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Frequency-Domain Turbo Equalization for MIMO
Underwater Acoustic Communications

Jian Zhang, Yahong Rosa Zheng, and Chengshan Xiao
Dept. of Electrical & Computer Eng., Missouri University of Science & Technology, Rolla, MO 65409, USA

Abstract— This paper investigates a low-complexity frequency-
domain turbo equalization (FDTE) based on linear minimum
mean square error (LMMSE) criterion for single-carrier (SC)
multiple-input multiple-output (MIMO) underwater acoustic
communications (UAC). The receiver incorporates both the equal-
izer and the decoder which exchange the extrinsic information
on the coded bits for each other to implement the iterative
detection. The channel impulse responses (CIRs) required in
the equalization are estimated in the frequency domain (FD)
by inserting the well-designed pilot blocks which are frequency-
orthogonal Chu sequences. The proposed SC-MIMO-FDTE
architecture is applied to the fixed-to-fixed underwater data
gathered during SPACE08 ocean experiments in October 2008,
where multiple transducers and hydrophones are deployed in
communication ranges of 200m and 1000m, and the channel
bandwidth is 9.765625 kHz. The phase shift keying (PSK) signals
are transmitted from multiple transducers in various block sizes.
The proposed transceiver has been demonstrated to improve the
bit-error-rate (BER) performance significantly by processing the
QPSK data blocks with block length of 1024 in 200m and 1000m
ranges. The average BERs obtained by turbo detection with 3
iterations can achieve approximately 1.4 × 10−4 for the 200m
system and 4.4 × 10−5 for the 1000m system.

I. INTRODUCTION

High data rate with low BER is an important objective for
underwater acoustic communications, which is very challeng-
ing due to limited transmission bandwidth, severe frequency
selective fading, and time-varying Doppler shift [1]-[4]. Re-
cently, MIMO technology combined with multicarrier trans-
mission [5]-[7] and single carrier transmission with frequency
domain equalization (SC-FDE) [8], [9] have been investigated
to increase the information data rates and combat the severe
inter-symbol interference (ISI). Furthermore, various channel
coding schemes, such as space-time trellis codes (STTC),
layered space-time codes (LSTC), turbo codes [10], and low-
density parity-check codes [11], have been applied to the
UAC to lower the BER and increase the reliability of the
communications over shallow water in medium range under-
water channels. These aforementioned algorithms have been
tested by undersea experimental data and displayed very good
performance in various communication tasks.

In this paper, frequency-domain turbo LMMSE equaliza-
tion is employed for SC-MIMO underwater communications.
The concept of LMMSE turbo equalization was provided
in [12] and [13], which was developed in the time domain
for single-input single-output (SISO) systems with multi-level
modulations. The time-domain turbo equalization (TDTE)
was further extended to MIMO frequency selective channels

in [14]. The TDTE has been applied to radio frequency
(RF) wireless communications to improve the performance
of data detection. The frequency-domain turbo equalization
(FDTE) was investigated in [15]-[17], and these work are
focusing on SISO systems. This paper considers to extend
the SISO FDTE scheme [15] and modify the RF MIMO
FDTE scheme [18],[19] to fit into MIMO underwater acoustic
communications. The proposed algorithm will be employed to
process real-world undersea experimental data. In this turbo
detection, the channel equalization and channel decoding are
iteratively applied on the same block of data, and the extrinsic
information on the coded bits are exchanged between the two
modules. Different from the traditional LMMSE FDE, FDTE
takes into account the a-priori information of the transmitted
symbols and output the estimation of the extrinsic information
for the coded bits which are provided to the decoder as a-priori
information. The decoder which is implemented by maximum-
a-posterior (MAP) criterion will generate the extrinsic bit
information that is fed back to the equalizer. This processing
will be repeated depending on the number of iterations, and
the BER performance will be enhanced steadily. The channel
estimation is performed in the frequency domain by inserting
the frequency-orthogonal Chu sequence at the front of each
block. Experiment results, which are obtained by processing
QPSK data blocks of 200m and 1000m systems collected dur-
ing SPACE08, indicate that the average BER performance for
both systems can achieve 10−4 level for 200m range and 10−5

for 1000m range by using the FDTE with 3 iterations when the
channel bandwidth is 9.765625 kHz and the carrier frequency
is 13 kHz. As opposed to other non-iterative detection methods
like Viterbi hard decision (HD) and Viterbi soft decision (SD),
the FDTE outperforms these methods.

Throughout the paper, we use [·]T , [·]H , and (·)−1 to
denote the matrix transpose, Hermitian transpose, and inverse,
respectively.

II. TRANSCEIVER STRUCTURE

We consider a MIMO underwater acoustic communica-
tion system with Q transmit transducers and P receive hy-
drophones. The structure of the transceiver is shown in Fig.1.
At each transmitter, a bitstream is coded by a convolutional
encoder with coding rate R, and the coded bits are permuted
by a random interleaver to generate a bit sequence which is
assumed to be independent. This assumption is guaranteed by
the random interleaver. The interleaved coded bits are then

1-4244-2523-5/09/$20.00 ©2009 IEEE
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Fig. 1. Structure of transceiver for single-carrier MIMO underwater communications

mapped into 2M -ary symbols according to a symbol alphabet
set S = {α1, · · · , α2M }, where αm has unit average power,
which is mapped by the bit pattern [dm,1 · · · dm,M ]. The mod-
ulated symbols are grouped into blocks with length of N , and
Nzp zeros are appended at the end of each data block in order
to avoid inter-block interference (IBI) and make frequency-
domain method applicable at receivers. The zero-padded data
blocks are transmitted from all transducers simultaneously
at the same carrier frequency over the underwater acoustic
channels.

The received signals measured by hydrophones are syn-
chronized first and then demodulated to baseband signals.
Overlap-add operations are conducted on the received blocks,
and the tasks of channel estimation and equalization are all
performed in the frequency domain. The estimated channels
obtained by pilot blocks are employed in the FDTE which
generates a-posteriori information L(cq,k|x̂q) corresponding
to the coded bits cq,k based on the estimated symbols x̂q,
where q = 1, · · · , Q, and k = 1, · · · ,MN . The information
L(cq,k|x̂q) is defined as the log-likelihood ratio (LLR) as

L(cq,k|x̂q) = log
Pr

(
L(cq,k = 0|x̂q)

)

Pr

(
L(cq,k = 1|x̂q)

) . (1)

The extrinsic information LE
e (cq,k) provided by the equal-

izer can be gleaned by subtracting the a-priori information
LD

a (cq,k) transferred by the decoder. The deinterleaved ex-
trinsic information will be provided to the decoder as the a-
priori information to generate the soft bit information L(cq,k).
The decoder is implemented in MAP criterion by the BCJR
algorithm proposed in [20]. The extrinsic information gleaned
by the decoder will be interleaved to feed back to the equalizer
as the a-priori information. This iterative detection scheme
is performed independently for each data stream, but the a-
priori information from all MAP decoders will be combined
to equalize the received blocks in the equalizer.

III. FREQUENCY-DOMAIN TURBO EQUALIZATION AND

CHANNEL ESTIMATION

We use xq = [xq,1 · · ·xq,N ]T to denote the data block
transmitted by the q-th transducer, where q = 1, · · · , Q,

and xq,i ∈ S corresponds to the interleaved coded bits
[cq,k · · · cq,k+M−1], k = M(i − 1) + 1. We define F

N
to be

the DFT matrix of size N × N , i.e., its (i, j)-th element is

given by exp
(

−j2π(i−1)(j−1)
N

)
. Then the frequency-domain

representation of xq can be written as Xq = FNxq. In the
same way, yp and Yp denote the received data block and
its frequency domain representation at the p-th hydrophone,
respectively. Hence, we have the system model expressed by
frequency tones as follows [8]:

Yn =
Q∑

q=1

Hq,nXq,n + Vn, n = 1, · · · , N (2)

where n represents the frequency tone, Xq,n is the n-th ele-
ment of Xq , Yn = [Y1,n, · · · , YP,n]T is the n-th tone of the re-
ceived block on the P hydrophones, Vn = [V1,n, · · · , VP,n]T

is the frequency-domain representation of white Gaussian
noise, and Hq,n = [λ1,qH1,q;n, · · · , λP,qHP,q;n]T is the
channel frequency responses on the n-th tone for the q-th
transducer. Here, λp,q = 1

N

∑N
i=1 exp(j2πfp,qiT + θp,q) in

which fp,q is the Doppler drift for the (p, q)-th subchannel,
θp,q is the initial phase error, and T is the symbol period [8].

Before performing turbo equalization, the mean and vari-
ance of xq,i should be calculated based on the a-priori
information LD

a (cq,k).

μq,i = E[xq,i]=
∑

αm∈S
αm · Pr(xq,i = αm)

=
∑

αm∈S
αm

Mi∏
k=M(i−1)+1

Pr(cq,k = dm,(kmodM)) (3)

νq,i =
∑

αm∈S
|αm|2Pr(xq,i = αm) − |μq,i|2 (4)

where dq,k ∈ {0, 1} is determined by αm. For example,
a quadrature phase shift keying (QPSK) symbol alphabet is
selected to map the bit pattern [00, 01, 11, 10] into S =
[1, j,−1,−j] correspondingly. Then the mean of xq,i can be



calculated by the following equation:

μq,i =
1
2

(
tanh

(1
2
L(cq,2(i−1)+1)

)
+ tanh

(1
2
L(cq,2i)

))

+ j · 1
2

(
tanh

(1
2
L(cq,2(i−1)+1)

) − tanh
(1
2
L(cq,2i)

))
(5)

and the variance is given by:

νq,i = 1 − |μq,i|2. (6)

A. Low Complexity FDTE

We extend the FDTE of SISO systems introduced in [15]
to the MIMO case. This extended MIMO FDTE is also a
modified version of [18]. The equalizer incorporates the soft
information of the coded bits to compute the soft symbols μq,i.
Then DFT is applied to convert the time-domain soft symbols
to frequency domain which is represented by Sq. The equalizer
coefficients are derived by using minimum mean square error
(MMSE) criterion which can be expressed as:

Wq,n =K−1
q Uq,n, n = 1, · · · , N (7)

where Uq,n =
( ∑Q

q=1 ν̄qĤq,nĤH
q,n + σ2IP

)−1

Ĥq,n, ν̄q =
1
N

∑i=N−1
i=1 νq,i and Kq =

(
1+ 1−ν̄q

N

∑N
i=1 UH

q,nĤq,n

)
. σ2 is

the average noise power, and IP is the unit matrix with the
size of P × P .

Apply the coefficients to the received blocks in the fre-
quency domain and obtain the soft cancelation signal given
by

Zq,n = WH
q,n

[
Yn −

Q∑
q=1

Ĥq,nSq,n

]
. (8)

Then the equalized symbol for the i-th data of the q-th branch
can be expressed as:

x̂q,i =
1
N

FH
N · Zq +

μq,i

N

N∑
n=1

WH
q,n · Ĥq,n (9)

with Zq =
[
Zq,1, · · · , Zq,N

]T
.

B. Coded bit extrinsic LLR computation

An assumption is made that the equalized symbol is subject
to Gaussian distribution given the transmitted symbol, which
is represented by:

x̂q,i = ρqxq,i + ηq (10)

where ηq is N (0, σ2
ω). The conditional probability density

function (pdf) P (x̂q,i|xq,i = αm) is represented by:

P (x̂q,i|xq,i = αm) =
1

πσ2
ω

exp
(
−|x̂q,i − ρqαm|2

σ2
ω

)
. (11)

The extrinsic LLR for the coded bit can be calculated by:

LE
e (cq,k) (12)

=
∑

αm:dm,kmodM =0 P (x̂q,i|αm)
∏

∀k
′:k′�=k

Pr(c
q,k

′ =d
m,k

′
modM

)∑
αm:dm,kmodM =1 P (x̂q,i|αm)

∏
∀k

′:k′�=k
Pr(c

q,k
′ =d

m,k
′

modM
) .(13)

C. Frequency-domain channel estimation

The time-varying channels are estimated in the frequency
domain by inserting a pilot block prior to the data block. The
pilot blocks transmitted by all antennas are overlapped in the
time domain but orthogonal in the frequency domain. This
bandwidth-efficient method can be achieved by repeating and
rotating the Chu sequence in designing the pilot blocks for
each antenna. With this method, a length-Np/Q(Np/Q ≥ L)
Chu sequence is generated as the basic training sequence
denoted by st. The length-Np pilot sequence of the first
antenna can be constructed by simply duplicating st Q times.
As a result, Q − 1 zeros are inserted between adjacent
frequency tones of the basic Chu sequence to shape a comb-
like spectrum. Then Q − 1 phase-shifted sequences can be
constructed as the pilot blocks of the other Q − 1 antennas,
whose i-th symbol is multiplied by ej2π(i−1)(q−1)/Np with
q = 2, · · · , Q. As a result, the phase-shifted Chu sequences
are orthogonal in the QNp frequency tones. At receivers, the
received pilot blocks are converted to the frequency domain
to estimated all the QP subchannels by using the method
introduced in [21]. The detail is omitted here for brevity.

IV. EXPERIMENTAL RESULTS

Experimental data were collected during the SPACE08
experiment conducted by Woods Hole Oceanographic Insti-
tution (WHOI), in October 2008. Six receiver systems are
deployed in six different locations away from the transducers:
80-meter southeast and southwest, 200-meter southeast and
southwest, and 1000-meter southeast and southwest. We will
present detailed results for the 200-meter and 1000-meter
systems equipped with 2 transducers in the transmitter and
12 hydrophones in the receiver. Binary information bits were
encoded by a rate-1/2 convolutional encoder with coding
generators (1+D+D2 +D3, 1+D2 +D3). The encoded bits
were interleaved in a random fashion, and modulated to PSK
symbols with a bandwidth of 9.765625 kHz, and the modu-
lated data symbols were transmitted at a carrier frequency of
13 kHz. The sampling frequency is set to 1e7/256 = 39.0625
kHz and the baseband received data were sampled with 2
samples/symbol. Hence, 2N -point FDTE was employed to
improve the performance of data processing [22].

In this conference paper, we will focus on the QPSK data
blocks with length of N=1024 symbols. The length of pilot
symbols Np = 240 for two transmitters and the MIMO channel
impulse responses (CIRs) can be estimated by the frequency-
domain channel estimation method introduced in section III.
The multipath fading channel lengths were estimated to span
90 symbols for the 200-meter systems and 80 symbols for the
1000-meter systems. The gap (padded zeros) between adjacent
data blocks was selected to be 120-symbol interval (12.3 ms
duration), which is large enough to avoid IBI. The typical
normalized amplitude responses of the channels estimated by
pilot blocks corresponding to 2 transmitters for the 1000m
system are plotted in Fig. 2 and Fig. 3. The counterparts of
the amplitude responses for 200m system are shown in Fig.



4 and Fig. 5. As shown in these figures, more than one peak
appeared in the CIRs, and the highest peak is not located at
the beginning of the CIRs which indicate that the channels are
non-minimum phase. Another observation from these figures
is that the CIRs for the 200m system have more power than
the ones for 1000m system, which matches the real situation
well.
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Fig. 2. CIRs of twelve channels for Tx1 in the 1000m southwest system.
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Fig. 3. CIRs of twelve channels for Tx2 in the 1000m southwest system.

In evaluating the BER performance, we compared the non-
iterative detection and iterative detection schemes. For non-
iterative detections, the equalizer and decoder are independent
from each other, which implies that they work separately and
no information is fed back from decoder to equalizer. The
equalizer part was carried out by MMSE FDE algorithms
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Fig. 4. CIRs of twelve channels for Tx1 in the 200m southeast system.
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Fig. 5. CIRs of twelve channels for Tx2 in the 200m southeast system.

described in [8], and the equalized symbols are decoded by
Viterbi hard-decision (HD) and soft-decision (SD) decoding
algorithms to recover the information bits. For iterative de-
tection, the information bits are detected by the cooperation
of channel equalization and channel decoding. Table I and
Table II list the coded BER of different detection schemes
for 200m and 1000m systems with QPSK modulation and
N = 1024. As listed in the two tables, the FDTE with 1
iteration has a similar average BER performance with the
Viterbi SD method, and they both achieve better results than
Viterbi HD. The FDTE with 3 iterations provides the best
detection performance among these methods, which achieves
BER in the order of 10−4 for 200m systems and 10−5 for
1000m systems. With the increasing of iteration number, the
performance tend to be improved steadily.



Table I: BERs of the 200m systems for QPSK, N = 1024
Index Viterbi Viterbi FDTE FDTE

of frame HD SD 1 iter 3 iters
1 0.0117 2.0751e-3 1.6798e-3 4.9407e-4
2 6.7194e-3 5.4348e-4 2.4704e-4 0
3 2.2233e-3 2.9644e-4 0 0
4 8.1028e-3 1.4822e-3 2.4704e-4 0
5 0.0178 1.8775e-3 4.9407e-4 0
6 0.0893 0.0344 0.0251 9.3874e-4
7 0.0782 0.0366 0.0328 0
8 0.0710 0.0232 0.0146 0
9 0.134 0.0602 0.0448 0

10 5.7312e-3 3.9526e-4 9.8814e-5 0
Average 0.0425 0.0143 0.0121 1.4328e-4

Table II: BERs of the 1000m systems for QPSK, N = 1024
Index Viterbi Viterbi FDTE FDTE

of frame HD SD 1 iter 3 iters
1 9.1403e-3 1.3340e-3 6.9170e-4 2.4704e-4
2 7.9051e-3 2.9644e-4 4.4466e-4 1.9763e-4
3 0.0121 1.3834e-3 3.9526e-4 0
4 2.8656e-3 9.8814e-5 0 0
5 2.4209e-3 1.9763e-4 9.8814e-5 0
6 7.4111e-4 4.9407e-5 4.9407e-5 0
7 2.4209e-3 1.4822e-4 0 0
8 1.0870e-3 4.9407e-5 0 0
9 2.5198e-3 9.8814e-5 0 0

10 4.4466e-4 0 0 0
Average 4.1645e-3 3.6561e-4 1.6798e-4 4.4467e-5

V. CONCLUSION

In this paper, a low-complexity frequency-domain turbo
equalization scheme is presented to process the undersea data
collected in MIMO communication systems during SPACE08
ocean experiments conducted in October, 2008. The time-
varying underwater acoustic MIMO channels were estimated
by the frequency orthogonal pilot blocks at the front of each
data block in the frequency domain. The estimated channels
were employed in the iterative turbo detection. The FDTE is
proceeding iteratively with the exchange of coded bit extrinsic
information between the channel equalizer and the channel
decoder. For channel bandwidth being 9.765625 kHz with car-
rier frequency of 13 kHz, it has been shown via experimental
data that the average bit error rate of two-transducer twelve-
hydrophone system with QPSK modulation can achieve 10−4

for 200m and 10−5 for 1000m communication systems.
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[16] M. Tüchler and J. Hagenauer, “Linear time and frequency turbo equal-
ization,” in Proc. VTC Fall 2001, pp.2773-2777.

[17] B. Ng, C. T. Lam, and D. Falconer, “Turbo frequency domain equal-
ization for single-carrier broad wireless systems,” IEEE Trans. Wireless
Commun., vol.6, pp.759-767, Feb. 2007.

[18] Y. Wu, X. Zhu, and A. K. Nandi, “Low complexity adaptive turbo space-
frequency equalization for single-carrier multiple-input multiple output
systems,” IEEE Trans. Wireless Commun., vol. 7, pp. 2050-2056, June
2008.

[19] Y. Wu, X. Zhu, and A. K. Nandi, “Low complexity adaptive turbo
frequency-domain channel estimation for single-carrier multi-user detec-
tion,” IEEE Trans. Wireless Commun., vol.7, pp.4094-4099, Nov. 2008.

[20] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inform.
Theory, vol.20, pp.284-287, Mar. 1974.

[21] Y. R. Zheng and C. Xiao, “Channel estimation and symbol detection for
single-carrier broadband MIMO-SCFDE channels,” in IEEE Intl. Conf.
Commun.(ICC’08), Beijing, China, May 19-23, 2008.

[22] M. V. Clark, “Adaptive frequency-domain equalization and diversity
combining for broadband wireless communications,” IEEE J. Select
Areas Commun., vol.16, pp.1385-1395, Oct. 1998.


	Frequency-Domain Turbo Equalization for MIMO Underwater Acoustic Communications
	Recommended Citation

	tmp.1413901095.pdf.ylB3x

