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Nonlinear acoustic metamaterials offer the potential to enhance wave control opportunities be-
yond those already demonstrated via dispersion engineering in linear metamaterials. Managing the
nonlinearities of a dynamic elastic system however remains a challenge, and the need now exists for
new strategies to model and design these wave nonlinearities. Inspired by recent research on soft
architected rotating-square structures, we propose herein a design for a nonlinear elastic metasurface
with the capability to achieve nonlinear acoustic wave reflection control. The designed metasurface
is composed of a single layer of rotating squares connected to thin and highly deformable ligaments
placed between a rigid plate and a wall. It is shown that during the process of reflection at normal
incidence, most of the incoming fundamental wave energy can be converted into the second harmonic
wave. A conversion coefficient of approximately 0.8 towards the second harmonic is derived with
a reflection coefficient of < 0.05 at the incoming fundamental frequency. The theoretical results
obtained using the harmonic balance method (HBM) for a monochromatic pump source are con-
firmed by time-domain simulations for wave packets. The reported design of a nonlinear acoustic
metasurface can be extended to a large family of architected structures, thus opening new avenues
for realistic metasurface designs that provide for nonlinear or amplitude-dependent wave tailoring.

I. INTRODUCTION

Acoustic metamaterials composed of local resonators
have proven to be of great interest, due to their abil-
ity to perform a variety of wave control functionalities
at wavelengths much longer than the dimensions of the
resonant elements. A wide array of novel acoustic phe-
nomena such as slow sound [1–3], negative refraction [4–
10], subwavelength wave guiding [11, 12], sound absorp-
tion [13–20] and cloaking [21–24] have been demonstrated
in appropriately designed metamaterials. Compared to
the metamaterials composed of linear resonators, non-
linear metamaterials offer a rich and diverse set of non-
trivial acoustic phenomena, including asymmetric trans-
mission [11, 25–28], nonlinear pulse and soliton propaga-
tion [29–31], harmonic generation [32, 33] and breathers
[34, 35]. Nevertheless, the design of nonlinear metamate-
rials, which was initially investigated in optics for the
purpose of enhancing the higher harmonic generation
[36–38], has been studied much less extensively in the
acoustic field [39].
The key limitations in developing nonlinear acoustic

metamaterials pertain to the typically weak efficiency of
their nonlinear response, combined with a lack of control
over this nonlinearity. Examples of tailoring the acous-
tic or elastic wave nonlinearity of a system are found in
granular crystals, yet the tunability is intrinsically lim-
ited due to the Hertz-Mindlin contact behavior [40, 41].
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Being able to manage the wave nonlinearity of a system,
over a wider parameter space, thus appears as the main
challenge to developing nonlinear acoustic metamateri-
als.

In studying a lumped-element model of a nonlinear
metasurface [42], we recently demonstrated that nonlin-
ear acoustic effects can be enhanced in a subwavelength
metasurface comprising nonlinear oscillators, thanks to
the resonance process. This process intrinsically in-
creases the characteristic interaction times as well as lo-
cal wave amplitudes. We have reported a nonlinear fre-
quency conversion effect from the incoming fundamental
wave to the reflected second harmonic. However, the key
link between the lumped-element model of this nonlinear
metasurface and a realistic structure is missing. More
specifically, the method of designing elastic springs with
an effective quadratic nonlinearity still needs to be de-
termined.

Recent research has demonstrated that soft architected
materials enable manipulating and controlling elastic and
acoustic waves [31, 43–48]. The intrinsic structure and
property of this class of architected materials are not
only modifiable by harnessing the elastic buckling result-
ing from different statically-produced pre-deformations
[44, 46, 47], but also dynamically tunable over a broad
range of frequencies by taking advantage of geometric
nonlinearities in the basic building blocks [31, 48]. As
such, these nonlinearities provide the opportunity to ex-
pand the ability of existing metamaterials and enable
them to support a wide variety of dispersive and non-
linear wave propagation.

Inspired by the latest research on the dynamics of soft
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architected materials comprising rotating units [31, 49],
our attention has been drawn to the fact that the lo-
cal rotational degree of freedom necessarily leads to the
presence of sinusoidal functions of the angle of rotation in
the motion equations. These nonlinear functions of wave
variables constitute geometric type sources of wave non-
linearity and are found to depend on the building blocks
(elasticity, geometry, inertia) of the architected structure.
Consequently, in the aim of proposing a realistic design
of a nonlinear elastic metasurface that accomplishes the
same nonlinear conversion as in [42] but with a higher
efficiency and over a much larger parameter space, the
present paper analyzes a metasurface composed of a sin-
gle layer of rotating units that are connected with a rigid
moving plate and a wall, via thin and highly deformable
ligaments. Special focus is placed on the nonlinear re-
flection process, thus leading to an optimal conversion
from an incident sinusoidal wave towards its reflected
second harmonic. By adjusting the physical properties
of the metasurface, the desired nonlinear conversion is
demonstrated to be feasible over a wide parameter space,
hence enabling the extension of the proposed single de-
sign to a family of dynamic rotating-element metastruc-
tures. The predictive theoretical framework developed is
also expected to help manage the wave nonlinearity by
metamaterials and moreover guide future experiments in
this field.

II. NONLINEAR ELASTIC METASURFACE

DESIGN AND THE REFLECTION PROBLEM AT

NORMAL INCIDENCE

In the previous research on wave propagation in a soft
architected material made of rotating square units [31],
it has been demonstrated that the studied 3D-printed
material can be efficiently described by a lump elastic
model. Accordingly, based on the theoretical model em-
ployed in [31], we propose herein a realistic design for a
nonlinear metasurface. Note that the spring stiffness can
be tuned by printing ligaments with different geometri-
cal parameters or geometries, or by changing the printed
material, in principle. As shown in Fig. 1, this design
comprises periodically arranged rigid squares, connected
via ligaments at their corners to a moving rigid plate
(at the front end of the single square layer) and a fixed
wall (at the back end of this square layer). The mov-
ing plate is assumed to be non-deformable and thus its
possible vibration modes are not considered here. The
ligaments are considered to be thin, massless and highly
deformable, thus playing the role of elastic springs. The
metasurface unit cell is composed of two identical squares
with elementary masses m sandwiched between the solid
plate with a surface mass density of 2m0 and the rigid
wall. The two unit cell squares, featuring the same ini-
tial angle of rotation θ0 as defined in Fig. 1, are placed in
symmetrical positions at rest. Since a horizontal force ap-
plied to the plate produces simultaneously square trans-
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Figure 1. Nonlinear metasurface design: (a) Single layer
of periodically arranged rigid squares sandwiched between a
moving rigid plate and a fixed wall, with elastic springs run-
ning between all the elements. The propagation medium (1)
in front of the designed metasurface is assumed to be semi-
infinite. (b) The metasurface unit cell is composed of two
identical squares with elementary mass m. The front rigid
plate has an elementary mass 2m0. (c) Due to symmetry,
taking into account the motion of just one square of mass m
and the face plate with a mass per unit length of m0 is demon-
strated to be sufficient for the considered reflection problem
at normal incidence.

lation and rotation, we take into account three different
springs at each square vertex, to simulate the elastic be-
haviors of the ligaments : a longitudinal (compression or
tension) spring with stiffness kl, a shear spring with stiff-
ness ks, and a bending spring with stiffness kθ. During
the structure deformation, the connections elements are
maintained, as assumed in the work of Deng et al. [31].
The proposed metasurface structure is assumed to be

infinitely long along the vertical direction y, while the
plate thickness along x is assumed to be significantly less
than that of the single square layer. The considered de-
sign then is a 2D metastructure in the (x, y) plane; more-
over, the elementary lateral surface area of the metasur-
face unit cell is denoted by S.
Throughout this paper, focus is placed on the reflection

process by the designed metasurface, with the propaga-
tion medium (1) in front of the metasurface assumed to
be semi-infinite. More specifically, in order to reduce the
complexity of the considered nonlinear problem, only the
normal incidence is taken into account in our study. The
metasurface width h along the x direction is assumed to
be much smaller than the acoustic wavelength in medium
(1), i.e., h ≪ λ. Let’s now consider a plane stress wave
σinc of amplitude Ainc incident from −∞ and propagat-
ing along the positive x direction. The problem there-
fore is one-dimensional, and the incident and reflected
waves can be written as a function of x − ct and x + ct,
respectively (using the time convention iωt), with c de-
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noting wave velocity in the propagation medium. The
total stress σ can be decomposed into an incoming stress
wave and a reflected stress wave σ = σinc + σref . The
one-dimensional wave equation,

ρ
∂2ux

∂t2
=

∂σ

∂x
(1)

with ρ as the mass density of the propagation medium
and ux the displacement along the x direction, must be
satisfied everywhere and especially on the metasurface
at x = 0, which leads to the following relationship be-
tween the incident and reflected waves for the considered
problem:

σref = σinc + ρc
∂u1

∂t
(2)

where u1 denotes the displacement of the plate with a
surface mass density of m0.

Since the single square layer is periodically arranged
and assumed to be infinitely long, with homogenous exci-
tation along y, the two squares of each unit cell translate
with the same displacement and moreover rotate with
the same dynamic angle yet in opposite directions. Con-
sequently, the motions of just one square and of its face
plate are sufficient to describe the full dynamics.

For a systematic analysis, we introduce the follow-
ing dimensionless parameters: normalized displacements
Ui = ui/2l, (i=1,2) of the plate and squares, respectively,
with 2l denoting the diagonal length of the squares, pul-
sation Ω = ω/ω0 with ω0 =

√
kl/m, time τ = ω0t, in-

ertial moment of squares α = J/ml2, normalized shear,
bending stiffnesses Ks = ks/kl and Kθ = kθ/kll

2 respec-
tively, and lastly mass ratio αm = m0/m.

Based on previous results and validations [31, 49], the
springs are assumed to behave linearly and dissipation is
accounted for via linear viscous damping associated with
the respective translation and rotation motions of each
square. The characteristic dissipation parameters Γu and
Γθ are normalized as ηu = Γu/mω0 and ηθ = Γθ/mω0 for
the translation and rotation, respectively. In Ref. [42],
the effects of different levels of metasurface intrinsic dissi-
pation have been studied: a stronger dissipation requires
larger excitation amplitudes to achieve the same quanti-
tative nonlinear effects in reflection. In the present work,
it is considered that the dissipation remains relatively
weak with a dimensionless value of ηu = ηθ = 0.001.
Thus, for each square and the front plate occupying a
lateral surface area S in the (y, z) plane, the governing
motion equations are written as:





αm
∂2U1

∂τ2 = −2finc(Ω, τ)− γ ∂U1

∂τ
− U1 + U2 − ηu

∂U1

∂τ
+ ηu

∂U2

∂τ
+ 1

2

(
cos(θ0)− cos(θ0 + θ) + ηθ sin θ0

∂θ
∂τ

)
,

∂2U2

∂τ2 = U1 − 2U2 + ηu
∂U1

∂τ
− 2ηu

∂U2

∂τ
,

α ∂2θ
∂τ2 = −6Kθ

(
θ + ηθ

∂θ
∂τ

)
+ 2(U1 + ηu

∂U1

∂τ
) sin(θ0 + θ) + 6 sin(θ0 + θ)

(
cos(θ0 + θ)− cos(θ0)− ηθ sin θ0

∂θ
∂τ

)

−2Ks cos(θ0 + θ)
(
sin(θ0 + θ)− sin(θ0) + ηθ cos θ0

∂θ
∂τ

)
,

(3)

where finc(Ω, τ) = σinc(Ω, τ)S/2kll denotes the normal-
ized force applied to the plate due to the incident stress
wave, γ = ρcS/mω0 the dimensionless impedance param-
eter representing the ratio of the propagation medium (1)
impedance to the mechanical impedance of the metasur-
face.

When a normal incident stress wave interacts with the
metasurface, and under the condition that the squares
are initially rotated at nonzero angles θ0, the translation
of the front plate induces both translation and rotation
of the squares, along the x direction and around the z
direction, respectively. Under a linear assumption for
all springs, the elastic forces applied to each metasurface
element are proportional to the spring elongations. How-
ever, since the square units rotate, the geometric nonlin-
earity of the structure is activated due to the sinusoidal
dependence of spring deformations on the angle of rota-
tion of the squares, as shown in Eq. (3). Interestingly, as
a consequence of this geometric nonlinearity dependent

on structural design, it can be tuned along with the linear
elastic properties in order to produce specific nonlinear
wave effects.

In the presence of nonlinearity, the reflected wave spec-
trum from a monochromatic incident wave at frequency
ω may contain harmonics of the incident wave. Conse-
quently, it is assumed that at the boundary x = 0, the
reflected wave is composed of harmonics with the com-

plex amplitude R̃n (1 ≤ n ≤ N) relative to the incident

wave amplitude, denoted by Ãinc. In the following dis-

cussion and for the sake of simplicity, R̃n and Rn will be
used to represent the complex reflection coefficient of the
n-th harmonic and its magnitude, respectively.
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III. ANALYSIS OF THE LINEARIZED

METASURFACE: PARAMETER DEFINITIONS

AND FREQUENCY RESPONSE

In the linear and weakly dissipative configuration, i.e.
with fixed dissipation parameters ηu = ηθ = 0.001
and a linear approximation of trigonometric functions
as cos(θ0 + θ) ≈ cos θ0 − sin(θ0)θ and sin(θ0 + θ) ≈
sin θ0+cos(θ0)θ, the resonance frequencies ωi (i = 1, 2, 3)
of the considered metasurface depend on all the intrinsic
parameters, i.e. the initial angle of rotation θ0, the mass
ratio αm, the inertial moment α, the normalized shear
stiffness Ks and the bending stiffness Kθ. Using realistic
materials studied earlier in [49], it is assumed here that
the normalized shear and bending stiffnesses are both less
than 0.1 and lie at the same value, i.e. Ks = Kθ ≤ 0.1.
Additionally, the initial angle of rotation θ0 is set smaller
than 30o. In Sections III and IV, the focus is placed on
the case of homogeneous squares, i.e. α = 1/3, though
other types of rotating elements with different inertial
moments are considered in Section V.

In a previous theoretical study of a lumped-element,
dual-resonance elastic metasurface model [42], it was
demonstrated that to conduct the optimal frequency
conversion from fundamental wave to second harmonic
through the reflection process, a ratio of 2 between the
two linear resonance frequencies of the metasurface is
needed. The targeted conversion takes place with an ex-
citation at the first resonance frequency. Regarding the
current metasurface design with three degrees of freedom
(rotation and translation of the squares, plus translation
of the front plate), three resonance frequencies are in-
volved ωi (i = 1, 2, 3) with ω1 < ω2 < ω3. Since the (ge-
ometric) nonlinearity is primarily excited by the rotation
of squares, the excitation frequency ω should coincide
with the resonance frequency, denoted as ωθ, which cor-
responds to a rotation-dominated mode. Moreover, one
of the other resonance frequencies, denoted here as ωu,
should match 2ωθ, in order to approximate the optimal
conversion efficiency.

To satisfy the condition ωu = 2ωθ, the mass ratio αm

can be determined in the linear and weakly dissipative
case (see Fig. 2(b)). By simultaneously varying stiffnesses
(Ks,Kθ) and initial angle of rotation θ0 in their consid-
ered intervals, the eigenmodes can be characterized by
the magnitude of the ratio θ/U1 taken at the different
resonance frequencies. A ratio θ/U1 with a magnitude
greater than unity indicates a rotation-dominated mode,
whereas a translation-dominated mode occurs with a ra-
tio less than unity. Fig. 2(c) and Fig. 2(d) illustrate
this ratio at resonance frequencies ωθ and ωu, respec-
tively. It has been verified that within the considered
range of metasurface parameters, the absolute ratio θ/U1

is maintained above 3 at ωθ and below 0.5 at ωu, i.e., ωθ

(respectively ωu) corresponds to a rotation (respectively
translation)-dominated mode.

However, once the displacement ratio θ/U1 deviates
from unity (with an absolute value becoming much
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Figure 2. Eigenfrequencies and eigenvectors of the considered
metasurface. In the linear dissipative regime, three resonance
frequencies ωi (i = 1, 2, 3) are presented (a), related to either a
translation-dominated movement, denoted ωu, or a rotation-
dominated movement denoted ωθ, or a combination of both.
When the resonance frequency condition ωu = 2ωθ is satisfied,
the mass ratio αm is determined for different values of initial
angles of rotation θ0 and stiffnesses Ks and Kθ (b). The ratio
of θ to U1 is examined as a function of θ0 and Ks = Kθ

as well, at resonance frequencies ωθ and ωu in (c) and (d),
respectively. The optimal value range of stiffness and initial
angle of rotation is indicated by the white dotted line in both
(c) and (d).

smaller or much larger than unity), the rotation motion
and translation motion turn out to be weakly coupled;
consequently, the energy transfer from fundamental har-
monic to higher harmonics becomes inefficient during the
reflection process. In order to excite the rotation mode
of the metasurface as much as possible while enhanc-
ing the intended nonlinear conversion, the ranges of stiff-
ness and initial angle of rotation are limited, thus allow-
ing for an absolute ratio θ/U1 less than 10 at frequency
ωθ and greater than 0.1 at frequency ωu. Among the
chosen displacement ratio threshold values, the optimal
range of stiffness and initial angle of rotation values can
be obtained, i.e. defined as Ks = Kθ ∈ (0, 0.04) and
θ0 ∈ (3o, 15o), as enclosed by the white dotted line in
Fig. 2(c) and Fig. 2(d). The discussion in Section V ver-
ifies that the above choice of parameter space is indeed
realistic and yields a high efficiency for the desired non-
linear conversion.

For the study of the nonlinear case in the following
section IV, both the stiffness and initial angle of rota-
tion of the metasurface are set as Ks = Kθ = 0.02 and
θ0 = 10o, which corresponds approximately to the center
of the optimal parameter space region. The correspond-
ing resonance frequencies in the linear regime, as normal-
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ized by ω0, are respectively Ω1 = 0.7145, Ω2 = 1.0858,
and Ω3 = 2.1716. However, we found that as the inci-
dent amplitude increases, resulting in the activation of
nonlinear effects, the metasurface resonance frequencies
start shifting relative to the linear frequencies. This res-
onance shift will be considered in the following Section
IV.

IV. NONLINEAR REFLECTION BY THE

DESIGNED METASURFACE: OPTIMAL

FREQUENCY CONVERSION

Let’s now consider a monochromatic source
finc(Ω, τ) = Ainc cos(Ωτ) in order to solve semi-
analytically the considered problem [Eq. (3)] comprising
nonlinear terms in the form of sine and cosine functions.
An expansion up to the fourth order of all sinusoidal
terms of [Eq. (3)] is firstly applied:





cos(θ0 + θ) ≈ cos θ0 − sin θ0θ −
1

2
cos θ0θ

2

+ 1

6
sin θ0θ

3 + 1

24
cos θ0θ

4,

sin(θ0 + θ) ≈ sin θ0 + cos θ0θ −
1

2
sin θ0θ

2

− 1

6
cos θ0θ

3 + 1

24
sin θ0θ

4.

In the present study, which deals with the case of dy-
namic angles comparable to the initial angle of rotation,
the considered expansion is determined to be sufficient
since it yields reflection coefficient results with an accu-
racy to within 0.01 when compared to the numerical inte-
gration of the full problem described further below. The
system of equations approximated by a polynomial form
can now be solved using the Harmonic Balance Method
(HBM) [50].

According to HBM, the solution {q} = {U1,U2, θ}
T

is developed as the sum of all generated harmonics:

{q} = {q0}+

N∑

n=1

[{Cn} cos(nΩτ) + {Sn} sin(nΩτ)] (4)

with {q0} =
{
C1

0
,C2

0
,C3

0

}T
indicating the constant

terms of variables U1, U2 and θ, {Cn} and {Sn} group-
ing respectively the magnitudes of cosine and sine terms
of the three variables. N denotes the finite number of
harmonics under consideration, which is set at N = 10,
thus corresponding to a relative error of less than 10−15,
compared to the solution for N = 9. According to the
vectorial form of the solution containing all considered
N harmonics, the equation system [Eq. (3)] that is al-
ready approximated into a polynomial form, can be then
rewritten in a matrix form that enables finally the numer-
ical solution by applying the classical Newton-Raphson
method. Once displacement U1 is determined, the com-
plex reflection coefficient of the n-th harmonic frequency
component can be deduced as:

R̃n = δn1 + iγnΩ(C1

n − iS1

n), (5)

where δn1 is the Delta function, which always equals zero
except when n = 1. C1

n and S1

n denote the magnitudes of
sinusoidal terms cosnΩτ and sinnΩτ of displacement U1.
The reflection coefficients obtained by HBM are consid-
ered as theoretical results and will be compared with the
time domain simulation results at the end of the current
section.

When the incident amplitude is relatively weak, the
reflection coefficients obtained by HBM are close to the
linear analytical solution. For instance, an excitation of
dimensionless magnitude Ainc = 10−7 leads to an ab-
solute difference in the reflection coefficient of less than
0.01%, compared to the linear analytical solution. There-
fore, for the following discussion of nonlinear phenomena,
the excitation magnitude range considered extends from
Ainc = 10−7 to Ainc = 10−4, i.e. from the linear case to
amplitudes 3 orders of magnitude greater.

As mentioned at the end of Section III, once the ex-
citation level is significant, the nonlinear resonance fre-
quencies of the metasurface shift relative to the linear
frequencies. Consequently, taking into account excitation
frequency detuning with respect to the linear resonance
frequencies, becomes necessary for the considered input
amplitude range. In addition to the intrinsic parame-
ters of the metasurface that have already been defined
in Section III, the nonlinear reflection also depends on
the propagation medium. By choosing herein two dif-
ferent excitation amplitudes, i.e. a relatively weak one
with magnitude Ainc = 5×10−6 and a stronger one with
Ainc = 5 × 10−5, the nonlinear reflection is thus being
investigated simultaneously as a function of both the ex-
citation frequency detuning ∆Ω (normalized by ω0) and
the medium impedance parameter γ, as shown in Fig. 3.

Through the reflection process and depending on input
intensity, the frequency conversion can be achieved for a
specific impedance value and for appropriate frequency
detuning (see Fig. 3). In the case of Ainc = 5× 10−6, by
setting the impedance parameter at γ = 0.008 and con-
sidering a very small frequency detuning of ∆Ω = −10−4,
a second harmonic reflection coefficient of R2 = 0.418
along with a near-zero fundamental coefficient R1 =
0.0024 are obtained. In comparison, as the source am-
plitude increases to Ainc = 5 × 10−5, the frequency de-
tuning necessary to reduce reflection at the fundamental
frequency becomes ∆Ω = −1.7 × 10−3, thus yielding a
second harmonic reflection coefficient of R2 = 0.786, ac-
companied by a fundamental coefficient R1 = 0.006 at
γ = 0.0195. Furthermore, for the parameter ranges pre-
sented in Fig. 3, the reflection coefficients of harmonics
higher than the second order are all found to be negli-
gible compared to the second harmonic coefficient, with
absolute values consistently less than 0.001; hence, these
values will not be discussed any further in the present
work.

The magnitude of excitation frequency detuning
needed to minimize incident fundamental wave reflec-
tion corresponds to the resonance frequency shift of the
metasurface with respect to the linear resonance fre-
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Figure 3. Absolute reflection coefficients of the fundamental
and second harmonic components, denoted R1 and R2 re-
spectively, as a function of both the dimensionless impedance
parameter γ and the normalized excitation frequency detun-
ing ∆Ω. The latter is defined as the difference between the
excitation frequency ω and the linear resonance frequency
ωθ, subsequently normalized by ω0, i.e., ∆Ω = (ω − ωθ)/ω0.
When the input intensity is relatively weak, with a magni-
tude Ainc = 5 × 10−6, the required excitation detuning is
less (∆Ω = −1 × 10−4), as the maximum value of R2 ex-
ceeds 0.4 (a) and (b). Whereas with a stronger source of
magnitude Ainc = 5 × 10−5, a frequency detuning of around
∆Ω = −1.7×10−3 is needed to totally absorb R1, which does
not alter the amplitude of the second harmonic R2 to reach a
maximum value of nearly 0.8 (c) and (d).

quency, under the considered level of excitation. More
specifically, in order to analyze the resonance frequency
shifts for the various source amplitudes indicated herein,
i.e. weak level Ainc = 10−7 corresponding to the lin-
ear configuration and nonlinear levels Ainc = 5 × 10−6

and Ainc = 5 × 10−5, the metasurface kinetic energy at
frequencies close to the linear resonance frequencies ωθ

and ωu has been introduced. For excitation around the
rotation-dominated resonance frequency ωθ, it has been
verified that the maximum kinetic energy, which indi-
cates the frequency position of the nonlinear resonance,
actually shifts with increasing excitation amplitude, as
illustrated in Fig. 4. Compared to the linear configura-
tion defined by Ainc = 10−7, the resonance shift remains
negligible under a weak nonlinear level excitation with
Ainc = 5 × 10−6, while it becomes significant when the
excitation level increases to Ainc = 5 × 10−5. The fre-
quency shift between the nonlinear and linear resonance
frequencies coincides exactly with the optimal excitation
detuning, as introduced previously in Fig. 3, in order to
minimize reflection of the fundamental wave.

−4 0 4
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x10
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x10
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0
0

1

−1.7

around around 

Figure 4. Kinetic energy Ekinetic of the metasurface at various
excitation levels, from a linear configuration with Ainc = 10−7

to a weakly nonlinear configuration with Ainc = 5×10−6 and
a highly nonlinear configuration Ainc = 5×10−5, respectively,
for the cases of: (a) excitation frequencies ω close to the linear
rotation-dominated resonance frequency ωθ, and (b) excita-
tion frequencies ω close to the linear translation-dominated
resonance frequency ωu verifying ωu = 2ωθ. During the ki-
netic energy test, the metasurface is excited, at each excita-
tion frequency, by 1,000 periods of a sine signal. The dotted
black line in (a) indicates the resonance shift under excitation
Ainc = 5 × 10−5, which corresponds exactly to the optimal
excitation detuning introduced in Fig. 3.

Nevertheless, for excitation around ωu corresponding
to a translation-dominated motion (Fig. 4b), as opposed
to excitation around ωθ, the excitation level does not
influence the kinetic energy curve. Hence, when the ex-
citation frequency is detuned to compensate for the fre-
quency shift of resonance ωθ, the reflection of the funda-
mental wave can become minimized, whereas the second
harmonic (which is detuned twice as fast as the funda-
mental harmonic) will barely change its reflection coef-
ficient R2. This result is due to the fact that the corre-
sponding frequency detuning around resonance ωu does
not introduce as much of a variation in kinetic energy as
the detuning around ωθ. Accordingly, the excitation de-
tuning simultaneously enables minimizing the reflection
of the fundamental wave while maintaining the nonlinear
conversion efficiency into the reflected second harmonic
wave.

In Fig. 5, the evolution of both the fundamental and
second harmonic reflection coefficients are examined over
the gradual increase in excitation amplitude, from the
linear case to the case enabling activation of nonlinear
effects. The comparison between cases, whether or not
excitation detuning has been taken into consideration, is
presented as well. These findings serve to confirm that
the excitation detuning primarily affects the fundamental
wave reflection and much less so the conversion towards
second harmonic frequency.

When excitation detuning is not introduced (the source
finc = Ainc cosωt at frequency ω = ωθ coincides with
the linear rotation-dominated resonance), the reflection
coefficients R1 and R2 are plotted in Fig. 5 for an ex-
citation amplitude range starting from the linear con-
figuration Ainc = 10−7. With an increasing excitation
amplitude, due to the introduced frequency matching,
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Figure 5. Absolute reflection coefficient of fundamental (R1)
and second harmonics (R2), as investigated by varying the ex-
citation amplitude from a linear level (Ainc = 10−7) to a non-
linear level (Ainc = 10−4). Frequency detuning is introduced
in order to eliminate reflection of the fundamental wave at the
desired excitation amplitude, such that (a) Ainc = 5 × 10−6

and (b) Ainc = 5 × 10−5, with the impedance parameter de-
fined as γ = 0.008 and γ = 0.0195, respectively.

i.e., 2ω = 2ωθ = ωu, the quadratic nonlinear effect is
significantly amplified and appears first, thus yielding an
efficient growth of R2.

When the source amplitude is further increased, cubic
nonlinear effects start to appear, stemming from both the
cubic nonlinear terms of the expansions in the full prob-
lem (3) and the nonlinear cascade process (next-order
interaction) from the quadratic terms. Cubic nonlinear
effects induce a variation of R1 via self-action on ω while
the quadratic via interactions between ω and 2ω, respec-
tively. Given the result of excitation matching ω = ωθ,
the nonlinear part of R1 is magnified, yielding a clear
increase in R1 following an initial decrease, as shown in
Fig. 5. However, the third harmonic component, which is
also generated due to the nonlinear effect yet mismatched
with the system resonances, remains negligible with a
magnitude of less than 0.001.

By taking advantage of excitation detuning, the ex-
treme value of R1, occurring due to the activation of
cubic nonlinear effects, can thus be minimized or even
eliminated under a specific impedance parameter value γ.
Nevertheless, since the higher resonance ωu is less sensi-
tive to excitation detuning than the rotation-dominated
resonance ωθ, the second harmonic reflection coefficient
R2 is not influenced to the same extent as R1 for the
fundamental wave. For excitation level Ainc = 5× 10−6,
by introducing frequency detuning ∆Ω = −1× 10−4 and
setting γ = 0.008, the fundamental wave reflection co-
efficient is minimized to R1 = 0.0024, while the second
harmonic can reach a reflection coefficient of R2 = 0.418,
as shown in Fig. 5(a). In contrast, a frequency detuning
of ∆Ω = −1.7 × 10−3 enables R1 = 0.006 at excitation
level Ainc = 5× 10−5 under γ = 0.195, along with a sec-
ond harmonic reflection coefficient as high as R2 = 0.786,
see Fig. 5(b). Note that these parameters are the same
as those used in Fig. 3. In terms of energy, the two above
configurations correspond to around 17% and 62% of en-
ergy concentrated on the second harmonic under excita-
tion magnitudes Ainc = 5 × 10−6 and Ainc = 5 × 10−5
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Figure 6. Theoretical and numerical results for the nonlin-
ear metasurface reflection, as obtained with the Harmonic
Balance Method (HBM) and the fourth-order Runge-Kutta
(RK4) method, respectively, for the case of a relatively weak
excitation with amplitude Ainc = 5 × 10−6 (a) and (b),
and for the case of a stronger excitation with amplitude
Ainc = 5 × 0−5 (c) and (d). The frequency axes are nor-
malized by the detuned excitation frequency. By considering
a wave packet source with characteristic width NT = 4000T ,
the RK4 results are compared to the theoretical HBM re-
sults. Magnitudes of Short-Term Fourier Transforms taken
at fundamental and second harmonic frequencies, by show-
ing the temporal variation in the reflected wave spectrum (a)
and (c), and by exploring the Fourier Transform of the cen-
tral 1,000 periods of the reflected temporal wave (b) and (d),
respectively.

respectively, both with less than 0.01% energy reflected
in the fundamental wave.
Since an analytical solution does not exist for the

full nonlinear problem (HBM is applied to the prob-
lem approximated by a polynomial expansion of all the
nonlinear terms), numerical solutions to the full nonlin-
ear problem with HBM results can now be compared.
System Eq. (3) is solved numerically using the classi-
cal fourth-order Runge-Kutta (RK4) integration method
[? ], and the excitation is a Gaussian-modulated wave
packet source of the form,

σinc(Ω, τ) = Aincfinc(Ω, τ) = Ainc sin(Ωτ)e
−

(τ−τ0)2

(ωT )2 ,

with τ = ωt, T the characteristic temporal width of the
wave packet, and τ0 the dimensionless time center of the
packet. The reflected wave signal is obtained with the
help of relation Eq. (2) once the temporal displacement
u1 of the front plate has been determined.
The time-frequency analysis of the reflected signals can

therefore be performed using the spectrogram method, in
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yielding a reflected time-dependent spectrum at the fun-
damental and second harmonic frequencies, i.e. ω and
2ω, as shown in Fig. 6(a) and Fig. 6(c), for the con-
sidered excitation amplitudes 5 × 10−6 and 5 × 10−5,
respectively. The wave packet source has a character-
istic half-height duration of 4000 periods. It has been
demonstrated that the RK4 simulation reaches the the-
oretical results of HBM when the excitation amplitude
lies close to the maximum magnitude Ainc. Fig. 6(b)
and Fig. 6(d) present the comparison between HBM re-
sults and RK4 simulations when the signal spectrum is
computed over the 1000 center periods of the reflected
temporal signal. A good level of agreement is observed
between the two methods for both plotted excitation am-
plitudes, each with an absolute difference of less than
0.01.

V. DISCUSSION

According to the proposed metasurface design, which
comprises rotating squares, the desired frequency con-
version from the incoming fundamental wave to the re-
flected second harmonic can in fact be achieved. In addi-
tion to the specific design presented above in Section IV
(with fixed intrinsic parameters such as inertial moment
α = 1/3, shear and bending stiffnesses Ks = Kθ = 0.02
and initial angle of rotation θ0 = 10o), it is possible to
explore an even wider parameter space, offering greater
tunability opportunities.
With an initial angle of rotation set at θ0 = 10o and

θ0 = 20o, respectively, and for stiffness in the range
Ks = Kθ ∈ (0, 0.1), the optimal conversion is sought
by varying the impedance parameter γ and introducing
the excitation frequency shift ∆Ω. The optimal results of
reflection coefficient R2 as a function of stiffnessKs = Kθ

are shown in Fig. 7(a). Note that the impedance param-
eter γ = ρcS/mω0 can be modified by changing the size
or the mass of the squares, which allows for impedance
tuning. The final parameter of the metasurface is the
mass ratio between front plate and rotating squares, de-
noted αm. This parameter is defined to be positive and
such that it satisfies the necessary frequency condition
ωu = 2ωθ in the linear regime.
A similar analysis has been repeated for stiffnesses set

at Ks = Kθ = 0.02 and Ks = Kθ = 0.06, respec-
tively. The maximum second harmonic reflection coef-
ficient has been estimated for initial angles of rotation
θ0 ∈ (0o, 30o), as illustrated in Fig. 7(b). The excita-
tion level is set at Ainc = 5 × 10−5 for both paramet-
ric studies conducted in Fig. 7(a) and Fig. 7(b). It is
shown that in the case of rotating square masses, i.e.
α = 1/3, the generation of a second harmonic remains
significant over the entire optimal value ranges for stiff-
ness Ks = Kθ ∈ (0, 0.04) and initial angles of rotation
θ0 ∈ (3o, 15o), as enclosed by the white dotted lines
in Fig. 2 of Section III. Within this optimal parameter
range, according to the results in Fig. 7, R2 is observed
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Figure 7. Optimal frequency conversion effect achieved for
various physical properties of the proposed metasurface, un-
der an excitation level of Ainc = 5×10−5. The maximum ab-
solute value of the reflection coefficient of the second harmonic
R2 is identified by varying the impedance parameter and ex-
citation frequency detuning simultaneously, for stiffnesses in
the range Ks = Kθ ∈ (0, 0.1) and an initial angle of rotation
set at 10o and 20o in (a), and for an initial angle of rotation
in the range θ0 ∈ (0o, 30o) and stiffnesses set at 0.02 and 0.06
in (b). Shaded zones indicate the optimal ranges of initial
angle of rotation and stiffnesses, i.e. Ks = Kθ ∈ (0, 0.04) and
θ0 ∈ (3o, 15o), thus yielding an efficient second harmonic re-
flection with R2 greater than 0.4. The results presented have
been output by HBM.

to be greater than 0.4, while R1 remains less than 0.05.
Furthermore, the desired nonlinear phenomena can be

derived for various rotating unit shapes, as characterized
by different inertial moments α. Let’s recall herein that a
point mass corresponds to a zero inertial moment α = 0,
whereas a hollow square (the entire mass distributed at
the edges) has an inertial moment of α = 2/3. An iner-
tial moment α ∈ [0.02, 0.66] is thus considered (although
in theory this moment could be removed from the value
range by, for example, using gyroscopes in the design).
Within the considered range of inertial moment and for
the sake of computational efficiency, the initial angle of
rotation has been set at 10o and 8o, respectively, as these
values are found to be favorable for generating the de-
sired reflection over the entire range of inertial moment.
The maximum generation of reflected second harmonic
along with the minimum fundamental reflected wave can
be determined by simultaneously varying all other in-
trinsic metasurface parameters, i.e. stiffness Ks = Kθ,
impedance parameter γ and required excitation detuning
∆Ω. Like in the previous study presented in Fig. 7, the
last parameter αm, i.e. the mass ratio, is chosen so that
the necessary condition ωu = 2ωθ is satisfied.
According to the results shown in Fig. 8, R2 is al-

ways greater than 0.4 over the entire range of inertial
moment α and possibly greater than 0.74 for inertial
moment in the range α ∈ (0.2, 0.66), the energy distri-
bution on the second harmonic is thus remained within
the range (16%, 55%). Hence, not only can the proposed
design composed of homogeneous squares having an in-
ertial moment α = 1/3 produce the desired nonlinear
frequency conversion, but other rotating periodic struc-
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Figure 8. Optimal frequency conversion effect achieved for
various metasurface unit cell shapes, i.e. for different inertial
moments α of rotating elements. The maximum conversion
is determined as a function of α over the range of [0.02, 0.66]
by varying the impedance parameter γ, excitation frequency
detuning ∆Ω and stiffness Ks = Kθ simultaneously. In order
to lessen the calculation burden, the initial angle of rotation
has been set at 10o and 8o respectively, as these values are
found to be favorable for producing the desired reflection over
the entire inertial moment range.

tures are also capable of efficiently generating the sec-
ond harmonic through the reflection process, provided
that the inertial moments of their unit cells are included
in the above value range α ∈ (0.2, 0.66). The possible
metasurface rotating element shapes may, for instance:
be square, rectangular or diamond-shaped; contain holes
or additional masses; constitute the centrally symmetric
four-corner structure such as a cross (the inertial mo-
ment α depends on the exact length-to-width ratio of
each edge but is generally slightly less than 1/3); or even
extend to other novel shapes based on regular polygons
or centro-symmetric structures.

VI. CONCLUSION

In conclusion, through a realistic metasurface design
inspired from recent results on the dynamics of soft ar-
chitected rotating square structures [31, 49], the possibil-
ity of achieving near-perfect absorption of the incoming
fundamental wave has been demonstrated herein, along
with an efficient conversion into the second harmonic fre-
quency. By introducing appropriate excitation frequency
detuning, which compensates for the nonlinear frequency
shift of one rotation-dominated resonance ωθ of the meta-
surface, the reflection of the incoming fundamental wave
can be as low as R1 < 0.05. Since the translation-
dominated resonance has a broader frequency response
and a barely noticeable nonlinear frequency shift com-
pared to the rotation-dominated resonance, the efficiency
of the conversion towards the second harmonic frequency
is much less influenced by the introduced frequency de-
tuning. The corresponding reflection coefficient R2 can
be consistently maintained above 0.4 and even reach val-
ues exceeding 0.8 depending on the excitation level.
In order to validate the theoretical results obtained

with HBM in considering a monochromatic source, the
nonlinear reflection of a wave packet has also been ex-
amined by numerically integrating the system of fully
nonlinear motion equations. An excellent level of agree-
ment has been obtained between the theoretical results
output by HBM and the implemented numerical results,
provided the characteristic temporal width of the wave
packet signal is large enough, in accordance with expec-
tations. Moreover, the value ranges of intrinsic metasur-
face parameters that efficiently lead to the desired fre-
quency conversion have also been determined, i.e. for
the metasurface unit cell consisting of homogeneous ro-
tating squares (α = 1/3), the stiffness and initial angle
of rotation in the range of Ks = Kθ ∈ (0, 0.04) and
θ0 ∈ (3o, 15o), respectively, thus allowing for efficient
second harmonic generation with a reflection coefficient
R2 always greater than 0.4.

The proposed metasurface design, which is capable of
enhancing the nonlinear effect, has been found to be ex-
tendable to a series of designs with rotating unit cells,
not only of a square shape but other available structures
as well, possessing an inertial moment within the value
range of α ∈ [0.02, 0.66]. The second harmonic reflec-
tion coefficient may indeed exceed 0.74 if α ∈ [0.2, 0.66],
corresponding to around 55% of energy concentrated on
the second harmonic together with extremely small en-
ergy (< 0.01%) reflected in the fundamental wave. Ac-
cording to the present study and the previous work [42],
one should notice that the achievement of the desired
nonlinear conversion needs a matching between the in-
trinsic resonances of the considered meta-structure and
the frequencies of the generated harmonics, which can
be enabled by the appropriate metasurface design, i.e.
structural parameters within specific value ranges. Fur-
thermore, the proposed family of metasurface made of
rotating unit cells can also provide other types of nonlin-
earity, depending on the choice of the structural param-
eters. The proposed metasurface design rules apply not
only to the presented second harmonic enhancement, but
could also optimize other types of nonlinear effects, such
as the third harmonic generation.

Nevertheless, the reported acoustic / elastic wave con-
trol by the scattering process is limited herein to re-
flection at normal incidence. Consequently, the con-
sidered nonlinear conversion would need to be investi-
gated in other configurations, such as transmission by a
thin and resonant meta-interface. The presented types
of designs with rotating units, given the possibility of
managing their dispersive and nonlinear elastic proper-
ties, open avenues for enhancing nonlinear wave con-
trol. By considering a larger number of layers with vary-
ing properties, the rather rudimentary scattering process
studied herein could potentially be extended to broader
operating frequency ranges as well as to other nonlin-
ear processes. Moreover, such nonlinear wave scatter-
ing properties could become useful for applications in
wave pulse mitigation, acoustic diode design and non-
reciprocal transmission systems.
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V. Tournat, New J. Phys 16, 093017 (2014).

[3] A. Santillán and S. I. Bozhevolnyi, Phys. Rev. B 89,
184301 (2014).

[4] V. M. Agranovich, Y. R. Shen, R. H. Baughman, and
A. A. Zakhidov, Phys. Rev. B 69, 165112 (2004).

[5] G. V. Eleftheriades and K. G. Balmain, Negative-

Refraction Metamaterials: Fundamental Principles and

Applications (Wiley IEEE Press, 2005).
[6] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M.

Stacy, and X. Zhang, Science 321, 930 (2008).
[7] J. Li and C. T. Chan, Phys. Rev. E 70, 055602 (2004).
[8] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Sci.

305, 788 (2004).
[9] J. Christensen, Z. Liang, and M. Willatzen, Phys. Rev.

B 88, 100301 (2013).
[10] N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Nature

525, 77 (2015).
[11] T. Devaux, V. Tournat, O. Richoux, and V. Pagneux,

Phys. Rev. Lett. 115, 234301 (2015).
[12] F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, Nature

Physics 9, 55 (2012).
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