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Abstract

Many time series in applied sciences obey a time-varying spectral structure. In this article, we
focus on locally stationary processes and develop tests of the hypothesis that the time-varying
spectral density has a semiparametric structure, including the interesting case of a time-varying
autoregressive moving-average model. The test introduced is based on a L2-distance measure of
a kernel smoothed version of the local periodogram rescaled by the time-varying spectral density
of the estimated semiparametric model. The asymptotic distribution of the test statistic under
the null hypothesis is derived. As an interesting special case, we focus on the problem of testing
for the presence of a time-varying autoregressive model. A semiparametric bootstrap procedure
to approximate more accurately the distribution of the test statistic under the null hypothesis is
proposed. Some simulations illustrate the behavior of our testing methodology in finite sample
situations.
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1. Introduction

Most existing models in time series analysis assume that the underlying process is

second-order stationary. Although this assumption is attractive from a theoretical point

of view because it allows for the development of statistical inference procedures with

good asymptotic properties, it seems rather restrictive in applications. A more realistic

framework in time series analysis is one which allows for the dependence structure of

the underlying stochastic process and more specifically for its second order properties, to

vary smoothly over time. Developing a useful approach of statistical inference in such a

context requires, however, that some restrictions have to be imposed on the deviations

from stationarity which are allowed.

There is meanwhile a large body on statistical literature dealing with different aspects

of the analysis of stochastic processes that obey time-varying spectral characteristics.

One of the first attempts was Priestley (1965) who considered stochastic processes with a

time-varying spectral representation similar to that of stationary process; see also Priest-

ley (1981). Statistical inference problems for time-varying stochastic processes has at-

tracted considerable interest during the last decades. To mention only few of the different

approaches proposed in this context we refer to Dahlhaus (1997) on locally stationary

processes, to Nason et al.(2000) and Ombao et al. (2005) on wavelet processes and to

Davis et al. (2006) on piecewise stationary processes. One way to investigate properties

of statistical inference procedures for time-varying stochastic processes, is to allow for the

amount of local information available to increase to infinity as the sample size increases.

Such a nonparametric-type framework for the development of an asymptotic theory of

statistical inference for nonstationary processes has been developed by Dahlhaus (1997)

who introduced the concept of locally stationary processes.

Locally stationary processes are stochastic processes that obey a time-varying spectral

representation which generalizes the Cramér representation of stationary processes by

assuming a time-varying amplitude function. Interesting subclasses of locally stationary

processes are obtained by parameterizing in a proper way the associated time-varying am-

plitude function and consequently the underlying time-varying spectral density. Such an

interesting subclass of locally processes is for instance, that of time-varying, autoregressive

moving-average (tvARMA) models. tvARMA models are autoregressive moving-average

model the parameters of which vary smoothly over time. The concept of local station-

arity has been extended respectively modified in several directions. Nason et al. (2000)

replaced the spectral representation and the Fourier basis associated with a locally sta-

tionary process by a representation with respect to a wavelets basis; see also Ombao et
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al. (2002) and Ombao et al. (2005). The corresponding model of a locally stationary

wavelet process allows for a time-scale representation of a stochastic process.

Estimation procedures for locally stationary processes have been considered by many

authors under different settings and assumptions. We mention here among others the

contributions by Neumann and von Sachs (1997), Dahlhaus et al. (1999), Chang and

Morettin (1999), van Bellegem and Dahlhaus (2006), Dahlhaus and Polonik (2006) and

van Bellegem and von Sachs (2008). Forecasting problems for non-stationary time series

have been considered by Fryzlewicz et al. (2003). An overview on some of the different

developments can be found in Dahlhaus (2003). However, the important problem of test-

ing for the presence of a parametric or semiparametric structure of the underlying locally

stationary process, has attracted less attention in the literature. Testing for the presence

of such a structure is important because it allows for the use of efficient, i.e., model-

based estimation and forecasting procedures. For Gaussian locally stationary processes,

Sakiyama and Taniguchi (2003) proposed likelihood ratio, Wald and Lagrange multiplier

tests of the null hypothesis that the time-varying spectral density depends on a finite

dimensional, real-valued parameter vector against a real-valued parametric alternative.

However, the class of parametric time-varying spectral densities allowed in this context,

is rather restrictive in that it does not include for instance the important case of testing

for the presence of a semiparametric tvARMA structure against an unspecified, locally

stationary alternative.

In this paper, we address the important problem of testing whether a locally stationary

process belongs to a semiparametric class of time-varying processes. The semiparametric

class considered under the null is large enough to include several interesting processes. The

test statistic developed, evaluates over all frequencies and over an increasing set of time

points, a L2-type distance between the sample local spectral density (local periodogram)

and the time-varying spectral density of the fitted semiparametric model postulated un-

der the null. The asymptotic distribution of the test statistic proposed under the null

hypothesis is derived and it is shown that this distribution is a Gaussian distribution

with the nice feature that its parameters do not depend on characteristics of the under-

lying process. As an interesting special case we focus on the problem of testing for the

presence of a semiparametric, time-varying autoregressive model. In this context, a boot-

strap procedure is proposed to approximate more accurately the distribution of the test

statistic under the null hypothesis. Theoretical properties of the bootstrap procedure are

investigated and its asymptotic validity is established. It is demonstrated by means of
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numerical examples that in the testing set-up considered in this paper, the bootstrap is a

very powerful and valuable tool to obtain critical values in finite sample situations.

The paper is organized as follows. In Section 2 we describe in detail our testing pro-

cedure and derive the asymptotic distribution of the test statistic proposed. In Section

3 we focus on the problem of testing for the presence of a time-varying autoregressive

model and introduce the bootstrap procedure used to approximate the distribution of

the test statistic under the null. Section 4 contains some simulations investigating the

performance of the bootstrap and the size and power behavior of the test in finite sample

situations. Section 5 concludes our findings while the proofs of the main theorems and of

some auxiliary lemmas are deferred to the Appendix.

2. The Testing procedure

2.1. The set-up. Following Dahlhaus (1997) we consider triangular arrays {XT}T∈N
XT = {Xt,T , t = 1, . . . , T} of stochastic processes satisfying the following conditions.

Assumption 2.1. For all T ∈ N, Xt,T has the representation

Xt,T =

∫ π

−π

A0
t,T (λ)eiλtdξ(λ), (1)

where

(i) ξ(λ) is a Gaussian stochastic process on [−π, π] with ξ(λ) = ξ(−λ), E {ξ(λ)} = 0

and

E
{

dξ(λ1)dξ(λ2)
}

= η (λ1 + λ2) dλ1dλ2, (2)

where η(λ) =
∑∞

j=−∞ δ(λ − 2πj) is the period 2π extension of Dirac’s Delta

function.

(ii) There exists a constant K and a Lipshitz continuous function A(u, λ) on [0, 1] ×
(−π, π] which is 2π periodic in λ, with A(u, λ) = A(u,−λ), such that for all T ,

sup
t,λ
|A0

t,T (λ)− A(t/T, λ)| ≤ K/T. (3)

The uniquely defined function

f(u, λ) =
1

2π
|A(u, λ)|2, (u, λ) ∈ [0, 1]× (−π, π], (4)

is called the time-varying spectral density of {XT}T∈N; see Dahlhaus (1996a),

The aim of this paper is to develop tests of the hypothesis that the time-varying local

spectral density f(u, λ) has a semiparametric structure. To elaborate on the kind of null
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and alternative hypothesis considered, let FLS be the set of local spectral densities of

processes satisfying Assumption 2.1 and denote by FPLS ⊆ FLS a semiparametric model

class of local spectral densities, i.e.,

FPLS = {f(u, λ) = f(u, λ; ϑ(u)), ϑ(u) = (ϑ1(u), . . . , ϑm(u)), m ∈ N, u ∈ [0, 1], λ ∈ R},
where ϑi(·) : [0, 1] → R, i = 1, 2, . . . , m, are appropriately defined real-valued functions.

We assume that in the set FPLS , the time-varying local spectral density f(u, λ, ϑ(u)) is

fully determined by the unknown functions ϑi(·), i = 1, 2, . . . , m, and as we will see in the

sequel, we impose some rather mild assumptions on ϑ(·) allowing for several interesting

classes of semiparametric models.

To give one important example which fits in the above set-up, consider the case where

FPLS is the semiparametric class of local spectral densities possessed by the class of

time-varying autoregressive moving-average (tvARMA) models. Recall that a locally

stationary process {Xt,T} satisfying Assumption 2.1 has a tvARMA(p,q) representation

if Xt,T is generated by the equation

Xt,T +

p∑
j=1

aj(t/T )Xt−j,T = εt,T +

q∑
j=1

bj(t/T )εt−j,T (5)

where a0(·) ≡ b0(·) ≡ 1, the εt’s are i.i.d. N(0, σ2(t/T )) distributed random variables,

ap(u) 6= 0 and bq(u) 6= 0 a.e. in [0, 1]. Notice that the above class of time varying ARMA

models are not always locally stationary; cf. Dahlhaus (1996) for a discussion. Now,

if the functions αj(·), βj(·) and σ2(·) are continuous on R and
∑p

j=0 αj(u)zj 6= 0 for all

|z| ≤ 1 + δ for some δ > 0 uniformly in u ∈ [0, 1], then model (5) belongs to the locally

stationary process class described in Assumption 2.1; see Dahlhaus(1996), Theorem 2.3.

Notice that model (5) possesses a time-varying spectral density given by

f(u, λ; ϑ(u)) =
σ2(u)

2π

∣∣∣∣∣
q∑

j=0

bj(u)eiλj

∣∣∣∣∣

2 /∣∣∣∣∣
p∑

j=0

aj(u)eiλj

∣∣∣∣∣

2

,

where ϑ(u) = (a1(u), . . . , ap(u), b1(u), . . . , bq(u), σ2(u)).

Based on the above discussion, the testing problem considered in this paper is described

by

H0 : f(·, ·) ∈ FPLS vs H1 : f(·, ·) ∈ FLS \ FPLS . (6)

The specific case where ϑ(u) is a constant function of the time variable u, that is where

ϑ(u) = (ϑ1, . . . , ϑm) ∈ Θ ⊂ Rm for all u ∈ (0, 1), is also allowed by (6). Such a case occurs

for instance if one is interested in testing the null hypothesis that the underlying stochastic
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process is a parametric stationary process against the alternative of a time-varying locally

stationary process.

2.2. The Test statistic. We start our construction of the test statistic by first consid-

ering the local periodogram defined for N < T , N ∈ N, by

IN(u, λ) =
1

2πH2,N(0)
|dN(u, λ)|2, (7)

where

dN(u, λ) =
N−1∑
s=0

h
( s

N

)
X[uT ]−N/2+s+1e

−iλs,

h : [0, 1] → R is a taper function and

Hk,N(λ) =
N−1∑
s=0

h
( s

N

)
e−iλs.

Recall that the local periodogram is the periodogram of a segment of length N of consec-

utive observations around the time point [uT ], u ∈ (0, 1). IN(u, λ) is commonly computed

at the Fourier frequencies λj = 2πj/N, j = −[(N − 1)/2], . . . , [N/2].

To introduce, the basic statistic used, suppose first for simplicity that the parametric

curves ϑ(u) determining the local spectral density f(u, λ; ϑ(u)) under the null hypothesis

are known, that is that ϑ(u) = ϑ0(u). Consider then the random variables

Y (u, λj) =
IN(u, λj)

f(u, λj; ϑ0(u))
, j = −[(N − 1)/2], . . . , [N/2].

It is easy to see that if the null hypothesis is true, then

E[Y (u, λj)] = 1 + O(N/T + 1/N),

for all u ∈ [0, 1] and λj ∈ (−π, π]. Furthermore, if the alternative hypothesis is true, i.e.,

if f(u, λj) 6= f(u, λj; ϑ0(u)), then

E[Y (u, λj)] =
f(u, λj)

f(u, λj; ϑ0(u))
+ O(N/T + 1/N),

where the function f(·, ·)/f(·, ·; ϑ0(·)) is different from the unit function on [0, 1]×(−π, π].

Motivated by the above observations the idea used to obtain a test statistic for the

null hypothesis that f(u, λ) = f(u, λ, ϑ0(u)), is to estimate non-parametrically the mean

function

q(u, λ) = E[Y (u, λ)− 1]
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and then to evaluate its distance from the zero function using an appropriate L2-distance

measure. To elaborate on, for given u ∈ (0, 1) and λ ∈ [0, π], we use the kernel estimator

q̂(u, λ) =
1

N

∑
j

Kb(λ− λj)

(
IN(u, λj)

f(u, λj; ϑ0(u))
− 1

)
(8)

to estimate non-parametrically the unknown mean function q(u, λ). Here Kb(·) = b−1K(·/b)
where K(·) is an appropriate defined kernel and b a smoothing bandwidth satisfying cer-

tain conditions; see Assumption 2.2 below.

To proceed with the construction of the test statistic proposed, we calculate q̂(uj, λ)

for different instants of time uj by using the local periodogram IN(uj, λ) for segments

of observations having midpoints uj = tj/T . Here we choose tj := S(j − 1) + N/2 for

j = 1, . . . , M , where the constant S denotes the shift from segment to segment and M

refers to the total number of time points in the interval (0,1) considered. Note that by the

above construction we have T = S(M − 1)+N . Now, using a L2-measure to evaluate the

distance of the so estimated mean function q̂(uj, λ) from the zero function and averaging

over all time points uj = tj/T and integrating over all frequencies λ considered, we end-up

with the test statistic

Q0,T =
1

M

M∑
s=1

∫ π

−π

(
q̂(us, λ)

)2

dλ. (9)

It can be shown that under some rather standard assumptions to be discussed later and

if M →∞ as T →∞, then, in probability,

Q0,T →




0 if H0 is true
∫ 1

0

∫ π

−π

(
f(u,λ)

f(u,λ,ϑ0)
− 1

)2

dλdu if H1 is true.

This behavior of Q0,T justifies its use for testing the null hypothesis of interest.

Recall that in order to derive the test statistic (9) we have assumed that the param-

eterizing functions ϑ(u) are known. This corresponds to the case of testing a simple

hypothesis, that is a hypothesis where the local spectral density under the null is fully

specified. To extend the testing procedure proposed to the more interesting case of test-

ing a composite hypotheses, that is to the case where the functions ϑ(u) determining

the local spectral density are unknown, we replace ϑ(·) in (8) by
√

N -consistent estima-

tors. Let ϑ̂(·) = (ϑ̂1(·), . . . , ϑ̂m(·))′ be such an estimator of ϑ(·) = (ϑ1(·), . . . , ϑm(·))′ ; see

among others, Dahlhaus and Giraitis (1998), Dahlhaus (2000), Dahlhaus and Neumann

(2001) and van Bellegem and Dahlhaus (2006) for different proposals for estimating ϑ(·).
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Analogously to (9), the test statistic used in this case is given by

QT =
1

M

M∑
s=1

∫ π

−π

{
1

N

MN∑
j=−MN

Kb(λ− λj)

(
IN(us, λj)

f(us, λj; ϑ̂(us))
− 1

)}2

dλ. (10)

Notice that f(us, λj; ϑ̂(us)) appearing in the denominator above, is the semiparametric

local spectral density obtained by substituting ϑ(·) appearing in f(u, λj; ϑ(u)) by its

estimator ϑ̂(·).
2.3. Asymptotic distribution under the null hypothesis. We first establish a basic

theorem which deals with the asymptotic distribution of the test statistic (10) under the

null hypothesis in (6). For this the following set of assumptions is imposed.

Assumption 2.2.

(i) K is a bounded, symmetric, nonnegative kernel function on (−∞,∞) with

support [−π, π] such that (2π)−1
∫∞
−∞ K(x)dx = 1.

(ii) The window length N satisfies N ∼ T δ for some 1/5 < δ < 4/5. Furthermore,

S = [N/κ] where κ is a fixed, small positive integer, 1 ≤ κ < N , which is

independent of N and S.

(iii) The smoothing bandwidth b satisfies b ∼ N−λ, where

max{0, 9δ − 7

δ
} < λ < min{5δ − 1

3δ
,
1

2
,
1− δ

δ
}.

(iv) The taper function h is of bounded variation and vanishes outside the interval

[0,1].

(v)
√

N(θ̂(u)− θ(u)) = Op(1) where the Op(·) term does not depend on u.

Some remarks concerning the above assumptions are in order. Note that the constant

κ appearing in (ii) determines the degree of overlapping between the segments used. We

consider the case κ ≥ 1 only, since for κ < 1 the shift from segment to segment described

by S is greater than the segment length N . In the later case, a loss of efficiency is expected

due to the fact that some observations are omitted. If κ = 1 then the observed series

is partitioned in nonoverlapping segments of length N while if κ > 1 then the segments

considered overlap. Notice that for N and S known, the total number of time points M

considered is given by M = 1 + (T − N)/S. Concerning the rate at which the segment

length N is allowed to increase to infinity given in (ii) and the rate at which the bandwidth

b is allowed to converge to zero given in (iii), we mention that they are controlled in a

way that leads to simple expressions for the mean and for the variance of the limiting

distribution of QT under H0. Notice that the range of values of N and of b is large enough
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allowing for a flexibility in choosing these parameters in practice. Figure 1 describes the

allowed range of λ according to the values of δ. Assumption 2.2(v) is general enough and

allows for different estimators of ϑ(u).

Please insert Figure 1 about here.

The following theorem establishes the asymptotic distribution of QT when the null

hypothesis is true.

Theorem 2.1. Under Assumption 2.1 and 2.2 and if H0 is true, then, as T →∞,

N
√

Mb(QT − µT ) ⇒ N(0, τ 2),

where

µT =
(tap(1))1/2

Nb

∫ π

−π

K2(x)dx +
(tap(1))1/2

4πN

∫ π

−π

∫ 2π

−2π

K(x)K(x− u)dxdu,

τ 2 = tap(κ)
2

π

∫ 2π

−2π

(∫
K(u)K(u + x)du

)2

dx

and for s ∈ {1, 2, . . . , m}

tap(s) =

∑
|m|<s

(∫ 1−|m|/s

0
h2(u)h2(u + |m|/s)du

)2

(∫ 1

0
h2(x)dx

)4 .

According to the above theorem, an attractive feature of the test statistic QT , is that its

limiting distribution under the null hypothesis does not depend on unknown parameters

or characteristics of the underlying locally stationary process {Xt,T}. Furthermore, and

based on this theorem, an asymptotically α-level test is obtained by rejecting the null

hypothesis if

QT ≥ µT +
τ

N
√

Mb
zα,

where zα denotes the 100(1− α)% percentile of the standard Gaussian distribution.

3. Testing for a time-varying autoregressive structure

3.1. Preliminaries. A special case of the testing problem (6) and which commonly arises

in many situations, is that of testing for the presence of a time-varying autoregressive
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(tvAR) model. Recall that the locally stationary process (1) obeys a time-varying autore-

gressive representation of order p if Xt,T is generated by the equation

Xt,T =

p∑
j=1

βj(t/T )Xt−j,T + εt,T , (11)

where the εt,T ’s are i.i.d., N(0, σ2(t/T )) random variables, βp(u) 6= 0 for all u ∈ [0, 1],

the functions βj(·) as well as the variance function σ2(·) are of bounded variation and∑p
j=1 βj(u)zj 6= 0 for all u ∈ [0, 1] and all 0 < |z| ≤ 1 + δ, for some δ > 0. Although the

results of this paper can be easily adapted to cover other special types of semiparamet-

ric locally stationary processes i.e. tvARMA(p,q) or tvMA(q), we concentrate on the

class of time-varying autoregressive process because these processes provide, due to their

simplicity, easy implementation and interpretation, a very interesting subclass of semi-

parametric time-varying processes. Now let FtvAR(p) be the set of local spectral densities

of time-varying autoregressive processes of order p. The testing problem considered in

this section is then described by the following pair of null and alternative hypothesis

H0 : f(·, ·) ∈ FtvAR(p) vs H1 : f(·, ·) ∈ FLS \ FtvAR(p). (12)

Note that the set FLS\FtvAR(p) contains also all locally stationary autoregressive processes

with an autoregressive order different from p.

3.2. Consistency. We first discuss a consistency property of our test. For this, suppose

that the true spectral density f(u, λ) lies in the alternative and measure for u ∈ [0, 1] the

distance between f(u, λ) and f(u, λ; ϑ(u)) by the function

L(u, ϑ(u)) =
1

4π

∫ π

−π

(
log[f(u, λ; ϑ(u))] +

f(u, λ)

f(u, λ; ϑ(u))

)
dλ. (13)

Let ϑ(u) be the value of ϑ(u) which minimizes L(u, ϑ(u)) and let ϑ̂(u) be the estima-

tor of ϑ(u) which is obtained by minimizing the local Whittle likelihood, i.e., ϑ(u) =

arg minLN(u, ϑ(u)), where

LN{u, ϑ(u)} =
1

4π

∫ π

−π

(
log[f(u, λ; ϑ(u))] +

IN(u, λ)

f(u, λ; ϑ(u))

)
dλ.

Notice that
1

4π

∫ 1

0

∫ π

−π

(
log[f(u, λ; ϑ(u))]

f(u, λ)
+

f(u, λ)

f(u, λ; ϑ(u))
− 1

)
dλdu

is the asymptotic Kullback-Leibler information divergence between two Gaussian locally

stationary processes with time-varying spectral densities f(u, λ; ϑ(u)) and f(u, λ) respec-

tively; see Theorem 3.4 of Dahlhaus (1996). The curve ϑ(u) obtained by minimizing
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(13) is that leading to the best time-varying autoregressive fit, that is to the p-th order

autoregressive fit which minimizes the Kullback-Leibler information divergence (13).

Assumption 3.1. Let ∇ = (∂/∂ϑ1, . . . , ∂/∂ϑm)′ be the gradient with respect to ϑ.

(i) ∇LN(u, ϑ̂(u)) = 0 , ∇L(u, ϑ(u)) = 0 for all u and N .

(ii) The derivatives ∂2A(u, λ)/∂u∂λ and ∂3A(u, λ)/∂u3 are uniformly bounded in

(u, λ) ∈ [0, 1]× [−π, π].

(iii) The derivatives

∂3

∂ϑi1∂ϑi2∂ϑi3

f−1(u, λ; ϑ(u)),
∂3

∂ϑi1∂ϑi2∂ϑi3

f(u, λ; ϑ(u)),
∂2

∂λ2

∂

∂ϑi1

f−1(u, λ; ϑ(u))

are bounded for 1 ≤ i1, i2, i3 ≤ p uniformly in (u, λ, ϑ) ∈ [0, 1] × [−π, π] × Θ,

where Θ is an open convex subset of Rp.

(iv) sup0≤u≤1,ϑ∈Θ ||∇2L−1(u, ϑ̂(u))||sp where || · ||sp denotes the spectral norm of a

matrix.

We first state the following result which deals with the limiting properties of QT when

the alternative hypothesis is true.

Theorem 3.1. Under Assumptions 2.1, 2.2 and 3.1 and if f(·, ·) ∈ FLS \ FtvAR(p), then

as T →∞,

QT → D2 =

∫ 1

0

∫ π

−π

(
f(u, λ)

f(u, λ; ϑ(u))
− 1

)2

dλdu,

in probability.

Notice that the limit D2 given above is a L2-distance measure between the true local

spectral density f(u, λ) and its best parametric fit f(u, λ; ϑ(u)). Theorem 3.1 implies then

that under the assumptions made and if H1 is true, then limT→∞ P (N
√

Mb(QT−µT )/τ ≥
zα) = 1, that is the test QT is consistent against any alternative for which D2 > 0.

3.3. Bootstrapping the test statistic. To obtain critical values of the test, Theo-

rem 2.1 enables us to approximate the unknown distribution of N
√

Mb(QT − µT )/τ by

that of a standard Gaussian distribution. We experienced, however, that the quality of

this approximation is rather poor in finite sample situations and very large to huge sample

sizes are required in order for this approximation to be valuable in practice; see Section

4 for a numerical illustration of this point. To improve upon the large sample Gaussian

approximation of Theorem 2.1, we propose here, an alternative, bootstrap-based proce-

dure, which leads in finite sample situations to more accurate estimates of the distribution
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of QT under the null. The procedure proposed works by generating pseudo-observations

X+
1,T , X+

2,T , . . . , X+
T,T using the fitted tvAR(p) process and calculating the test statistic QT

of interest using the so generated pseudo-observations.

To elaborate on, we first fit locally to the time series the pth order time-varying autore-

gressive process postulated under the null hypothesis. Denote by β̂u(p)′ = (β̂1(u), . . . , β̂p(u))

and by σ̂2
N(u) the estimators of the time varying autoregressive parameters and of the

error variance respectively. Such an estimator can be for instance obtained using for

[uT ] ∈ {N/2, N/2 + 1, . . . , T −N/2} the local Yule-Walker equations

R̂u(p)β̂u(p) = r̂u(p),

where

R̂u(p) = ĉN(u, i− j)i,j=1,...,p, r̂u(p) = (ĉN(u, 1), . . . , ĉN(u, p))′

and

ĉN(u, j) =
1

N

N−1∑
k,l=0
k−l=j

X[uT ]−N/2+k+1,T X[uT ]−N/2+l+1,T .

The corresponding estimator of the variance function σ2(u) of the errors is given by

σ̂2
N(u) = ĉN(u, 0) + β̂′u(p)r̂u(p).

Properties of local Yule-Walker estimators have been investigated by Dahlhaus and Gi-

raitis (1998); see also Sergides and Paparoditis (2008). Other estimators of the local

autoregressive parameters have been investigated by, e.g., Dahlhaus et al. (1999) and van

Bellegem and Dahlhaus (2006).

The bootstrap algorithm proposed to approximate the distribution of QT under the

null hypothesis of a tvAR(p) process consists then of the following four Steps:

STEP 1: Fit locally the time-varying autoregressive model of order p to the ob-

servations X1,T , X2,T , . . . , XT,T and calculate the estimated parameters β̂t/T (p)′ =
(β̂1(t/T ), . . . , β̂p(t/T )) and σ̂p

2(t/T ).

STEP 2: Generate bootstrap observations X+
1,T , X+

2,T , . . . , X+
T,T using the fitted

local autoregressive model, that is,

X+
t,T =

p∑
j=1

β̂j(
t

T
)X+

t−j,T + σ̂p(
t

T
) · ε+

t ,

where X+
j,T = Xj,T for j = 1, 2, . . . , p and ε+

t are i.i.d random variables with

ε+
t vN(0, 1).
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STEP 3: Compute the local periodogram I+
N(u, λ) over segments of length N of

the bootstrap pseudo-observations X+
t,T , i.e., compute

I+
N(u, λ) =

1

2πH2,N(0)
|d+

N(u, λ)|2 (14)

where

d+
N(u, λ) =

N−1∑
s=0

h
( s

N

)
X+

[uT ]−N/2+s+1e
−iλs.

STEP 4: The bootstrapped test statistic is then defined by

Q+
T =

1

M

M∑
i=1

∫ π

−π

{
1

N

MN∑
j=−MN

Kb(λ− λj)

(
I+
N(ui, λj)

f(ui, λj; ϑ̂)
− 1

)}2

dλ

Notice that we could have in STEP 4 rescaled the local bootstrap periodogram I+
N(u, λ)

by f(ui, λj; ϑ̂
+) instead by f(ui, λj; ϑ̂), where ϑ̂(·)+ denotes the estimator of the autore-

gressive parameter functions ϑ(·) obtained using the bootstrap pseudo-series X+
1,T , X+

2,T ,

. . . , X+
T,T . The specification of Q+

T used is, however, preferred because besides of being

computationally more convenient, it is also justified theoretically by the fact that the

limiting distribution of the test statistic QT under the null is not affected if the unknown

ϑ(·) is replaced by a
√

N -consistent estimator ϑ̂(·).
To ensure that the estimated local autoregressive process generating the bootstrap

observations X+
1,T , . . . , X+

T,T is locally stationary, we assume that the parameter estimators

used in Step 1 of the bootstrap algorithm satisfy the following assumption.

Assumption 3.2. T0 ∈ N exists such that for T ≥ T0 the estimated coefficients β̂j(u)

and σ̂2
N(u) are Lipschitz continuous in u with the Lipschitz constant independent of T ,

and, 1−∑p
j=1 β̂j(u)zj 6= 0 for |z| ≤ 1 + c with c > 0 independent of T and uniformly in

u.

The following theorem shows that the bootstrap procedure proposed leads to an asymp-

totically valid approximation of the distribution of the test statistic QT under the null

hypothesis of a tvAR(p) process. We follow Bickel and Freedman (1981) and mea-

sure the distance between distributions F and G by the Mallow metric d2 defined as

d2(F, G) = inf{E|X − Y |2}1/2, where the infimum is taken over all pairs of random

variables X and Y having marginal distributions F and G respectively. We adopt the

convention that where random variables appear as arguments of d2 these represent the

corresponding distributions.
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Theorem 3.2. Let Assumptions 2.1, 2.2, 3.1 and 3.2 be satisfied. Then, conditionally

on X1,T , X2,T , . . . , XT,T , we have as T →∞,

d2

(
N
√

Mb(Q+
T − µT ), N

√
Mb(QT − µT )

)
→ 0,

in probability, where µT is defined in Theorem 2.1.

4. Applications

4.1. Some remarks on choosing the testing parameters. From the previous discus-

sion it is clear that implementation of the testing procedure proposed, requires essentially

the selection of two parameters: the time window width N and the smoothing bandwidth

b. Although a through investigation of this problem is beyond the scope of this paper,

we give in what follows a rather heuristic discussion on how to select this parameters in

practice.

Concerning the value of the time window width N , we mention that the selection of this

parameter is inherit to any statistical inference procedure for locally stationary process

which is based on segments of observations. Choosing N too large will induce a large

bias since a large N is associated with a loss of information on the local structure of the

underlying process. On the other hand, choosing N too small will lead to an increase of

the variance of the estimators involved due to the small number of observations used. Any

approach to select N should therefore be guided by the requirement that N should be large

enough to allow for reasonable local estimation but not too large to avoid a ’smoothing

out’ the interesting local characteristics of the process. Based on this observation and

depending on the overall size n of the time series at hand, the choices N = 64 or N = 128

are convenient in most situations.

Concerning the choice of the smoothing parameter b, one way to proceed is to select

this parameter using a local version of a cross-validation criterion like the one proposed

by Beltrão and Bloomfield (1987). To elaborate on, notice first that our aim is to obtain

a “good” estimate of the function q(u, λ) = f(u, λ)/f(u, λ; ϑ). To stress the dependence

of this function on the estimated parametric curves, we write q(u, λ, ϑ(u)) in the sequel.

Using as a starting point the function

M∑
i=1

N∑
j=1

{
log q(ui, λj; ϑ̂) +

IN(ui, λj)/f(ui, λj, ϑ̂)

q(ui, λj; ϑ̂)

}
, (15)
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a leave-one-out estimator of q(u, λj; ϑ) is given by

q̂−j(u, λj; ϑ̂) =
1

N

∑
j∈Nj

Kh(λj − λs)
IN(u, λj)

f(u, λj; ϑ̂)
(16)

where Nj = {s : −MN ≤ s ≤ MN and j−s 6= ±j mod MN}. Notice that q̂−j is a kernel

estimator of q obtained by ignoring the jth ordinate of the local periodogram IN(u, λj).

Now, substituting q̂−j(u, λj; ϑ̂) for q(u, λj; ϑ̂) in (15) leads to the function

CV (b) =
M∑
i=1

N∑
j=1

{
log q̂−j(ui, λj; ϑ̂) +

IN(ui, λj)/f(ui, λj; ϑ̂)

q̂−j(ui, λj; ϑ̂)

}
, (17)

which can be used as a cross-validation-type criterion to select b.

4.2. Simulations.

4.2.1. Bootstrap Approximations. We first, illustrate the advantages of using the boot-

strap procedure proposed by comparing its performance in approximating the distribution

of QT under the null with that of the limiting Gaussian approximation. For this purpose,

observations {Xt,T , t = 1, . . . , T} from the first order, time-varying autoregressive model

Xt,T = φ(
t

T
)Xt−1,T + εt (18)

have been generated, where φ(t/T ) = 0.9 cos(1.5− cos(4π(t/T ))) and the εt’s are i.i.d.

random variables with εt ∼ N(0, 1). To estimate the exact distribution of the test statis-

tic QT we generate 1000 series of length T = 1024 and for each of these series we cal-

culated QT using the Bartlett-Priestley kernel, K(x) = 1[−π,π](x)3(4π)−1(1− (x/π)2) and

the bandwidth b = 0.2. The window width N has been set equal to N = 128 and two

different shifts, S = 128 and S = 64, have been considered. Notice that for S = 128 we

have κ = 1, while for S = 64, κ = 2.

To investigate the performance of the bootstrap method, we choose randomly 21 series

from the generated 1000 replications of process (18) and for each of the selected series

we apply the bootstrap produce proposed using 300 bootstrap replications. Based on the

bootstrap replications, we estimated for each series the density ĝ∗ of the corresponding

bootstrap approximation of the distribution of QT . We also estimated the density of

the exact distribution of QT based on the 1000 replications of process (18). The so

estimated density is denoted by ĝ. The density estimates ĝ∗ and ĝ have been obtained

using standard SPlus smoothing routines. We then compare the estimated exact density

ĝ with the Gaussian approximation given in Theorem 2.1 and with the median bootstrap

approximation. The median bootstrap approximations is that for which
∑

xi
|ĝ∗(xi) −
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ĝ(xi)| takes its median value over the 21 series used. Figure 1 shows the estimated

densities of the exact, the asymptotic Gaussian and the median bootstrap approximation.

As it is clearly seen from these exhibits, the bootstrap performs much better compared

to the Gaussian approximation and estimates very accurately the exact distribution of

interest.

Please insert Figure 2 about here.

4.2.2. Size and power performance of the test. We next investigate the size and the power

performance of the test in finite sample situations by means of a small simulation study.

For this, we consider realizations of length T = 512 and T = 1024 of the time-varying

AR(2) model

Xt,T = 0.9 cos(1.5− cos(4πt/T ))Xt−1,T − φ2Xt−2,T + εt (19)

where the εt’s are independent, standard Gaussian distributed random variables. The

null hypothesis is that the underlying process is a time-varying first order autoregressive

process. Different values of the parameter φ2 have been considered corresponding to

validity of the null (φ2 = 0) and of the alternative hypothesis (φ2 6= 0). In each case we

fit a time-varying AR(1) model using a local least squares estimator and compute the

test statistic QT using the Bartlett-Priestley kernel and different values of the bandwidth

parameter b. We also apply the test proposed for different segment lengths N and shifts S.

In all cases the critical values of the test have been obtained using B=500 replications of

the bootstrap procedure described in Section 3. The results obtained over 500 replications

are summarized in Table 1.

Please insert Table 1 about here.

As Table 1 shows, estimating the critical values of the test using the bootstrap pro-

cedure proposed, leads to a very good size and power behavior of the test. Notice that

for both sample sizes and all combinations of bandwidth values, segment lengths and

shifts considered, the empirical size of the test is very close to the nominal level of 5%.

Furthermore, under the alternative, the test has power even for small deviations from the

null and the power of the test increases rapidly approaching unity as the deviations from

the null and/or the sample size become larger.

We conclude this section with an investigation of the power behavior of the test in a

situation which is not covered by our theoretical analysis, namely that of a sudden change

in the model structure of the underlying process. In particular, we generate observations
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from the piecewise stationary process

Xt,T =





0.9Xt−1,T + εt for t = 1, 2, . . . , [T/2]

−05Xt−1,T + εt for t = [T/2] + 1, [T/2] + 2, . . . , T,

where the εt’s are independent, standard Gaussian distributed random variables. We fit to

the generated time series a first order, time-varying autoregressive process and investigate

the power of our test is detecting this erroneous model fit. Table 2 summarizes the results

obtained for two sample sizes, T = 512 and T = 1024 observations. Notice that the

critical values of the test have been calculated using B = 500 bootstrap replications. As

this table shows, the test proposed seems to have considerable power in detecting model

misspecifications even in the case of sudden changes in the stochastic structure of the

underlying process.

Please insert Table 2 about here.

5. Conclusions

In this paper we have introduced and investigated properties of a test of the hypothesis

that the time-varying spectral density of a locally stationary process has a semiparametric

structure. Our approach is general enough and allows for testing the interesting case of

a time-varying autoregressive moving-average model. The test introduced is based on

a L2-distance measure of a kernel smoothed version of the local periodogram rescaled

by the time-varying spectral density of the estimated semiparametric model under the

null. The asymptotic distribution of the test statistic under the null hypothesis has been

derived and it has been shown that this distribution is Gaussian with parameters that

do not depend on characteristics of the underlying stochastic process. As an interesting

special case, we focused then on the problem of testing for the presence of a time-varying

autoregressive model structure. A semiparametric bootstrap procedure to approximate

more accurately the distribution of the test statistic under the null hypothesis has been

proposed and its asymptotic validity has been established. The favorable size and power

properties of our test in finite sample situations have been demonstrated by means of

some simulations and numerical examples.

Appendix: Auxiliary results and proofs

A useful tool for handling taper data, is the periodic extension (with period 2π) of the

function LT (α) : R→ R, with
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LT (α) =





T, |α| ≤ 1/T

1/|α|, 1/T ≤ |α| ≤ π.
(20)

Lemma 5.1 and Lemma 5.2 below can be proved as in Dahlhaus (1997), Lemma A.5

and A.6.

Lemma 5.1.

a.
∫
Π

Lk
T (α) ≤ KT k−1 for all k > 1.

b.
∫
Π

LT (α) ≤ K log(T )

c. |α|LT (α) ≤ K

d.
∫
Π

LT (β − α)LS(α + γ) ≤ K max{log(T ), log(S)}Lmin{T,S}(β + γ)

For a complex-valued function f define HN(f(·), λ) :=
∑N−1

s=0 f(s)e−iλs and let

Hk,N(λ) = HN(hk(
·
N

), λ)

and

HN(λ) = H1,N(λ).

Straightforward calculation gives
∑

j

Hk,N(α− λj)H`,N(λj − β) = 2πNHk+`,N(α− β)

where the sum extends over all Fourier frequencies λj = 2πj/N, j = −[(N−1)/2], . . . , [N/2].

Under Assumption 2.2 (iv) there is a constant C independent of T and λ such that

|Hk,N(λ)| ≤ CLN(α) (21)

and

Kb(λ) ≤ CbL2
1/b(λ). (22)

Lemma 5.2.

(i) Let N, T ∈ N. Suppose that the data taper h satisfies Assumption 2.2 (iv) and

ψ : [0, 1] → R is Lipshitz continuous. Then we have for 0 ≤ t ≤ N , that,

HN

(
ψ

( ·
T

)
h

( ·
N

)
, λ

)
= ψ

(
t

T

)
HN(λ) + O

(
N

T
LN(λ)

)
.

The same holds, if ψ(·/T ) on the left side is replaced by numbers ψs,T with

sups |ψs,T − ψ(s/T )| = O(T−1)
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(ii) Let tj = S(j− 1)+N/2, uj = tj/T with N,M, S and T satisfying Assumption 2.2

and ψ : [0, 1] → R be Lipshitz continuous. Then
∣∣∣∣∣

M∑
j=1

ψ(uj)e
iλSj

∣∣∣∣∣ ≤ KLM(Sλ).

Before proceeding with the next lemma we use for simplicity the notation fϑ0(u, λ) for

f(u, λ; ϑ0(u)) and fϑ̂(u, λ) for f(u, λ; ϑ̂(u)).

Lemma 5.3. Under Assumptions 2.1, 2.2 and if H0 is true, then

E(N
√

MbQ0,T ) = µT + o(1)

where

µT =
M1/2ctap

b1/2

∫ π

−π

K2(x)dx +
M1/2b1/2ctap

4π

∫ π

−π

∫ 2π

−2π

K(x)K(x− u)dxdu

and ctap =
∫ 1

0
h4(x)/(

∫ 1

0
h2(x))2.

Proof: First note that

E(N
√

MbQ0,T ) =
b1/2

M1/2N

M∑
m=1

∫ π

−π

∑
j

∑
s

Kb(λ− λj)Kb(λ− λs)

fϑ0(ui, λj)fϑ0(ui, λs)
cum (IN(um, λj), IN(um, λs)) dλ

+ O(
√

MbN5/T 4 +
√

Mb log2(N)/N)

=
b1/2

4π2M1/2NH2
2,N(0)

M∑
m=1

∫ π

−π

∑
j

∑
s

Kb(λ− λj)Kb(λ− λs)

fϑ0(um, λj)fϑ0(um, λs)
dλ

×
(
cum (dN(um, λj), dN(um, λs)) cum (dN(um,−λj), dN(um,−λs))

+ cum (dN(um, λj), dN(um,−λs)) cum (dN(um,−λj), dN(um, λs))
)

+ o(1)

= µ1,T + µ2,T + o(1)

with an obvious notation for µi,T , i = 1, 2. Recall the definition of dN(u, λ) to see that

cum (dN(um, λj), dN(um, λs)) cum (dN(um,−λj), dN(um,−λs))

=

∫ π

−π

∫ π

−π

HN(A0
tm−N/2+1+·,T (µ1)h(

·
N

), λj − µ1)HN(A0
tm−N/2+1+·,T (−µ1)h(

·
N

),−λs + µ1)

×HN(A0
tm−N/2+1+·,T (µ2)h(

·
N

),−λj − µ2)HN(A0
tm−N/2+1+·,T (−µ2)h(

·
N

), λs + µ2)dµ1dµ2.
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Substituting A0
tm−N/2+1+·,T (µ2) by A(t/T, µ2) on the above expression, using (3) and the

fact that A(·, ·) is Lipshitz continuous, we get that the above term is equal to

∫ π

−π

∫ π

−π

fϑ0(um, µ1)fϑ0(um, µ2)HN(λj−µ1)HN(−λs+µ1)HN(−λj−µ2)HN(λs+µ2)dµ1dµ2

(23)

plus a remainder term Rm depending on the difference |A0
tm−N/2+1+·,T (µ2) − A(t/T, µ2)|

which satisfies

∣∣∣∣∣
b1/2

M1/2N3

M∑
m=1

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)

fϑ0(um, λj)fϑ0(um, λs)
Rm

∣∣∣∣∣

≤ N

T

b1/2M1/2

N3
log2(N)b

JN∑
j=−JN

JN∑
s=−JN

L2
1/b(λj − λs)L

2
N(λj − λs)

= O(
NM1/2 log2(N)

b1/2T
). (24)

Using the bound (24) and replacing fϑ0(um, µ1) and fϑ0(um, µ2) by fϑ0(um, λj) and fϑ0(um, λs)

respectively, we get that the term µ1,T is equal to

b1/2M1/2

NH2
2,N(0)

∫ π

−π

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)|HN(λj − λs)|2dλ

=
M1/2ctap

b1/2

∫ π

−π

K2(x)dx + O(
log(N)M1/2

Nb3/2
)

plus a remainder term Rm which depends on the difference |fϑ0(um, µ2)−fϑ0(um, λj)| and

which satisfies

∣∣∣∣∣
b1/2

M1/2N3

M∑
m=1

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)

fϑ0(um, λj)fϑ0(um, λs)
Rm

∣∣∣∣∣

≤ b1/2M1/2

N3

∫ π

−π

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)LN(λs − λj)dλ

= O(
b1/2M1/2 log2(N)

N
).



20 M. SERGIDES AND E. PAPARODITIS

Similar arguments yield that the second term µ2,T is equal to

b1/2M1/2

NH2
2,N(0)

∫ π

−π

JN∑
j=−JN

JN∑
s=−JN

Kb(λ− λj)Kb(λ− λs)|HN(λj + λs)|2dλ + o(1)

=
M1/2b1/2ctap

4π

∫ π

−π

∫ π

−π

K(x)K(x− u)dxdu + o(1)

¥

Lemma 5.4. Under Assumptions 2.1 and 2.2 and if H0 is true, then

V ar(N
√

MbQ0,T ) = τ 2 + o(1)

where τ 2 is defined in Theorem 2.1.

Proof: First note that

V ar(N
√

MbQ0,T )

=
b

MN2

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

JN∑

j,s,k,l=−JN

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
(
cum(IN(um1 , λj), IN(um2 , λk))cum(IN(um1 , λs), IN(um2 , λl))

+cum(IN(um1 , λj), IN(um2 , λl))cum(IN(um1 , λs), IN(um2 , λk))

+cum(IN(um1 , λj), IN(um2 , λk), IN(um1 , λs), IN(um2 , λl))
)
dλdµ + o(1)

= V1,T + V2,T + V3,T

with an obvious notation for Vi,T i = 1, 2, 3. From (7) and using the fact that ξ(λ)

is Gaussian and that by Isserlis theorem cum(Z1Z2, Z3Z4) = cum(Z1, Z3)cum(Z2, Z4) +

cum(Z1, Z4)cum(Z2, Z3), for Zi Gaussian random variables, we get that the term V1,T can

be further decomposed as the sum of four terms, that is we can write V1,T =
∑4

i=1 V
(i)
j,T .

The first term in this decomposition, V
(1)
1,T , equals

V
(1)
1,T =

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,l,s

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

cum (dN(um1 , λj), dN(um2 ,−λk)) cum (dN(um1 ,−λj), dN(um2 , λk))

×cum (dN(um1 , λs), dN(um2 ,−λl)) cum (dN(um1 ,−λs), dN(um2 , λl))
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Using arguments similar to those used in the proof of Lemma 5.3 we have that the term
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

HN(A0
tm1−N/2+1+·,T (µ1)h(

·
N

), λj − µ1)HN(A0
tm2−N/2+1+·,T (−µ1)h(

·
N

),−λk + µ1)

×HN(A0
tm1−N/2+1+·,T (µ2)h(

·
N

),−λj − µ2)HN(A0
tm2−N/2+1+·,T (−µ2)h(

·
N

), λk + µ2)

×HN(A0
tm1−N/2+1+·,T (µ3)h(

·
N

), λs − µ3)HN(A0
tm2−N/2+1+·,T (−µ3)h(

·
N

),−λl + µ3)

×HN(A0
tm1−N/2+1+·,T (µ4)h(

·
N

),−λs − µ4)HN(A0
tm2−N/2+1+·,T (−µ4)h(

·
N

), λl + µ4)

× exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4

is equal to
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

A(um1 , µ1)A(um2 ,−µ1)A(um1 , µ2)A(um2 ,−µ2)A(um1 , µ3)A(um2 ,−µ3)A(um1 , µ4)

×A(um2 ,−µ4)HN(λj − µ1)HN(−λk + µ1)HN(−λj − µ2)HN(λk + µ2)HN(λs − µ3)HN(−λl + µ3)

×HN(−λs − µ4)HN(λl + µ4) exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4

+R1(m1,m2) (25)

where R1(m1,m2) satisfies

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
R1(m1,m2)dλdµ

≤ K1

H4
N

b

MN2

N

T

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

×LN(λj − µ1)LN(−λk + µ1)LN(−λj − µ2)LN(λk + µ2)LN(λs − µ3)HN(−λl + µ3)

×LN(−λs − µ4)LN(λl + µ4)L
2
M(S(µ1 + µ2 + µ3 + µ4))dµ1dµ2dµ3dµ4dλdµ (26)

since by Lemma A.6 of Dahlhaus (1997) we have

M∑
m=1

1

fϑ0(um, λk)fϑ0(um, λl)
ei((µ1+µ2+µ3+µ4)(Sm) = O(LM(S(µ1 + µ2 + µ3 + µ4))).

Now using Lemma A.4(e) and Lemma A.4(j) of Dahlhaus (1997), expression (26) can be

bounded by

K1

H4
N

b

MN2

N

T

NM

S
log3(N)

∫ π

−π

∫ π

−π

∑

j,s,k,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)L
2
N(λj − λk)

×L2
N(λs − λl)dλdµ = O(

log3(N)N2

ST
).
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Furthermore, replacing A(ui, µ1) by A(ui, λj) in the first term of (25) we get that this

term can be written as
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

A(um1 , λj)A(um2 ,−µ1)A(um1 , µ2)A(um2 ,−µ2)A(um1 , µ3)A(um2 ,−µ3)A(um1 , µ4)

×A(um2 ,−µ4)HN(λj − µ1)HN(−λk + µ1)HN(−λj − µ2)HN(λk + µ2)HN(λs − µ3)HN(−λl + µ3)

×HN(−λs − µ4)HN(λl + µ4) exp {i(µ1 + µ2 + µ3 + µ4)(tm1 − tm2)} dµ1dµ2dµ3dµ4

+R2(m1,m2) (27)

where the remainder term R2(m1,m2) satisfies

b

MN2H4
N

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
R2(m1,m2)dλdµ

≤ K1

H4
N

b

MN2

MN

S
log3(N)

∫ π

−π

∫ π

−π

∑

j,k,s,l

Kb(λ− λj)Kb(µ− λs)Kb(λ− λk)Kb(µ− λl)

×LN(λj − λk)L
2
N(λl − λs)dλdµ = O(

log3(N)

S
).

From (27) we get that

V
(1)
1,T =

b

16π4MN2H4
Nb4

∑
m1,m2

∫ π

−π

∫ π

−π

[∑

j,k

K(
λ− λj

b
)K(

µ− λk

b
)

∑
s1,s2,s3,s4

h(
s1

N
)h(

s2

N
)h(

s3

N
)h(

s4

N
)

×e−i[s1λj−s2λk−s3λj+s4λk]

∫ π

−π

ei[µ1(s1−s2)+µ1S(m1−m2)]dµ1

∫ π

−π

ei[µ2(s3−s4)+µ2S(m1−m2)]dµ2

]2

dλdµ

+o(1)

=
b

N2H4
Nb4

∑

|m|<N/S

∫ π

−π

∫ π

−π

[∑

j,k

K(
λ− λj

b
)K(

µ− λk

b
)

×
∣∣∣∣∣

N−1−Sm∑
s1=0

h(
s1

N
)h(

s1 + Sm

N
)e−i[s1(λj−λk)]

∣∣∣∣∣

2]2

dλdµ + o(1),

which by straightforward calculations yield

V
(1)
1,T =

∑
|m|<κ

(∫ 1−m/κ

0
h2(u)h2(u + m/κ)du

)2

2π
(∫ 1

0
h2(x)

)4

∫ 2π

−2π

(∫
K(u)K(u + x)du

)2

dx + O(
log2(N)

N2b4
).
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The terms V
(j)
1,T , j = 2, 3, 4 are handled similarly and we get

V
(2)
1,T =

∑
|m|<κ

(∫ 1−m/κ

0
h2(u)h2(u + m/κ)du

)2

2π
(∫ 1

0
h2(x)

)4

∫ 2π

−2π

(∫
K(u)K(u− x)du

)2

dx + o(1),

V
(3)
1,T =

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,l,s

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×cum (dN(um1 , λj), dN(um2 , λk)) cum (dN(um1 ,−λj), dN(um2 ,−λk))

×cum (dN(um1 , λs), dN(um2 ,−λl)) cum (dN(um1 ,−λs), dN(um2 , λl)) = O(b)

and

V
(4)
1,T =

b

MN2

∑
m1,m2

∫ π

−π

∫ π

−π

∑

j,k,l,s

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×cum (dN(um1 , λj), dN(um2 ,−λk)) cum (dN(um1 ,−λj), dN(um2 , λk))

×cum (dN(um1 , λs), dN(um2 , λl)) cum (dN(um1 ,−λs), dN(um2 ,−λl))

= O(b).

The term V2,T has the same structure as the term V1,T and converges, therefore, to the

same limit. Finally,

V3,T =
b

MN2

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

JN∑

j,s,k,l=−JN

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)

×cum(dN(um1 , λj)dN(um1 ,−λj), dN(um2 , λk)dN(um2 ,−λk), dN(um1 , λs)dN(um1 ,−λs),

dN(um2 , λl)dN(um2 ,−λl))dλdµ

and using properties of the cumulants it can be shown by cumbersome but straightforward

calculations that this term converges to zero.

To handle this term notice that using the product theorem of cumulants, see Brillinger

(1981), we have to sum over all indecomposable partitions P1, . . . , Pm of the scheme

a1 b1

a2 b2

a3 b3

a4 b4
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where a1 stands for the position of dN(um1 , λj) , b1 for the position of dN(um1 ,−λj), etc.

Following the notation of Dahlhaus (1997), let Pi = {c1, . . . , ck}, P i := {c1, . . . , ck−1},
βPi

:= (βc1 , . . . , βck−1
) and βck

= −∑k−1
j=1 βcj

. Also, let m be the size of the corresponding

partition and β = (βP i
, . . . , βP m

). We then get

V3,T =
b

MN2H4
N

∑
ip

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

∑

j,s,k,l

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
∫

Π8−m

HN(A0
tm1−N/2+1+·,T (βa1)h(

·
N

), λj − βa1)HN(A0
tm1−N/2+1+·,T (βb1)h(

·
N

),−λj − βb1)

×HN(A0
tm2−N/2+1+·,T (βa2)h(

·
N

), λk − βa2)HN(A0
tm2−N/2+1+·,T (βb2)h(

·
N

),−λk − βb2)

×HN(A0
tm1−N/2+1+·,T (βa3)h(

·
N

), λs − βa3)HN(A0
tm1−N/2+1+·,T (βb3)h(

·
N

),−λs − βb3)

×HN(A0
tm2−N/2+1+·,T (βa4)h(

·
N

), λl − βa4)HN(A0
tm2−N/2+1+·,T (βb4)h(

·
N

),−λl − βb4)

m∏
ν=1

g|Pν |(βP ν
) exp {i(tm1(βa1 + βb1 + βa3 + βb3)

+ tm2(βa2 + βb2 + βa4 + βb4))} dβdλdµ (28)

Now replace in (28) the terms HN(A0
tmi−N/2+1+·,T (β)h( ·

N
),−λk−β) by A(umi

, β)HN(−λk−
β) to get

V3,T =
b

MN2H4
N

∑
ip

M∑
m1=1

M∑
m2=1

∫ π

−π

∫ π

−π

∑

j,s,k,l

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

fϑ0(um1 , λj)fϑ0(um1 , λs)fϑ0(um2 , λk)fϑ0(um2 , λl)
∫

Π8−m

A(um1 , βa1)HN(λj − βa1)A(um1 , βb1)HN(−λj − βb1)A(um2 , βa2)HN(λk − βa2)

×A(um2 , βb2)HN(−λk − βb2)A(um1 , βa3)HN(λs − βa3)A(um1 , βb3)HN(−λs − βb3)

×HN(A(um2 , βa4)HN(λl − βa4)A(um2 , βb4)HN(−λl − βb4)
m∏

ν=1

g|Pν |(βP ν
)

× exp {i(tm1(βa1 + βb1 + βa3 + βb3) + tm2(βa2 + βb2 + βa4 + βb4))} dβdλdµ + ET ,(29)
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where due to the indecomposability of the partitions considered, the following upper

bound is true for the error term ET

b

MN2H4
N

N

T

∑
ip

∫ π

−π

∫ π

−π

JN∑

j,s,k,l=−JN

Kb(λ− λj)Kb(λ− λs)Kb(µ− λk)Kb(µ− λl)

∫

Π8−m

LN(λj − βa1)LN(−λj − βb1)LN(λk − βa2)LN(−λk − βb2)LN(λs − βa3)LN(−λs − βb3)

×LN(λl − βa4)LN(−λl − βb4)LM(S(βa1 + βb1 + βa3 + βb3))LM(S(βa2 + βb2 + βa4 + βb4))dβdλdµ

≤ b log4(N)

MN2

N

T

∑
ip

∫

Π8−m

LN(−βa1 − βb1)LN(−βa2 − βb2)LN(−βa3 − βb3)LN(−βa4 − βb4)

×LM(S(βa1 + βb1 + βa3 + βb3))LM(S(βa2 + βb2 + βa4 + βb4))dβ.

Therefore, and because−βai
−βbi

6= 0 ∀i, βa1+βb1+βa3+βb3 6= 0 and βa2+βb2+βa4+βb4 6=
0, we get that

b log4(N)

MN2

N

T

∑
ip

∫

Π8−m

LN(−βa1 − βb1)LN(−βa2 − βb2)LN(−βa3 − βb3)LN(−βa4 − βb4)

×LM(S(βa1 + βb1 + βa3 + βb3))LM(S(βa2 + βb2 + βa4 + βb4))dβ

≤ b log4(N)

N2M

N

T

N4

S3
log3(M) log3(S) → 0.

Similarly the first term on the right hand side of (29) is bounded by

b log4(N)

N2M

N4

S3
log3(M) log3(S) → 0,

which shows that V3,T → 0 as T →∞. ¥

Lemma 5.5. Under Assumptions 2.1 and 2.2 and if H0 is true, we have for every ` ≥ 3

that

N `M `/2h`/2cum`(Q0,T ) = o(1)

Proof: Let Π = (−π, π] and µ = (µ1, . . . , µ`). We then have

N `M `/2b`/2cum`(Q0,T )

= N−`M−`/2b`/2

M∑
m1,...,ml=1

JN∑
j1,1,...,j1,`=−JN

JN∑
j2,1,...,j2,`=−JN

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

cum{
2∏

k=1

(
IN(um1 , λjk,1

)− fϑ0(um1 , λjk,1
)
)
, . . . ,

2∏

k=1

(
IN(um`

, λjk,`) − fϑ0(um`
, λjk,`

)
)
dµ1 . . . dµ`.
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Using the product theorem for cumulants, we have that

cum{
2∏

k=1

(
IN(um1 , λjk,1

)− fϑ0(um1 , λjk,1
)
)
, . . . ,

2∏

k=1

(
IN(um`

, λjk,`) − fϑ0(um`
, λjk,`

)
)

=
∑
i.p.

n∏
s=1

cum{(IN(ump , λjq,p)− fϑ0(ump , λjq,p)
)
, (p, q) ∈ Ps}

where the sum is over all indecomposable partitions {P1, . . . , Pn} of the table

(1, 1) (1, 2)
...

...

(`, 1) (`, 2).

We consider the sum
∑

i.p.1 over all partitions with |Pi| > 1. That is,

N−`H−2`
2,N (0)M−`/2b`/2

∑
i.p.1

M∑
m1,...,ml=1

JN∑
j1,1,...,j1,`=−JN

JN∑
j2,1,...,j2,`=−JN

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

n∏
s=1

cum{dN(ump , λjq,p)dN(ump ,−λjq,p), (p, q) ∈ Ps}dµ1 . . . dµ` (30)

Using the product theorem of cumulants, see Brillinger (1981), we have to sum over all

indecomposable partitions {Qs,1, . . . , Qs,m} of the table

aps1 ,qs1
bps1 ,qs1

...
...

aps|Ps| ,qs|Ps|
bps|Ps| ,qs|Ps|

for all sets Ps = {(ps1 , qs1), . . . , (ps|Ps| , qs|Ps|)}. Note that apsr ,qsr
and bpsr ,qsr

stand for the

position of dN(u
m

(r)
p

, λ
j
(r)
q,p

) and dN(u
m

(r)
p

,−λ
j
(r)
q,p

) respectively where (r) denotes the position

of dN(u
m

(r)
p

,−λ
j
(r)
q,p

) in a fixed order. For simplicity we use the notation apsr ,qsr
:= as,r and

bpsr ,qsr
:= bs,r. Furthermore, if Qs,i = {cs,1, . . . , cs,k} we set Qs,i = {cs,1, . . . , cs,k−1},

βQs,i
:= (βcs,1 , . . . , βcs,k−1

), βcs,k
= −∑k−1

j=1 βcs,j
and β(s) := (βQs,1

, . . . , βQs,m
). We then
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get that (30) is equal to

(
b

N2H4
2,N(0)M

)`/2 ∑
i.p.1

∑
i.p.∗

M∑
m1,...,ml=1

∑
j1,1,...,j1,`

∑
j2,1,...,j2,`

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

×
n∏

s=1

∫

Π2|Ps|−k

{ |Ps|∏
r=1

(p,q)∈Ps

HN(A0

t
(r)
mp−N/2+1+·,T (βas,r)h(

·
N

), λ
j
(r)
q,p
− βas,r)

×HN(A0

t
(r)
mp−N/2+1+·,T (βbs,r)h(

·
N

),−λ
j
(r)
q,p
− βbs,r)

}{ m∏
r=1

g|Qs,r|(β|Qs,r|)
}

× exp



i

|Ps|∑
r=1

t(r)mp
(βas,r + βbs,r)



 dβ(1) . . . dβ(n)dµ1 . . . dµ`

Replace the terms HN(A0

t
(r)
mp−N/2+1+·,T (β)h( ·

N
), λ − β) by the terms A(u

(r)
mp , β)HN(λ − β)

to get that the above expression is equal to

(
b

N2H4
2,N(0)M

)`/2 ∑
i.p.1

∑
i.p.∗

M∑
m1,...,ml=1

∑
j1,1,...,j1,`

∑
j2,1,...,j2,`

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

fϑ0(umν , λj2,ν )fϑ0(umν , λj2,ν )

×
n∏

s=1

∫

Π2|Ps|−k

{ |Ps|∏
r=1

(p,q)∈Ps

A(u(r)
mp

, βas,r)HN(λ
j
(r)
q,p
− βas,r)A(u(r)

mp
, βbs,r)HN(−λ

j
(r)
q,p
− βbs,r)

}

×
{ m∏

r=1

g|Qs,r|(β|Qs,r|)
}

exp



i

|Ps|∑
r=1

t(r)mp
(βas,r + βbs,r)



 dβ(1) . . . dβ(n)dµ1 . . . dµ` + ET (31)

where the error term ET is bounded by

(
b

N2H4
2,N(0)M

)`/2
N

T

∑
i.p.1

∑
i.p.∗

JN∑
j1,1,...,j1,`=−JN

JN∑
j2,1,...,j2,`=−JN

∫

Πl

∏̀
ν=1

Kb(µν − λj1,ν )Kb(µν − λj2,ν )

n∏
s=1

{ |Ps|∏
r=1

(p,q)∈Ps

∫

Π2|Ps|−m

LN(λ
j
(r)
q,p
− βas,r)LN(−λ

j
(r)
q,p
− βbs,r)LM(S(βas,r + βbs,r + βax,y + βbx,y))

}

dβ(1) . . . dβ(n)dµ1 . . . dµ`
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for some (x, y) ∈ {1, . . . , n}×{1, . . . , |Px|} with x 6= s. Integration over all βas,r and βbs,r

gives that expression (31) is bounded by

(
b

N2H4
2,N(0)M

)`/2
N

T

M `−1N

S
N2` → 0,

which completes the proof. ¥

Lemma 5.6. Under Assumptions 2.1 and 2.2 and if H0 is true, we have that

N
√

Mb(QT − µT ) = N
√

Mb(Q0,T − µT ) + op(1)

Proof:

QT = Q0,T +
1

MN2

M∑
i=1

∫ π

−π

{
JN∑

j=−JN

Kb(λ− λj)

(
IN(ui, λj)

fϑ̂(ui, λj)
− IN(ui, λj)

fϑ0(ui, λj)

)}2

dλ

+
2b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)

(
IN(ui, λj)

fϑ̂(ui, λj)
− IN(ui, λj)

fϑ0(ui, λj)

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

= Q0,T + Y1,T + Y2,T

with an obvious notation for Y1,T and Y2,T . The term Y1,T is bounded by

|Y1,T | ≤ sup
u,j

(
fϑ0(u, λj)− fϑ̂(u, λj)

fϑ̂(u, λj)

)2
b1/2

M1/2N

M∑
i=1

∫ π

−π

{∑
j

Kb(λ− λj)
IN(ui, λj)

fϑ0(ui, λj)

}2

dλ

= Op

(
b1/2

M1/2

)
.

For the second term we have

Y2,T =
b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)

(
IN(ui, λj)

fϑ0(ui, λj)
− 1

)(
fϑ̂(ui, λj)− fϑ0(ui, λj)

fϑ̂(ui, λj)

)

×
(

IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

+
b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)

(
fϑ̂(ui, λj)− fϑ0(ui, λj)

fϑ̂(ui, λj)

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

= W1,T + W2,T

with an obvious notation for W1,T and W2,T .
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By a standard Taylor series argument, for fixed u, we have that for ϑ̂(u) = (ϑ̂1(u), ϑ̂2(u), . . . , ϑ̂p(u))′

and ϑ0(u) = (ϑ1(u), ϑ2(u), . . . , ϑp(u))′, ϑ̃0(u) = (ϑ̃1(u), ϑ̃2(u), . . . , ϑ̃p(u))′ with ||ϑ̃(u) −
ϑ0(u)|| ≤ ||ϑ̂(u)− ϑ0(u)|| exists such that

fϑ̂(u, λ)− fϑ0(u, λ)

fϑ̂(u, λ)
=

Op(1)

{
p∑

m=1

(ϑ̂m(u)− ϑm(u))f
(1)
T (ϑm, λ) +

1

2

p∑
m=1

p∑

l=1

(ϑ̂m(u)− ϑm(u))(ϑ̂l(u)− ϑl(u))f
(2)
T (ϑ̃m, ϑ̃l, λ)

}

(32)

where f
(1)
T (ϑm, λ) and f

(2)
T (ϑ̃m, ϑ̃l, λ) denote the first and second second partial derivatives

of f with respect to ϑm and ϑl and ϑm respectively, and evaluated at ϑm and (ϑ̃m, ϑ̃l).

Notice that the Op(1) term appear in (32) is due to the fact that |1/fϑ̂(u, λ)| = Op(1).

Using (32) we get

W1,T = Op(1)
b1/2

NM1/2

M∑
i=1

p∑
m=1

(ϑ̂m(ui)− ϑm(ui))

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)f
(1)(ϑm, λj)

×
(

IN(ui, λj)

fϑ0(ui, λj)
− 1

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

+Op(1)
b1/2

NM1/2

M∑
i=1

p∑

l=1

p∑
m=1

(ϑ̂l(ui)− ϑl(ui))(ϑ̂m(ui)− ϑm(ui))

∫ π

−π

∑
j,s

Kb(λ− λj)

×Kb(λ− λs)f
(2)(ϑ̃m, ϑ̃l, λj)

(
IN(ui, λj)

fϑ0(ui, λj)
− 1

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

= Op(N
−1/2) + Op(b

1/2).

The Op(N
−1/2) term is due to the fact that supu |ϑ̂m(u)−ϑm(u)| = Op(N

−1/2) and that

b1/2

NM1/2

M∑
i=1

∫ π

−π

∑
j,s

Kb(λ− λj)Kb(λ− λs)f
(1)(ϑm, λj)

(
IN(ui, λj)

fϑ0(ui, λj)
− 1

)(
IN(ui, λs)

fϑ0(ui, λs)
− 1

)
dλ

can be handled as Q0,T . Similarly we can show that W2,T = op(1) which completes the

proof. ¥
Proof of Theorem 2.1: By Lemma 5.3, 5.4 and 5.5 we have that the cumulants

of all orders of Q0,T converge to the corresponding cumulants of the limiting Gaussian

distribution. The assertion of the theorem follows then by Lemma 5.6. ¥
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Proof of Theorem 3.1 : Follow the same steps as in the proof of Lemma 5.6 substi-

tuting ϑ for ϑ0 in fϑ0(ui, λj) and using the property that under the alternative hypothesis,

ϑ̂ is a
√

N -consistent estimator of ϑ. ¥
Proof of Theorem 3.2: First notice that for T ≥ T0 and by Theorem 2.3 of Dahlhaus

(1996), {X+
t,T} is locally stationary with

X+
t,T =

∫ π

−π

Â0
t,T (λ)eiλtdξ+(λ) (33)

where

(i) ξ+(λ) is a Gaussian stochastic process on (−π, π] and

cov+{ξ+(λk), ξ
+(λj)} = δ(k, j)dλk (34)

(ii) There exists a constant K and a function Â(u, λ) on [0, 1]× (−π, π) such that for

all T ,

sup
t,λ
|Â0

t,T − Â(t/T, λ)| ≤ K/T

(iii) Furthermore,

fϑ̂(u)(u, λ) =
1

2π
|Â(u, λ)|2 (35)

where ϑ̂(u) = (β̂1(u), . . . , β̂p(u), σ̂2(u)) and the function 1/f(u, λ; ϑ̂) is bounded in

probability.

Now, following the same steps as in the proof of Lemma 5.3, 5.4 and 5.5, we get that the

limits of all cumulants of the bootstrap test statistic N
√

Mb(Q+
T − µT ) converge to the

cumulants of the limiting Gaussian distribution given in Theorem 3.2. ¥
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b = 0.3 b = 0.2
T=512, N=64 a = 0.01 a = 0.05 a = 0.1 a = 0.01 a = 0.05 a = 0.1

κ = 1 0.726 0.842 0.904 0.720 0.868 0.902
κ = 2 0.766 0.874 0.936 0.740 0.882 0.934

b = 0.2 b = 0.1
T=1024, N=128 a = 0.01 a = 0.05 a = 0.1 a = 0.01 a = 0.05 a = 0.1

κ = 1 0.832 0.870 0.906 0.838 0.886 0.908
κ = 2 0.924 0.972 0.986 0.954 0.990 0.996

Table 2. Rejection frequencies in 500 replications of the model Xt,T =
0.9Xt−1,T + εt for 1 ≤ t ≤ [T/2] and Xt,T = −0.5Xt−1,T + εt for [T/2] + 1 ≤
t ≤ T .
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Figure 1. The area within the bold marked lines presents the possible
range of values of the parameter λ, (y-axis) and δ, (x-axis), according to
Assumption 2.2 (iii).
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(a) κ = 1
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Figure 2. Estimated densities of the distribution of the test statistic QT
under the null hypothesis of a first order tvAR process and its different
approximations. The solid lines in (a) and (b) are the estimated exact den-
sities, the dashed lines are the estimated densities of the bootstrap approxi-
mations while the dotted lines are the densities of the asymptotic Gaussian
approximations.
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