 and the upper

edge at � = ��/2 can be related to the nodal DOF vector d�
as follows:

d
�
�� =

{{{{{{{{{{{{{

���(�)
����(�)
����(�)
�����(�)

}}}}}}}}}}}}}
=

[[[[[[[[[
[

N� (��, −12��)
N�,� (��, −12��)
N�,� (��, −12��)
N�,�� (��, −12��)

]]]]]]]]]
]

d�

=
[[[[[[[[[
[

Y� (−12��)X� (��)
Y
�
� (−12��)X� (��)

Y� (−12��)X�� (��)
Y
�
� (−12��)X�� (��)

]]]]]]]]]
]

d�

d
�
�� =

{{{{{{{{{{{{{

���(�)
����(�)
����(�)
�����(�)

}}}}}}}}}}}}}
=

[[[[[[[[[
[

N� (��, +12��)
N�,� (��, +12��)
N�,� (��, +12��)
N�,�� (��, +12��)

]]]]]]]]]
]

d�

=
[[[[[[[[[
[

Y� (+12��)X� (��)
Y
�
� (+12��)X� (��)

Y� (+12��)X�� (��)
Y
�
� (+12��)X�� (��)

]]]]]]]]]
]

d�

(69)

or

d
�
�� = Q

�
� d�,

d
�
�� = Q

�
� d�, (70)

where the primes (�) denote the derivatives with respect to �
or �, and

Q
�
� =

[[[[[[[[[
[

Y� (−12��)X� (��)
Y
�
� (−12��)X� (��)

Y� (−12��)X�� (��)
Y
�
� (−12��)X�� (��)

]]]]]]]]]
]

,

Q
�
� =

[[[[[[[[[
[

Y� (+12��)X� (��)
Y
�
� (+12��)X� (��)

Y� (+12��)X�� (��)
Y
�
� (+12��)X�� (��)

]]]]]]]]]
]

.

(71)
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�e superscripts B and U denote the quantities at the
bottom edge (i.e., at � = −��/2) and the upper edge (i.e.,
at � = ��/2) of the plate, respectively.�e superscripts A and
B denote the quantities related to or contributed by ��(�, �)
and ��(�, �), respectively.

By using (70), the nodal values contributed by ��(�, �)
at all nodes on the bottom and upper edges, except for four
corner nodes, can be written in vector form as

d̂� = {d��
d
�
�
} , (72)

where

d
�
� =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

d
�
�1

d
�
�2...
d
�
��...

d
�
�(��−1)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,

d
�
� =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

d
�
�1

d
�
�2...
d
�
��...

d
�
�(��−1)

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

.

(73)

By using (70), (72) can bewritten in terms ofd� as follows:

d̂� = Qd�, (74)

where

Q = [Q�
Q
�] (75)

with

Q
� =

[[[[[[[
[

Q
�
1

Q
�
2...

Q
�
��−1

]]]]]]]
]

,

Q
� =

[[[[[[[
[

Q
�
1

Q
�
2...

Q
�
��−1

]]]]]]]
]

.

(76)

Similarly, the nodal values contributed by ��(�, �) at all
nodes on the bottom and upper edges can be computed from
(66), and they can be written in the vector form as

d̂� = {{{
d
�
�

d
�
�

}}}
, (77)

where

d
�
� =

{{{{{{{
w� (−12��)�w� (− (1/2) ��)��

}}}}}}}
,

d
�
� = {{{{{{{

w� (+12��)�w� (+ (1/2) ��)��
}}}}}}}

,
(78)

w� (−12��) = {���(1), ����(1), ���(2), ����(2), . . . , ���(�),
����(�), . . . , ���(��−1), ����(��−1)}�

�w� (− (1/2) ��)�� = {����(1), �����(1), ����(2), �����(2), . . . ,
����(�), �����(�), . . . , ����(��−1), �����(��−1)}�

w� (12��) = {���(1), ����(1), ���(2), ����(2), . . . , ���(�), ����(�),
. . . , ���(��−1), ����(��−1)}�

�w� ((1/2) ��)�� = {����(1), �����(1), ����(2), �����(2), . . . ,
����(�), �����(�), . . . , ���(��−1), ����(��−1)}� .

(79)

By substituting (66) into (78), the nodal values d̂� can be
written in terms of the constant vector a� as follows:

d̂� =
[[[[[[[[[
[

R�E� (−12��)
R�K�E� (−12��)
R�E� (+12��)

R�K�E� (+12��)

]]]]]]]]]
]

a� ≡ H� (
) a�, (80)

where

K� = [�� 0

0 −��]
�� = diagonal [F�(�)] ( = 1, 2, . . . , 4 (�� − 1)) .

(81)



12 Mathematical Problems in Engineering

We rearrange the order of nodal values in (77) to de	ne a
new vector as

d̂� = {d
�
�

d
�
�
} , (82)

where

d
�
� = {���(1), ����(1), ����(1), �����(1), ���(2), ����(2), ����(2),
�����(2), . . . , ���(�), ����(�), ����(�), �����(�), . . . , ���(��−2),
����(��−2), ����(��−2), �����(��−2), ���(��−1), ����(��−1),
����(��−1), �����(��−1)}�

d
�
� = {���(1), ����(1), ����(1), �����(1), ���(2), ����(2), ����(2),
�����(2), . . . , ���(�), ����(�), ����(�), �����(�), . . . , ���(��−2),
����(��−2), ����(��−2), �����(��−2), ���(��−1), ����(��−1),
����(��−1), �����(��−1)}� .

(83)

By introducing a proper transformation matrix, the nodal

DOF vector d̂� can be related to the new vector d̂� in the
following form:

d̂� = {{{
d
�
�

d
�
�

}}}
= [T� 0

0 T�
]{d
�
�

d
�
�
} ≡ T2d̂�, (84)

where T2 is the transformation matrix de	ned by

T2 = [T� 0

0 T�
] , (85)

where

T� = [T�1
T�2

] (86)

and T�1 and T�2 are (�� − 1)-by-(�� − 1) block diagonal
matrices de	ned by

T�1 = diagonal [t�1] ,
T�2 = diagonal [t�2] , (87)

where

t�1 = [1 0 0 0
0 0 1 0] ,

t�2 = [0 1 0 0
0 0 0 1] .

(88)

By substituting (80) into (84), we obtain

d̂� = T
−1
2 H� (
) a�. (89)

�e nodal DOFs de	ned at the nodes on the bottom and
upper edges of the 	nite plate element (see Figure 4) can be
written in vector form as

d� = {d
�

d
�} , (90)

where

d
� = {��(1), ���(1), ���(1), ����(1), ��(2), ���(2), ���(2), ����(2), . . . ,
��(�), ���(�), ���(�), ����(�), . . . , ��(��−2), ���(��−2), ���(��−2),
����(��−2), ��(��−1), ���(��−1), ���(��−1), ����(��−1)}�

d
� = {��(1), ���(1), ���(1), ����(1), ��(2), ���(2), ���(2), ����(2), . . . ,
��(�), ���(�), ���(�), ����(�), . . . , ��(��−2), ���(��−2), ���(��−2),
����(��−2), ����−1, ���(��−1), ���(��−1), ����(��−1)}� .

(91)

�e nodal DOF vector d� must be identical to the sum of
the nodal values contributed by��(�, �) and��(�, �). �us,

d� = d̂� + d̂�. (92)

Substituting (74) and (89) into (92) gives

d� = Qd� + T
−1
2 H� (
) a�. (93)

From (93), we obtain the constant vector a� as

a� = H
−1
� (
)T2 (d� −Qd�) . (94)

�e constant vector a� can be removed from (66) by using
(94) to obtain

w� (�) = Y� (�) d� − Y�� (�) d�, (95)

where

Y�� (�; 
) = R�E� (�; 
)H−1� (
)T2Q
Y� (�; 
) = R�E� (�; 
)H−1� (
)T2. (96)

Finally, substituting (95) into (52) yields

�� (�, �) = −N�� (�, �; 
) d� + N� (�, �; 
) d�, (97)

where

N�� (�, �; 
) = X� (�)Y�� (�; 
)
N� (�, �; 
) = X� (�)Y� (�; 
) . (98)

2.4. Derivation of �(�, �). �e solution �(�, �) of the orig-
inal problem shown in Figure 2(a) can be obtained by
substituting (47) and (97) into (8) as follows:

� (�, �; 
) = N (�, �; 
) d (
) , (99)
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where d(
) is the 8(�� + ��)-by-one spectral nodal DOF
vector de	ned by

d = {d�
d�

} =
{{{{{{{{{{{{{

d
	

d
�

d
�

d
�

}}}}}}}}}}}}}
(100)

and N(�, �; 
) is the one-by-8(�� + ��) dynamic shape
function matrix de	ned by

N (�, �; 
)
= [N� (�, �; 
) −N�� (�, �; 
) N� (�, �; 
)] . (101)

2.5. Formulation of Spectral Element Equation. To formulate
the spectral element model for the 	nite plate element, we
	rst derive the weak form of governing equation (5) in the
following form:

∫
�
∫
�
[�(�2���2 + ]

�2���2 )�(�2���2 )
+ 2 (1 − ])� �2������( �2�����)
+ �(�2���2 + ]

�2���2 )�(�2���2 )
− 	
2���]���� = ∫

�
∫
�
� (�, �)

⋅ ���� �� + ∫
�
��1��(−12��, �) ��

+ ∫
�
��2��(12��, �) �� + ∫

�
��1��(�, −12

⋅ ��)�� + ∫
�
��2��(�, 12��)��

+ ∫
�
��1�(�� (− (1/2) ��, �)�� )��

+ ∫
�
��2�(�� ((1/2) ��, �)�� )��

+ ∫
�
��1�(�� (�, − (1/2) ��)�� )��

+ ∫
�
��2�(�� (�, (1/2) ��)�� )��,

(102)

where ��1(�), ��2(�), ��1(�), and ��2(�) are the resultant
transverse shear forces acting on the four boundary edges.
Similarly ��1(�), ��2(�), ��1(�), and ��2(�) are the
resultant bending moments acting on the four boundary
edges.

By substituting (101) into (102), we obtain the spectral
element equation in the following form:

S (
) d (
) = f1 (
) + f2 (
) , (103)

where

S (
) = Φ� (
)H� (
)D (
)H (
)Φ (
) ,
f1 (
) = Φ�∫

�
∫
�
� (�, �)N� (�, �) �� ��

f2 (
) = Φ� (∫
�
��1N� (−12��, �) ��

+ ∫
�
��2N� (12��, �) ��

+ ∫
�
��1N� (�, −12��)��

+ ∫
�
��2N� (�, 12��)��

+ ∫
�
��1N�,� (−12��, �) ��

+ ∫
�
��2N�,� (12��, �) ��

+ ∫
�
��1N�,� (�, −12��)��

+ ∫
�
��2N�,� (�, 12��)��) .

(104)

In the preceding equations, the following de	nitions are used:

Φ (
) = [ I� 0

−Q I�
] ,

H (
) = [H−1� (
)T1 0

0 H
−1
� (
)T2] ,

(105)

where I� is the 8(�� +1)-by-8(�� +1) identity matrix and I�
is the 8(�� − 1)-by-8(�� − 1) identity matrix.

�e matrix S(
) in (103) is the 8(�� + ��)-by-8(�� +��) symmetric dynamic sti�ness matrix (o�en called the
“spectral element matrix” in the literature), and matrixD(
)
is de	ned by

D (
) = D [D1 (
) +D2 (
) + 2 (1 − ])D3 (
)
+ ] (D4 (
) +D

�
4 (
))] − 	
2D� (
) , (106)

where

D1 (
) = K1Z1K1,
D2 (
) = K2Z2K2

D3 (
) = K3Z3K3,
D4 (
) = K1Z4K2,
D� (
) = Z0,

(107)
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where

K1 = [K2� 0

0 I�
] ,

K2 = [I� 0

0 K
2
�
] ,

K3 = [K� 0

0 K�
] ,

Z0 = [Z��0 Z��0

Z
�
��0 Z��0

] ,

Z1 = [Z��1 Z��1

Z
�
��1 Z��1

] ,

Z2 = [Z��2 Z��2

Z
�
��2 Z��2

]

Z3 = [Z��3 Z��3

Z
�
��3 Z��3

] ,

Z4 = [Z��4 Z��4

Z��4 Z��4
]

(108)

with the use of the following de	nitions:

Z��0 = (R��Λ�1R�) . ∗ Γ1�,
Z��0 = (Γ�2 R�) . ∗ (R��Γ�2�)
Z��0 = (R��Λ�1R�) . ∗ Γ1�,
Z��1 = (R��Λ�1R�) . ∗ Γ1�
Z��1 = (Γ�4 R�) . ∗ (R��Γ�2�) ,
Z��1 = (R��Λ�4R�) . ∗ Γ1�
Z��2 = (R��Λ�4R�) . ∗ Γ1�,
Z��2 = (Γ�2 R�) . ∗ (R��Γ�4�)
Z��2 = (R��Λ�1R�) . ∗ Γ1�,
Z��3 = (R��Λ�2R�) . ∗ Γ1�
Z��3 = (Γ�3 R�) . ∗ (R��Γ�3�) ,
Z��3 = (R��Λ�2R�) . ∗ Γ1�
Z��4 = (R��Λ�3R�) . ∗ Γ1�,

Z��4 = (Γ�2 R�) . ∗ (R��Γ�2�)
Z��4 = (R��Λ��3R�) . ∗ Γ1�,
Z��4 = (Γ�4R�) . ∗ (R��Γ�4�)
Γ1� = ∫

�
vect (E�) vect (E�)� ��,

Γ2� = ∫
�
vect (E�)X� ��

Γ3� = ∫
�
vect (E�) �X��� ��,

Γ4� = ∫
�
vect (E�) �2X���2 ��

Γ1� = ∫
�
vect (E�) vect (E�)� ��,

Γ2� = ∫
�
vect (E�)Y� ��

Γ3� = ∫
�
vect (E�) �Y��� ��,

Γ4� = ∫
�
vect (E�) �2Y���2 ��.

(109)

In (109), the symbol vect( ) denotes a vector-form rep-
resentation of the components of a diagonal matrix, and the
symbol (.∗) denotes the elementwise matrix multiplication
de	ned in MATLAB� [23] as follows:

A. ∗ B = C, (110)

where the components of matrix C are de	ned by

h�� = � �� × ��� (111)

3. Numerical Results and Discussion

To evaluate the performance of the present spectral element
model, a square plate is considered as a numerical example.
�e plate is made of aluminum, and its material properties
are as follows: Young’s modulus E = 69GPa, Poisson’s ratio

] = 0.33, and mass density 	 = 2700 kg/m3. �e size of the
square plate is L = 1m, and its thickness is h = 0.001m.
For numerical studies, three types of boundary conditions
are considered: (1) Example 1: a square plate with simple-
simple-simple-simple (S-S-S-S) edge support, as shown in
Figure 6; (2) Example 2: a square plate with free-clamped-
free-clamped (F-C-F-C) edge support, as shown in Figure 7;
and (3) Example 3: a square plate with free-free-free-clamped
(F-F-F-C) edge support, as shown in Figure 8.

An evaluation of the present spectral element model
(denoted by “SEM”) was conducted by comparing the natural
frequencies obtained from the SEM with those obtained
by using exact theory, the standard 	nite element method
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Figure 6: Square plate with simple-simple-simple-simple (S-S-S-S) edge support, Example 1 (e: active nodes).
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Free 

C
la

m
p

ed
 

F
re

e 

Free 

(a) Example 3

1
m

1m

(b) FEMmodel (c) SEM model

Figure 8: Square plate with free-free-free-clamped (F-F-F-C) edge support, Example 3 (e: active nodes; O: 	xed nodes).

(FEM), and the commercial 	nite element analysis package
ANSYS [21]. For the FEM results, a four-node 12-DOF
conforming rectangular 	nite element model [22] is used.

It is well known that exact solutions are available in
analytical forms only for Levy-type plates. �is is why we
considered S-S-S-S square plate (Example 1) as the 	rst
example problem to evaluate the accuracy of the present
spectral element model. �e exact natural frequencies of S-
S-S-S square plate are given by [24]


�� = i2 (j2 + k2)
�2 √�	 (j, k = 1, 2, 3, . . .) , (112)

where � is the dimension of the square plate and (j, k)
indicates the mode number.

Table 1 compares the natural frequencies of the S-S-S-
S square plate (Example 1) obtained by exact theory, FEM
[22], and the present SEM. �e SEM results obtained by
using a single 	nite element are found to be identical to the
exact solutions given by (112). �e FEM results are found
to converge to the exact solutions or the SEM results as the
number of 	nite elements is increased tomore than 100×100.
FromTable 1, we can compare the range of natural frequencies
that can be calculatedwith reasonable accuracy by the present
SEM and FEMby comparison with exact solutions.�emesh
size of the FEM when 50 × 50 elements are used (see the 4th
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Table 1: Comparison of the natural frequencies (Hz) of a square plate with simple-simple-simple-simple (S-S-S-S) edge support (Example 1)
obtained by exact theory, FEM [22], and SEM.

Mode Exact

FEM SEMk� = 10 × 10 50 × 50 100 × 100 1k� = 283 7403 29803 800(1, 1) 4.857 4.831 4.856 4.856 4.857(1, 2) 12.14 12.04 12.14 12.14 12.14(2, 2) 19.43 19.03 19.41 19.42 19.43(1, 3) 24.28 24.07 24.27 24.28 24.28(2, 3) 31.57 30.72 31.53 31.56 31.57(1, 4) 41.28 40.97 41.26 41.28 41.28(3, 3) 43.71 41.87 43.62 43.70 43.71(5, 5) 121.4 115.7 121.1 121.3 121.4(10, 10) 485.7 N/A 480.4 485.3 485.7(20, 20) 1943 N/A 1879 1922 1949

Note: ��: total number of 	nite elements; ��: total number of degrees of freedom.

Table 2: Comparison of the natural frequencies (Hz) of a square plate with free-clamped-free-clamped (F-C-F-C) edge support obtained by
ANSYS [21], FEM [22], and SEM.

Mode

ANSYS FEM SEMk� = 100 × 100 10 × 10 50 × 50 100 × 100 1k� = 39996 297 7497 29997 792

1 5.441 5.454 5.442 5.441 5.441

2 6.449 6.453 6.449 6.448 6.448

3 10.66 10.58 10.65 10.66 10.66

4 15.02 15.09 15.02 15.02 15.02

5 16.45 16.48 16.44 16.44 16.44

6 19.57 19.36 19.56 19.57 19.57

7 21.43 21.19 21.42 21.43 21.43

8 29.50 29.69 29.50 29.50 29.50

9 30.47 29.78 30.44 30.47 30.47

10 31.06 31.20 31.06 31.06 31.06

Note: ��: total number of 	nite elements; ��: total number of degrees of freedom.

column of Table 1) is the same as the inner mesh size of the
SEM when a single element is used (see the last column of
Table 1). Table 1 shows that the natural frequencies by the FEM
are accurate only up to the mode (1, 2), whereas the natural
frequencies by the SEM are accurate up to the higher mode(10, 10). �is clearly veri	es the high accuracy of the present
SEM when compared with the FEM.

Table 2 compares the natural frequencies of the F-C-F-
C square plate (Example 2) obtained by using ANSYS [21],
the FEM [22], and the present SEM.�e ANSYS results were
obtained by using a su
cient number of 	nite elements (100×100) and are very close to the SEM results obtained by using a
single 	nite element. �e FEM results converged to the SEM
results as the number of 	nite elements is increased to more
than 100 × 100.

Table 3 compares the natural frequencies of the F-F-F-
C square plate (Example 3) obtained by ANSYS [21], FEM
[22], and the present SEM. Similar to Example 2, the ANSYS

results, which were obtained by using a su
cient number of
	nite elements (100 × 100), are also found to be very close
to the SEM results obtained by using a single 	nite element.
Table 3 also shows that the FEM results converge to the SEM
results as the number of 	nite elements is increased to more
than 100 × 100. Figure 9 shows the lowest six mode shapes of
the F-F-F-C square plate (Example 3) obtained by the present
SEM.

Figure 10 compares the vibration responses of the S-S-S-
S square plate (Example 1) for the 	rst 0.3 s obtained by the
modal analysis method (denoted as “MAM”), the FEM [22],
and the SEM. An impulse is applied to themiddle of the plate,
and the dynamic responses are predicted at � = 0.1m and
0.2m on the �-axis. �e analytical solution by the MAM is
given by [24]

� (�, �, p) = ∞∑
�=1

∞∑
�=1

r�� (�, �) s�� (p) , (113)
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Table 3: Comparison of the natural frequencies (Hz) of a square platewith free-free-free-clamped (F-F-F-C) edge support obtained byANSYS
[21], FEM [22], and SEM.

Modes

ANSYS FEM SEMk� = 100 × 100 10 × 10 50 × 50 100 × 100 1k� = 40400 330 7650 30300 1204

1 0.851 0.851 0.851 0.851 0.851

2 2.059 2.060 2.059 2.059 2.059

3 5.194 5.206 5.194 5.193 5.193

4 6.662 6.655 6.662 6.662 6.663

5 7.527 7.530 7.526 7.526 7.524

6 13.19 13.13 13.18 13.18 13.18

7 15.04 15.09 15.04 15.04 15.04

8 15.67 15.68 15.67 15.66 15.67

9 17.39 17.41 17.39 17.39 17.38

10 22.70 22.47 22.69 22.70 22.70

Note: ��: total number of 	nite elements; ��: total number of degrees of freedom.

0.851

(Hz)

6.663

(Hz)

2.059

(Hz)

7.524

(Hz)

5.193

(Hz)

13.18

(Hz)

Figure 9: Lowest six mode shapes of a square plate with free-free-free-clamped (F-F-F-C) edge support obtained by SEM, Example 3.

where

r�� (�, �) = 2�√	 sin
ji�� sin

ki��
s�� (p) = 2
���√	 sin

ji2 sin
ki2 sin
��p,

(114)

where 
�� are the natural frequencies provided by (112).
Figure 10 shows that the analytical solution by the MAM
is very close to that by the SEM and that the FEM results
approach the result by the SEM as the number of 	nite
elements is increased to more than 50 × 50.

Figure 11 compares the transient dynamic responses at �
= 0.1m on the �-axis obtained by the MAM [24], the FEM
[22], and the present SEM. Similar to Figure 10, the transient

dynamic response by the MAM is very close to the SEM
results, and the FEM results approach the SEM results as the
number of 	nite elements is increased tomore than 100×100.

�e computation times (CPU times) for the SEM and
FEM are compared in Table 4. To measure the CPU times,
we used a standard desktop PC equipped with two sockets of
Intel Xeon E5-2630 v3 processors and 320GB of DDR4 RAM
memory clocked at 2133MHz. Table 4 shows that the CPU
time for the present SEM is much smaller than that required
to obtain the same accuracy level using the FEM.

Based on aforementioned observations, we conclude that
the present spectral element model has the capability to
provide extremely accurate natural frequencies and dynamic
responses very e
ciently.
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Figure 10: Comparison of the impulse-induced vibration responses at � = 0.1m and 0.2m on the �-axis of a simply supported square plate
predicted by the present SEM, the modal analysis method (MAM), and the FEM(n), where n is the number of 	nite elements used in the
analysis.

Time (�s)

−10

0

10

D
is

p
la

ce
m

en
t 

(m
m

)

20

30

0 500 1000 1500 2000 2500 3000

Zoom in

MAM
FEM(

FEM(
SEM(1)

100 × 100)

10 × 10)

0 100 200 300

Zoom in

Time (�s)

−6

−4

−2

0

2

D
is

p
la

ce
m

en
t 

(m
m

) 4

6

MAM
FEM(

FEM(
SEM(1)

100 × 100)

10 × 10)

Figure 11: Comparison of the impulse-induced transient dynamic responses at � = 0.1m on the �-axis of a simply supported square plate
obtained by the present SEM, the modal analysis method (MAM), and the FEM(n), where n is the number of 	nite elements used in the
analysis.

Table 4: Comparison of the computation times (CPU times)
required to obtain the dynamic responses shown in Figure 11.

Methods
SEM FEMk� = 1 10 × 10 100 × 100

CPU time (hr) 1.363 0.002 42.57

Note: ��: total number of 	nite elements used in the analysis.

4. Conclusion

We propose a new frequency domain spectral element model
for 	nite rectangular plate elements with arbitrary boundary
conditions. �e new spectral element model is developed
by using the boundary splitting method and the spectral
super element method in combination. �e high solution
accuracy and computational e
ciency of the proposed new
spectral element model are validated by comparison with
exact theory, the standard FEM, and the ANSYS commercial

	nite element analysis package. �e conclusions drawn from
our results are as follows:

(1) �e proposed new spectral element model can be
applied to any 	nite rectangular plate element with
arbitrary boundary conditions, whereas the spectral
element model introduced in the authors’ previous
work [5] can be applied only to 	nite rectangular
plate elements whose four corner nodes are 	xed.
Furthermore, the proposed new spectral element
model can be assembled in the �- and �-directions
to represent a plate structure, whereas most existing
spectral element models are valid only for plates with
very speci	c boundary conditions such as Levy-type
plates, in	nite or semi-in	nite plates, and plates in
which assembly is allowed only in one direction.

(2) �rough numerical studies, we show that the pro-
posed spectral element model provides highly accu-
rate solutions by using a relatively small number of
	nite elements.
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(3) �e proposed spectral element model is found to be
computationally e
cient compared to the standard
FEM and ANSYS, because the proposed spectral
element model has nodal DOFs only on four edges
of a rectangular 	nite element to signi	cantly reduce
the total number ofDOFs used in the spectral element
analysis.

Appendix

A. Constant Matrices Defined in (20)

�ematricesΛ�1,Λ�2,Λ�3, andΛ�4 are 2(��+1)-by-2(��+1) symmetric constant matrices de	ned by

Λ�1 = !�420Δ�1,
Λ�2 = 130!�Δ�2,
Λ�3 = 130!�Δ�3,
Λ�4 = 1!3�Δ�4,

(A.1)

where

Δ�
 =

[[[[[[[[[[[[[[[[[
[

Δ(0)�
 Δ
(2)
�
 0 ⋅ ⋅ ⋅ 0 0 0

Δ(2)��
 Δ
(1)
�
 Δ

(2)
�
 ⋅ ⋅ ⋅ 0 0 0

0 Δ(2)��
 Δ
(1)
�
 ⋅ ⋅ ⋅ 0 0 0

... ... ... d
... ... ...

0 0 0 ⋅ ⋅ ⋅ Δ(1)�
 Δ(2)�
 0

0 0 0 ⋅ ⋅ ⋅ Δ(2)��
 Δ(1)�
 Δ(2)�

0 0 0 ⋅ ⋅ ⋅ 0 Δ(2)��
 Δ

(3)
�


]]]]]]]]]]]]]]]]]
]

, (A.2)

where F = (1, 2, 3, 4) and
Δ(0)�1 = [156 22!�

22!� 4!2� ] ,

Δ(0)�2 = [36 3!�
3!� 4!2�] ,

Δ(0)�3 = −[36 33!�
3!� 4!2� ] ,

Δ(0)�4 = [12 6!�
6!� 4!2�]

Δ(1)�1 = [312 0
0 8!2�] ,

Δ(1)�2 = −Δ(1)�3 = [72 0
0 8!2�] ,

Δ(1)�4 = [24 0
0 8!2�]

Δ(2)�1 = [ 54 −13!�
13!� −3!2� ] ,

Δ(2)�2 = −Δ(2)�3 = [ 36 3!�
−3!� −!2�] ,

Δ(2)�4 = [−12 6!�
−6!� 2!2�]

Δ(3)�1 = [ 156 −22!�
−22!� 4!2� ] ,

Δ(3)�2 = [ 36 −3!�
−3!� 4!2� ] ,

Δ(3)�3 = [−36 33!�
3!� −4!2�]

Δ(3)�4 = [ 12 −6!�
−6!� 4!2� ] .

(A.3)

B. Constant Matrices Defined in (59)

�ematricesΛ�1,Λ�2,Λ�3, andΛ�4 are 2(�� −1)-by-2(�� −1) symmetric matrices de	ned by

Λ�1 = !�420Δ�1,
Λ�2 = −Λ�3 = 130!�Δ�2,
Λ�4 = 1!3�Δ�3,

(B.1)

where

Δ�
 =

[[[[[[[[[[[[[
[

Δ(1)�
 Δ
(2)
�
 0 ⋅ ⋅ ⋅ 0 0

Δ(2)��
 Δ
(1)
�
 Δ

(2)
�
 ⋅ ⋅ ⋅ 0 0

0 Δ(2)��
 Δ
(1)
�
 ⋅ ⋅ ⋅ 0 0

... ... ... d
... ...

0 0 0 ⋅ ⋅ ⋅ Δ(1)�
 Δ(2)�

0 0 0 ⋅ ⋅ ⋅ Δ(2)��
 Δ(1)�


]]]]]]]]]]]]]
]

, (B.2)
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where k = (1, 2, 3, 4) and

Δ(1)�1 = [312 0
0 8!2�] ,

Δ(1)�2 = [72 0
0 8!2�] ,

Δ(1)�4 = [24 0
0 8!2�]

Δ(2)�1 = [ 54 −13!�
13!� −3!2� ] ,

Δ(2)�2 = [ 36 3!�
−3!� −!2�] ,

Δ(2)�4 = [−12 6!�
−6!� 2!2�] .

(B.3)
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