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Abstract 

 

Low Earth Orbit (LEO) satellites have received increased attention in recent years.  

They have been proposed as a viable solution for remote sensing, telemedicine, weather 

monitoring, search and rescue and communications to name a few applications.  LEO 

satellites move with respect to an earth station.  Thus, the station must be capable of 

tracking the satellite both spatially and in frequency.  In addition, as the spectrum 

becomes more congested, links are being designed at higher frequencies such as Ka 

band.  These frequencies experience larger attenuations and therefore the system must 

be capable of operating at low signal to noise ratios. 

In this dissertation we report on the research conducted on the following problems.  

Firstly, we study the estimation of the frequency of a sinusoid for the purpose of 

acquiring and tracking the frequency of the received signal.  Secondly, we propose the 

use of the frequency measurements to assist the spatial tracking of the satellite. 

The highly dynamic environment of a LEO system, combined with the high Ka band 

frequencies result in large Doppler rates.  This limits the available processing time and, 

consequently, the fundamental resolution of a frequency estimator.  The frequency 

estimation strategy that is adopted in the thesis consists of a coarse estimator followed 

by a fine estimation stage.  The coarse estimator is implemented using the maximum of 

the periodogram.  The threshold effect is studied and the derivation of an approximate 

expression of the signal to noise ratio at which the threshold occurs is examined. 

The maximum of the periodogram produces a frequency estimate with an accuracy that 

is 1NO , where N  is the number of data samples used in the FFT.  The lower bound 

for the estimation of the frequency of a sinusoid, given by the Cramer-Rao bound 

(CRB), is 2
3

NO .  This motivates the use of a second stage in order to improve the 

estimation resolution.  A family of new frequency estimation algorithms that interpolate 

on the fractional Fourier coefficients is proposed.  The new estimators can be 

implemented iteratively to give a performance that is uniform in frequency.  The 

iterative algorithms are analysed and their asymptotic properties derived.  The 
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asymptotic variance of the iterative estimators is only 1.0147 times the asymptotic 

CRB. 

Another method of refining the frequency estimate is the Dichotomous search of the 

periodogram peak.  This is essentially a binary search algorithm.  However, the 

estimator must be padded with zeroes in order to achieve a performance that is 

comparable to the CRB.  An insight into this is offered and a modified form that does 

not require the zero-padding is proposed.  The new algorithm is referred to as the 

modified dichotomous search.  A new hybrid technique that combines the dichotomous 

search with an interpolation technique in order to improve its performance is also 

suggested. 

The second research aim was to study the possibility of applying the frequency 

measurements to obtain spatial tracking information.  This is called the frequency 

assisted spatial tracking (FAST) concept.  A simple orbital model is presented and the 

resulting equations are used to show that the Doppler shift and rate uniquely specify the 

satellite’s position for the purpose of antenna pointing.  Assuming the maximum 

elevation of the pass is known, the FAST concept is implemented using a scalar 

Extended Kalman Filter (EKF).  The EKF performance was simulated at a signal to 

noise ratio of 0dB.  The off-boresight error was found better than 0.1º for elevations 

higher than 30º. 
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Chapter 1 

 

Introduction 

 

This thesis is primarily concerned with the estimation of frequency for the purpose of 

Doppler shift correction in Low Earth Orbit (LEO) satellite Communications, and the 

application of the resulting frequency information to assist in the spatial tracking of 

LEO satellites.  In the thesis, unless otherwise specified, the word satellite without 

qualification refers to a LEO satellite and the terms earth station and terminal are used 

interchangeably.  The purpose of this chapter is to introduce the problem and set it in 

context.  The motivation of the thesis is presented in the next section.  The research 

objectives are stated in section 1.2.  Section 1.3 sets out the thesis structure, while 

section 1.4 details the author’s claims of original contributions.  Finally, the relevant 

publications are listed in section 1.5. 

 

1.1 Motivation for thesis 

FedSat is a small experimental Low Earth Orbit (LEO) satellite being built by the 

Cooperative Research Centre for Satellite Systems (CRCSS).  It is intended to be 

launched in 2002 aboard a Japanese HIIA rocket into an 800 km sun-synchronous orbit.  

For a discussion of satellite orbits refer to [1] chapter 2.  Among other experimental 

payloads, the satellite will carry a Ka Band communications experiment.  For Ka Band 

links, the uplink frequency is in the range 29 to 30 GHz whereas the downlink 

frequency is between 19 and 20 GHz.  Higher frequencies experience larger path losses 

which would place a larger power burden on the satellite bus.  Therefore, the higher 

frequency band is used on the uplink as it is easier to increase the transmit power of the 

ground equipment. 

The University of Technology, Sydney (UTS) is charged with building a low cost fast 

tracking Ka Band earth station to communicate with the satellite, [2].  The Ka band 

earth terminal must be capable of rapidly tracking the satellite both spatially and in 

frequency.  The frequency uncertainties consist of the induced Doppler shifts and the 
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local oscillator (LO) drifts.  For a LEO satellite at Ka band, the total frequency 

mismatch between the received signal and the receiver reference frequency can be very 

large, even many times the symbol rate  As a result, the main research topic of this 

thesis involves proposing, analysing and proving new algorithms for the estimation of 

the frequency of a sinusoidal signal (a complex exponential).  It is important to note, 

however, that although the thesis topic was conceived in the context of satellite systems, 

the resulting algorithms have applications in any area where the estimation of the 

frequency of a sinusoid is required.  These areas include, to name a few, radar, sonar, 

biomedicine, radio astronomy, seismology, communications, etc… 

 

1.1.1 Doppler shifts and Local Oscillator Drift 

LEO satellites move with respect to an observer on earth.  This relative motion 

introduces Doppler shifts into the communications signal.  The Doppler shift is 

proportional to the satellite – earth station relative velocity and to the carrier frequency 

of the communications signal.  Therefore, a Ka Band communications payload aboard a 

LEO satellite experiences large Doppler shifts, in the order of hundreds of KHz.  These 

Doppler shifts maybe many times the magnitude of the symbol rate and therefore pose a 

significant problem for the communications system.  For instance for a satellite in an 

800 Km orbit, such as FedSat, the maximum normalised Doppler shift is in the order of 

2 10
-5

 Hz/Hz.  Multiplying that by the uplink carrier frequency at Ka Band, assuming a 

frequency of 30 GHz, we find that the uplink Doppler shift is about 600 KHz.  Similarly 

the downlink Doppler shift would be, for a downlink frequency of 20 GHz, about 400 

KHz. 

Local Oscillator (LO) frequencies also drift due to thermal effects.  A typical earth 

terminal – satellite – earth terminal link may contain four LOs, two in the uplink path 

and two in the downlink.  The LOs are necessary for the up-conversion and down-

conversion of the communications signal to and from the transmit and receive 

frequencies.  Typical LO stabilities are in the order of 1 to 10 parts per million.  At Ka 

band frequencies, this translates to drifts in the order of tens to hundreds of KHz.  For 

instance, assuming LO stability of 10 parts per million, a Ka band uplink of 30 GHz 

would experience up to 300 KHz drift for each LO.  If the two LOs in the earth station 
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and on-board the satellite drifted in opposite directions, their drifts would add up and we 

would have a total drift up to 600 KHz. 

As the two LOs aboard the satellite (or in the earth station) are co-located, it is 

reasonable to expect that would experience similar thermal effects and thus would drift 

in the same direction by similar amounts.  The resulting frequency uncertainty depends 

on whether an inverting or non-inverting transponder is used aboard the satellite, [3], 

chapter 8 pp. 4-5.  Therefore, if no spectrum inversion is employed aboard the satellite, 

the Doppler shifts would add up, but the LO drifts would subtract.  If on the other hand, 

spectrum inversion is used, the reverse happens and the Doppler shifts would subtract 

leaving the LO drifts to accumulate.  The combined frequency uncertainty resulting 

from the Doppler shift and LO drifts would be in the order of a few KHz to a MHz.  

This would severely degrade the performance of the communications link and might 

make the demodulation of the signal impossible.  Hence, the frequency error must be 

estimated and compensated for at the receiver prior to the demodulation of the signal. 

 

1.1.2 The Application of Frequency Information to Spatial Tracking 

Doppler shift measurements have been used for position determination in radar and 

search and rescue satellite systems [4], [5], [6] and [7].  Traditionally, the Doppler shift 

for an entire pass is measured at one or multiple stations and the position of a 

transmitter aboard the space craft or on the earth is determined knowing precisely the 

position of the other terminal involved in the communications [8].  In this thesis, we 

propose the use of the Doppler shift information obtained from the frequency 

acquisition and tracking process to determine the spatial position of the satellite for the 

purpose of earth station antenna pointing.  As the frequency shift is related to the 

relative velocity of the satellite with respect to the earth station, knowing the position of 

the earth station, one can infer some information on the position of the satellite.  Adding 

the Doppler rate, which is related to the satellite acceleration relative to the earth station, 

introduces another dimension to the problem and allows the satellite position to be 

determined in two dimensions.  Accurate frequency measurements, combined with 

some restrictions on the satellite orbit allow the use the frequency information to 

determine the satellite position in real time.  A Kalman filtering approach is used to this 

end. 
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1.2 Research objectives 

The primary research objective of the thesis may now be summarised as follows: 

“To develop new fast and efficient frequency estimation strategies for the purpose of the 

frequency tracking of a LEO satellite and to apply the resulting frequency information 

in assisting the spatial tracking of the satellite.” 

From this primary objective, three other key objectives emerge; these are: 

 To completely characterise the LEO satellite orbit in a simplified fashion in order to 

allow for the determination of look-angles (Azimuth-Elevation and X-Y) and of 

Doppler shift and Doppler rate curves as a function of the observed maximum 

elevation.  This objective involves the collation of some existing work, documenting 

work that is not easily found in the literature as well as the proposal of some new 

ideas. 

 To develop frequency estimation algorithms for an unmodulated carrier that are 

computationally efficient and have good performance at low signal to noise ratios 

(SNR), near the breakdown threshold.  The algorithms are analysed and simulated.  

They are also compared to existing algorithms. 

 To study the application of the frequency estimation data to the orbit determination 

process for the purpose of spatial pointing and to present ways of implementing the 

Frequency Assisted Spatial Tracking concept.  This applies the work of the two 

previous objectives in determining the position and frequency curves and the 

relationship between them and also in the gathering of the necessary frequency 

information. 

These research objectives have resulted in some additional results being obtained which 

will be detailed in the original contributions section.  The following section sets the 

structure of the thesis. 

 

1.3 Thesis structure 

The thesis is organised as follows: 
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Chapter 1 (Introduction) provides an overview of the thesis, sets the research problem 

into context and the contributions that have been made. 

Chapter 2 (Theory and Background) presents the theory and literature background to 

the thesis.  Firstly, the theory that is necessary to the development and analysis of the 

proposed ideas is presented.  The Central Limit theorem and the assumed noise 

properties are discussed.  These allow for the derivation of the asymptotic performance 

of the new estimators.  The Cramer-Rao lower bound and the Kalman filtering theories 

are also discussed.  The frequency estimation literature is then briefly reviewed.  We 

present and discuss examples of phase based, correlation based, least squares, ARMA 

modelling and Kalman filtering estimators.  These estimators, however, are generally 

computationally intensive or have high SNR thresholds.  Therefore, they are unsuitable 

for real-time applications where fast, computationally efficient, frequency estimation is 

a necessity.  The frequency domain estimators are computationally simple and suitable 

for Digital Signal Processor (DSP) implementation as they rely on the Fast Fourier 

Transform (FFT) algorithm.  These estimators usually comprise a coarse estimation 

stage followed by a fine estimator. 

Chapter 3 (Complete Characterisation of Low Earth Orbits) In this chapter we 

completely characterise a LEO satellite’s orbit in terms of the maximum elevation that 

is observed at a particular earth station.  A first order orbital model is assumed and no 

second order perturbations are included.  The analysis is done in the Earth Centred 

Earth Fixed (ECEF) coordinate system.  We present a simple orbital propagator in order 

to assess the results of the rest of the chapter.  A number of simplifying assumptions, 

such as the constancy of the observed satellite velocity and the approximation of the 

observed satellite path by a great circle arc, are then used to derive simple expressions 

for the satellite position and Doppler shift and rate that are observed at the earth station.  

The resulting off-boresight error is used to gauge the accuracy of the derived equations.  

The validity of the assumptions is asserted by the small off-boresight error and Doppler 

shift error and rate errors with respect to the orbital propagator. 

Chapter 4 (Frequency Domain Frequency Estimation) In this chapter we look at the 

estimation of the frequency of a sinusoidal signal using its Fourier spectrum.  The 

Discrete Fourier Transform (DFT) is easily calculated using the computationally 

efficient Fast Fourier Transform (FFT) algorithm.  We present a brief discussion of the 

DFT and the FFT.  We then discuss the Maximum Bin Search (MBS) algorithm and its 
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associated frequency resolution.  The MBS algorithm returns the frequency 

corresponding to the bin with the highest amplitude, that is, the bin closest to the signal.  

For a noisy signal, however, the presence of outliers results in an incorrect frequency 

estimate.  The SNR threshold point where the frequency error rises rapidly due to the 

rapid increase in the probability of occurrence of outliers is then discussed.  Quinn’s 

work, [9], on the derivation of a simple expression for the threshold onset is examined 

and an error in the derivation is rectified.  The practical effect of the error, however, is 

found to be small and decreasing with increasing number of samples, N, which renders 

Quinn’s expression “valid” for sufficiently large N. 

Chapter 5 (Frequency Estimation by Interpolation on Fourier Coefficients) This 

chapter forms a background for chapters 6 and 7 where a number of new frequency 

estimation algorithms are presented.  We review the literature on the frequency 

estimation by interpolation on the Fourier coefficients of the signal.  The bulk of the 

work was done by Quinn and presented in his book The Estimation and Tracking of 

Frequency.  We start by discussing the theory and presenting the bounds on the 

performance of the estimators.  Then we discuss a number of existing estimators, 

dividing them into interpolation on three and five coefficients.  The interpolation on 

three coefficients category is in turn divided into interpolators on the raw coefficients 

and interpolators on the magnitudes of the coefficients.  The performance of each of the 

algorithms is presented and discussed.  This forms the background against which we 

assess the performance of the new algorithms presented in the following two chapters. 

Chapter 6 (Frequency Estimation by Interpolation on Fractional Fourier 

Coefficients) We present, in this chapter, a number of new frequency estimation 

algorithms.  These algorithms are analysed and their asymptotic performance derived.  

Simulation results are also presented to verify the theory.  The estimators differ from 

those of the previous chapter in that they perform interpolation on the fractional Fourier 

coefficients (defined in appendix C).  Their performance is shown to be identical to the 

corresponding standard algorithms.  They, however, are shown to possess certain 

characteristics that make them suitable for iterative implementation in order to obtain 

some performance improvement at the expense of a slight increase in the computational 

load.  After briefly introducing the fractional Fourier coefficients in section 6.2, we 

present the first of the algorithms named Fractional Fourier Coefficients Interpolation 

(FFCI) algorithm.  This algorithm is shown to have the same asymptotic error 
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performance as Quinn’s first algorithm but shifted by half a bin.  The Magnitudes Only 

Interpolation (MOI) estimator is then presented and analysed.  Its asymptotic 

performance is shown to be identical to the FFCI algorithm.  We then discuss the 

Magnitudes Squared Interpolation (MSI) algorithm showing that it is severely biased 

away from zero and therefore is not an efficient estimator.  The necessary modifications 

are then presented in the following section resulting in an unbiased estimator called the 

Modified MSI (MMSI).  This estimator is, however, shown to be a variation on the 

MOI estimator. 

Chapter 7 (Iterative Frequency Domain Frequency Estimation) In this chapter we 

examine iterative techniques for the estimation of frequency using the Fourier 

coefficients.  We present, analyse and simulate a number of new algorithms.  We start 

by discussing the binary search estimator named the dichotomous search of the 

periodogram peak.  This algorithm does not require any non-linear operations on 

Fourier coefficients and is, therefore, computationally simple.  The N data points, 

however, must be padded with zeroes up to 1.5N in order to achieve a performance that 

is of the same order as the CRB.  We provide an explanation for this and consequently 

propose a new algorithm called the modified dichotomous search algorithm that 

eliminates the need for padding the data with zeroes. We also propose a new hybrid 

algorithm that uses an interpolation technique to initialise the search.  This new 

algorithm has a performance that is practically on the CRB curve without zero-padding 

the data.  We also discuss other existing hybrid estimators. 

Chapter 8 (Iterative Interpolation on the Fractional Fourier Coefficients) The 

fractional Fourier coefficients interpolators, presented in chapter 6, are implemented 

iteratively.  We start by considering the convergence of an estimator.  The fixed point 

theorem that is used to prove the convergence is stated and discussed.  We, then, present 

the iterative implementation of the algorithms introduced in chapter 6 and prove their 

convergence.  The Iterative Fractional Fourier Coefficients Interpolator (IFFCI) and 

Iterative Magnitudes Only Interpolator (IMOI) are shown to converge almost surely 

(a.s.) in two iterations whereas the Iterative Magnitudes Squared Interpolator (IMSI), 

[10], is shown to require at least three iterations.  The ratio of variances of the frequency 

error of all three algorithms to the asymptotic Cramer-Rao bound converges to a value 

of 1.0147. 
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Chapter 9 (Frequency Assisted Spatial Tracking) We propose and implement a new 

method for the application of the Doppler shift information to assist the spatial tracking 

of the satellite.  We call this the FAST concept.  We start by briefly reviewing the 

satellite positioning literature and the use of the Doppler shift for position 

determination.  We then show that the Doppler shift and Doppler rate information 

completely characterise the look-angles to the satellite.  The FAST concept is 

implemented using the simplified orbital equations presented in chapter 3.  Furthermore, 

assuming that the maximum elevation of the orbit is known, the problem is reduced to 

tracking the satellite in one dimension.  We propagate the longitude of the ascending 

node of the satellite and use the algorithm of Ali et al, [11], to calculate the expected 

maximum elevation of the orbit.  We implement the spatial tracking algorithm using an 

extended one-dimensional Kalman filter.  The filter is simulated at a signal to noise 

ratio of 0dB.  The frequency estimator is assumed to achieve the CRB and a zero-mean 

Gaussian distributed frequency error with a variance equal to the CRB at a SNR of 0dB 

is added to the signal frequency prior to EKF spatial tracker. 

Chapter 10 (Conclusion) reviews the thesis and summarises the main conclusions.  

Further areas of research are also suggested. 

Appendix A (Spherical Geometry) Includes spherical trigonometry formulae needed 

for chapter 3. 

Appendix B (Asymptotic Theory) This appendix reviews the asymptotic theory for 

random and deterministic sequences.  The order notation is presented and its properties 

stated.  Proofs for some of the properties are included. 

Appendix C (Fourier Coefficients of AWGN) The properties of the Fourier 

coefficients of additive white Gaussian noise are discussed.  The fractional Fourier 

coefficients are also presented.  Finally, the signal plus noise case is reviewed. 

Appendix D (References) lists the references cited in the course of the thesis. 

 

1.4 Original contributions 

The author believes that the following areas of research outlined in this thesis are 

original contributions: 
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1. The complete characterisation of LEO orbits: Assuming the orbit to be a great 

circle arc and the observed satellite angular velocity to be constant, the orbit of a 

LEO satellite is completely characterised in the ECEF frame (chapter 3).  A new 

strategy for approximating the satellite’s velocity by its value at the maximum 

elevation point instead of its minimum value is proposed (section 3.4).  This is 

shown to result in lower errors overall by spreading them over the entire 

visibility period.  The expressions for the latitude and longitude of the satellite 

as well as the transformation from the azimuth-elevation coordinate system to 

the X-Y coordinate system are derived (sections 3.5.3 and 3.5.4). 

2. Approximate expression for threshold onset:  In chapter 4 we discuss the SNR 

threshold for the estimation of frequency of a sinusoid in the frequency domain.  

We examine Quinn’s method for the derivation of an approximate expression for 

the onset of the threshold (section 4.5).  We show that Quinn made an error in 

the derivation and we rectify this mistake.  The new expression is derived and 

compared to Quinn’s and the effect of the error is shown to be very small that 

Quinn’s expression is judged to still be “valid” for large N. 

3. The proposal of two new interpolation frequency estimators:  The FFCI and 

MOI frequency estimators are proposed in chapter 6, sections 6.3 and 6.4 

respectively.  The ratio of an estimator’s asymptotic variance to the asymptotic 

CRB is used to as a performance gauge.  Asymptotic analysis is done on both 

estimators and they are shown to be unbiased and have the same performance as 

Quinn’s first estimator.  Simulation results are used to verify the theoretical 

analysis.  The estimators are also shown to have their best error variance at a 

frequency offset of zero.  This fact as we demonstrate in chapter 8, makes them 

suitable for iterative implementation.  A third algorithm, the MSI estimator, is 

also presented and shown to be severely biased. 

4. Iterative frequency domain frequency estimation:  (chapter 7).  The dichotomous 

search of the periodogram is discussed in section 7.2.  Insight is offered into the 

necessity to pad the data with zeroes in order to approach the CRB for the 

estimation of frequency.  This insight is then used to propose a new estimator 

named the modified dichotomous search of the periodogram peak (section 7.3).  

This new estimator does not require the data to be padded with zeroes thereby 

reducing the computational load.  In section 7.4 we propose the guided search of 
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the periodogram peak frequency estimation algorithm.  This is a hybrid 

estimator that initialises the dichotomous search method using an interpolation 

estimator thus removing the need for zero padding the data. 

5. Iterative implementation of the new interpolation frequency estimators:  In 

chapter 8, we implement the interpolation algorithms proposed in chapter 6 

iteratively.  Proof of the convergence of the iterative algorithms is provided and 

their asymptotic performance obtained.  The IFFCI estimator is presented in 

section 8.4 and the IMOI algorithm in section 8.5.  These two algorithms are 

shown to converge in two iterations.  The IMSI algorithm is shown in section 

8.6 and is found to require three iterations to converge uniformly in frequency.  

All three algorithms converge to a ratio of 1.0147 to the asymptotic CRB. 

6. Frequency Assisted Spatial Tracking (FAST) concept:  The FAST concept is 

proposed and implemented in chapter 9.  The suitability of the frequency 

information (Doppler shift and Doppler rate) to the spatial tracking of a LEO 

satellite is discussed and illustrated in section 9.4.  The one dimensional FAST 

concept is implemented in section 9.5 for the simplified orbital model of chapter 

3.  An extended Kalman filter is used. 

 

1.5 Publications 

The following papers, relating directly to the thesis material, have been submitted, 

published and where appropriate presented by the author. 

E. Aboutanios, “A Modified Dichotomous Search Frequency Estimator”, to be 

published in the IEEE Signal Processing Letters. 

E. Aboutanios and S. Reisenfeld, “On the Use of Frequency Information for the Spatial 

Tracking of Low Earth Orbit Satellites”, submitted to the IEEE Transactions on 

Aerospace and Electronic Systems. 

E. Aboutanios and S. Reisenfeld, "Frequency estimation and tracking for Low Earth 

Orbit Satellites," IEEE Vehicular Technology Conference, vol. 4, pp. 3003-3004, 2001. 

E. Aboutanios and S. Reisenfeld, "Analysis of Frequency Assisted Spatial Tracking for 

Low Earth Orbit Satellites," presented at Sixth Ka Band Utilization Conference, 

Cleveland, Ohio, USA, 2000. 
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E. Aboutanios and S. Reisenfeld, "Frequency Acquisition and Tracking for FedSat Low 

Earth Orbit Satellite," presented at Fifth Ka Band Utilization Conference, Taormina, 

Sicily, 1999. 
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Chapter 2 

 

Theory and Background 

 

2.1 Introduction 

This chapter aims to review the theory required for the development of the ideas in the 

thesis as well as set the thesis in the context of the literature.  We start by discussing the 

Central Limit Theorem and the noise model in section 2.2.  Section 2.3 deals with the 

Cramer-Rao inequality and the CRB in the context of frequency estimation.  As an 

example, we derive the CRB of the estimate of the frequency of a sinusoidal signal in 

additive white noise assuming the phase and amplitude assumed are known.  The theory 

of Kalman filtering is then introduced in section 2.4.  The second aim of the chapter is 

addressed in section 2.5.  We review the frequency estimation literature discussing 

algorithms that are representative of the various approaches.  Finally, section 2.6 gives 

the concluding remarks to the chapter. 

 

2.2 The Central Limit Theorem and Noise Properties 

Statistical tools, like the central limit theorem are extremely useful to the analysis of the 

frequency estimation algorithms we will propose in later chapters.  It is also essential 

that we gain an understanding of the relevant noise models.  In this section we present a 

brief account of the CLT as well as the generalised noise assumptions that are used in 

[12], [13] and [14]. 

According to Pollard, [15], the CLT essentially means that “a sum of a large number of 

small, independent random variables is approximately normally distributed.”  The CLT, 

[16], is stated as follows: 

Let X  be a random variable with mean  and variance 
2

 (both assumed to be finite).  

Suppose we have N  independent realizations of X , denoted by NXXX ,,, 21 .  

Define the random variable NZ  as 
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Then the distribution of NZ  converges to the standard normal distribution, (0,1), as 

N . 

In fact, a more general statement of the theorem does not require the random variables 

nX  to be identically distributed, [17].  However, in the context of the estimation of 

frequency, we usually deal with i.i.d. data samples. 

The number of samples, N , that are normally employed in signal processing in general 

and in the estimation of frequency in particular, is usually “large”.  For instance, for the 

rest of the thesis and unless otherwise specified, 1024N .  This allows the use of the 

CLT to obtain the asymptotic properties of an algorithm with a relaxed set of 

assumptions on the noise. 

Hannan, [12], discusses the estimation of the parameters of a sinusoidal model in the 

presence of noise.  He takes the sinusoidal signal model to be 

 kwkfbkfakx 2sin2cos  (2.1) 

where ba  and  are the amplitudes of the in-phase and quadrature components and 

022 ba .  The noise, kw , is assumed to be stationary and ergodic with zero mean 

and finite variance.  Hannan shows that under these conditions, the periodogram 

maximiser (discussed in section 4.3) has the following property; 

 a.s.  ,0ˆlim ffN N
N

 (2.2) 

That is, the frequency estimate obtained from the periodogram maximiser converges to 

the true frequency as the number of samples tends to infinity.  Furthermore, the error 

itself is 1No . For a discussion of the order notation refer to appendix B. 

The convergence properties of an estimator are largely dictated by the behaviour of the 

noise terms.  Chen et al, in [18], consider the distribution of the periodogram ordinates 

of a strictly stationary time series, kw .  Let nW  be the Fourier coefficients of kw .  

These are given by 

 
1

0

21 N

k

N

kn
j

ekw
N

nW  



 

 

14 

They prove the convergence, in an almost sure sense, of the distribution of the 

coefficients ny , defined as 

 
nx

n
f

nWN
y

4

2

 

where xf  is the spectral density of kw  and f2  is the angular frequency. 

An et al, in [19], discuss the maximum of the periodogram of a zero mean stationary 

process.  They show that 

 a.s.  ,1
ln4

supsuplim

2

Nf

nWN

xN

 (2.3) 

This ensures the convergence of the distribution of the Fourier coefficients noise terms 

and that they are NNO ln2
1

. 

In the frequency estimation literature, the noise is usually assumed to be zero-mean 

Gaussian with variance 2 .  We adopt this assumption in our analysis in this thesis.  

The frequency dependent noise variance given by xf4  is then replaced by 2 .  The 

distribution of the Fourier coefficients is also normal (see appendix C).  The results 

obtained for the estimators of chapters 5, 6 and 8, although derived for the AWGN case, 

apply for the more general noise assumptions given here.  The asymptotic results also 

continue to hold. 

In the following section we discuss the Cramer-Rao lower bound (CRB) theory and give 

the bound for the estimation of the frequency of a complex sinusoid from N  data 

samples. 

 

2.3 The Cramer-Rao Lower Bound 

It is important, when estimating a parameter (or a function of the parameter), to know 

the theoretical limit on the performance of the estimator.  This is given by the lower 

bound on the variance of the resulting estimates.  There are many bounds with differing 

merits and suitability depending on the application.  These are presented in [20], section 
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3.3.  The CRB, however, is the most important and most widely used for the estimation 

of the frequency of a sinusoid. 

Suppose that X  is a random variable with probability density function with parameter 

vector α , 

 M1α  

For instance the parameter α  may consist of the amplitude and frequency for a sinusoid 

in noise.  Denote the probability density of x  by Xf  where the subscript  

indicates the dependence of Xf  on α .  The Fisher information matrix, J , is 

essentially a measure of the sensitivity (information content) of the distribution of X  

with respect to the parameter vector .  The information matrix must have a number of 

desirable properties such as the additive property [20].  This simply states that if two 

independent observations of X  are made, say 1X  and 2X , then the information content 

of the combined observation 
T

XX 21,  is the sum of the information contents of each 

observation taken separately.  The superscript ( T ) is the transpose operator.  The 

random variable, X , itself does not need to be a scalar and the notation is easily 

adapted to vector random variables.  The elements of J  are defined as 

 

lk

lk

lk

Yf
E

YfYf
EJ

ln

lnln

2

, α

 (2.4) 

for Mk 1  and Ml 1 . 

Now we are ready to present the Cramer-Rao inequality.  Suppose that we are 

estimating a function, in general a K -dimensional vector function, of α , say αg .  

Then a lower bound on the variance of an unbiased estimator of the αg , say αĝ , is 

 αGαJαGαgαgαgαg
TT

E 1ˆˆ  (2.5) 

where αG  is the Jacobian of the function αg .  The Jacobian matrix is of MK  

dimensions. 
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k

l
lk

g
G

α
α,  

As a special case, suppose that the function is ααg .  The Jacobian is then equal to 

the identity matrix I  and the CRB is given by 

 αJαααα 1ˆˆ T
E  (2.6) 

As a further simplification, consider the case where we are estimating a scalar parameter 

.  The CRB then becomes 

 
2

2

1
ˆvar

lnd f Y
E

d

 (2.7) 

If an estimator achieves the CRB, then that estimator is identical to the ML estimate of 

the parameter.  The ML estimate is simply the value of the parameter that maximises the 

likelihood of seeing the particular observation it was obtained from.  The ML estimator 

may not exist or maybe prohibitively computationally expensive. 

In the following we present the CRB for the estimates of the frequency of a sinusoidal 

signal.  We will, for illustration purposes, derive the CRB for the estimates of the 

frequency. 

 

2.3.1 CRB for the Estimate of the Frequency of a Sinusoid 

The CRB expressions for the estimation of the parameters of a sinusoid were derived by 

Rife in [21], pp. 26-31.  Here, we will assume that the amplitude and phase are known 

and derive the bound on the estimates of the frequency.  Without loss of generality we 

set the amplitude and the initial phase to 1 and 0 respectively.  Consider the following 

complex signal model 

 kwekx sf

f
kj2

 

where sf  is the sampling frequency and kw  are i.i.d. zero mean Gaussian noise with 

variance 
2

.  The signal frequency, f , is to be estimated using N  independent 

observations.  Now, the density of the kw  is given by 
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2

22

2
22

1
)(

vu

W ewf  

where kjvkukw .  Now writing kw  as 

 sf

f
kj

ekxkw
2

 

the pdf of kx  given f , is 

 
2

22

2

2sin2cos

22

1
),(

s
I

s
R

f

f
kkx

f

f
kkx

X efxf  (2.8) 

where the measurements, kx , are written as kjxkx IR .  Since the noise terms are 

independent, the joint pdf of N  samples is the product of the individual pdfs.  That is 

 

2

1

0

22

2

22

2

2sin2cos

2

1

0

2

2sin2cos

2

2

1

2

1
),(

N

k s
I

s
R

s
I

s
R

f

f
kkx

f

f
kkx

N

N

k

f

f
kkx

f

f
kkx

X

e

eff x

 

The log-likelihood function is given by 

 
1

0
2

22

2

2sin2cos

),(ln
N

k

s

I

s

R

X

f

f
kkx

f

f
kkx

Cff x  

where C  is a constant.  The expectation of the second derivative of the log-likelihood 

with respect to f , after carrying out the differentiation and necessary simplifications, is 

1

0

2

2

2

2

2sin2cos
2,ln N

k s

I

s

R

s

X

f

f
kkxE

f

f
kkxEk

fdf

ffd
E

x
 

However, the real and imaginary parts of the noise terms are zero mean.  Therefore, 
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kxE

2
cos  

and 

 
s

I
f

kf
kxE

2
sin  

and consequently the expression above reduces to 

 

6

1212

2,ln

2

1

0

2
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NNN

f

k
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ffd
E

s

N

ks

X x

 

Thus, using (2.7), the CRB for the estimation of the frequency of a sinusoid assuming 

the phase is known is given by 

 

1212

6

,ln

1ˆvar

2

2

2

2

NNN

f

df

ffd
E

f

s

X x

 (2.9) 

 

Here we define the signal to noise ratio (SNR), , as 2

2A , where in our case the 

amplitude of the sinusoidal signal A  is assumed to be 1.  The SNR in dB is 

 
2

2

10log10dB
A

 (2.10) 

The expression in (2.9) is identical to that obtained by Rife, [21] pp. 29, for the case 

where the phase known and the sampling started at 0t .  If the phase is unknown, the 

parameter vector is two dimensional consisting of the frequency and the phase.  The 

resulting CRB for the estimation of the frequency is, 

 
12

6
CRB

22

2

NN

f s  (2.11) 
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For large N , the term 22 1 NN  and the asymptotic CRB expression becomes 

 
32

2

2

6
CRB Asymptotic

N

f s  (2.12) 

 

2.4 Kalman Filtering 

Kalman filtering theory has been well published in the literature, [22] and [23], and has 

enjoyed application in many areas.  For instance, in [24-26], the authors employ 

Kalman filtering for the purpose of target localisation and radar tracking.  In, [27, 28] 

the Kalman filter is applied to the satellite orbit determination problem.  And in [29-31], 

Extended Kalman Filters (EKF) are used to track the frequency of a signal. 

The Kalman filter allows the estimation of the state of the system and the use of the 

state estimate to predict and filter the output at the next time step.  The filter takes the 

measurement and modelling noise into account.  The original Kalman filter was derived 

for linear systems.  In the case of a non-linear system, it is possible to linearise the 

system equations.  The linearised Kalman filter is discussed by Montenbruck in [32] pp. 

281.  The Kalman filtering equations, however, have been extended to cover non-linear 

systems.  The resulting algorithm is called the Extended Kalman Filter or EKF.  In this 

section we will briefly review both the Kalman filter and the EKF. 

 

2.4.1 The Kalman Filter – Linear, Time-Invariant Case 

Consider a system whose state is represented, at time n , by the vector nX .  Let Φ  be 

the state transition matrix.  The state of the system at time n  is, therefore, given by 

 11 nnn UΦXX  (2.13) 

where 1nU  is the system model noise vector.  For satellite tracking, for instance, it can 

account for perturbations that are left out of the chosen model, such as atmospheric 

drag.  Let nY  be the measurements vector at time n .  This is related to the state vector 

by the observation matrix, M , 

 nnn VMXY  (2.14) 
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nV  is a vector of measurement noise.  In the following, an asterisk (*) over a variable 

will be used to indicate the predicted value of the variable and the over-hat the filtered 

value.  The state transition matrix is used to propagate the state of the system from time 

n  to time 1n .  Thus, the predictor equation is 

 1
ˆ

nn XΦX  (2.15) 

The error between the observation and the prediction is then given by 

 nnn MXYΔY  (2.16) 

The filtered state at time n  is obtained by adjusting the predicted state by the weighted 

prediction error.  The weight matrix, nK  is called the Kalman gain, and the Kalman 

filtering equation is shown below, 

 nMXYKXX nnnn
ˆ  (2.17) 

The Kalman filter adjusts the weights based on the quality of the measurements which 

is indicated by the covariance matrix.  The weight update equation is, 

 
1T

nn

T

nn MMPRMPK  (2.18) 

The predictor covariance matrix, nP , is obtained from 

 n

T

nn QΦPΦP 1  (2.19) 

where nQ  and nR  are the covariance matrices of the model noise ( nU ) and the 

measurement vector respectively.  That is 

 nn UQ COV  

and 

 nn YR COV  

Finally, the covariance matrix of the smoothed estimates, nP , is updated using the 

following recursion, 

 nnnn PMKIP  (2.20) 
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2.4.2 Non-Linear Case – The EKF 

Now suppose that we have a non-linear system dynamic model.  This, for instance, is 

the case when tracking the satellite using the measured Doppler shift and rate.  The 

Kalman filter can, as demonstrated by Montenbruck [32], pp. 281, be applied to a 

linearised form of the equations.  However, the time interval for the prediction step 

must be small enough to allow the non-linearities in the system model to be neglected.  

The EKF, on the other hand, avoids this restriction by taking full advantage of the 

sequential estimation process. 

Let the observation vector be related to the state vector by, 

 nnn VXGY  (2.21) 

where nXG  is a vector of non-linear functions of the state variable nX .  That is, 

 

nn

n

n

n

g

g

g

X

X

X

XG
2

1

 (2.22) 

The EKF effectively linearises the model by relating a change in the state variable, nX , 

to the corresponding change in the observation, nY , 

 nnnn VXXMY  (2.23) 

where 

 

n
j

i
jin

x

g

XX

X
XM

,
 (2.24) 

Similarly to the original Kalman filter, the EKF adjusts the predicted value at time n  by 

the weighted prediction error to give the filtered state variable at time n . 

 nnnnn XGYKXX̂  (2.25) 

where we see that the last estimate was used in the function nXG .  This effectively 

amounts to resetting our reference state to the last estimate.  The Kalman gain is again 

given by the weight update equation, 
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1T

nn

T

nn MMPRMPK  (2.26) 

Now we address the state transition equation.  The state at time n  is generally a non-

linear function of the state at time 1n , say 

 1nn XHX  

where 

 

nn

n

n

n

h

h

h

X

X

X

XH
2

1

 

Employing the same linearisation process used in equation (2.23), we get 

 1nnn XΦX  (2.27) 

where the state transition matrix, nΦ , is 

 

1
ˆ

,

n
j

i
jin

x

h

XX

X
Φ  (2.28) 

Thus the prediction equations become 

 1
ˆ

nn XHX  (2.29) 

and 

 
T
nnnn ΦPΦP 1  (2.30) 

Finally, the covariance matrix of the filtered estimates is updated using 

 nnnn PMKIP  (2.31) 

The EKF has proven successful in a large number of applications.  In chapter 9, the 

EKF will be used to derive the spatial information of a LEO satellite using the measured 

Doppler shift.  As we will see in the next section, the EKF has also been applied to the 

problem of frequency estimation and tracking. 
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2.5 Frequency Estimation 

The problem of the estimation of frequency is relevant in a number of areas such as 

communications, radar, sonar, biomedicine, electrical power generation and 

distribution, seismology and astronomy.  The wealth of literature on the topic testifies to 

its importance, [12, 21, 33-36].  In this section, we will review the general literature that 

is relevant to the topic.  The published material that is immediately connected with the 

concepts of the thesis is dealt with in the appropriate chapters.  For instance, the 

interpolation on Fourier coefficients algorithms are reviewed in chapter 5, immediately 

prior to the proposal of the new algorithms of chapter 6.  This helps set the background 

at a more useful point in the thesis. 

Boashash published, in [35, 36], a tutorial on the estimation and interpretation of the 

“Instantaneous Frequency” (IF) of a signal.  While the frequency of a sinusoid is easily 

defined and intuitively understood, that of a general signal, whose parameters are time-

varying, is not.  The IF of a signal is defined as the derivative of the phase of its 

corresponding analytic signal.  The analytic signal is obtained from the real signal using 

the Hilbert transform, [37] pp. 79-83.  Boashash states that the IF of a signal is a 

parameter of practical importance in many situations such as seismology, radar, etc. 

where it is a good descriptor of some physical phenomena. 

In many cases, the signals that are encountered are stationary, or quasi-stationary.  That 

is, the signal parameters are constant or slowly varying that they can be assumed 

constant over the observation window.  This is the case for the Doppler frequency 

estimation of a LEO satellite, for instance.  The Doppler shift and Doppler rate, as is 

shown in section 3.6, are proportional to the carrier frequency and the relative velocity 

between the source and the receiver.  For a communications link such as the FedSat Ka 

band link (refer to section 1.1), the maximum Doppler rate for the downlink carrier 

frequency of 30 GHz is around 6 kHz/s at zenith for an overhead pass.  The UTS fast 

tracking Ka band earth station uses an observation window 1024 samples long at a 

sampling frequency of 1 MHz.  Thus, the maximum frequency drift that might be 

experienced in one observation window is 6Hz.  This validates the assumption that the 

frequency is essentially constant.  The assumption allows for the construction of simple 

estimation algorithms such as the estimators we propose in this thesis.  In fact, a 

compromise is usually made when setting the observation window length.  The longer 
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the observation window is, the lower the estimation variance.  This trend is, however, 

upset by the drift of the frequency over the observation interval which then invalidates 

the assumption of a constant signal frequency. 

Accurate frequency estimation plays a significant role in power systems both in the 

protection of power equipment and energy measurements [33].  The authors of [38, 39] 

evaluate some frequency estimation and tracking methods for the application of power 

system protection and control.  These are used to measure the fundamental frequency of 

the system.  In [40], the estimation of frequency is applied to the speed (and torque) 

control of induction motors.  This method is non-intrusive and eliminates the need for 

mounting tachometers or position transducers on the motor shaft. 

The estimation of the frequency of a received signal is also important in radar 

technology.  The estimation of the Doppler shift of a moving target in the context of a 

Doppler radar is examined in [41].  A linearly modulated signal (linear chirp) is usually 

reflected off the target and its frequency estimated.  The resulting Doppler shift is used 

to deduce the speed of the target. 

In a mobile or satellite communications system, there is usually a mismatch at the 

receiver between the reference frequency and the received signal carrier.  This 

mismatch must be removed and the actual carrier frequency recovered in order to 

demodulate the signal.  Significant work research has been done on the estimation of the 

frequency of a modulated signal [42-48].  In a LEO satellite system, [49], the Doppler 

shifts can be many times the symbol rate.  Many LEO communications links include a 

beacon frequency that is used to estimate the Doppler shift.  In the absence of a beacon, 

the modulated signal itself must be used to in the synchronisation process.  For phase 

shift keying (PSK) modulation schemes, the modulated signal is passed through a non-

linearity, usually an M
th
 power device, to remove the modulation, [47].  Cowley, in 

[46], examines the estimation of the frequency from PSK packets and derives the CRB 

for BPSK and QPSK.  Rice et al, [50], and Steendam et al, [48], derive the CRB for 

Quadrature Amplitude Modulation (QAM) based estimation of the phase and the 

frequency. 

Besides the carrier recovery for the purpose of acquiring and demodulating the signal, 

the Doppler shifts measurements of a satellite-observer link have been used in the 

spatial tracking of the satellite, [51, 52].  In the Cospas-Sarsat system, the frequency 

information is used to locate a beacon on the Earth for search and rescue purposes, [53].  
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In another application, Ali et al, [54], have proposed the use of the measured Doppler 

shift profile to regulate the multiple access of a LEO satellite.  The Doppler profile seen 

at an earth terminal is used to determine the period of time that the satellite is above a 

certain elevation.  The earth station then communicates to the satellite only above this 

elevation angle, thereby regulating the access of multiple earth stations. 

The application of the estimator usually dictates the specification that the algorithm 

must satisfy.  In the following we look at the some of the methods that have been 

proposed for the estimation of the frequency of a signal in general and a sinusoidal 

signal in particular. 

 

2.5.1 Phase-Based Frequency Estimation 

As the signal frequency is the rate of change of the phase, it seems natural to use the 

phases of the data samples to obtain a frequency estimate.  There has been considerable 

work published on the subject, [55-62].  Most of the applications tend to be in burst 

mode communications where rapid carrier acquisition from a small number of samples 

is required.  Tretter, in [60], suggested a least squares approach to estimate the 

frequency and initial phase of a sinusoid.  The general sinusoidal signal model is 

 1,1,0  ,
2

NkkwAekx sf

f
kj

 (2.32) 

where A  and  are the amplitude and initial phase of the signal respectively.  The noise 

terms, kw , are zero-mean AWGN with variance 2 .  Tretter established that, at high 

SNR (
2

2A
), the signal model can be re-written as 

 
ku

f

f
kj

sekx
2

 (2.33) 

The noise terms ku  are zero-mean AWGN with variance 
2

2

2A
.  Thus the signal phase 

is given by 

 ku
f

f
kkx

s

2  (2.34) 
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Tretter, thus, applied a least squares estimator to the collected phase trajectory given by 

equation (2.34).  He showed that, at high SNR, the estimator is efficient, that is it 

achieves the CRB.  A drawback of his approach, though, is that the phase must be 

unwrapped prior to the estimation process.  Kay, in [59], discussed Tretter’s method and 

suggested a new algorithm that is identical to Tretter’s in performance but avoids the 

phase unwrapping problem.  Kay turned his attention to the differential phase data.  Let 
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1

kuku
f

f

kxkxk

s

 (2.35) 

The problem is now to estimate the mean of the sequence k .  As the noise is now 

coloured, Kay takes the covariance matrix, C , of the phase differences into account.  

Equation (2.35) represents a moving average process with coefficients 1 and -1.  Let 

T
N 210Δ  (note we obtain 1N  differential phase data points 

from N  data samples) and 
T

1111 .  The ML estimate of the frequency is 
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ΔC1
1

1

2
ˆ

T

T
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f  (2.36) 

And the variance of the estimator is 

 
1C1
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ˆvar

T
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f  (2.37) 

Going through the algebraic manipulations, Kay finally arrives at the following 

estimator 
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s kxkxk
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f  (2.38) 

where k  was rewritten as 1kxkx  and k  are the window weights, 

computed using the following expression 
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The variance, in equation (2.37) is shown to be equal to the CRB.  The parabolic 

window results in the optimality of the estimator at high SNR.  Kay points out that 

replacing the window by a rectangular one, would result in a simpler, but worse 

performing estimator.  This is shown in the following equation. 

 
1

1

1
12

ˆ
N

k

s kxkx
N

f
f  (2.40) 

Although the estimators presented above are computationally simple, they perform well 

only at high SNR.  Kay found that for 24N  the ML estimator (that is the Maximum 

Likelihood estimator which is equivalent to the periodogram maximiser) has a threshold 

at SNR = -1dB, whereas the weighted estimator given here has a threshold at 6dB. 

Lang and Musicus, in [63], commented on Kay’s method and showed that it can be 

derived from Tretter’s formula by employing a summation by parts.  They also applied 

the algorithm to the estimation of the frequency of a chirp signal.  They suggested an 

adaptive formulation of the algorithm that continually updates the frequency estimate 

with each new phase observation.  The adaptive estimator, however, requires the phase 

unwrapping algorithm.  Furthermore, they studied the threshold effect and explained the 

effect of a phase unwrapping failure on the estimator performance.  For high SNR, the 

unwrapped phases are almost normally distributed and the frequency estimates behave 

regularly.  As the SNR drops, the likelihood of a phase error increases.  The phase of a 

sample might be incorrectly unwrapped resulting in a 2  phase error in the phases of 

all succeeding samples. 

Fiore, in [57], looked at simplifying the computational requirements of Kay’s estimator 

for the purpose of high speed applications.  He proposed the replacement of the 

parabolic weighing function of equation (2.39) with a trapezoidal function.  This 

eliminates the need for multiply operations and leads to a simpler recursive 

implementation of the estimator using finite phase differencing.  Inspired by the work of 

Lang and Musicus, discussed in the previous paragraph, he also extended the recursive 

implementation to the estimation of chirp rate.  The theoretical aspects of Kay’s 

estimator have also been discussed in the literature.  Clarkson et al, [56], for instance, 

derived an approximate expression for the variance of Kay’s estimator and calculated 

the SNR threshold.  They also optimised the window weights in order to improve the 

variance threshold.  Fowler, [64], suggested lowering the threshold of the phased 
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estimators by pre-processing the signal by a bank of overlapping filters.  This improves 

the SNR in each of the bands.  The band containing the signal is chosen by the pre-

processor and Kay’s estimator used as a fine frequency estimator. 

 

2.5.2 Correlation Based Frequency Estimation 

Autocorrelation based estimators, [58, 62, 65-67], are closely related to the phase based 

estimation discussed in the previous section.  The estimation of the frequency of a 

sinusoidal signal from arbitrary sets of correlations coefficients is studied by Volker in 

[68]. 

The un-normalised autocorrelation of a complex signal kx  is defined as 

 1,1,0  ,
1

NlkNxkxlR
N

lk

 (2.41) 

Whereas the normalised autocorrelation function given by 

 lR
lN

lR
1

 (2.42) 

The estimators of equations (2.38) and (2.40) are, at high SNR, equivalent to the 

autocorrelation function with 1l .  Kay, [59], gave two alternate expressions to the 

two estimators; 
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and 
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These equations illustrate the relation to the autocorrelation function more clearly.  The 

last expression, in particular, is rewritten in terms of 1R  as 

 1
2

ˆ R
f

f s  

Fitz, [58], generalised Kay’s estimator using the un-normalised autocorrelation 

function.  He argued that higher lags would result in improved frequency estimates as 
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the autocorrelation function is then less affected by noise.  In fact the optimum lag is 

shown in [69] to be 
3

2N
l .  For NM , Fitz’ estimator has the form, 

 
M
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s lRl
MMM

f
f

1212
ˆ  (2.45) 

While the estimator has improved performance over Kay’s algorithm, it only performs 

well at moderate SNR values. 

Employing a similar approach to Fitz, Luise and Reggiannini suggested an estimation 

algorithm using the sample autocorrelation function of the data, [67].  Their estimator is 

given by the following expression 
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f
f
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ˆ  (2.46) 

The estimator implementation suggested by the authors lends itself to an FIR filtering 

approach.  The estimator has a unambiguous estimation range, f , given by 
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f
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They showed that the optimum value of M  is given by 
2

N
.  Using their suggested 

implementation, the complexity of the algorithm is NMO .  Thus, the algorithm is 

2NO  the optimal value of M .  This is much less efficient than an FFT based 

algorithm.  The authors, however, noted that for the applications of interest, namely 

burst mode communications, only a small number of samples is available.  They also 

suggested reducing M , for instance to 
4

N
, in order to reduce the number of required 

operations without losing much of the optimality of the algorithm. 

 

2.5.3 Least Squares Frequency Estimation 

The papers discussed so far maximise the likelihood function in order to derive a 

frequency estimator.  Another approach is to use a minimization of the sum of the 

squares to derive a frequency estimator, [70-72].  In [73] a least squares fit of the phase 
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trajectory for the estimation of the Doppler shift and rate of a LEO satellite 

communications link. 

The continuous-time received signal of a satellite link is given by 

 twtstx  

where tAts cos  and tw  are i.i.d. Gaussian noise with variance 2 .  

Expanding the received signal phase at time tt  into a Taylor series yields 

 32

!2
tOt

t
ttttt  

where t  is the Doppler shift and t  the Doppler rate.  This suggests that the phase 

can be approximated by polynomial of order p .  The polynomial coefficients are given 

by the Doppler shift and its derivatives.  In [73], first and second order polynomial fit 

algorithms are implemented.  However, only the second order algorithm is presented 

here.  The Doppler shift and rate are then estimated using the least squares fit of a 

second order polynomial to the received phase trajectory.  Let k
~

 and kˆ  be the 

phases of the thk  received sample and estimate respectively.  We have 
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2

ˆ
ˆˆˆ

ss TTk  (2.47) 

sT  being the sampling period and 0
ˆ ˆ 0 . 

The cost function, given by 
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is minimized to give the estimates ˆ ,ˆ
0  and ˆ .  The solution for the quantities of 

interest, namely ˆ  and ˆ  is 
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where 
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and 21 NNN  

This algorithm requires the unwrapped phase trajectory.  To this end, the authors 

suggest calculating the differential phases of the samples and then integrating up to the 

current sample.  That is 
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The estimator can be implemented in either a batch mode or recursive form.  The batch 

mode is equivalent to a sliding window algorithm. 

 

2.5.4 Frequency Estimation Using ARMA Modeling 

A sinusoidal signal can be modeled as an Autoregressive Moving Average (ARMA) 

process, allowing the frequency to be estimated, [41, 74, 75].  Quinn and Fernandes, 

[14], iteratively fit an ARMA(2,2) model to the sinusoidal data.  Quinn, [76] showed 

that the technique can be interpreted as the maximiser of a smoothed periodogram of the 

signal.  He also generalised it to the estimation of the frequencies of multiple sinusoids.  

The technique is again reviewed in [34], chapter 4. 

Consider the real sinusoid 

 ,1,0  ,2cos kkw
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f
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 (2.52) 

It is well known that, in the noiseless case, the second order difference equation 
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 0212cos2 kxkx
f

f
kx

s

 (2.53) 

holds.  This is easily shown by substituting kx  with the kw  set to zero into (2.53) 

and going through the necessary algebraic manipulations.  Including the noise terms, the 

equation becomes, 

 212cos2212cos2 kwkw
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f
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f

f
kx

ss

 (2.54) 

Substituting general constants for the coefficients in f  in the above equation results in 

 2121 kwkwkwkxkxkx  

The approach of Quinn and Fernandes, then, reduces to the estimation of  and , 

subject to the condition .  Suppose we have N  samples.  This is carried out as 

follows. 

Set 
s

c

f

f̂
2cos2ˆ

1 , where cf̂  is a coarse frequency estimate obtained using a 

coarse estimator such as the maximiser of the periodogram. 

Now, for each iteration i  do 

 1,1,0,21ˆ Nkkykykxky i  

with 0 ,0 kky .  i
ˆ  is now calculated using the linear regression of 2kyky  

on 1ky .  That is 
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If ii
ˆˆ , where  is a set tolerance, then exit the loop and set 

2

ˆ
cosˆ 1 if .  

Otherwise, put ii
ˆˆ

1  and repeat the procedure. 

The asymptotic properties of the algorithm are derived in [14].  It is shown that the 

estimation error is asymptotically normal with variance equal to the asymptotic CRB.  If 

the initialising estimator is NO , the residual in the estimate of  after iteration Q , 

becomes 2
3

No  where 

 
2ln

12ln
3Q  

and  is the floor (or integer part of) .  Thus, if the periodogram is used to initialise 

the algorithm, then 1  and the algorithm takes 3 iterations to converge to the CRB.  

Since the number of iterations for convergence can be pre-determined, the tolerance 

based stopping criteria can be discarded and the algorithm simply run for Q  iterations. 

 

2.5.5 Kalman Filtering Frequency Tracking 

Another interpretation of the algorithm of the previous section is in terms of the 

existence of a second order filter that suppresses a particular sinusoidal component, that 

is, a very narrow notch filter.  Therefore, the estimator, in effect, tunes the coefficients 

of the filter to get the best possible suppression using the available data.  Other adaptive 

filtering techniques have been proposed for the purpose of frequency estimation [77-

79].  Kalman filter frequency tracking algorithms have also received significant 

attention, [30, 31, 40, 80].  In this section, we briefly review a Kalman filter frequency 

tracking algorithm. 

Consider the real sinusoidal model of equation (2.52).  The signal at 1k  can be 

expanded in terms of kx , 
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Now putting 
sf

f
kAkz 2cos1 , 

sf

f
kAkz 2sin2 , and 

sf

f
kz 23

, we can split the expression for 1kx  into the following system of equation (referred 

to as a third order state space model), 
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 (2.56) 

The noise terms, k  and k  are zero-mean uncorrelated white noise with variances 

2  and 
2

 respectively.  The frequency is given by the state variable 3z . 

Now applying the EKF theory of section 2.4, we see that the state vector is given by 
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The equation is consequently given by, 
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 001M  (2.59) 

The Kalman gain update equation is 
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The predictor covariance matrix is obtained from 
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T
kkkkk  (2.61) 

I  is the identity matrix.  The quantities kΦ  and 31  are defined as 
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Notice that equation (2.61) is a combination of equations (2.31) and (2.30).  Bittanti and 

Savaresi, [30], studied the Kalman filter presented here and showed that it is unbiased in 

its steady state response to a sinusoidal signal with a fixed frequency.  Furthermore they 

proved that the performance is dependent only on the ratio 
2

2

.  This greatly simplifies 

the design of the filter parameters. 

 

2.5.6 Frequency Domain Frequency Estimation 

Rife showed that that the ML frequency estimator is given by the maximiser of the 

periodogram, [21].  The advent of digital signal processors and the efficiency of the 

FFT algorithm have contributed to the popularity of the frequency domain frequency 

estimation algorithms.  Unlike the phase and correlator-based estimators, the FFT based 

algorithms exhibit excellent performance at low SNR.  They have a much lower SNR 

threshold.  Boashash, in [81], explains this as follows:  “The Fourier Transform peak is 

that value of f  (the frequency) for which there is maximum correlation between the 

complex phase sequence, N
knj

e
2

, and the (complex) phase of the observed signal.  That 

is, the peak of the Fourier Transform is the frequency which results in the best 

achievable smoothing of the complex phase, subject to the constraint that the frequency 

is constant…  Because this type of smoothing completely avoids the phase unwrapping 

problem it yields IF (Instantaneous Frequency) estimates which are low in variance at 

much lower SNR thresholds than the methods based on smoothing of the phase.”  By 

the methods based on the smoothing of the phase he implies the time-domain methods, 

and in particular the phase based methods. 
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FFT-based algorithms usually consist of a coarse frequency search followed by a fine 

estimation algorithm.  Rife in [21], studied the digital estimation of the frequency of a 

sinusoidal signal from N  data samples in the presence of AWGN.  He suggested a 

coarse frequency estimator given by the index corresponding to the maximum Fourier 

coefficient of the signal followed by a fine estimation stage.  He also examined low 

complexity fine frequency estimation methods, such as the secant method and the 

Newton method.  Quinn, [82, 83], Macleod, [84] and Zakharov et al, [85, 86], among 

others, have also proposed interpolation methods that improve the resolution of the 

coarse frequency estimator.  These will be discussed in detail in chapters 5 and 7.  In 

this dissertation, a two stage estimation technique is adopted.  The periodogram 

maximiser, referred to as the Maximum Bin Search (MBS) algorithm, is used as the 

coarse estimation stage. 

Although the methods mentioned so far are mostly suitable for stationary or quasi-

stationary signals, Boashash, [81], points out that they can be extended to polynomial 

phase signals.  Assume the signal can be written as 
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where, without loss of generality, the amplitude is set to 1.  Then the estimate of the 

vector paaa ,., 10A  is the maximiser of the likelihood function 

 

2
1

0

2
211

L
N

n

nananaj p
pekx

N
A  (2.63) 

Notice that coefficient 0a  is not present in the likelihood function as it is a constant 

phase which is removed by the modulus operator.  This technique is simply a p -

dimensional peak search of a generalised Fourier transform.  Thus, this method is 

inefficient and is computationally intensive.  Many other techniques have been 

proposed for this purpose.  The Short Time Fourier Transform (STFT) has been well 

studied in connection with non-stationary signals, [87, 88].  Time-frequency 

distributions, especially the Wigner-Ville distribution (WVD), have also been 

considered in the context of estimating the frequency of non-stationary signals, [89-92].  

The authors of [93] apply the Wavelet transform to the Doppler shift estimation 

problem for LEO satellites.  The Wavelet transform differs from the STFT in that it 
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employs a kernel consisting of wavelets.  A wavelet is a wave that is restricted to a 

specified length of time. 

 

2.6 Conclusion 

This chapter was intended to provide the theoretical background on which the thesis is 

built and to set it in the context of the literature.  The properties of the noise and the 

central limit theorem were discussed in section 2.2, section 2.3 presented the Cramer-

Rao inequality and the CRB for frequency estimation while Section 2.4 dealt with the 

theory of Kalman filtering both in the linear time-invariant and the nonlinear cases. 

The frequency estimation literature is reviewed in section 2.5.  There is an enormous 

amount of work published on the topic.  This review was only intended to be a general 

summary of the methodologies that are relevant in the context of a LEO satellite 

communications link.  In highly dynamic environments, the computational efficiency of 

an estimator plays an important characteristic as the available processing time is limited.  

At Ka band, the signal experiences large attenuations, due to atmospheric effects, rain 

fade as well as antenna pointing error.  This dictates that the estimators have a good 

performance at low signal to noise ratios.  Although the phase based estimators are 

computationally simple, they have a high SNR threshold.  The filtering techniques, on 

the other hand, are more computationally intensive but tend to have a slightly better 

performance.  With the advent of digital signal processors, FFT based methods have 

become real contenders for real time frequency estimation.  They are computationally 

simple and perform very well at low SNR values. 

Many other techniques, not reviewed due to the lack of space, have been applied to the 

estimation of the frequency.  These are generally more computationally intensive.  

Examples include MUSIC, [94, 95], subspace rotation techniques, [96, 97], and Prony’s 

method, [98, 99], to name a few. 

The orbital mechanics of a satellite in a low earth orbit will be examined in the next 

chapter.  The theory developed will be useful in the application of the frequency 

measurements to the spatial tracking of the satellite. 
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Chapter 3 

 

Complete Characterisation of Low Earth 

Orbits 

 

3.1 Introduction 

Satellite orbit determination has been dealt with extensively in the literature, [32], [100], 

[101] and [102].  These books generally start with a simplified orbital model obtained 

by solving the Keplerian equations of motion.  They, then, incorporate perturbations of 

first, second and higher orders to get a more accurate model.  These perturbations 

include the non-sphericity of the earth, the pull of the sun and moon, atmospheric drag 

and relativistic effects.  This chapter, however, is not concerned with accurate orbital 

determination but rather with a simplified orbital model.  The chapter aims at presenting 

a simplified orbital model that will be useful in developing the ideas of chapter 9.  The 

orbital model also serves in the derivation of the Doppler shift and Doppler rate 

equations.  The Doppler shift curves are useful in implementing the frequency 

compensation in the communications link prior to the demodulation of the received 

signal. 

In [103] and [104], the authors present a simplified characterisation of the Doppler shift 

of a LEO satellite.  They assume the earth to be spherical and ignore all perturbations 

and second order effects.  Their analysis is done in the Earth-Centred, Earth-Fixed 

(ECEF) frame of reference.  The observed satellite orbit in the ECEF frame is assumed 

to be a great circle arc.  This is in actual fact not the case due to the earth’s motion.  The 

authors also calculate the satellite orbital velocity in the ECEF frame and they show the 

validity of approximating it by a constant. 

In this chapter we develop a simple iterative implementation of the two-body model in 

the latitude-longitude coordinate system.  We derive expressions for the position, look 

angles and the Doppler shift and Doppler rate for a LEO satellite in the ECEF frame.  

We then use the assumptions stated above to simplify the equations obtained.  We also 
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present another strategy of approximating the angular velocity of the satellite in the 

ECEF frame by a constant value obtained at the maximum elevation point.  An 

expression for the off-boresight pointing error is also derived and used to assess the 

performance of the derived model. 

The chapter is organised as follows.  In section 3.2 we derive the angular position of the 

satellite in the ECEF frame.  We use this in section 3.3 to present a simple iterative orbit 

propagation algorithm.  In section 3.4 we present the strategy of Ali et al., as well as our 

own, for approximating the ECEF angular velocity of the satellite by a constant.  The 

complete spatial characterisation of a LEO satellite is presented in section 3.5, and the 

Doppler characterisation in section 3.6.  Finally, section 3.7 concludes the chapter. 

 

3.2 Angular Velocity of Satellite in ECEF Frame 

In order to carry out the analysis in the ECEF frame, we must calculate the satellite orbit 

in that frame.  For a treatment of the different frames of reference refer to [101].  As the 

earth is fixed in the ECEF frame, this involves taking into account the earth rotation in 

the orbital calculations.  The satellite orbit in the ECEF frame is no longer circular and 

its observed angular velocity depends on its latitude. 

Consider a satellite in an Earth-Centred Inertial frame (ECI).  We assume the satellite 

orbit is circular and the spherical earth model is used.  The angular velocity of the 

satellite is given by 

 
1

3
rad.s

r

GM e

I  (3.1) 

where G is the gravitational constant (  6.672 × 10
-11

 m
3
kg

-1
s

-2
) 

eM  is the mass of the earth (  5.9736 × 10
24

 kg) 

And r  is the radius of the satellite orbit ( hre , where 15.6378er  km, is the radius 

of the earth and h  is the satellite altitude) 

The gravitational constant is usually determined directly from torsional experiments 

involving two bodies, [32].  Due to the small size of the gravitational force, however, it 

is hard to determine G  accurately.  The term eGM , on the other hand, has been 
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determined with significant precision using orbital tracking data of artificial Earth 

satellites.  Therefore the value of eGM  or earth figure, is usually specified. 

In [104], the satellite velocity in the ECEF frame was derived.  We will repeat some of 

the analysis here for the purpose of completeness.  Let the subscript I stand for the ECI 

and F for the ECEF frames respectively.  The symbols  and  stand for longitude and 

latitude respectively. 

Figure 3.1 shows the satellite orbit in the ECI frame.  The satellite ascending node is '

iS  

and the node at maximum latitude is '

mS .  The satellite angular velocity is given by I  

and the satellite position is denoted by ssr ,, .  F  denotes the satellite velocity in 

the ECEF frame. 

 
Figure 3.1 – Satellite position in ECI frame of reference. 

 

Since the earth is fixed in the ECEF frame, the earth rotation must be taken into account 

in F .  To this end, we need to decompose the satellite angular velocity into its latitude 

and longitude components.  Denote angle '

e

''

i SSS  by .  The north and east components 

of the satellite velocity at time t, denoted by Nv  and Ev , are 
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The satellite velocity in the ECI frame, Iv , is related to the angular velocity by Ir  

where I  is given by equation (3.1).  As the earth’s rotation affects only the longitude, 

Nv  and Ev  in the ECEF frame become 
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and
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 (3.3) 

The velocity of the satellite in the ECEF frame, Fv , is found by combining Nv  and Ev  
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Expanding (3.4) and simplifying we get, 

 seIseIF rv cossincos 222
 (3.5) 

Spherical trigonometry identity (A.6) applied to triangle ei SSS  results in the following 

expressions for cos( ) and sin( ) 
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Substituting sin( ) into (3.5) and then dividing by r we obtain the following expression 

for the angular velocity of the satellite, F , in the ECEF frame, 

 ieIseIF cos2cos222
 (3.7) 

Equation (3.7) clearly shows that the satellite angular velocity in the ECEF frame for an 

orbit with inclination i depends solely on the latitude of the satellite. 

The expressions for the sine and cosine of  are also substituted into equation (3.3) to 

give 
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The satellite velocity in the north direction, Nv , is related to the satellite latitude rate of 

change, L , through the orbit radius r .  The east-west component, Ev , on the other 

hand is related to the longitude rate of change, l , through the projection of the orbit 

radius onto the equatorial plane, that is sr cos .  Hence the satellite latitude and 

longitude rates of change are given by respectively 
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Equation (3.9) gives us some insight into the behaviour of the satellite in the ECEF 

frame.  As expected, as the satellite moves in its orbit away from the equatorial plane, 

the latitude rate of change decreases while that of the longitude increases.  The earth’s 

rotation affects the longitude rate of change only and hence is of differing magnitude 

depending on the latitude of the satellite.  For inclined orbits, this implies that the 

satellite pass as observed from a ground station is not symmetrical about the zenith or 

maximum elevation point.  The other implication is that equal maximum elevation 

passes east and west of the ground station have different Doppler and spatial 

characteristics as they would occur at different latitudes.  These effects will be discussed 

in greater detail in later sections and in chapter 9. 

 

3.3 Orbital Propagation 

The satellite latitude and longitude rates of change, shown in equation (3.9), can be 

implemented iteratively in order to obtain the satellite orbit.  Specifying the longitude of 

the ascending node i  is sufficient to calculate the satellite orbit.  Let the orbit 

sampling time be sT .  We start the algorithm by setting the satellite longitude to i  and 

the latitude to 0.  During iteration n, the latitude and longitude are propagated from time 

sTn 1  to time snT  using the following equations: 
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Since we are interested in the satellite orbit in the ECEF frame, the effect of the earth’s 

rotation on the longitude of the satellite ascending node must be accounted for.  

Therefore, i  at time snT  is given by, 

 seii Tnn 1  (3.11) 

The latitude and longitude rates of change at time snT  can now be updated using 

equation (3.9) and the values for s , s  and i  given above.  The algorithm steps are 

summarised in table 1 below. 

 

 

Table 3.1 – Orbital Propagation Algorithm. 

 

The performance of the orbital propagation algorithm of table 3.1 was evaluated with 

respect to a simulation done using the package Satellite Toolkit (STK).  The orbital 

propagator chosen for comparison purposes is the Two-Body model that assumes the 

earth is spherical and ignores any second order effects.  A more elaborate orbital model 

is beyond the scope of this work.  However, the non-sphericity of the earth can be taken 

into account by replacing the earth radius by the actual earth radius obtained from the 

reference ellipsoid and using the geodetic latitude instead of its geocentric equivalent, 

[102] pp 268.  A scenario was created with a satellite having an orbital altitude of 800 

km and an inclination of 81 .  STK uses an earth radius of 6378.137 km and an earth 

figure of 3.986004418  10
14

. 
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Figure 3.2 – Orbit propagation algorithm results. 

 

Figure 3.2 above shows the results obtained from STK and the orbit propagation 

algorithm.  We can see very good agreement between the two.  In fact the orbit 

propagation algorithm presented in this section is based on the two-body model used in 

STK.  In the following section we present an approximation of the ECEF angular 

velocity of the satellite that was developed in [104].  This leads to a simplified set of 

equations for calculating the satellite orbit based on the maximum elevation angle. 

 

3.4 Satellite Velocity Approximations 

For a low earth orbit satellite, the angular velocity of the satellite is much larger than 

that of the earth.  Therefore the second term under the square root sign in equation (3.7), 

that is cos2
e , is much smaller than the difference of the other two terms.  This 

implies that the velocity variation induced by the earth’s rotation is very small and 

hence the satellite velocity can be approximated by a constant.  In [104], Ali et al. 

approximate the satellite velocity by its lowest magnitude, that is its magnitude at 

latitude i .  For an orbit at an altitude of 800 km and inclination 81 , the ECI angular 
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velocity I  is 0.00104 rad/s, that is equivalent to a velocity of 7.4518 km.s
-1

.  The 

corresponding satellite velocity in the ECEF frame varies between 7.3881 km.s
-1

 and 

7.3699 km.s
-1

.  This results in a percentage variation in the velocity with respect to Iv  

of about 0.25%.  This variation is an order of magnitude smaller than the earth angular 

velocity. 

Another strategy for approximating the angular velocity of the satellite in the ECEF 

frame would be to take its value at the moment of maximum elevation.  This requires 

the determination of the maximum elevation latitude, 0s .  However, this gives a value 

that is closer to that observed by the earth station during the visible pass duration.  In the 

following section we will derive the spatial and Doppler characterisation of the LEO 

satellite.  We will then examine the effect of the approximation on the derived formulae. 

 

 
Figure 3.3 – Angular velocity of satellite in ECEF frame as observed by an earth station 

at a longitude of 10º west and latitude 33.5º north.  The pass used has a maximum 

elevation angle of 85.45º and is east of the earth station. 

 

Figure 3.3 shows a comparison between the two approximation strategies and the actual 

observed angular velocity.  The earth station was placed at 10º west and 33.5º north.  
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The pass has a maximum elevation of 85.45º.  The approximation suggested here results 

in a value closer to the mean of the observed angular velocity in the ECEF frame.  This 

reduces the mean error over the entire visible duration of the pass. 

 

3.5 Spatial Characterisation 

In this section we complete the spatial characterisation of the satellite orbit.  This 

involves the derivation of the satellite position and Doppler shift and rate with respect to 

time.  The satellite position will be derived in both an Azimuth-Elevation coordinate 

system in section 3.5.3 and X-Y coordinate system in section 3.5.4.  We will start, 

however, by deriving the longitude and latitude of the satellite at time t in order to be 

able to derive the other quantities.  Let the earth station have a longitude ES  and 

latitude ES . 

Denote by t  the angle that the earth station and the satellite subtend at the centre of 

the earth at time t.  The time reference is taken to be the moment of closest approach 

between the satellite, S, and the earth station, P.  That is 0t  is the moment where the 

satellite is at the maximum elevation 0.  t  is given by POS in figure 3.4(a). 
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Figure 3.4 - Orbital Geometry for a LEO with altitude h and inclination i. 

 

Figure 3.4(b) gives 

 )cos()cos( rre  (3.12) 

Hence, angle t  at maximum elevation 0, denoted as 0, is given by, [104], 
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Due to the symmetry of the spatial dynamics about the zenith or overhead pass, we 

assign to 0 a positive sign for passes to the east of zenith and negative sign for those to 

the west. 

From figure 3.4(b), the earth station to satellite slant, ts , is given by the cosine rule,  

 trrrrts ee cos2)( 22
 (3.14) 

Figure 3.5 shows the sub-satellite path between the ascending node Si and the maximum 

elevation point S0. Note that this is a snapshot at the moment of maximum elevation.  

0s  is the latitude of the sub-satellite point at maximum elevation 0, that is point S0.  

Angles i0SPS  and ixeSPS  are right angles, and side PS0 is equal to 0.  Here the 

subscript e refers to points in the equatorial plane. 

 

 
Figure 3.5 – Enlarged view of sub-satellite path. 

 

Consider the spherical triangle NPS0.  Arc NP is equal to ES90  and NS0 to 090 S

.  Applying the cosine rule, given in (A.1), we have, 

 PNScossin90sincos90cos90cos 00000 ssES  (3.15) 

Triangle 0e0i SSS  is a right angle spherical triangle.  Using identity (A.6) we write angle 

0e0i SSS  in terms of the orbit inclination, i , and 0s , 
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Since PS0Si is a right angle, we have that NS0P + SiS0S0e = 90º.  Combining equations 

(3.15) and (3.16) and solving for 0s , we get, 
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The negative sign is used for orbits east of the zenith pass and the positive sign for those 

west of it. 

The longitude of the maximum elevation point, 0s , is obtained using identity (A.1) on 

triangle NPS0, 
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with the positive sign for orbits east of the zenith pass and negative for those west of the 

zenith pass. 

 

3.5.1 Satellite Visibility Duration 

A minimum elevation angle is normally set for communications with a Low Earth Orbit 

satellite.  Let this minimum visibility angle be denoted by v .  The total visibility 

duration vT  for a particular earth station is the time the satellite spends above elevation 

v .  For the case where the satellite velocity is approximated by a constant value, vT  

was derived in [104] as 
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The visibility duration was calculated for the LEO satellite at 800 km altitude and 

inclination of 81º.  The results are shown in the figure below. 
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Figure 3.6 – Plot of visibility duration as a function of the observed maximum elevation 

angle. 

 

The visibility time for the pass with maximum elevation of 85.45º is 926.6 s.  Equation 

(3.19) gives a value of 928.3 s with F  approximated by its minimum value and 926.8 

s with F  approximated by its value at the maximum elevation point.  The error arises 

from the approximation of the satellite velocity in the ECEF frame by a constant.  A 

closer examination of the visibility duration calculations reveals another difference.  

Equation (3.19) assumes a visibility window that is symmetrical about the maximum 

elevation point.  This in reality is not the case due to the earth’s rotation and the satellite 

orbit inclination.  At lower latitudes, the satellite velocity translates mostly into a 

latitude component.  As the latitude increases, however, the longitude component of the 

angular velocity increases and the latitude rate of change decreases.  The total observed 

angular velocity of the satellite also decreases.  Thus, the visible portion of the satellite 

orbit appears asymmetrical to the earth station. 

Figure 3.6 shows the visibility duration as a function of the maximum elevation of the 

pass for different minimum visibility angles.  The curves demonstrate that the satellite 

spends most of the visibility time at low elevation angles.  For example, the visibility 

duration of a zenith pass for minimum visibility angle of 30º is a little over 300 s.  
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Taking the minimum visibility angle to be 0º, on the other hand, we find that the 

visibility duration of a zenith pass is a more than 900 s.  This indicates that, for a zenith 

pass, the satellite spends about 600 s between the 0º and 30º.  Therefore, it is essential to 

maximise the probability of closure of a communications link at high elevations to 

efficiently utilise the satellite resources during visibility. 

 

3.5.2 Latitude and Longitude of the Sub-satellite Point S 

In order to calculate the relative position of the satellite to the earth station at a time t, 

we must determine the latitude and longitude of the sub-satellite point at that time 

instant.  The angular displacement of the sub-satellite point S, at time t, from the point 

of maximum elevation S0 is given by t , refer to figure 3.5. 

Let i  be the angular displacement of the ascending node Si from point S0.  From the 

spherical triangle SiS0S0e and identity (A.5) we have 

 iis sinsinsin 0  (3.20) 

Solving for i  and replacing 0sin s  by the expression in equation (3.17), we get 
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i  (3.21) 

On the ascending part of an orbit, i  has the opposite sign to the earth station latitude 

while on the descending part of the orbit, the reverse is true. 

Next we consider triangle SiSSe.  The latitude of the sub-satellite point at time t is 

denoted by ts  (equal to arc SSe).  Identity (A.5) results in 

 )sin()sin()sin( SSi is  (3.22) 

However tt ii00i SSSSSS , hence 

 tits sin)sin(sin 1  (3.23) 

The longitude of the satellite can be found using the spherical triangle NSS0.  Using the 

sine rule, identity (A.3), we can calculate the difference in longitude from the maximum 

elevation point S0. 
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 SNSsin90sinsinsin 00 sss  (3.24) 

Angle NS0S is equal to 180-SS0S0e.  Hence, using identity (A.6), sin(NS0S) is found to 

be, 
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 (3.25) 

Combining equations (3.24) and (3.25), the satellite longitude is found to be, 
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The above expression for s  must be modified to take into account the rotation of the 

earth in the time t from the maximum elevation point.  The earth in that time rotates 

through an angle  given by te .  Therefore the actual longitude of the satellite must 

be adjusted by  and is given by, 
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The equations derived above were assessed against results obtained from the orbit 

propagation algorithm presented in section 3.3.  A pass with a maximum elevation of 

85.45º was chosen, with the earth station at 10º west and 33.5º north.  The latitude, 

longitude and range were obtained as a function of time.  The pass was calculated using 

the above equations and both angular velocity approximation strategies presented in 

section 3.4.  Figure 3.7 shows the simulated and calculated passes in the latitude-

longitude coordinate system.  We can see close agreement between the all three curves. 
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Figure 3.7 – Plot of the calculated orbits in Lat-Long coordinates for a pass with 

maximum elevation 85.45º.  The earth station is at 10º west and 33.5º north. 

 

Figure 3.8, below, shows the errors in latitude and longitude as a function of time.  The 

latitude error is within 0.3  and the longitude error is less than 0.2º.  We can see that 

the results obtained from approximating the ECEF angular velocity of the satellite by its 

value at the maximum elevation point have a smaller error than those obtained from the 

minimum value approximation. 
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Figure 3.8 – Plot of the latitude and longitude errors for a pass with a maximum 

elevation angle of 85.45º. 

 

3.5.3 Azimuth and Elevation 

The position of a satellite with respect to an earth-bound observer is usually given in an 

Azimuth-Elevation (or topocentric) coordinate system, [100] and [1] pp. 55.  The 

elevation of the satellite is the angle its line of sight makes with the horizontal of the 

earth station (that is  in figure 3.4(b)).  The azimuth is the angle that the arc from the 

earth station to the sub-satellite point makes with the north direction at the earth station 

with the easterly direction being positive.  Therefore the azimuth is angle NPS in figure 

3.4(a). 

Using the cosine rule in triangle OPS’ in figure 3.4(b), the elevation of the satellite, t

, is found to be 
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Maral, in [102] pp. 268-270, derives the transformation from the Latitude-longitude 

(topocentric-Horizon) coordinate system to the Azimuth-Elevation coordinate system 

giving another form for the elevation of the satellite. 
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sin

cos
tan 1 r

re

 (3.29) 

The azimuth, A, is obtained from triangle NPS in figure 3.5.  Let angle NPS be denoted 

by a.  Angle PNS is equal to the difference in longitudes between the satellite and the 

earth station.  Using spherical geometry, a is found to be, 

 
sin

cossin
sin 1 sESsa  (3.30) 

The azimuth of the sub-satellite point, A, is related to a as follows, 

 

station-earth ofwest -south satellite,

station-earth ofwest -north satellite,2

station-earth ofeast -south satellite,

station-earth ofeast -north satellite,

a

a

a

a

A  (3.31) 

We must note that care must be taken when determining the quadrant of the azimuth 

based on equation (3.31).  The difficulty is that we cannot rely on the relationship 

between the latitudes to determine the north-south relative position, [105].  In the 

algorithm implementation, we have adopted the method of Kelso, [106].  The Cartesian 

coordinates of the satellite and earth station are calculated.  These are then transformed 

to the topocentric (Cartesian) coordinate system using two successive rotations.  The 

azimuth is finally calculated.  The quadrant is then determined by looking at the sign of 

the north-south coordinate. 
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(a)
 

 

(b)
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(c)
 

 

(d)
 

Figure 3.9 – Plot of the azimuth (a), azimuth errors (b), elevation (c) and elevation 

errors (d) as a function of time for a pass with a maximum elevation angle of 85.45º. 

 

The figures above show the azimuth and elevation as well as the error curves as a 

function of time.  We can see that as in the latitude and longitude cases, we have good 

agreement between the curves generated using the orbit generation algorithm and those 
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obtained using the approximated equations.  Furthermore, upon examination of the 

errors, we see that the approximation of the angular velocity by its value at maximum 

elevation point gives a slightly better performance than the minimum value 

approximation. 

 

3.5.4 Azimuth-Elevation to X-Y Transformation 

In the case of high elevation passes, the rate of change of the azimuth increases as the 

satellite reaches its maximum elevation.  For a zenith pass, the azimuth curve has a 

discontinuity at the maximum elevation point, [102] pp. 366-368.  To avoid this 

problem, an X-Y coordinate system can be used, figure 3.10.  The relative merits of 

using an X-Y pedestal as opposed to an azimuth elevation pedestal are discussed by 

Willey in [107] pp. 84-87. 

 

Figure 3.10 – Azimuth-Elevation to X-Y transformation. 

 

The X and Y-axes are in the local horizontal plane with the x-axis pointed due East and 

the y-axis due North.  The z-axis is pointed in the zenith direction.  Specifying the 

satellite position requires a rotation, x, about the x-axis followed by a rotation, y, 

about the y-axis.  In order to preserve the right hand rule, the positive x-rotation is taken 

to be from zenith towards south and the positive y-rotation from zenith towards east.  In 

the scheme shown in figure 3.10, the x-rotation always follows a great circle arc while 

y (North) 

x (East) 

S Elevation,  

X-rotation, x 

Y-rotation, y 

Azimuth, A 

z (Zenith) 

P 

N 

L 
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the y-rotation forms a cone depending on the position of the x-axis.  The resulting 

pedestal is termed X/Y (read “X over Y” pedestal).  This means that the y-axis is the 

bottom axis and is fixed, whereas the x-axis is mounted on top of the y-axis and is 

therefore mobile.  Again for a detailed discussion of X-Y pedestals refer to [107].  The 

X and Y-rotations can be derived from the azimuth and elevation as follows; 

Since point P In figure 3.10 above is at the earth station location, line segments PS and 

PN are equal to ts  in figure 3.4(b).  Line segments PL, LS and ML are given by 

 cosPL ts  (3.32) 

 sinLS ts  (3.33) 

and 
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 (3.34) 

Therefore from triangle MLS, and using the expressions for ML and LS, we have, 
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Side PM in triangle PML is given by 

 
sincos

cosPLPM

Ats

A
 (3.35) 

The X-rotation, x, is found from triangle PMN, 
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Summarising we have, 

 Ax coscossin 1
 (3.36) 

and 
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(a)
 

 

(b)
 

Figure 3.11 – Plot of the X and Y rotations for a pass with a maximum elevation angle 

of 85.45º. 
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Figures 3.11(a) and (b) show the X and Y rotations respectively.  The curves obtained 

using the approximated equations agree very well with those from the orbit generation 

algorithm.  The key-hole effect seen in figure 3.9(a) near zenith due to the high azimuth 

rate of change is transferred in the X-Y coordinate system to a point near the horizon.  

This is convenient since high elevation passes are far more important than low-elevation 

ones. 

 

3.5.5 Off-Boresight Error 

In order to assess the accuracy of an orbital model for the purpose of antenna spatial 

pointing, we need to calculate the off-boresight error (or pointing error), [108].  This is 

the error in degrees resulting from incorrectly pointing the antenna due to satellite 

position inaccuracy.  Let the true satellite position in the topocentric-horizontal 

coordinate system be ,A  and the calculated position ,A .  This is shown in the 

figure below, 

 

Figure 3.12 – Off-boresight error. 

 

The off-boresight pointing error is given by angle SSP  in the figure above.  Angles 

NPL  and LNP  are equal to A  and A  respectively.  Also SPL  and LPS  give the 

elevations of S and S’ respectively.  Denote the off-boresight angular error, SPS’, by .  

Using the spherical identity (A.1)  is given by 
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 AAcos90sin90sin90cos90coscos  (3.38) 

Simplifying equation (3.38) we obtain the following expression for  

 AAcoscoscossinsincos 1  (3.39) 

 

 
Figure 3.13 – Plot of the off-boresight error curves for a pass with a maximum elevation 

angle of 85.45º for both ECEF angular velocity approximation strategies. 

 

Figure 3.13 shows the off-boresight error for the two angular velocity approximation 

strategies with respect to the orbit generation algorithm results.  We can clearly see that 

the approximation of the ECEF angular velocity by its value at the maximum elevation 

point results in a smaller off-boresight error profile.  The graph also shows that the off-

boresight error is smallest at the time of closest approach.  This is due to the fact that the 

pass approximation is parameterised on the maximum elevation point.  Hence, we 

expect the approximation to be closest to the true pass at the maximum elevation point.  

The other interesting fact to notice is the much nearer symmetry of the curve. 
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3.6 Doppler Shift and Doppler Rate 

When a source moves with respect to a receiver, a Doppler shift is observed on the 

received signal, [102].  The amount of Doppler shift is proportional to the relative 

velocity between the emitter and receiver.  The observed normalised Doppler shift, sD , 

is the amount of Doppler shift divided by the carrier frequency, f . 

The normalised Doppler shift is therefore related to the rate of change of the earth 

station to satellite slant, ts , by 
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f
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  (3.40) 

where c is the speed of light 

Using the expression for ts  given in equation (3.14) and carrying out the 

differentiation, we obtain the following expression for sD , 
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The normalised Doppler rate is obtained by differentiating the above equation with 

respect to time. 
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where s denotes the earth station to satellite slant range, given in equation (3.14) and the 

time index has been dropped for conciseness. 

Equations (3.41) and (3.42) can be simplified using the assumptions stated in the 

introduction.  Consider the right-angle spherical triangle MNP in figure 3.4(c).  Using 

identity (A.4) we can write t  in terms of 0  and t .  Therefore 

 0coscoscos  (3.43) 

The range expression given in (3.14) becomes, 

 0

22 coscos2)( rrrrts ee  (3.44) 
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Combining equations (3.41) and (3.43) and remembering that tF , we get the 

following expression for the normalised Doppler shift of the satellite at time t 
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The Doppler rate expression also becomes, 
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As was done with the spatial characterisation equations, the approximated equations 

derived above were compared to Doppler shift and rate curves obtained using the orbit 

propagation algorithm.  The results are shown in figure 3.14 below. 

 

 

(a)
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(b)
 

Figure 3.14 – Plot of the Doppler shift and Doppler rate for a pass with a maximum 

elevation angle of 85. 

 

3.7 Conclusion 

In this chapter we have presented a simplified orbital model for the determination of the 

orbit of a LEO satellite.  This model set the thesis in context as it allows for the 

calculation of the Doppler shift.  It is necessary for the development of many of the 

ideas in the thesis especially the FAST concept of chapter 9.  The LEO satellite orbit is 

parameterised on the maximum elevation angle observed at the earth station.  The 

analysis was done in the ECEF frame and the two body model was used.  The earth was 

assumed to be spherical and lower order perturbations were ignored.  In section 3.3 we 

presented an orbital propagation algorithm.  Starting with an initial longitude of the 

ascending node, the algorithm propagates the orbit in time at the specified sampling 

rate. 

We adopted the strategy of [103] and proceeded to fully characterise the orbit in terms 

of the maximum elevation angle observed at the earth station.  The satellite orbit in the 

ECEF frame was assumed to be a great circle arc and the observed satellite angular 

velocity was taken to be constant.  In section 3.4 we discussed the second assumption 
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and suggested approximating the angular velocity by its value at the maximum elevation 

point rather than its minimum value.  We showed that this results in a more even spread 

of the errors and therefore in a smaller maximum absolute off-boresight error over the 

visible part of the orbit.  We then proceeded in the rest of the chapter to derive 

simplified equations for the satellite’s position as well as the observed Doppler shift and 

Doppler rate. 

In the next chapter we look at the frequency domain frequency estimation problem.  We 

examine the threshold effects and provide the context for the development of the novel 

frequency estimation algorithms to be presented in chapters 6, 7 and 8. 
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Chapter 4 

 

Frequency Domain Frequency Estimation 

 

4.1 Introduction 

In this chapter we consider the problem of estimating the frequency using the Fourier 

coefficients of the gathered data.  Due to the advent of digital signal processors, the 

Fourier coefficients are available very cheaply using the Fast Fourier Transform (FFT) 

algorithm.  In the FedSat Ka band earth station, for instance, the Blue Wave Systems 

PCI/C6600 board, [109], is used to perform the signal processing functions.  The board 

is based on two TMS320C67 floating point processors each capable of up to 1Gflops, 

[110]. A 1024 size FFT using the optimised algorithm obtained from Texas Instruments, 

[111], was found to take less than 200 s.  In contrast, at a sampling rate of 1 MHz, the 

data collection for 1024 samples takes 1.024 ms. 

The estimation of frequency using Fourier coefficients has been dealt with extensively 

in the literature.  It is well known that the Maximum Likelihood Estimate (MLE) of the 

frequency is given by the DFT maximiser, [112].  However performing this 

maximization numerically is not a trivial task.  The DFT is commonly implemented 

using the FFT algorithm.  The MLE of the frequency can be approximated by the FFT 

bin with the highest magnitude.  This is termed the Maximum Bin Search (MBS) 

algorithm.  The MBS algorithm, however, suffers from limited resolution since the FFT 

samples the DFT at N equally spaced points, where N is the number of data points used 

in the FFT.  As a result, the MBS algorithm is often referred to as a coarse frequency 

estimator.  One method to improve the resolution might be constructed by zero-padding 

the data before obtaining the FFT.  This results in “sampling” the DFT more densely 

and hence improves the resolution.  This rudimentary method, however, suffers from 

degradation due to noise and does not result in significant gain in resolution.  It is also 

computationally costly.  Therefore, in order to achieve a higher resolution, a fine 

frequency estimator is usually employed following the coarse search stage.  In 
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subsequent chapters, we look at interpolation as well as search methods that are 

computationally efficient and result in a significant gain in resolution. 

In this chapter we provide some preliminary theory on the estimation of the frequency 

of a sinusoid in the frequency domain.  We start with a brief discussion on the Discrete 

Fourier Transform and the Fast Fourier Transform algorithm in section 4.2.  In 4.3 we 

examine the MBS algorithm.  We look at the SNR threshold effect in section 4.4.  We 

then proceed to discuss and correct Quinn’s derivation of an approximate expression for 

the onset of the threshold.  Finally, the conclusion is presented in section 4.6. 

 

4.2 The DFT and FFT 

In this section we discuss the DFT and its implementation using the FFT.  As there is an 

enormous amount of material on the subject, the discussion will be brief.  Consider a 

complex sampled signal s(k) consisting of a pure sinusoid.  The signal is given by 

 1,,1,0           ,
2

NkAeks sf

f
kj

 (4.1) 

where as defined earlier, N is the number of samples, A is the amplitude, f the signal 

frequency,  the initial phase and fs the sampling frequency.  The Discrete Fourier 

Transform of s is defined by, 
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where the normalising factor 
N

1  is intended to simplify many of the expressions to be 

derived.  Some authors, like Haykin, [37], prefer to include the 
N

1  in the expression 

for the inverse DFT (IDFT) while others like Quinn, [34], split it into two 
N

1
 factors 

that are included in both the DFT and the IDFT expressions.  The IDFT, which allows 

the original time-domain signal to be retrieved is, in our case, given by, 
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For the sinusoidal signal defined in equation (4.1) above, the DFT is given by, 
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 (4.4) 

For a noisy signal x(k) = s(k) + w(k) where the w(k) is complex noise, the linearity 

property of the DFT implies that, 

 )()()( nWnSnX  (4.5) 

With nS  being the DFT of the signal and nW  that of the noise.  In this thesis, unless 

stated otherwise, it is assumed that the noise is Additive White Gaussian Noise 

(AWGN).  The properties of the Fourier coefficients of AWGN are discussed in 

appendix C. 

As mentioned in the introduction, the DFT is generally implemented in digital signal 

processors using the Fast Fourier Transform algorithm.  Haykin, [37] pp. 102-108, 

presents a thorough discussion of the decimation-in-time and decimation-in-frequency 

FFT algorithms.  Whereas a straightforward implementation of an N point DFT requires 

N
2
 complex multiplications, the FFT algorithm reduces that to N

N
2log

2
. 

 

4.3 The Maximum Bin Search 

For a sinusoidal signal, the amplitude spectrum or periodogram is given by the 

magnitude of the expression given in (4.4).  It can be shown that this magnitude is 
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 (4.6) 

It is well known, [21], that the periodogram is maximised if 
sf

Nf
n .  For n integer, 

this occurs at the index closest to the true frequency of the signal, that is for 

sf
Nf

n  with  meaning rounding  to the nearest integer.  Therefore, a coarse 

estimate of the frequency can be obtained using the index of the periodogram 

maximum.  This is the Maximum Bin Search (MBS).  Let the index corresponding to 

the maximum be denoted by m.  Given that the correct maximum is chosen, the 

resolution of the Maximum Bin Search algorithm is 
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If the signal frequency is uniformly distributed over the entire bandwidth (as may 

reasonably be assumed if the frequency is unknown), the error in frequency is also 

uniformly distributed over the frequency bin.  This implies that the resulting MSE of the 

frequency estimate f̂  is given by 
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We see that the resolution of the MBS is O(N
-1

) whereas the ACRB is O(N
-3/2

).  

Therefore, there is significant scope for improvement in the resolution.  This room for 

improvement motivates the research into higher resolution techniques such as the 

interpolation algorithm which build on the MBS to improve its resolution. 
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4.4 Threshold Effects 

The analysis of the previous section assumes that the bin closest to the true frequency 

was chosen.  In [19] and [34] pp.54-61, the properties of the periodogram maximiser 

were discussed under general assumptions on the noise model (refer to section 2.2).  

The noise was assumed to be generated by a zero-mean stationary, ergodic process.  

Their analysis shows that, provided we are above the SNR threshold, the frequency 

estimate of a sinusoidal signal plus noise is, almost surely, given by the maximum 

periodogram.  That is 

 a.s. ,
2

ˆ
N

f
ff s  (4.9) 

This certainly holds under the stricter assumption of AWGN.  As the signal to noise 

ratio deteriorates, however, the likelihood of making an incorrect choice increases.  This 

incorrect bin is called an outlier and it occurs when the magnitude of at least one of the 

Fourier coefficients corresponding to the noise exceeds that of the coefficient 

corresponding to the signal.  When the SNR threshold is reached, a rapid rise in the 

frequency error is observed.  This is due to the increase in the probability of an outlier. 

Let the probability that at least one of the noise terms exceeds the signal coefficient be 

denoted by q.  We will proceed to calculate q and the total MSE.  For large N, it is 

simpler to calculate the probability (1-q) that the correct bin is chosen, [21].  This is 

equivalent to the probability that the magnitudes of all bins are less than that of the 

index corresponding to the frequency closest to the signal.  If the signal frequency is 

sf
N

m
f , where | |  1/2, the correct bin is that at index m.  (1-q) is then expressed 

as, 

 drrRmnrRq mn0
P,P1  (4.10) 

where nR  is the amplitude of the n
th
 Fourier coefficient. 

The first factor in the integral consists of the conditional probabilities that the 

magnitude of all bins other than that closest to the signal are less than r, while the 

second factor is the probability that the magnitude of the correct bin is equal to r.  Given 

that the Fourier coefficients are independent, the first factor can be written as the 

product of the individual probabilities.  That is 
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In the general case, where  is not necessarily 0, the individual probabilities, given in 

equation (C.24), are Ricean.  Hence, 
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where Bn is the magnitude of the n
th

 Fourier coefficient of the sinusoidal signal at index 

n.  Bn is given by the square root of expression (4.6). 

The total probability that the correct bin is chosen, assuming that bin m is closest to the 

true frequency, is 
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In the general case, the MSE can be derived as a function of f.  We can write it in the 

form, 

 

1
2

2

2

,.ˆ
N

Nm

mns mnRRPff
N

m
fMSE  (4.14) 

The probabilities in the above expression can be obtained using equation (4.13).  In the 

general case where the sinusoid is not on the bin centre, all of the bins will contain a 

signal component as well as a noise component.  The resulting distributions are all 

Ricean and the MSE expression is somewhat complicated.  However, for large N, the 

leakage of the sinusoidal signal to other bins is small compared to the “main lobe”.  In 

fact the signal coefficients Bn are 1NO  unless 

 0
N

n

f

f

s

 

or equivalently, from (C.23), 0nm  (which is only satisfied if nm  and 0 ).  

In that case, the resulting coefficient is 1O  and the rest of the nB  are all zero and we 

can, consequently simplify the MSE expression considerably.  It is clear that if the 
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signal frequency corresponds to a bin centre, that is 0 , the “effective” SNR of the 

bin containing the signal is highest at 
2

2A
.  If on the other hand, the signal frequency 

falls halfway between two bin centres, the effective SNR is 
2

2

2

A
, and the threshold is 

highest. 

The outlier probability, Nq , where the subscript N indicates the dependence of q  on N

, was derived for the best case ( 0 ) by Rife and Boorstyn in [21].  It is given by 

 dr
NAr

Ie
Nr

eq

Ar
N

N
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N

N 20
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2

1
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22
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11  (4.15) 

This simplifies to 
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 (4.16) 

The total MSE is then composed of the CRB and the error due to the occurrence of 

outliers.  Since Rife has assumed that the signal is contained in one bin only, the rest of 

the bins are equally likely outlier candidates.  Hence the MSE due to the outliers is 

simply the variance of a uniform distribution over the range 
2

sf
 to 

2
sf

.  This is 

given by 
12

2
sf

.  Hence the total MSE is given by, 
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f
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f
q s

N
s

Nf
 (4.17) 

As the terms in the summation in (4.16) become very large and alternate in sign, the 

expression becomes difficult to evaluate on a computer for any reasonably large N .  

Therefore equation (4.15) must be integrated numerically.  The plot in figure 4.1 below 

shows the outlier probability versus SNR in dB for various values of N .  As the 

number of samples increases, the outlier probability decreases as a function of the SNR.  

Therefore we expect that the MSE threshold decreases with respect to N . 
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Figure 4.1 – Outlier probability versus signal to noise ratio for various sample block 

sizes. 

 

The theoretical frequency RMSE was calculated using equation (4.17) for different 

values of N and with the sampling frequency set to 1.  The results are shown in figure 

4.2 below.  The onset of the threshold is clearly visible.  We also remark that the 

threshold decreases by about 3 dB for each doubling of N. 
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Figure 4.2 – Frequency RMSE versus signal to noise ratio for various sample block 

sizes. 

 

4.5 Approximate Expression for Threshold Onset 

While equations (4.15) - (4.17) account for the threshold behaviour, they are 

complicated and must be evaluated numerically.  It is, thus, advantageous to obtain an 

approximate expression for the SNR at which the threshold occurs.  In [113], the 

authors attempt to understand and characterise the threshold behaviour using known 

results from phase locked loops.  They define the threshold for each N as the knee of the 

frequency RMSE curves as is seen in figure 4.2.  They show that the threshold can be 

characterised by a single parameter, N, given by 

 
N

N

3
 

where  is the SNR.  This parameter is related to the phase error of the estimator by 

 MSE phase
4

3
N  
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The value of the phase mean square error at the threshold is shown to be approximately 

constant, equal to 0.0625 rad
2
.  The threshold, then, occurs when the value of  for 

which the Mean Square (MS) phase error is roughly 0.0625 rad
2
.  Solving for  in dB 

we get, 

 
N

32
log10dB  (4.18) 

In [114], the author attempts to provide a “more fundamental” approach to the 

understanding of the onset threshold effect.  We should note here that he seems to have 

made a mistake in defining the signal to noise ratio.  He takes the complex noise to have 

a variance 
2
 and then defines the SNR as 

2

2

2

A
.  According to his SNR definition, the 

real and imaginary parts of the noise each have variance 
2
. The Barankin bound (BRB) 

is deemed to be a tighter lower bound than the CRB for nonlinear estimation problems.  

The approach to establishing the threshold SNR, then, consists of determining the point 

where the two bounds depart from each other.  The indicator quantity is taken to be the 

ratio of the BRB to the CRB.  When this becomes larger than unity, the threshold effect 

is said to have occurred.  This is shown to be equivalent to the inequality, 

 1
ln N

N
 (4.19) 

Whereas the above expressions provide indicator quantities, Quinn, in [9], derives an 

approximate expression for the threshold SNR.  He starts by discussing the Rife and 

Boorstyn result.  He then, stipulates that the onset of the threshold occurs when the total 

MSE is twice to the CRB.  He only considers the case where 0 .  Furthermore, in 

order to simplify the analysis, he sets the signal frequency to
2

sf
.  In the following 

section, we examine Quinn’s approach and correct an error in the derivation.  The 

mistake was found, however, to have a small effect that diminishes with increasing N . 

 

4.5.1 Derivation of the Approximate Expression 

The total frequency estimation MSE was given in equation (4.17). Normalising the 

MSE expression by the CRB we get, 
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 NN q
NN

qfMSE
18

1
1ˆ

22

 (4.20) 

Quinn argued that the threshold is reached when the term on the right hand side of 

(4.20) is “substantially” different from zero.  He defines the threshold to occur when the 

total MSE is twice the CRB.  Here, we adopt this definition.  Therefore, the strategy 

consists of obtaining an expression for the SNR at which the total MSE is exactly twice 

the CRB. 

Recall that the index of the bin containing the signal is denoted by m.  The outlier 

probability, Nq , is equivalent to the probability that the maximum of all bins excluding 

bin m exceeds the magnitude of bin m.  In order to simplify the analysis we set 
2

N
m .  

Therefore Nq  is 
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Let 
2

2
2 nXN

nZ .  2
NZ  is evaluated as follows, 
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 (4.22) 

where U  and V  are the real and imaginary parts of  
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Since the noise terms kw  Gaussian i.i.d. with mean 0 and variance 
2
, it follows that 

U  and V  are independent Gaussian with mean 0 and variance 1. 

Let NẐ  be the maximum of nZ  over the set of all Fourier coefficients excluding that 

at index 
2

N .  Substituting into equation (4.21) yields, 
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22

22
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where x  is the standard normal density function, given by 

 2

2

2

1 x

ex  

Consider the probability that the envelope squared is less than a positive constant z.  The 

square of the envelope follows an exponential distribution, [115] pp. 108-109.  In order 

to simplify the notation let 1NK .  In the following analysis we will implicitly use 

the fact that, [116] pp. 284, 

 
b

a

b

a
dxxgdxxfbaxxgxf  then ],,[ )()( if  

Now we have that, 
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 (4.24) 

Hence KZ N ln2ˆ  converges in distribution.  Next, we break the integral in (4.23) into 

three parts, I1, I2 and I3 defined over the intervals Kln2, , KK ln2,ln2  

and ,ln2 K  respectively.  Considering each integral separately, we have 
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Now for Ku ln2  the inequality 12

2

Ke

u

 holds and the inner integral becomes, 
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K
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Here Quinn asserts that the term 

K
v

eK
2

2
1

11  converges to 

1
2

v
ee  from above and 

the expression in (4.25) becomes 
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This, however, is not correct since 

K
v

eK
2

2
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11  converges to 

1
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v
ee  from below 

and we have that, 
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Thus the inequality of equation (4.26) cannot be asserted.  Furthermore, one can show 

that there is no value for K, say K0, above which the inequality holds.  Hence we have to 

adopt another strategy of partitioning the integral in (4.23). 

Let Ku ln2  for some >0.  Substituting into the binomial expression yields, 
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We attempt to find the value of  corresponding to K, denoted by N (since K = N-1), for 

which the inequality 
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holds for all v.  Now we use the fact that the logarithm function is monotonically 

increasing and consequently if x > y then yx lnln  and 0lnln yx .  Hence, 

the above is equivalent to finding  such that the function 
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 (4.27) 

We firstly note that vf  is even in v .  Now looking for turning points, we have 
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Now 0vf  for  ,0v .  Furthermore, as v tends to , vf  tends to zero from 

above.  This is concluded from the fact that for v large, vf  is negative since the 

numerator tends to 12

ln222 K

e  which is negative.  Hence as v approaches , vf  

is asymptotically decreasing to zero.  This implies that vf  has either three or five 

turning points depending on the value of .  Also only in the case where vf  has five 

turning points that it can have negative values and 0f  becomes a global minimum.  

This is illustrated in the plot below. 
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Figure 4.3 – Plot of f(v) Vs v for different values of .  N was set to 8 (that is K = 7). 

 

The plot shows that there is a value of , N, above which vf  is strictly positive.  

Therefore N can easily be calculated by solving 00f  for .  Thus, 
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Carrying out the necessary algebra we obtain 

 KeKKKN
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1ln2ln2ln2  

Since >0, we must take the positive solution and N becomes 

 KeKKKN
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1ln2ln2ln2  (4.28) 
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For example for K = 7 (that is N = 8), N is found to be 0.035458.  This agrees with 

figure 4.3 since the curve corresponding the this value of  is positive with f(0) = 0, 

whereas the curve corresponding to  = 0.1 is strictly positive.  Therefore, 
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21

v

e

K
vu

ee  

holds for all v for NKu ln2 .  Guided by this knowledge, we continue with 

Quinn’s analysis but with the modified interval boundaries for the three integrals and 

with two additional integrals for the problem regions of KK N ln2,ln2 .  We 

will keep the rest of the chapter brief by not including the detailed algebraic derivations.  

Let NN Ku ln2  and break the integral in (4.23) into I1, I12, I2, I23 and I3 defined 

over Nu, , KuN ln2, , KK ln2,ln2 , NuK ,ln2  and ,Nu  

respectively.  Now for u < -uN the first integral, I1 becomes, 
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where c = 0.4860709 and Q(x) is the standard Q function defined as  
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Now for Ku ln2 , 
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Therefore I2 becomes, 
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An upper bound for I2 is obtained as follows.  Setting 

K
vu

e
22

2
1

11  to its 

maximum value which occurs for u=v=0, we get, 
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Quinn then calculates I3 directly using the binomial approach.  Expanding the Kth 

power term into a binomial series we get, 
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where 
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K
 are the binomial coefficients.  Changing variables and integrating we get, 
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Substituting the above expressions into I3, 
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This expression for I3 is realisable numerically since the Q terms decay fast enough to 

compensate for the growth in the factorial terms of the binomial coefficients. 

Now considering the two remaining integrals, 
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In the above, the binomial series expansion was employed.  Looking at the difference 

between successive even and odd coefficients under the summation we see that it is can 

be written as 
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We see that as l increases, the difference is positive and decreasing and therefore the 

summation result is positive.  Hence we can place a lower bound on the integral by 

making the summation result zero.  That is 
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Similarly, I23 can be shown to be bounded by, 

 

KNQuNQ

dvveduNuI

N

vu

K

N

ln222
2

1

2
2

2
1

ln223

 (4.34) 

In order to summarise the above results, we define the following terms 

 NuQ N 21  

 KNQ ln222  

 KNQ ln223  

 NuNQ 24  
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The table below shows the resulting bounds.  Note that for I3 we calculated an exact 

result and therefore it is included in the table as I3 in both the upper and lower bound 

cells. 

 

Lower Bound Integral Upper Bound 

0 I1 1c  

0 I12 12
2

1
 

23c  I2 23  

0 I23 34
2

1
 

I3 I3 I3 

 

Table 4.2 – Outlier probability bounds for threshold calculation. 

 

Now using the above results, the outlier probability is bounded by 

 3321323
2
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IcqIc N  (4.35) 

This expression differs from that given in [9] due to the terms from the two additional 

integrals.  The right hand side in equation (4.20) converges to zero when all of the Q 

expressions in the bounds above converge to zero individually.  We first rewrite Q(x) as 

follows: 
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Now let KN ln .  As the constants do not affect the convergence properties of the 

integral, we will ignore them in the following.  Substituting into equation (4.20) and 

considering the term in 1, 
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where the term o(1) converges to zero as N goes to infinity (see appendix B).  Using 

identity 3.a in lemma B.4.1, 
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The above converges to zero if the exponent of K is negative, that is 
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which results in 
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Similarly for 2, we have 
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Now 3 gives 

 11
22

ln1
2

22
2

3
2

2

o
K

KNN  

This converges if 



 

 

87 

 223  (4.38) 

And finally for 4 we have 
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which converges if  satisfies 
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It is left to examine the convergence of I3.  We consider two cases; first, if 
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2
, then the argument of Q in (4.32) is negative and we have that the 

lth term is given by 
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Now the binomial term is of order K
l
, i.e. O(K

l
), since 
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Therefore, the product of 12NN  and the thl  term, shown above, is of order 

KK l

l
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 and consequently converges to zero if 
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Examination of the above shows that it converges for  satisfying the condition set for 

1l , and I3 converges for 
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 (4.41) 

Hence we arrive at the following result. 

 

4.5.1.1 Lemma 

Let 
N

Kln
, then for  satisfying (4.41) we have 

 01f̂MSE  (4.42) 

This establishes the fact that condition (4.39) marks the onset of the threshold.  We then 

set NKN ln  where N is a sequence dependent on N and  is a constant.  

Now we look at the behaviour of the above bounds.  We see that 12NN  times 1 is 
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Hence, if we let 0
ln K

N , simplifying and ignoring the terms in 
K

N

ln
, the above 

is of order at least lower than 

 KK ln625  

similarly we find that 2 is of order lower than 

 KK ln625  

whereas 3 is of order lower than 

 KK ln625  

and 4 is of order lower than 

 KK ln625  

Finally, in the expression for I3 the first term is dominant and therefore I3 is of order 

lower than, 
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Looking at the orders of the individual terms we see that I3 is the dominant integral and 

the convergence of the bounds on Nq  is dictated by that of I3.  As the sequence 

)ln(ln2 KN  (the factor 2 is needed to cancel the 
2

1  in the exponent) satisfies 

0
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N , we can put 
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and we have the following theorem. 

 

4.5.1.2 Theorem 
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4.5.1.3 Proof 

The convergence of the normalised MSE is dictated by the first term of I3.  Now this is 

given by 
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Substituting the expressions for N  and for  and simplifying we see that Nq  is given 

by 
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Hence the expression for 1f̂MSE  converges to 
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We see that the above result differs from that of Quinn, [9], by the factor 2

2
N

e  which 

is necessary to account for the boundary region where one of his assumptions does not 

hold. 

As a corollary we see that the point where the total MSE is twice the CRB occurs when 

the right hand side of (4.43) is exactly 1.  Solving for  and substituting into the 

expression for the SNR, we have that the SNR in dB is given by 

 226ln2ln41lnln21ln6
1

log10dB NT NN
N

 (4.44) 

Compare this with Quinn’s expression, 
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Note that as N  increases the above expression approaches that of Quinn.  Furthermore, 

the value of  decreases rapidly, making the difference between the two expressions 

negligible.  For instance for N = 32, N = 6.13 10
-3

.  As a matter of interest we note that 

Quinn, in [9], derives a “more accurate” approximation than the expression in (4.45).  

This expression is, however, more complicated and does not give us any further insight.  

The threshold SNRs were calculated for N ranging from 32 to 1024 (only powers of 2 

were used) according to equation (4.44).  These are shown in the figure below. 

 

 

Figure 4.4 – Plot Threshold SNRs (defined at the point where the total frequency RMSE 

equals 2 CRB).  The total RMSE is also shown Vs the signal to noise ratio. 

 

4.6 Conclusion 

In this chapter we have introduced the topic of frequency domain frequency estimation.  

We looked at the DFT and FFT algorithms and the Maximum Bin Search estimator.  

We then discussed the threshold effect that is seen as the signal to noise ratio decreases.  

We examined Quinn’s derivation of an approximate expression for the SNR at the onset 
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of the threshold as a function of the number of data samples.  We corrected an error that 

Quinn made in his analysis.  Although this error was found to have a negligible impact 

on the expression, it was deemed important for the sake of theoretical correctness and 

completeness to derive the correct expression. 

In the following chapters we look at a number of existing fine frequency estimators that 

improve on the resolution of the MBS algorithm.  We also present a number of new 

algorithms and derive their performance.  The MBS algorithm is assumed as the coarse 

estimation stage that precedes the fine frequency estimators. 
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Chapter 5 

 

Frequency Estimation by Interpolation on 

Fourier Coefficients 

 

5.1 Introduction 

In this chapter we review existing methods of estimating the frequency of a sinusoid 

using the periodogram of the signal.  In section 4.3, we showed that, above the SNR 

threshold, the MBS algorithm has a resolution of order 1N .  At the onset of the 

threshold, the MSE of the frequency increases very rapidly due to the increased 

likelihood of outliers.  Therefore, when the operating point is above the threshold, we 

can significantly improve over the MBS frequency estimate using interpolation 

techniques.  The algorithms we present in this chapter are all frequency domain 

estimators that rely on the MBS for initialization.  A fine estimator is then used to refine 

the frequency estimate. 

Quinn, in [82], proposed an algorithm that uses three Fourier coefficients, centered on 

the maximum bin, to improve the frequency estimate.  He calls the algorithm 

“Interpolation on Fourier Coefficients”.  In this thesis, however, we use this 

terminology to refer to the family of algorithms that use any number of Fourier 

coefficients to improve the resolution of the frequency estimate.  Quinn’s algorithm, on 

the other hand, is referred to as Quinn’s first algorithm.  In [34] chapter 6, Quinn 

discusses a number of estimation techniques that are essentially interpolators on Fourier 

coefficients. 

The chapter is organised as follows.  In the following section we will provide an 

overview of the interpolation techniques that have been proposed.  In section 5.3 we 

present and discuss the existing interpolation on three Fourier coefficients which rely on 

the raw coefficients themselves.  As an illustrative example, the complete analysis of 

Quinn’s first estimator is presented in 5.4.2.  Section 5.5 looks at the interpolation on 

five Fourier coefficients in general and Macleod’s method in particular.  The 
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interpolation on the moduli of the Fourier coefficients is then discussed in section 5.6 

with particular reference to the Rife-Vincent algorithms.  Finally, the conclusion is 

presented in 5.7. 

 

5.2 Existing Interpolation on Fourier Coefficients Techniques 

Rife, [21], proposed the use of a coarse search followed by a fine search for estimating 

the frequency of a sinusoid.  The coarse search consisted of the Maximum Bin Search 

(MBS) algorithm while the fine search was used to locate the turning point (or true 

peak) of the periodogram.  As can be seen from equation (4.6), the amplitude spectrum 

of a sinusoid is a sinc function.  This function has a maximum at the true frequency of 

the sinusoid.  Padding the signal, of length N samples, with L-N zeros prior to taking the 

FFT is equivalent to sampling the length N Fourier transform more densely, namely at 

L
f s  intervals.  To illustrate the point, figure 5.1 below shows the standard and zero-

padded amplitude spectra of a sinusoidal signal with amplitude 1 and frequency 

sf
N

m 35.0
 so that the frequency does not coincide with a bin centre.  In this instance, 

N  was taken to be 128, while sf  was set to 1 and m to 27.  The corresponding 

sinusoidal frequency is 0.2137.  The signal vector was padded with 896 zeros to obtain 

a vector of 1024 samples. 
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(a) 

 

(b) 

Figure 5.1 – Plot of the amplitude spectrum of a sinusoidal signal with frequency = 

0.2137.  (a) shows the 0-padded spectrum with N = 128 and L = 1024.  A zoomed in 

version is shown in (b) along with the 128 sample FFT. 
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The sinc character of the amplitude spectrum is visible in the figure above.  This allows 

for a fine search of the periodogram peak to be used to improve the frequency 

resolution. Quinn, in [34], attributes two such interpolation algorithms to Rife and 

Vincent.  In the next section we establish the theory and notation necessary for 

presenting the interpolation algorithms. 

 

5.2.1 Theory 

In this section we present the theory to be used in establishing the motivation and 

analysis of the fine frequency estimators.  The MBS algorithm, as seen in equation 

(4.9), is 1NO .  Therefore, we write the frequency of the signal as 

 sf
N

m
f 0  (5.1) 

where m is the index of the bin closest to the true frequency (that is the argument of the 

periodogram maximiser), N the number of samples and 0 is the offset from the bin 

centre, restricted to the range 
2

1  to 
2

1 .  In the context of FedSat, the total frequency 

uncertainty is in the order of 1MHz (see section 1.1.1).  Therefore, the required 

sampling frequency, sf , is in the order of 1MHz.  Thus, sf  is set to 1MHz for the 

remainder of the thesis. 

The general form of a sinusoidal signal is shown in equation (4.1).  In the rest of the 

thesis, we assume without loss of generality that A = 1.  Furthermore we take the initial 

phase to be zero.  The Fourier coefficients of the signal given in equation (4.4) are 

 

N

n

f

f
j

N

n

f

f
Nj

s

s

e

e

N
nS

2

2

1

11
 (5.2) 

In a practical system, the above signal will be “diluted” by noise.  As we mentioned 

earlier, the noise in this thesis is assumed to be AWGN.  The sampled signal is therefore 

 kwkskx  (5.3) 
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The noise terms w(k) are complex, having real and imaginary parts with mean zero and 

variance 
2

2
.  The resulting signal to noise ratio in dB is 

 2
10dB log10  (5.4) 

Let the Fourier transform of the signal x be denoted by X.  Due to the linear property of 

the Fourier transform we have, 

 nWnSnX  (5.5) 

where the Fourier coefficients are shown in appendix C to be independent and 

identically Gaussian distributed with zero mean and variance 
N

2

.  Substituting the 

expression for nS  into (5.5) we obtain 

 

nW

e

e

N

nW

e

e

N
nX

N

nm
j

j

N

n

N

m
j

N

n

N

m
Nj

0

0

0

0

2

2

2

2

1

11

1

11

 

Now using the index m  as the reference we can write lmn  and the above 

expression becomes 

 nW

e

e

N
lmX

N

l
j

j

0

0

2

2

1

11
 

Using the series expansion of e
x
, 

 

small for                            ,1

!!3!2
1

32

xx

n

xxx
xe

n
x

 

we have for Nl0 , 
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nW
l

c

nW

N

l
j

e

N
lmX

j

0

0
0

0

2

211

11 0

 (5.6) 

where 

 
0

2

0
2

10

j

e
c

j

 (5.7) 

Knowing that the true frequency of the signal lies in a range specified by some integers 

LM  and UM , Bartlett, [117], suggested the minimisation the sum of the squares of the 

errors to estimate 0 .  This was followed up by Quinn, [34] , in his book.  Therefore, 

knowing that s
U

s
L f

N

Mm
f

N

Mm
f , , the aim is to minimise 

 

2
U

L

M

Ml l
clmX  (5.8) 

with respect to c  and .  Quinn, pp. 180-185, establishes the CLT of the above 

procedure under the more general assumptions on the noise terms discussed in 2.2.  

Here, we only state the relevant theorem under the assumption of AWGN.  Taking the 

AWGN properties into account, the expressions of Quinn and those shown here become 

equivalent.  The noise energy distribution used by Quinn, and given by xf4  where 

 is angular frequency ( f2 ), is replaced by 
2

2
 in the limiting Gaussian case.  The 

ratio of the asymptotic variance of an estimator to the asymptotic CRB will be used 

throughout the thesis as an indicator of its performance. 

 

5.2.1.1 Theorem 

Let ˆ  be the estimator of 0 that maximizes (5.8) and f̂  be defined by 

 sf
N

m
f

ˆ
ˆ  
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then the distribution of 0
1 ˆ ffMLE  tends toward the standard normal with MLE given 

by 
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2
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3
0

0
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sin2
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L U

L

U

L
M
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Mls
MLE

l

l

l

l

l

N

f
 (5.9) 

The theorem essentially states that as the number of samples is increased to , the 

distribution of the estimates obtained from the Bartlett method of maximising equation 

(5.8) is asymptotically standard normal.  The asymptotic performance of the estimator is 

given by the asymptotic variance shown above.  In fact, it is the asymptotic performance 

that will be considered for all of the interpolation based estimators.  The ratio of the 

asymptotic variance to the asymptotic CRB is 

 

1
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0
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0

0

4
0

2
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2
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sin3

U

L U
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M
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ACRB

l

l

l

l

l
R  (5.10) 

As LM  and UM  increase and we use all of the available samples, we expect that the 

asymptotic variance will approach that of the ACRB.  In fact the above ratio can be 

shown to be 1 for UL MM . 

As it will be seen in the following sections, most of the interpolators that have been 

proposed use three coefficients to obtain an estimate of the frequency.  Evaluating the 

ratio in equation (5.10) for the three coefficients case, that is for 1UL MM , we get, 
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sin6 2
0

4
0

22
0

4
0

0
2

2
0

4
 3Coeffs

ACRBR  (5.11) 

The figure below shows a plot of the ratio above versus 0.  We see that the ratio has its 

minimum at 
2

1  and its maximum at 0.  These values are 1.009 and 1.645 

respectively. 
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Figure 5.2 – Plot of the ratio of the asymptotic variance of the periodogram maximiser 

using three coefficients to asymptotic CRB. 

 

5.3 Interpolation on Three Fourier Coefficients 

The maximisation of (5.8) while numerically possible is computationally intensive and 

may be sensitive to rounding errors.  Quinn, in [82], proposed instead the use of the 

Fourier coefficients corresponding to l = -1, 0 and 1 to obtain an estimate of 0.  He 

followed this by an improved algorithm which he presented in [83].  In this same 

publication, he showed the method proposed by Rife and Vincent in [118] to be 

inefficient when 0 is in the immediate vicinity of 0.  This, as we will explain in section 

5.6.4, is due to the comparison between the two Fourier coefficients that are either side 

of the maximum bin.  We will provide an intuitive explanation to supplement Quinn’s 

analysis.  In fact, any method involving a straight comparison between the magnitudes 

of the Fourier coefficients where the resolution is O(N
-1

) will have the same problem.  

Kitchen and Howard, in [119], generalised Quinn’s first algorithm by deriving the exact 

expression for 0  in terms of the Fourier coefficients.  This makes the algorithm 

applicable for short data records.  We will not review their expression here as we are 

only interested in large N, and it will suffice to examine Quinn’s original algorithm.  



 

 

101 

Macleod, in [84], also suggested another interpolator that performs better than Quinn’s 

first algorithm and worse than Quinn’s second.  Macleod’s algorithm is computationally 

simpler to Quinn’s second estimator. 

 

5.4 Quinn’s First Estimator 

We will now examine Quinn’s first algorithm.  The method we will adopt consists of 

first presenting the algorithm, then establishing the motivation behind it and finally 

presenting the asymptotic analysis and performance, including simulation results. 

Let us denote the maximum bin and those either side of it by 0X , 1X  and 1X  

respectively.  We estimate the frequency using the method shown in the table below. 

 

 

Table 5.1 – Quinn’s First Algorithm. 

 

The reader should keep in mind that the index notation of the Fourier coefficient is 

relative to the maximum bin since the MBS algorithm is used to initialise all of the 

interpolation estimators.  That is to say that for example X-1 refers to Xm-1.  In the 

following section we will establish the motivation of and derive the above algorithm. 

 

Set   1for  ,
0

l
X

X l
l  

Then Calculate 
1

ˆ

l

l
l

l
 

If 0ˆ
1  and 0ˆ

1 then set 

1
ˆˆ  

otherwise 

1
ˆˆ  

The frequency estimate is then given by 

   
N

f
mf sˆˆ  
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5.4.1 Motivation 

Using equation (5.6) and ignoring the noise terms, we can write the three Fourier 

coefficient corresponding to l = -1, 0 and 1 as 

 
10

0
01 cX  

 00 cX  

and 

 
10

0
01 cX  

Now substituting for X-1 and X0 in the in the expression for -1, 

 

1

1

1

0

0

00

00

1
1

c

c

X

X

m

m

 

Similarly, the expression for 1 can be shown to be 

 
10

0
1  

Solving for 0 in terms of -1 and 1 yields, 

 
1

0

l

l  for l = 1 

This can be written as 

 
1

0

l

ll
 for l = 1 (5.12) 

When 0 is positive, both 1
ˆ  and 1

ˆ  would in the noiseless case result in a positive 

estimate.  However, when the signal is affected by noise, X1 would have a higher 

effective SNR than X-1 and 1
ˆ  would be expected to be a better estimator than 1

ˆ .  
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Therefore, we choose 1
ˆ  when both 1

ˆ  and 1
ˆ  are positive.  A similar argument shows 

that it this is equivalent to selecting 1
ˆ  if both  1

ˆ  and 1
ˆ  are negative.  This 

reasoning also suggests that the algorithm performance suffers for 0 close to zero 

where it is more likely to have 1
ˆ  and 1

ˆ  of different signs.  This is clarified in the 

next section where we derive the asymptotic variance of the algorithm. 

 

5.4.2 Analysis 

Quinn, [82] and [34] pp.188-195, proves the central limit theorem (CLT) for the 

estimator.  In this section we will state the theorem and derive the asymptotic variance.  

We will not explicitly repeat the proof of the CLT.  The derivation of the asymptotic 

variance will be repeated to establish the methodology that will be used to analyse the 

new estimators presented in chapters 6 to 8. 

5.4.2.1 Theorem 

Let ˆ  be the estimator of 0 according to Quinn’s first algorithm and f̂  be defined by 

 sf
N

m
f

ˆ
ˆ  

then we have almost surely and for all  > 0, 

 1 ˆ
QuinnP f f x (0,1) 

where f is given by 
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f s
Quinn  (5.13) 

and (0,1) is the standard normal distribution. 

 

5.4.2.2 Derivation of the Asymptotic Variance 

In section 5.4.1, we derived expressions for Xl in the noiseless case for 0,  1l .  

Adding the noise terms, we have the following, 
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 1

0
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1
WcX  
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0

0
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1
WcX  

With c0 as in equation (5.7). 

Let rl denote the ratio of lX  to X0.  Substituting and simplifying we have 
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Now from appendix C we have that NNOWl ln2
1

, therefore for large N we have 
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Using corollary 3 from appendix B section B.2.3, we also get, 

 NNOWWl log1
0  
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This term is of lower order than the rest of the expression and hence we ignore it.  

Furthermore, since the rest of the error term is NNO ln2
1

, we use the real part of 

the above ratio rl as an estimator of l . 

Let l be the difference between l and 
l0

0 , ignoring the lower order terms, that is 

those of order NN log1 , 
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 (5.14) 

Since Wl are independently Gaussian with mean zero and variance 
N

2
, the real part 

of their linear combination is also zero mean Gaussian.  Hence the l have zero mean 

and the elements of the covariance matrix of l (with l = 1) are 
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Expanding the expression inside the expectation and noting that, since kW  and lW  are 

independent, we have that 

 0lkWWE  

and 

 

otherwise0

 if
2

lk
NWWE lk  

Thus, the elements of the covariance matrix become 
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Similarly, we can show that 
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Thus, the covariance matrix,  is given by 
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In order to obtain the asymptotic variance of the estimator, we need to get the variance 

of the error in frequency, or equivalently, the error in the estimate of 0.  Now equation 

(5.12) gives the following, 
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 (5.15) 

This implies that, as l  has mean zero, 0
ˆ

l  has and asymptotically zero mean.  That 

is the estimator is asymptotically unbiased.  In fact, for moderately sized N we find that 

the bias is small enough to be taken as negligible.  The covariance matrix for the 

estimator, denoted by  is 
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Now 1
ˆ  and 1

ˆ  are asymptotically independent with the same distribution.  As N 

increases we, almost surely, choose 1
ˆ  when 0 is positive and 1

ˆ  when it is negative.  

The asymptotic performance of the estimator is therefore obtained by “patching” the 

asymptotic variances of the two estimators with the precondition that  1
ˆ  or 1

ˆ  is 

chosen.  Hence the asymptotic variance of the error is 
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where the expression for 
2

0c  shown below was substituted into the expression for the 

variance. 
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The asymptotic variance of the frequency can be obtained from that of 0 by multiplying 

it by the factor 
2

N
f s .  Hence 
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 (5.17) 

This completes the derivation of the asymptotic variance of Quinn’s first estimator.  As 

stated earlier, an important indicator of the performance is the ratio of the asymptotic 

variance to the asymptotic CRB.  For Quinn’s first estimator this is 
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Figure 5.3 below shows a plot of the theoretical and simulated ratios of 
2
Quinn  to the 

asymptotic CRB.  We see close agreement between the two curves.  The curves also 

show that the variance is worst for 0 = 0.  This validates the argument of section 5.4.1.  

This problem region results from the comparison used to choose between 1
ˆ  and 1

ˆ .  

Kitchen and Howard, in [119], compared two methods for making this choice.  The first 

is given by 
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X
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and the second by 

 

otherwise

f

X

1

2

0
1

ˆ

1ˆ
ˆ  

with 



 

 

109 

 
1

0

2

0

2

0
4

N

k

N

mk
j

k enxX
f

X
 

and m being the maximum bin index. 

They found that the second method performs much better than the first.  The first 

method is amplitude based and is the same as that used in the R-V estimator as we will 

see in section 5.6.1.  Quinn, [34] pp. 201 to 205, showed that this method performs 

poorly in the presence of noise.  Macleod, [84], has suggested an alternative test to this 

by setting ˆ  to 1
ˆ  if 11  and to 1

ˆ  otherwise. 

The theoretical expression of the variance shows a minimum of 1.0147 at 
2

1
0  and 

a maximum of 3.2899.  Assuming that 0  is uniformly distributed over the interval 

5.0,5.0 , we can get the average ratio of the asymptotic variance to the asymptotic 

CRB.  Performing this integration numerically we obtain an average ratio of 1.656.  The 

performance of the algorithm was simulated for 1024N  and MHz 1sf  over the 

range of signal to noise ratios from 0 to -20 dB.  10000 simulation runs were done at 

each SNR.  The results are shown, along with the CRB and the modified version 

according to Macleod’s suggestion, in figure 5.4.  The average ratio of the frequency 

MSE of the first algorithm to the CRB was found to be between 1.65 and 1.9.  This 

agrees very well with the theoretical results.  The small difference can be accounted for 

by the effect of lower order terms which become more pronounced at low signal to 

noise ratios.  Also we can see that at low signal to noise ratios, Macleod’s test is better 

than Quinn’s.  The modified estimator performs slightly better near the threshold.  
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Figure 5.3 – Plot of the theoretical and simulated ratios of the asymptotic variance of 

Quinn’s first algorithm to the asymptotic CRB.  10000 simulation runs were averaged. 

 

Figure 5.4 – Plot of the standard deviation of the frequency estimates obtained using 

Quinn’s first algorithm Vs the signal to noise ratio.  10000 simulation runs were 

averaged. 
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5.4.3 Quinn’s Second Estimator 

In this section we present Quinn’s second algorithm.  We will not analyse it but, rather 

simply, state the relevant results that were derived by Quinn in [34] pp.195-198. 

Driven by the insight gained from the analysis of the first estimator, Quinn sets to find a 

form of the interpolator that would give the minimum asymptotic variance uniformly in 

0. 

Since the two estimates, 1
ˆ  and 1

ˆ  are asymptotically independent, it seems that 

averaging them would improve the estimator performance.  However, the resulting ratio 

of the asymptotic variance of the averaged estimate to the asymptotic CRB is found to 

be 

 1144
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ACRBR  

This expression has a minimum of 1.645 at 00  and a maximum of 11.669 at 
2

1
.  

Therefore, although the averaging improves the performance of the estimator at zero, 

the resulting performance away from zero is significantly worsened. 

Thus, we must look for a nonlinear estimator in order to approach the performance of 

the periodogram maximiser using three coefficients, given in equation (5.11).  Writing 

ˆ  as a generic function of 1
ˆ  and 1

ˆ , say 11
ˆ,ˆg  and solving for g  to minimise the 

resulting asymptotic variance Quinn found it to be given by 
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where 1g  and 2g  are given by 
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The resulting algorithm, shown in the table below, is the same as the first estimator with 

a step added after the calculation of 1
ˆ  and 1

ˆ  combining them to obtain a value for ˆ . 

 

 

Table 5.2 – Quinn’s second algorithm. 

 

The algorithm in the table above will be called Quinn’s second algorithm.  Its 

asymptotic variance is the same as that of the periodogram maximiser using three 

coefficients.  The ratio of its asymptotic variance to the asymptotic CRB is given in 

equation (5.11). 

As a matter of interest, and for the sake of completeness, we mention that in order to 

avoid the logarithms, Quinn suggested a modification, replacing the term 2
1

2
1 hh  

by 2
112 h  with  given by 1

ˆ  if both 1
ˆ  and 1

ˆ  are positive and 1
ˆ  

otherwise. 

The figure below shows the simulation results of the ratio of the asymptotic variance of 

the algorithm to the asymptotic CRB.  10000 simulation runs were averaged.  We see 

Set   1for  ,
0

l
X

X l
l  

Then Calculate 
1

ˆ

l

l
l

l
 

Let  2
1

2
1

11

2

ˆˆ
ˆ hh  

Where   

3
22

3
22

24

1

1
ln

24

6
163ln

4

1

x

x
xxxh  

The frequency estimate is then given by 

  
N

f
mf sˆˆ  



 

 

113 

that there is close agreement between the two curves and consequently the optimality of 

the algorithm is verified. 

 

Figure 5.5 – Plot of the ratio of the asymptotic variance of Quinn’s second algorithm to 

the asymptotic CRB as a function of 0 at 0 dB SNR and N = 1024.  10000 simulation 

runs were averaged. 

 

Figure 5.6 shows the performance results of Quinn’s second algorithm.  We see a clear 

improvement of performance over the first algorithm.  The average ratio of the 

frequency MSE was found through simulation to be between 1.3 and 1.5, whereas the 

theoretical value obtained from averaging the variance expression of equation (5.11) 

over the range 5.0,5.0  is 1.316.  It is interesting to note that the optimum estimator 

has a higher threshold than the first estimator. 
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Figure 5.6 – Plot of the performance of Quinn’s frequency estimation algorithms Vs 

SNR. N = 1024, fs = 1MHz.  10000 simulation runs were averaged. 

 

5.4.4 Macleod’s Three Coefficients Interpolator 

Macleod, in [84], also adopted the approach of combining 1
ˆ  and 1

ˆ  in order to obtain 

an improved estimate of 0 .  Unlike Quinn, however, Macleod presented a 

computationally simple alternative that is nearly optimum.  Interestingly, Quinn does 

not mention Macleod’s algorithm in his book.  In this section we will present and 

analyse the algorithm. 

We will first present the algorithm in the notation adopted by Macleod and then re-write 

it in the notation of this thesis. 

Let lr  be given by 

 1 and 0 ,1 ,0 lXXr ll  

Then the estimator is given by the following two equations 

 
110

11

2 rrr

rr
 (5.19) 
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and 

 
4

181ˆ
2

 (5.20) 

 

5.4.5 Motivation 

Re-writing the expressions for lr  we get 

 

l

l
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X
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X
X

XXr

2

0
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0

 

where of l  is shown in table 5.1. 

We see that the above expression differs from l  by a constant that is common to all 

values of l .  Substituting into the expression for  it becomes 
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XXX
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Putting 
l

l

0

0  in the above and simplifying we arrive at 

 

12

2

2
0

0

11

11

 (5.21) 

Now solving for 0  in terms of  we find that the estimator is given by equation (5.20). 

The estimator is summarised in the table below. 
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Table 5.3 – Macleod’s three coefficients interpolator. 

 

The variance of the estimator was obtained as a function of 0 through simulations.  The 

resulting ratio to the asymptotic CRB, shown in figure 5.7, is for 1024N .  We clearly 

see the sacrifice in performance with respect to the optimum estimator incurred in order 

to obtain a computationally simpler estimator. 

Set   1for  ,
0

l
X

X l
l   

Then Calculate  

11

11

2
 

Let 

   
4

181ˆ
2

 

 
The frequency estimate is then given by 

   
N

f
mf sˆˆ  
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Figure 5.7 – Plot of the ratio of the variance Macleod’s three coefficients interpolator to 

the asymptotic CRB as a function of 0.  N was set to 1024 and SNR to 0 dB. 10000 

simulation runs were averaged. 

 

The algorithm was also simulated as a function of SNR over the range of values from 0 

to -20 dB.  10000 simulation runs were averaged.  The results are shown along with 

Quinn’s second estimator and the CRB in figure 5.8.  While being computationally 

simpler than Quinn’s second estimator it still has comparable performance to the latter. 
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Figure 5.8 – Comparison of the performance of Quinn’s second frequency estimation 

algorithm and Macleod’s three coefficients interpolator as a function of SNR. N = 1024, 

fs = 1MHz.  10000 simulation runs were averaged. 

 

5.5 Interpolation on Five Fourier Coefficients 

As we stated earlier in section 5.2.1, the ratio of the resulting asymptotic variance to the 

ACRB goes to 1 as the number of samples used in the interpolation goes to infinity, that 

is as LM  and UM  go to infinity.  To take advantage of this fact, Macleod, [84], 

proposed a five sample estimator.  The optimum ratio for the five sample interpolator 

can be found by putting 2UL MM  in equation (5.10). 
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4
 5 Coeffs

ACRBR  (5.22) 

Using the notation of the previous section, we have that 

 22 ,0 lXXr ll  

and the estimator is given by the following two equations 
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22110

2211

812

24

rrrrr

rrrr
 (5.23) 

and 

 93.2tan4041.0ˆ 1  (5.24) 

Note that equation (5.23) can be re-written in terms of the ratios l  as 

 
2211

2211

812

24
 

The algorithm is summarised the table below 

 

 

Table 5.4 – Macleod’s five coefficients interpolator. 

 

The ratio of the asymptotic variance of the five sample interpolator to the asymptotic 

CRB was obtained by averaging 10000 simulation runs at 0dB SNR.  The results are 

plotted versus 0 in figure 5.9 below.  The curves for the three sample interpolator and 

the theoretical ratio of the asymptotic variance to the asymptotic CRB are also shown.  

There is clear improvement over Macleod’s three sample interpolator.  Figure 5.10 

shows the standard deviation of the frequency error for the three and five coefficient 

interpolators as a function of signal to noise ratio.  The plot also includes the CRB curve 

for the purpose of comparison.  We see that the five sample interpolator is slightly 

closer to the CRB curve than the three sample interpolator.  In fact the average ratio of 

Set   2,1,0for  ,
0

l
X

X l
l  

Then Calculate  

2211
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812

24
 

Let 

   93.2tan4041.0ˆ 1  

 
The frequency estimate is then given by 

   
N

f
mf sˆˆ  
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the asymptotic variance of the five sample interpolator was found to be about 1.2 

compared to 1.35 for the three sample interpolator. 

 

 

Figure 5.9 – Plot of simulation results of the ratio of the variance Macleod’s five 

coefficients interpolator to the asymptotic CRB as a function of 0.  N was set to 1024 

and SNR to 0 dB. 10000 simulation runs were averaged. 
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Figure 5.10 – Plot of the performance of Macleod’s three and five coefficients 

interpolators as a function of SNR.  N = 1024, fs = 1MHz.  10000 simulation runs were 

averaged. 

 

5.6 Interpolation Using the Moduli of Fourier Coefficients– The Rife-

Vincent Estimators 

Most of the energy of a sinusoidal signal is concentrated in the few bins around the 

maximum (see figure 5.1).  Therefore, it is possible to construct frequency estimators 

that only use the moduli of the Fourier coefficients.  In this section we examine two 

such interpolators.  We refer to this group as interpolators on the moduli of Fourier 

coefficients.  These two techniques were attributed by Quinn, [34] pp.199-206, to Rife 

and Vincent and are therefore called the Rife-Vincent (R-V) estimators.  Quinn, 

however, shows that they do not work as well as the interpolators on Fourier 

coefficients discussed so far. 
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5.6.1 Rife-Vincent Estimator 

Rife and Vincent, in [118], proposed the use of the magnitudes of the Fourier 

coefficients for the purpose of digital frequency estimation.  In the usual notation, let the 

maximum bin and those either side of it be 0X , 1X  and 1X  respectively.  Denote the 

magnitude of lX  by lY .  The R-V estimator, [34] pp. 201, is shown in the table below, 

 

 

Table 5.5 – Rife-Vincent estimator. 

 

5.6.2 Motivation 

It is quite easy to see the reasoning behind the R-V estimator.  Given the expression for 

lX  from section 5.4.1, lY  becomes, 
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c
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Denote the ratio in the expression of ˆ  by p , then 

Let  
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YYif
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 1 11
 

 
Then Calculate 

p
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Y
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The frequency estimate is then given by 
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f
mf sˆˆ  
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00

0

0

00
0

0

00

0

p

p

c
c

p

c

YY

Y

p

p

p

 

Now if 00 , we would expect 1Y  to be larger than 1Y .  Therefore the first step in the 

table above would result in p  being set to -1.  Furthermore, since 00 , 00 .  

This implies that 

 

0

00

0
1

1  

Following a similar argument, we see that for 00 , we use 1 , 

 

0

00

0
1

1  

Hence, we find that, provided that the comparison step yields the correct choice for p , 

p  equals 0p .  Since 
p

p 1 , the estimator for 0 is given by pp .  In the case that 

the choice is incorrect we find that 

 
p

p

0

0

2
 

This is a nonlinear function of 0 . 

This analysis suggests that the R-V algorithm has a problem for 0 close to 0 as an 

incorrect decision in the choice of the p is quite probable.  We will now present the 

modified R-V algorithm proposed by Quinn in order to alleviate this problem. 
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5.6.3 Modified Rife-Vincent Estimator 

In order to alleviate the problem of the R-V estimator in the region close to zero, Quinn 

suggested replacing the comparison step with an alternative inspired from his first 

algorithm.  The modified R-V algorithm is shown in the table below. 

 

 

Table 5.6 – Modified Rife-Vincent estimator. 

 

5.6.4 Performance of the Rife-Vincent Estimators 

The ratio of the frequency variance to the asymptotic CRB was obtained for each of the 

R-V estimators through simulations.  The signal to noise ratio was set to 0dB and 1024 

samples were used.  10000 simulation runs were averaged and the results are shown in 

figure 5.11 below.  The original and modified estimators have almost identical 

performances in the regions 25.0,5.0  and 5.0,25.0 .  However, we see that the 

original algorithm has a significantly worse performance in the interval 25.0,25.0  

compared to the modified algorithm.  It is interesting to note that, as 0 gets closer to 

zero, the performance of the original algorithm improves.  The reason is that, although 

the probability of an incorrect decision worsens, the net loss is reduced owing to the 

decreasing size of 0 . 

Let  1for  ,
0

l
X

X l
l  

And 

  lls sgn  

Now put 

  
otherwise

if
p
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1 and 1 1 11
 

 
Then Calculate 

pp

p

p
YsY

Y
ps
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ˆ  

 
The frequency estimate is then given by 

  
N

f
mf sˆˆ  
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Figure 5.12 shows the standard deviation of the frequency error versus signal to noise 

ratio for both the R-V and the modified R-V estimators.  Also shown, for the purpose of 

comparison are the CRB curve and the standard deviation of the frequency error of 

Quinn’s first algorithm.  The performance of the R-V algorithm is clearly inferior to 

both the modified R-V algorithm and Quinn’s first algorithm.  In fact Quinn shows that 

the original R-V algorithm is only 2
3

NO  if 0 is rational and is not even 4
5

NO  

otherwise.  This explains the poor performance compared to the other estimators.  The 

modified R-V algorithm, on the other hand, is 2
3

NO  and has a performance that is 

comparable to Quinn’s first algorithm. 

 

 

Figure 5.11 – Plot of simulation results of the ratio of the variance the Rife-Vincent 

estimators to the asymptotic CRB as a function of 0.  N was set to 1024 and SNR to 0 

dB. 
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Figure 5.12 – Plot of the performance of the Rife-Vincent as a function of SNR. N = 

1024, fs = 1MHz.  10000 simulation runs were averaged. 

 

5.7 Conclusion 

In this chapter we examined a number of existing algorithms for the estimation of the 

frequency of a sinusoidal signal.  Although all of the techniques that were presented 

interpolate on the Fourier coefficients, they vary depending on the number of 

coefficients used and the method used to combine them.  The Quinn and Macleod 

estimators, for instance, use the raw coefficients and therefore work on complex 

numbers.  Other estimators like the Rife-Vincent algorithms use the moduli of Fourier 

coefficients.  It is accepted that the moduli based algorithms do not perform as well as 

the first type of estimators.  In the next chapter, however, we propose a new class of 

algorithms that work on two Fourier coefficients computed on a fractional grid.  We call 

these estimators “interpolators on fractional Fourier coefficients” and show that they are 

suitable for iterative implementation.  The resulting iterative algorithms are shown in 

chapter 8 to have an improved performance over the existing interpolation algorithms. 
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Chapter 6 

 

Frequency Estimation by Interpolation on 

Fractional Fourier Coefficients 

 

6.1 Introduction 

The algorithms presented in the previous chapter almost invariably exhibit a degraded 

performance around 00 .  In this chapter, we present a class of algorithms we call 

the interpolators on fractional Fourier coefficients.  These algorithms have the desirable 

property of exhibiting the best performance at 00 .  This, as we demonstrate in 

chapter 8, results in performance improvement when they are implemented iteratively.  

The methods of this chapter use two coefficients to give estimators with performances 

approaching the CRB.  The techniques of the previous chapter, on the other hand, 

require at least three coefficients to obtain a finer estimate of the frequency. 

We remind the reader that throughout the thesis, it is assumed that the first step is a 

coarse frequency estimate given by the MBS algorithm.  The techniques of this chapter 

are then used to refine the frequency estimate. 

The chapter is organised as follows; first we introduce the fractional Fourier coefficients 

in section 6.2.  We then proceed to propose the new algorithms in sequence.  Section 6.3 

presents and analyses the interpolation on two fractional Fourier coefficients (FFCI) 

algorithm.  In section 6.4 we propose the interpolation on the magnitudes of two 

fractional Fourier coefficients, or MOI algorithm.  The MOI algorithm is analysed and 

compared to the FFCI estimator.  Finally the Magnitudes Squared Interpolation (MSI) 

and Modified Magnitude Squared Interpolation (MMSI) algorithms are presented and 

discussed in sections 6.5 and 6.6.  Section 6.7 contains the concluding remarks of the 

chapter. 
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6.2 Fractional Fourier Coefficients 

For a signal x , the fractional Fourier coefficients are calculated midway between two 

bins as shown 

 
1

0

21 N
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pn

ekx
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X  (6.1) 

where p  is set to either 
2

1  or 
2

1 .  The fractional coefficients can also be obtained 

by shifting the signal x by half a bin and then taking FFT algorithm.  As a result, we 

showed in appendix C that the resulting Fourier coefficients are independent and 

identically distributed with zero mean and variance 
N

2
. 

Following the notation of section 5.2.1, let m  be the index of the maximum of the 

normal periodogram, that is the index returned by MBS algorithm. The signal frequency 

is then given by 
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The fractional Fourier coefficient pnX  is 
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Putting lmn , the above expression becomes 
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For x small, we have 

 xex 1  
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Dropping the index m in order to simplify the notation, we get 
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 (6.2) 

where 

 
0

2

0
2

1 0

j

e
b

j

 (6.3) 

In the following section, we present a new algorithm that efficiently uses the fractional 

Fourier coefficients to interpolate the frequency of a sinusoidal signal. 

 

6.3 Interpolation on Two Fractional Fourier Coefficients 

We saw in section 5.3 of the previous chapter that it is possible to use the complex 

Fourier coefficients to interpolate the true value of the frequency.  We now propose a 

new technique of interpolating on the fractional Fourier coefficients in order to obtain a 

fine estimator of the frequency of the sinusoidal signal. 

In the noiseless case, according to equation (6.2) and with l  set to zero, we have 
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0
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Therefore we see that the real part of  forms an estimate of the offset 0  from the 

maximum bin m .  The real part is taken to remove the imaginary component that is 

purely due to the noise.  We now have the following algorithm, 

 

 

Table 6.1 – Fractional Fourier Coefficients Interpolation (FFCI) estimator. 

 

6.3.1 Analysis 

We will now analyse the algorithm of table 6.1.  We will establish its central limit 

theorem and derive its asymptotic variance. 

Including the noise terms in the expression for  gives 
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The frequency estimate is then given by 
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f
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The factor 
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 has a removable singularity at 5.00  and 
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The fractional Fourier coefficients of the noise are NNOp ln2
1

 (see appendix C, 

section C.2). Using the fact that for small x , 
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we find that 
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We see that, as the fractional Fourier coefficients are independent and identically 

distributed, with a Gaussian distribution,  itself is asymptotically unbiased and 

Gaussian.  The estimate of 0 , denoted by ˆ  is given by the real part of .  Therefore, 

ˆ  is itself asymptotically unbiased and Gaussian distributed.  This allows for the CLT 

of the estimator to be established.  The estimate of 0  is given by the real part of ; 
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The error in ˆ  is 
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and consequently the variance of the error is 
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From section C.2 we have that 
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Substituting this into the expression of the variance yields 
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However from equation (6.3), we obtain 
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Substituting 
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0b  into the expression for the variance we get, 
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Finally we have the following theorem, 

 

6.3.1.1 Theorem 

Let ˆ  be the estimator of 0  as shown in table 6.1 and f̂  be defined by 
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then 0
1 ˆ ffFFCI  asymptotically follows the standard normal distribution with FFCI  

given by 
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The variance of ˆ  was multiplied by 2

2

N

f s  to give that of the frequency.  The ratio of 

the asymptotic variance of the estimator to the asymptotic CRB is given below 
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The figure below shows the theoretical as well as simulation results of the ratio of the 

asymptotic variance to the asymptotic CRB as a function of 0 .  The results were 

obtained at a signal to noise ratio of 0dB and 10000 runs were averaged.  We see very 

close agreement between the two curves.  The ratio of the asymptotic variance to the 
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asymptotic CRB has a minimum of 1.0147 at 00 .  The difference between the 

simulation and the theoretical curves at the edges of the interval, that is at 0.5 is due to 

the removable singularity of the factor 
0

2

22
0

cos

25.0
.  In fact taking the limit of the ratio 

we have 
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The theoretical and simulation curves agree very closely. 

 

 

Figure 6.1 – Plot of the ratio of the asymptotic variance of the interpolation on 

fractional Fourier Coefficients estimator to the asymptotic CRB versus 0.  10000 

simulation runs at 0 dB SNR were averaged. 
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Figure 6.2 – Plot of the performance of the interpolation on fractional Fourier 

coefficients algorithm as a function of SNR. N = 1024, fs = 1MHz.  10000 simulation 

runs were averaged. 

 

Figure 6.2 above shows the performance of the estimator along with that of Quinn’s 

first algorithm for the purpose of comparison.  The two algorithms have almost identical 

performance.  This is to be expected as the two utilise the same amount of information 

to derive the estimate of 0 .  In fact, the theoretical curve of figure 6.1 is identical to 

that of figure 5.3 but with the -axis relabelled (that is shifted by 0.5).  Figure 6.3(a) 

shows the theoretical ratio of the asymptotic variance of Quinn’s first algorithm and the 

interpolator on fractional Fourier coefficients repeated periodically.  Plot (b) displays 

that of Quinn’s first algorithm on a 0  shifted by 0.5 whereas that of the new algorithm 

is unchanged.  We see that the two curves in figure 6.3(b) coincide.  This illustrates the 

important characteristic of the new class of algorithms.  As the new algorithms exhibit 

their lowest variance at 00 , we will show in chapter 8 that their performance 

improves when implemented iteratively.  This is in contrast to the algorithms of the 

previous chapter.  We note here that figure 6.2 shows a slightly better performance of 

the FFCI estimator compared to Quinn’s first algorithm near the SNR threshold.  This is 
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due to the absence of the decision making step in the FFCI algorithm.  As the noise 

floor becomes more prominent, the decision step of Quinn’s algorithm fails more often.  

This results in a slightly degraded performance at low SNR. 

 

 

(a) 

 

(b) 

Figure 6.3 – (a) Plot of the theoretical ratio of the asymptotic variance to the asymptotic 

CRB.  The curves for Quinn’s first algorithm and the interpolation on fractional 

Fourier Coefficients estimator are shown repeated periodically versus 0.  (b) A shifted 

version. 



 

 

137 

6.4 Interpolation on the Magnitudes of Two Fractional Fourier 

Coefficients 

The algorithm presented in the previous section uses the fractional Fourier coefficients 

to obtain a fine frequency estimate.  In this section we propose and analyse a new 

estimator that operates on the magnitudes of the fractional Fourier coefficients.  We call 

the algorithm the Magnitudes Only Interpolation (MOI) estimator. 

Let pY  be the magnitudes of the fractional Fourier coefficient pX .  That is pp XY .  

The estimate of 0  is then given by 
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 (6.7) 

The algorithm is summarised in the table below. 

 

 

Table 6.2 – Magnitudes Only Interpolation (MOI) on fractional Fourier coefficients 

estimator. 
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The frequency estimate is then given by 
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Now looking at the two cases for 5.0p  we have, 
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Thus, we see that an estimator for 0 is given by 
2

. 

 

6.4.2 Analysis 

The asymptotic performance of the MOI algorithm of table 6.2 will be obtained in this 

section.  Including the noise term in the expression for pY , 
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The second factor is expanded as follows 
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Upon examination of this expression we find that we must divide the range of 0  into 

two regions, 1  and 2 , defined as 
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for some 0a  and 0 . 

We will now restrict 0  to region 1 .  The other case will be examined later on.  

Referring to appendix C we have that 

 NNO
b

Wp
ln2

1

0

 (6.10) 

Whereas 
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Therefore we can ignore the lower order terms, that is the terms in 
2

pW .  Substituting 

into (6.8) we get 
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Now for 1x  we have 
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x
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Thus the expressions for pY  becomes 
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Substituting this into (6.7) yields 

 

0

5.0

0

0

0

00

0

5.0

0

0

0

00

0

5.0

0

0

0

00

0

5.0

0

0

0

00

5.05.0

5.05.0

5.0
1

5.0

5.0
1

5.0

5.0
1

5.0

5.0
1

5.0

2

1

2

1ˆ

b

Wb

b

Wb

b

Wb

b

Wb

YY

YY

 (6.11) 

Simplifying the above equation we get 
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Using identity (6.4) we find 
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Expanding and simplifying gives 
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The error is given by, 
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Thus for 10 , the estimator is asymptotically unbiased and has a CLT.  From 

section C.2, we see that the noise terms are independent and identically distributed with 

mean 

 

0

00 b

WE

b

W
E

pp

 

and variance 
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where Ir jbbb 000  and we have used the fact that the noise terms have independent 

real and imaginary parts.  Now we have 
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and finally the variance of the estimator is 
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Substituting 
2

0

0
2

2

0

cos
b , we get 
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Multiplying the asymptotic variance of ˆ  by 
2

N
f s  gives the asymptotic variance of 

the frequency estimates.  Hence 
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The ratio of the algorithm variance to the asymptotic CRB is 

 
0

2

2
0

22
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4

cos6

1425.0MOI
ACRBR  (6.12) 

The ratio of the variance to the asymptotic CRB is identical to that of the FFCI 

algorithm.  This is the case for region 1  only. 

We will now consider the case where 20 , that is the case where 0  is near 0.5.  

Restricting 0  to 1  we were able to make use of the fact that 
2

pW  in equation (6.9) is 

of lower order than 
0b

Wp
.  As 0  approaches 0.5, however, that is no longer true.  
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We now look at the case where 0  is tending towards 0.5.  The other case is similar.  

Let us first examine the expression of 5.0Y , 
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Considering each of the two terms containing 5.0W  separately, we have 
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Whereas 
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Equation (6.3) results in 
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Therefore the limit becomes 
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Consequently we see that the orders of the terms for 5.0Y  are preserved and it is still 

given by 
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And now looking at 5.0Y , we have 
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Again considering each of the two terms containing the noise separately, we have 
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Let 05.0 .  In order to compare their magnitudes, we need to establish their 

orders in terms of .  Expanding the sine and cosine terms into their Taylor series and 

using the multiplicative properties of the order notation of (section B.4), we find that 

 

NNO

WO

W
O

O
W

b

ln

15.0

12

2

5.0
2

2

5.02

2

5.02
0

2

0

2
0

 

and 
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The above indicates that, for a fixed N , as 5.00  (that is as 0 ), there will be a 

threshold point where the relative size of the orders is exchanged.  We take this 

threshold point as the boundary between 1  and 2 .  The threshold can be calculated 

as follows; we take the term in 
2

pW  to become dominant when it is of “slightly” larger 

order than the other term.  As a definition, we consider a quantity 1Q  to be dominant 

with respect to a quantity 2Q  if 

 Ng
Q

Q

1
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where 0Ng  as N .  We set 
N

Ng
ln

1
.  Applying this to the terms in the 

expression of 5.0Y , 
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That is 
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This implies that 
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Solving for  we get 
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And the threshold point T0  is given by 
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1

0 5.0 NT  

For 1024N , for instance, the threshold point is 0.469.  The definition of the two 

regions, 1  and 2 , is therefore restated as 
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5.0; 001 N  

and 
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1
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2
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Now for 0  close to 0.5 (that is 20 ), the orders of the terms in 5.0Y  are swapped 

and it is given by 

 1
5.0

2

1
1

5.0

2

5.02
0

2

0

2
0

0

00
5.0 oW

b

b
Y  

We now substitute the expressions of 5.0Y  and 5.0Y  into ˆ  and follow a similar analysis 

to the case where 10 . 
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Again keeping in mind that 5.00 , equation (6.11) simplifies to 
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Using identity (6.4) we obtain 
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This implies that the estimator is now biased and that the CLT is not easily established.  

The bias, however, is 

 

NO

NNNONNO

ln

lnln 1
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12 2
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whereas the width of the region 2  is 2

1

No .  Therefore the width of 2  decreases 

faster than rate of increase of the bias.  This ensures validity of the conclusions of the 

asymptotic analysis for region 1 .  Finally we have the following theorem, 
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6.4.2.1 Theorem 

Let ˆ  be the estimator of 0  as shown in table 6.2 with 10  and f̂  be defined by 

 sf
N

m
f

ˆ
ˆ  

then 0
1 ˆ ffMOI  is asymptotically standard normal with MOI  given by 

 
0

2

2
0

22
0

2
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2
2

cos

1425.0

4N

f s
MOI  

The ratio of the asymptotic variance of the estimator to the asymptotic CRB is identical 

to the FFCI algorithm and is shown in equation (6.12). 

The algorithm was simulated and the ratio of the asymptotic variance to the asymptotic 

CRB was plotted.  Figure 6.4(a) shows the theoretical and simulation curves.  The 

simulation curve clearly exhibits the threshold point where the term in 
2

pW  becomes 

dominant.  The simulation results were obtained at 0  intervals of 0.01 and 10000 runs 

were averaged at a SNR of 0 dB.  The threshold points were found to be around 0.47 

thus closely agreeing with the theoretical value of 0.469.  A finer simulation comprising 

10000 runs was performed on the interval 5.0,4.0  at a resolution of 0.001.  The results 

are shown in figure 6.4(b).  As expected, we see that the transition region is not an 

abrupt one.  The value for the threshold we calculated was based on the assumption of 

ratio of the orders of the terms being 
Nln

1
.  There are of course infinitely many 

functions, Ng , satisfying 0lim Ng
N

.  The lower the order of Ng  is, the closer 

the threshold point is to the point where the theoretical and simulation curves depart.  

The choice we made is simply a convenient and logical one. 

The performance of the algorithm was also simulated as a function of signal to noise 

ratio.  The results are shown in figure 6.5 along with the performance of the FFCI 

algorithm of section 6.3 for the purpose of comparison.  The results show that the two 

algorithms perform almost identically.  This is expected as the region where the MOI 

algorithm performs worse, that is region 2 , asymptotically vanishes.  The FFCI 
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algorithm has a slightly lower SNR threshold which might be attributed to the worse 

performance of the MOI algorithm near 0.5. 

 

 

(a) 

 

(b) 

Figure 6.4 – (a) Plot of the ratio of the asymptotic variance of the MOI estimator to the 

asymptotic CRB versus 0.  10000 simulation runs at 0 dB SNR were used in the 

simulation. (b) Zoomed version of (a) on the interval 5.0,4.0 . 
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Figure 6.5 – Plot of the performance of the MOI algorithm as a function of SNR. N = 

1024, fs = 1MHz.  10000 simulation runs were averaged. 

 

6.5 Interpolation on the Magnitudes Squared of Two Fractional 

Fourier Coefficients 

In this section we look at the possibility of replacing pY  in the MOI estimator with 
2
pY , 

[10].  We show that the resulting estimator which we designate as the Magnitude 

Squared Interpolation (MSI) algorithm is severely biased for  far from zero.  Therefore 

the MSI algorithm does not significantly improve on the coarse estimation stage.  In the 

next section, however, we propose a modified MSI (MMSI) algorithm that has 

2
3

NO  frequency RMSE. 

The MSI algorithm is summarised in the table below 
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Table 6.3 – Magnitudes Squared Interpolation (MSI) on fractional Fourier coefficients 

estimator. 

 

6.5.1 Motivation 

In order to establish the motivation behind the MSI estimator, we consider 
2

pY , in the 

noiseless case, for 5.0p , 
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Therefore, the ratio in the expression of ˆ  becomes 
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 (6.14) 
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The frequency estimate is then given by 

  
N

f
mf sˆˆ  
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For 0  much smaller than 0.5, we can ignore the term in 2
0  in the denominator and  

becomes equal to 04 .  However, we see that this is only valid for 5.00 .  As we 

move away from zero, the quotient of (6.14) becomes heavily biased and therefore the 

algorithm does not constitute an efficient estimator.  Figure 6.6 below shows the 

estimator mapping functions ( ) for both the MOI and MSI algorithms.  We clearly 

see that the estimator function for the MSI algorithm is non-linear as we move away 

from zero. 

 

 

Figure 6.6 – Plot of the estimator mapping function ( ) of the MOI and MSI 

estimators. 

 

The performance of the algorithm was simulated and the results are presented in figures 

6.7 and 6.8 below.  Figure 6.7(a) shows the ratio of the variance of the algorithm to the 

asymptotic CRB.  We find that the problem region is about the same width as region 2  

of the MOI algorithm but the performance of the MSI algorithm is severely worse there.  

In fact it can be shown that it is not 2
3

NO  as the previous algorithms of this chapter 
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are.  Figure 6.7(b) shows a close up of the performance in region 1  (defined in section 

6.4.2) along with the ratio of the MOI algorithm.  It is interesting to note that the 

performance of the MSI algorithm seems better than the CRB.  However, this is of 

course not actually the case as the standard deviation of the error does not include the 

estimator bias.  Incorporating the bias we would see that the performance is actually 

much worse than the MOI algorithm. 

Figure 6.8 shows the performance as a function of signal to noise ratio.  The plot 

confirms the results obtained above. 

Despite the fact that the performance of the MSI estimator is severly degraded 

compared to the previous two algorithms, its characteristic of the mapping function does 

show that the estimator possesses the important property of having a “fixed point” at 

00 .  Furthermore, its variance is comparable to the CRB there.  Hence, as we will 

see in chapter 8, these facts imply that the estimator lends itself to an iterative 

implementation. 
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(a) 

 

(b) 

Figure 6.7 – (a) Plot of the ratio of the asymptotic variance of the MSI estimator to the 

asymptotic CRB versus 0.  10000 simulation runs at 0 dB SNR and N=1024 were used 

in the simulation.  (b) Zoomed in version of (a). 
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Figure 6.8 – Plot of the performance of the MSI algorithm as a function of SNR. N = 

1024, fs = 1MHz.  Note that the above figure shows the square root of the CRB. 

 

6.6 Modified Interpolation on the Magnitudes Squared of Two 

Fractional Fourier Coefficients 

In this section, we set out to rectify the problem of the MSI algorithm.  The resulting 

estimator, shown in the table below, will be named the Modified Magnitudes Squared 

Interpolation (MMSI) algorithm. 
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Table 6.4 – Modified Magnitudes Squared Interpolation (MMSI) on fractional Fourier 

coefficients estimator. 

 

6.6.1 Motivation 

The motivation behind the MMSI algorithm is straightforward and is deduced from 

equation (6.14) which gives 
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This can be re-written as 

 025.00
2
0  

This is a quadratic in 0 which can be solved to give and estimator for 0  
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where careful examination reveals that we need to take the negative sign since 

5.0,5.00 .  Now substituting the expression for  back into that of ˆ , we can 

express it in terms of the fractional Fourier coefficients, 
2
pY .  Therefore, 
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The frequency estimate is then given by 

  
N

f
mf sˆˆ  



 

 

157 

 

2
5.0

2
5.0

5.05.0
2

5.0
2
5.0

2
5.0

2
5.0

2
5.0

2
5.0

2

2
5.0

2
5.0

2
5.0

2
5.0

2

2

1

2

11

ˆ

YY

YYYY

YY

YY

YY

YY

 (6.15) 

as required. 

 

6.6.2 Analysis 

The algorithm presented above is in fact equivalent to the MOI algorithm of section 6.4.  

We will show that expression for ˆ  as shown in equation (6.15) simplifies to equation 

(6.7). 

Consider now equation (6.15), the numerator on the right is a square term while the 

denominator can be factorised to give 
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The performance of the MMSI estimator is, therefore, identical to that of the MOI 

estimator and is governed by theorem 6.4.2.1.  This was verified by simulations.  Figure 

6.9 shows the resulting ratio of the asymptotic variance to the asymptotic CRB.  A 

Monte Carlo simulation of 10000 runs at a signal to noise ratio of 0dB was performed.  

The figure also shows the performance of the MOI algorithm for comparison purposes.  

We see that the two curves are almost identical, taking into account the statistical 

variances between the runs.  Figure 6.10 shows the performance of the algorithm as a 

function of the SNR.  The standard deviation of the frequency error of the MOI 

estimator is also shown.  The two curves coincide, indicating identical performances of 

the two algorithms. 
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Figure 6.9 – Plot of the ratio of the asymptotic variance of the MMSI estimator to the 

asymptotic CRB versus 0.  10000 simulation runs at 0 dB SNR and N=1024 were used 

in the simulation. 

 

Figure 6.10 – Plot of the performance of the MMSI algorithm as a function of SNR. N = 

1024, fs = 1MHz.  10000 simulation runs were averaged. 
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6.7 Conclusion 

We have in this chapter introduced a new class of frequency estimators that interpolate 

on the fractional Fourier coefficients of the sinusoidal signal.  The new estimators were 

analysed and their performances confirmed using simulations.  The FFCI algorithm has 

the best performance among the new estimators due to its regular behaviour near 0.5.  

The new estimators were also shown to have similar average variances to the known 

estimators of chapter 5.  However, unlike those estimators, the new algorithms exhibit 

their best performance at 00  which will be shown in chapter 8 to be a fixed point.  

An estimator with a mapping function, ˆ , has a fixed point 
~

 if 
~~

.  This 

enables the iterative implementation of the algorithms to result in an improvement in 

their performance.  The result is that the iterative estimators almost attain the Cramer-

Rao lower bound of the frequency estimation from N  samples.  In fact the asymptotic 

variance of the iterative estimates will be shown to be only 1.0147 times the CRB. 
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Chapter 7 

 

Iterative Frequency Domain Frequency 

Estimation 

 

7.1 Introduction 

We saw in chapter 5 that the resolution of the MBS algorithm can be improved by 

padding the data samples with zeroes.  This, however, is a costly way of refining the 

frequency estimate.  In chapters 5 and 6 we discussed fine frequency estimators that 

interpolate on the Fourier coefficients.  In this chapter as well as in chapter 8, we 

examine iterative methods for refining the frequency estimate.  The estimators we 

consider iterate on each block of data samples to give a frequency estimate.  Frequency 

estimates obtained from successive data blocks remain independent. 

Quinn and Fernandes, in [14], proposed an iterative time domain method to estimate the 

frequency of a sinusoidal signal in noise.  Their technique, discussed in section 2.5.4 

iteratively fits an ARMA(2,2) model to the available data. 

In this thesis we are mainly concerned with frequency domain methods.  Zakharov and 

Tozer, in [86], suggested a method of iteratively refining the frequency estimate using a 

binary search on the Fourier coefficients.  Their technique is simple and does not need 

any non-linear operations.  The entire algorithm relies only on multiply, add and 

compare operations.  This makes the algorithm suitable for real time DSP 

implementation.  However, the data samples must be padded with zeroes to give a 

performance that approaches the CRB. 

The chapter is organised as follows; in the next section, we present the dichotomous 

search algorithm giving an explanation for the need to pad the data with zeroes.  Guided 

by the insight of section 7.2 we propose a modified algorithm in section 7.3 that does 

away with the zero-padding requirement.  In 7.4 we discuss a hybrid algorithm, [120], 

that combines an interpolation algorithm with the dichotomous search.  In section 7.5 
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we review other variants of the dichotomous search.  Finally section 7.6 concludes the 

chapter. 

 

7.2 Dichotomous Search of the Periodogram Peak 

In chapter 4 we explained that the size N  DFT samples the Fourier transform at N  

equally spaced points.  Therefore, a natural method to improve the MBS resolution is to 

sample the DFT at finer intervals and choose the maximum.  This, as explained in 

section 5.2, can be implemented by padding the available data samples with enough 

zeroes to obtain a resolution comparable to the CRB.  The number of zeroes required to 

approach the CRB depends the SNR.  However, the FFT requires N
N

2log
2

 operations, 

a number that quickly becomes large as N  increases.  For instance, for 1024 data 

samples and a sampling frequency MHz 1sf , the CRB is approximately 11.82 Hz at 

a SNR of 0dB.  Thus, to obtain this resolution, the number of sampling points of the 

spectrum needs to be 

 84603
82.11

101 6

 

and the data must be padded with 83579102484603  zeroes.  The resulting number 

of operations is 692410 operations compared to 5120 for a 1024-FFT. 

Another possible implementation of the peak location strategy was proposed by 

Zakharov and Tozer in [86].  A binary search method is employed.  Denote the index of 

the periodogram maximiser by m .  Let the magnitude of bin m  be 0Y  and those of the 

bins either side of it be 1Y  and 1Y .  We deduce from the sinc nature of the periodogram 

of a sinusoid (refer to section 5.2) that 11 YY  if the true frequency lies in the interval 

N

f
m

N

f
m ss ,

2

1
, 11 YY  otherwise.  Therefore, comparing 1Y  and 1Y  we can 

select the half bin that the true frequency lies in.  Having narrowed the search region by 

half, we can repeat the procedure, until the required resolution is reached.  The 

resolution after the thi  iteration is 
12i

s

N

f
.  Zakharov and Tozer found, however, that it 

is necessary to pad the data with zeros in order to achieve a performance comparable to 
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the CRB.  Let L  denote the data length after zero-padding.  They showed through 

simulation that L  needed to be equal to N5.1 .  The algorithm is summarized in the 

table below: 

 

 

Table 7.1 – Dichotomous Search of the Periodogram Peak frequency estimator. 

 

Simulation results with  = 1 and  = 1.5 were obtained.  Figure 7.1 shows the ratio of 

the algorithm variance to the asymptotic CRB for  = 1.  We see that, after one iteration, 

the error variance is quite large around 00 .  This is easily explained by considering 

that the estimate is set to 
N

f
m s

2

1
 if 11 YY  and 

N

f
m s

2

1
 otherwise.  For 0  

near 0, both 1Y  and 1Y  are very small and therefore dominated by noise.  Therefore, the 

Let  NL  

 

Calculate LFFT ,xX  

  

And  nXnY  

 

Find  nYm
n

maxarg  

 
Set  1 

  11 mYY , mYY0  and 11 mYY  

 
for Q iterations do 

  
2

 

  if 11 YY  

  then 01 YY  and mm  

  else 01 YY  and mm  

  
1

0

2

0

N

k

L

km
j

ekxY  

 
Finally calculate 

  sf
L

m
f 2ˆ  
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decision is almost purely driven by noise and is therefore almost random.  That is the 

two possibilities are practically equally likely.  The resulting error is then 

 
otherwise

YYif

0

110
0

5.0

 5.0
ˆ  

Therefore the variance is 

 
2
0

2
0

2
00

25.0

5.05.0
2

1ˆvar
 

The ratio of the variance to the asymptotic CRB is 

 
6

225.0
2

N
 (7.1) 

At a SNR of 0dB, the variance is about 1685 times larger than the asymptotic CRB.  

This agrees very well with the simulation results in figure 7.1(a), the simulation value 

being 1684 at 00 .  Figure 7.1(b) displays a zoomed version of 7.1(a).  This shows 

more clearly the simulation results for 4 and 10 iterations.  The curve obtained after 4 

iterations shows as expected a number of peaks, in fact exactly 8.  Note that a peak 

occurs at 00  whereas the eighth is divided in half between 5.00  and 5.00 .  

This is due to the circular nature of the FFT.  The “peak” at zero is almost flat and 

stretched between the two adjacent peaks.  This is due to the wide peak of the first 

iteration.  The curve resulting from 10 iterations, gives us some insight into the poor 

performance of the search algorithm with no zero padding.  The multiple peaks seen 

after four iterations disappear and are replaced by two peaks symmetrically positioned 

about zero.  In section 7.3 we use this observation to offer an explanation for the need to 

pad the data with zeroes. 
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(a) 

 

(b) 

Figure 7.1 – Plot of ratio of the variance of the Dichotomous Search algorithm, with L 

= N = 1024, to the ACRB as a function of 0.  (a) shows the performance for 1, 4 and 10 

iterations.  (b) is a zoomed in version of (a).  5000 simulation runs were averaged. 
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Figure 7.2 shows the performance of the algorithm as a function of signal to noise ratio.  

We see that, although the algorithm improves on the performance of the Maximum Bin 

Search, it does not achieve the CRB.  In fact we see that as the signal to noise ratio 

increases the simulation and CRB curves depart.  This is in part due to the remaining 

bias.  Also, the number iterations required to reach the CRB increases with increasing 

SNR. 

 

 

Figure 7.2 – Plot of the performance of the Dichotomous Search algorithm, with L = N 

= 1024, as a function of SNR.  10000 simulation runs were averaged. 

 

Figures 7.3 and 7.4 below present the performance of the dichotomous search algorithm 

with  = 1.5, that is with the zero-padded data sequence having a length NL 5.1 .  The 

resulting performance shows an obvious improvement over the case where NL .  

This is due to the fact that the padded algorithm overcomes the problem encountered 

around zero. 
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(a) 

 

(b) 

Figure 7.3 – Plot of ratio of the variance of the Dichotomous Search algorithm to the 

asymptotic CRB, with L = 1.5N, to the ACRB as a function of 0.  (a) shows the 

performance for 1, 4 and 10 iterations.  (b) is a zoomed in version of (a).  5000 

simulation runs were averaged. 
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Figure 7.4 below shows the performance of the padded dichotomous search as a 

function of the SNR.  We see that, for the range of SNR used in the simulation, 10 

iterations are sufficient for the simulation curve to virtually lie on the CRB.  However, 

as the SNR increases, the resolution after Q  iterations asymptotes to 
1212 Q

s

L

f
.  For 

4Q , this is equal to a standard deviation of the frequency error equal to 23.4924 Hz.  

This is confirmed by the simulation results.  This also implies that the curve 

corresponding to 10Q  will eventually diverge from the CRB curve.  The point where 

the two curves diverge is itself dependent on the number of iterations.  As the number of 

iterations approaches infinity so does the divergence point and therefore the two curves 

practically coincide above the breakdown threshold. 

 

 

Figure 7.4 – Plot of the standard deviation of the frequency error of the zero-padded 

dichotomous search algorithm, with L = 1.5N, as a function of SNR.  10000 simulation 

runs were averaged. 
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7.3 Modified Dichotomous Search of the Periodogram peak 

The plot of the ratio of the variance of the non-padded dichotomous search to the 

asymptotic CRB, shown figure 7.1, provides us with clues to the poor performance of 

the estimator in the case of no zero padding.  The performance is, as discussed in the 

previous section, worst for 0  near zero due to the degraded effective signal to noise 

ratio of 1Y  and 1Y .  This severely affects the performance of the algorithm after the 

first iteration.  The width of the lobe, D , in the characteristic curve is dependent on the 

rate of change of the differential between 1Y  and 1Y  as a function of 0 .  The smaller 

the rate of change is, the larger the width of the lobe.  Two equidistant bins from the 

true frequency are equal and their differential is zero.  This produces the worst case 

performance.  The quicker the differential moves away from zero as we move away 

from the true frequency of the signal, the narrower the lobe is.  Hence we can write, 

 

1

11

0

YY
d

d
D  (7.2) 

A plot of D  as a function of 0  for both the non-padded ( 1024NL ) and padded (

NL 5.1 ) cases is shown below. 



 

 

169 

 

Figure 7.5 – Plot of rate of change of the differential, D as a function of the offset from 

the bin centre 0. 

 

For the non-padded case, the derivative shown above is lowest at 00  whereas for 

the padded case it has a maximum there.  It must be noted, however, that 00  does 

not coincide for both cases as the frequency axis is divided differently in each case. 

This also explains why the padded algorithm works better.  The zero padded 

periodogram effectively samples the spectrum more densely.  The bin width is thus 

reduced to 
L

f s  instead of 
N

f s  which prevents two bins either side of the maximum 

being equal and very close to zero as this only occurs at a separation of 
N

f s2 . 

The poor performance near zero after the first iteration in the non-padded case is carried 

through the following iterations and eventually gives the characteristic curve seen after 

10 iteration, (figure 7.1(b)).  The problem arises from the fact that the choice at the first 

iteration is made between two intervals with only one point in common.  This implies 

that, although the performance is very poor for 00 , the resulting error is reduced in 

subsequent iterations since 00  belongs to both sub-intervals.  Therefore, if 00 , 
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the same error is incurred after the first iteration regardless of which sub-interval is 

chosen.  However, this is not the case for points removed from zero but still close 

enough to it that they lie in the central lobe of the curve corresponding to one iteration 

in figure 7.1(a).  These points suffer from a degraded performance due to the high 

probability of choosing the incorrect interval at the first iteration.  As these points are 

removed from the chosen interval in the event of an incorrect decision, the resulting 

error is not recoverable in subsequent iterations.  As we move away from zero, the size 

of the error increases due to the increasing distance from the complementary interval.  

The probability of an error on the other hand, decreases with the distance of the true 

frequency from zero.  Therefore the combined effect is to see the error increasing until it 

reaches a maximum, then decreasing as the probability the error occurring decreases. 

Guided by this insight we propose a method of improving the performance of the 

dichotomous search algorithm without resorting to padding the data with zeroes.  We 

achieve this by using overlapping intervals for the first iteration.  This effectively gives 

the algorithm another chance to recover the erroneous choice that might have been 

made during the first iteration.  The degree of the overlap must at least account for the 

width of the peaks seen in figure 7.1(b) in the curve corresponding to 10 iterations.  

Using an overlap of half a bin width, for instance, we set 1Y  to 0.25Y  if 11 YY , and 

1Y  to 0.25Y  otherwise.  The reader should always keep in mind that the index notation is 

relative to the maximum bin m .  The resulting algorithm, called modified dichotomous 

search, is shown in the table below. 
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Table 7.2 – Modified Dichotomous Search of the Periodogram Peak frequency 

estimator. 

 

Setting  to 0.75 produces an overlap of half a bin between the two sub-intervals.  The 

overlap is in fact given by 2 -1.  If  is set to 1 we see that there is no change from the 

original algorithm as the “if” statement outside the loop does not have any effect.  It 

simply retains things as they are set.  This implies that the original algorithm is a special 

case of the implementation shown in the table above.  The performance of the modified 

dichotomous search algorithm was simulated and is shown in the figure below.  Two 
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cases are shown, the first referred to by Alg1 was obtained with  set to 0.75 whereas 

the second, Alg2, had  = 0.6.  10000 simulation runs were averaged.  The simulation 

results show that the new algorithm has a performance comparable to the CRB without 

the need for 0-padding the data.  The case with  = 0.6 shows a slightly better threshold 

performance than the other case. 

 

 

Figure 7.6 – Plot of standard deviation of the frequency error of the Modified 

Dichotomous Search algorithm, with  = 0.75 and  = 0.6, as a function of SNR.  

10000 simulation runs were averaged. 

 

7.4 Guided Search of the Periodogram Peak Algorithm 

In this section we briefly present and discuss the Guided Search algorithm which we 

proposed in [120].  In the previous section we implemented and simulated a strategy for 

overcoming the problem of the dichotomous search algorithm near the bin centre.  The 

large variance of the error in the estimates in this area prevents the algorithm from being 

of order 2
3

N  and reaching the CRB.  An algorithm such as Quinn’s first or second 
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estimator, however, is already 2
3

NO , but does not quite reach the CRB either.  

Therefore, it seems logical to use Quinn’s algorithm (or any other algorithm that is 

2
3

NO ) to initialise the dichotomous search in order to speed it up and improve its 

performance.  In [120], Quinn’s first algorithm was used.  This eliminates the need to 

pad the data with zeroes. 

The Guided Search algorithm, as given in the paper, is shown in the table below. 

 

 

Table 7.3 – Guided Search of the Periodogram Peak frequency estimator. 
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  else 01 YY  and mm  

  
1

0

2

0

N

k

L

km
j

ekxY  

 
Finally calculate 

  sf
L

m
f 2ˆ  



 

 

174 

The initialising estimator must be computationally simple to produce computational 

savings and make the guided search algorithm worth while.  After the initialising 

estimate is obtained, the starting interval  must be set to a value that takes into account 

the initialising algorithm’s resolution.  The worse the performance of the initialising 

algorithm the larger the initial value of .  With Quinn’s first algorithm used to initialise 

the estimator, we found through simulations, that a value of 0.1 for  gives a 

performance comparable to the CRB in only 4 iterations.  The simulations results are 

shown in the figure below.  The standard deviation of the frequency error was obtained 

from 10000 simulations and is plotted against the signal to noise ratio.  The results show 

that only 4 iterations are needed for the algorithm performance to approach the CRB 

curve. 

 

 

Figure 7.7 – Plot of standard deviation of the frequency error of the Guided Search 

algorithm as a function of SNR.  The Guided Search was run for 4 iterations.  10000 

simulation runs were averaged. 
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7.5 Other Hybrid Algorithms 

Zakharov et al, in [86], employ a similar strategy to the Guided Search of the 

periodogram peak algorithm.  They propose a number of modifications to the 

dichotomous search algorithm in order to improve its performance and reduce its 

computational complexity.  The algorithms we discuss in this section assume a coarse 

search step is used to narrow the acquisition range and provide the initialization for the 

estimator.  The usual form of the coarse search is the MBS algorithm.  In this case the 

MBS is most likely obtained from a zero-padded sequence as was necessary for the 

Dichotomous search algorithm. 

The first of the fine estimators presented in [85] was called the Parabolic Interpolation 

and Dichotomous Search.  Equation (4.6) shows the form of the periodogram samples.  

Using the fact that they follow a sinc-shape, one can fit a parabola to three “closely 

spaced” DFT coefficients, where closely spaced means that their separation is not larger 

than a bin width.  Although Zakharov et al do not acknowledge the reference, this idea 

was first proposed by Holm in [121] for the Cospas-Sarsat application.  In the Cospas-

Sarsat system, the estimated Doppler curve for a pass is analysed in order to allow for 

the location of the distress beacon to be determined (see section 9.2).  The fine 

frequency estimator is of the form, 

 
2
1

2
0

2
1

2
1

2
1

22

ˆ

YYY

YY
 (7.3) 

Zakharov et al, however, point out that the performance of the interpolation on the 

magnitudes is better than that of the interpolation on the magnitudes squared.  The bias 

is larger in the case of the magnitudes squared and the effect of the noise is worse as the 

lower order terms rapidly come up near the estimator problem area where the 

singularity occurs.  The algorithm also requires an amount of zero padding to avoid the 

problem area around zero. 

Holm discusses the estimator bias and suggests that a Gaussian fit results in a lower 

bias.  The Gaussian fit can be implemented using logarithmic inputs in equation (7.3).  

The resulting bias is, according to Holm, reduced to about 2% of a bin width. 

Zakharov et al then proposed combining the quadratic interpolation algorithm with the 

dichotomous search.  The smaller the spacing of the three Fourier coefficients the better 

the quadratic fit.  Therefore, this method consists of stopping the dichotomous search 
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when the frequency step is small enough that the quadratic interpolation provides a 

good fit and a small frequency error.  The resulting algorithm represents a reverse 

strategy to the guided search algorithm where the interpolation algorithm was used to 

initialize the dichotomous search in order to reduce the number of iterations required to 

achieve a small frequency step. 

The search in the Dichotomous-Parabolic interpolation hybrid algorithm requires only 4 

iterations to converge as opposed to 10 iterations for the original dichotomous search 

algorithm. 

Another variant suggested by Zakharov et al is the Two-rate Spectral Estimation and 

Dichotomous Search algorithm.  This effectively consists of dividing the data into L  

shorter frames of length R .  In the following discussion we keep as much of the 

terminology of [85] as is possible.  A number of DFT coefficients on a finer scale are 

calculated for all of the R  frames.  The DFT coefficients from each frame that 

correspond to the same frequency are summed.  The dichotomous search is then applied 

to the resulting periodogram to obtain a fine frequency estimate.  The details of the 

procedure are given below. 

Suppose that the unknown frequency is restricted to a region of width F (using a coarse 

search algorithm).  Setting a fine frequency resolution of f , the new frequency region 

is then divided into M  bins where 
f

F
M .  Here we must note that the authors 

have used 
f

F
M , but the correct form must involve rounding up to the nearest 

integer.  The following DFT coefficients are then calculated, 

 
22
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2 MMnekxlnX
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and 

 
1

0

,
L

l

lnXnY  

The maximum of the periodogram is found and is used to initialise the dichotomous 

search.  The search algorithm requires a small number of iterations to converge to the 

required resolution. 
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Another hybrid estimator that is aimed at further reducing the computational load is a 

combination of the three techniques.  It is termed the two-rate spectral search, 

dichotomous search and parabolic interpolation.  It simply consists of implementing the 

estimator discussed in the previous paragraph and stopping the dichotomous search 

when the residual resolution is good enough for the parabolic interpolation to give a 

good frequency estimate. 

 

7.6 Conclusion 

In this chapter we have reviewed a number of iterative fine frequency estimation 

methods that are based on a binary search technique.  We have presented and discussed 

the dichotomous search of the periodogram peak algorithm and offered an insight into 

the need to pad the data with zeroes in order to approach the CRB.  We then suggested a 

modified dichotomous search algorithm that does away with the zero-padding.  This 

was achieved using overlapping intervals in the decision step for the first iteration.  

Therefore, the problem in the region around zero was alleviated and consequently the 

modified algorithm achieves the CRB.  In sections 7.4 and 7.5 we reviewed hybrid 

algorithms consisting of a combination of an interpolation estimator and the 

dichotomous search.  The hybrid algorithms improve the performance of the 

dichotomous search while, at the same time, reducing the required number of iterations.  

We also proposed a new hybrid algorithm called the Guided Search of the Periodogram 

Peak.  This algorithm was shown, through simulations, to converge to the CRB in only 

four iterations compared to the ten iterations needed for the zero-padded dichotomous 

search. 

In the next chapter we present and analyse three novel iterative frequency estimation 

methods that are based on the interpolation algorithms of chapter 6.  These iterative 

methods are shown to have an asymptotic frequency error variance that is only 1.0147 

times the CRB. 
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Chapter 8 

 

Iterative Interpolation on the Fractional 

Fourier Coefficients 

 

8.1 Introduction 

The frequency estimators presented in chapters 5 and 6 exhibit a frequency dependent 

performance.  The variance is seen to be periodic with respect to the frequency bins.  

Whereas the performance of the estimators of chapter 5 is worst at the bin centre, that of 

the interpolators on the fractional Fourier coefficients is best there.  The iterative 

implementation of an estimator aims at improving the performance by essentially 

making it uniform over the entire bin. 

It would seem at first glance that running the estimators of chapter 5 iteratively would 

improve their performance.  The estimator is run the first time to get an estimate of the 

offset which is then removed leaving a residual offset.  One would then be tempted to 

run the estimator on the same data again in an attempt to estimate and reduce the 

residual further.  As we will see in this chapter, however, some estimators can be 

implemented iteratively while others can not. 

The chapter is organised as follows: In section 8.2, we look at the fixed point theorem 

and the conditions for the convergence of an algorithm.  Quinn’s first algorithm is used 

in section 8.3 to illustrate the point that the performance of the estimators of chapter 5 

deteriorates when they are implemented iteratively.  In sections 8.3, 8.5 and 8.6 we 

propose and analyse three new iterative algorithms based on the interpolators presented 

in chapter 6.  The asymptotic performance of the new algorithms is derived and 

compared to the asymptotic CRB. 
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8.2 The Fixed Point Theorem and Algorithm Convergence 

Consider a function xh  operating on the real line R  and an interval I R .  Starting 

with an initial value Ix0 , we define the sequence ix  using the iterative procedure 

 ,2,1,0,1 ixhx ii  (8.1) 

The question then becomes: does the procedure converge?  The behaviour of such an 

iterative procedure is examined in numerical analysis texts such as Dieudonné, [122], 

and Atkinson, [123].  A condition for the convergence of an iterative procedure 

constructed using a function xh  is that xh  has a unique fixed point.  The fixed point 

theorem then ensures the convergence of the procedure to the fixed point.  In the 

following we review the convergence theory.  We start with the following theorem. 

 

8.2.1 Theorem 

Suppose xh  is a continuous function on an interval I R  satisfying 

 IxhIx  

then there exists at least one point Ix0  such that 00 xxh  

 

8.2.2 Proof 

The proof is simple and we include it here.  Let baI , .  Since 

baxhbax ,,  then we must have bbh  and aah .  Therefore 

0bbh  and 0aah .  By the intermediate value theorem, [116] pp. 95, there 

exists a point, x0, such that 000 xxh  and consequently 00 xxh . 

The following definition is necessary. 
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8.2.3 Definition 

A function :h x I R R  is called contractive with contractivity constant 1,0  

if 

 Ivuvuvhuh ,,  (8.2) 

where  is the norm defined on the space (in the context of the frequency estimation 

problem, the space is the real line R ).  Here, the norm is simply given by the absolute 

value.  That is 

 vuvu  

Now, if IIxh :  is a contractive mapping, then it converges to a fixed point.  This 

is seen through the following argument.  Firstly, given that xh  is a mapping from 

interval I  to itself, the existence of the fixed point is assured by theorem 8.2.1.  

Suppose we start with an initial value of 0x  and construct the sequence ix  using 

equation (8.1).  Then we have 

 
21

211

ii

iiii

xx

xhxhxx
 

We see that the distance between successive points in the sequence decreases as i .  

This means that ix  is a Cauchy sequence, [124] pp. 141 theorem 4.  Therefore it 

converges.  The convergence result is assured by the fixed point theorem stated below, 

[123] pp.133. 

 

8.2.4 Fixed Point Theorem 

Suppose that xh  is a contractive mapping on the interval I  with contractivity constant 

1,0 , then the following results hold. 

1. There exists a unique Ix~  such that 

 xhx ~~  
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2. For any starting point Ix0 , the sequence ix  obtained by the iterative 

procedure defined in (8.1) converges to x~ . 

The proof of the theorem is given in Atkinson pp. 133-134.  The uniqueness property is 

very important as it assures that the procedure always converges to the same point, the 

fixed point. 

8.2.5 Performance of Iterative Estimation and Number of Iterations 

When applied to the iterative implementation of the frequency estimators, the fixed 

point theorem ensures that they always converge provided they constitute a contractive 

mapping.  In chapters 5 and 6, we derived the asymptotic variances of the interpolation 

estimators over the estimation interval 5.0,5.0 .  Let the variance of an estimator that 

is given by the interpolation function xh  be a continuous function, xg , on the 

interval I .  We remind the reader that additive white Gaussian noise is assumed.  If 

xh  is a contractive mapping then 

 xxi
i

~lim  

and by the continuity of g , we have that 

 

xg

xg

xhx

i
i

i
i

i
i

~

lim

varlimvarlim

1

1

  (8.3) 

As the CRB gives a lower bound on the performance of an estimator, we say that the 

algorithm has converged if its residual error is of a lower order than the CRB.  For the 

problem of frequency estimation, this is obtained when the residual of the frequency is 

2
3

No  (or equivalently the residual of 0  is 2
1

No ).  Now we examine the number 

of iterations required for convergence.  Suppose the distance of the initial estimate from 

the fixed point is 

 
vNOxx ~

0  

for some 0v , and suppose that the contractivity constant is NO , for some 0   

Then after iteration i , 
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1

1
~~

i

ii

NO

xxhxx
 

This implies that the convergence occurs when 

 
1

1~

i

i
i

v

NO

NONxxN
 

becomes 2
3

No .  That is 

 0
2

3
1i  

or 

 12

3

i  

For instance, if the MBS is used to initialise the estimator, then 
2

1
v .  As we will 

show, the interpolators of chapter 6 (with the exception of the MSI algorithm) have a 

contractivity constant of order 
2

3
.  Thus, the number of iterations needed to 

converge is 2. 

 

8.3 Iterative Implementation of Quinn’s First Algorithm 

Recall from section 5.3, table 5.1 that Quinn’s first estimator consists of obtaining two 

independent estimates for 0  from the two Fourier coefficients either side of the 

maximum.  The estimate with the higher effective signal to noise ratio is then chosen.  

The estimator was shown to be of the same order as the CRB, that is 

 2
1

0
ˆ NO  

and consequently the frequency estimate is 

 2
3

0
ˆ NOff  
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In this section we consider the possibility of iteratively implementing the algorithm.  In 

particular, we present the iterative implementation and show that the resulting procedure 

converges but that the performance deteriorates. 

Let the initial frequency estimate be given by the MBS algorithm and set 0ˆ
0 .  Now 

we construct the following iterative procedure; for each iteration i , from 1 to Q , do the 

following: 

 Shift the maximum bin by ˆ
i  

 Calculate the Fourier coefficients corresponding to l = -1, 0 and 1. 

 Update the estimate using Quinn’s algorithm, that is 11
ˆˆˆ

iii h  with 

h  given by the algorithm of table 5.1. 

The iterative algorithm is summarized in the table below; 

 

 

Table 8.1 – Iterative Implementation of Quinn’s first algorithm. 

Initialisation: 

 Get the coarse estimate 

 Estimate MBSm  

 Initialise the error and estimate values 

 0ˆ
0  

Loop: For each i from 1 to Q do 

 Calculate the Fourier coefficients 

 1,0,1,
1

0

ˆ
2 1

lekxX
N

k

N

lm
kj

l

i

 

 Estimate the residual 

 

11

1

ˆˆ

ˆˆ

ii

ii

h
 

 where  is given by the algorithm in table 5.1 

Return the estimate 

 s

Q
f

N

m
f

ˆ
ˆ  



 

 

184 

 

The algorithm is run for Q  iterations since we can usually predetermine the number of 

iterations required for convergence.  A more general stopping criteria, however, would 

be to stop the loop when 1
ˆˆ

ii  is below a certain tolerance. 

We will now prove the convergence of the iterative algorithm.  As the procedure is 

initialised with the Maximum Bin Search algorithm, then 5.0,5.00  almost surely.  

Furthermore, Quinn showed that if 5.0,00 , we will almost surely choose 1
ˆ  (see 

table 5.1).  Thus, in order to establish the convergence of the procedure, we must 

consider three cases: 

Case 1: 1  is used in two consecutive steps 1i  and i  

Case 2: 1  is used in two consecutive steps 1i  and i  

and 

Case 3: 1  is used in step 1i  and 1  in step i  (or vice versa). 

In the following we only consider the first case as the analysis of the other two cases is 

similar.  Referring to sections 5.2.1 and 5.3, we see that 

 

0

2

1

2

0

1
1

1

11

1

11

02

0

102

0

W

e

e

N

W

e

e

N

X

X

N

j

N

j

j

j

 

where the noise coefficients, lW  are NNO ln2
1

.  This implies that  

 NNOW
e

e

N
lj

N

lj

ln
1

11
2
1

0

02

2
 

Now carrying out the necessary simplifications we get 
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 NNO

N

NN
ln11

1
2cos1

2cos
2

cos

2

1
2
1

0

0

1  

Substituting 1  into the expression for h  yields, 

 

NNO

NNN

NNN

h

ln1
1

2cos12cos
2

cos

1
2cos12cos

2
cos

1

2
1

00

00

1

1

 (8.4) 

We now expanding h  into a Taylor series about 0 . 

 2
000 NOhhh   

where 

 NNOh ln2
1

0  

and 

 

1
2

cos2

2
sin

2
0

N

N

N
h  

Finally, letting h , we have 

 

NNOh

NNOh

ln11

ln1

2
1

2
1

000

0000

 

Firstly, we see that 0h  is always negative and tends to -1 from above as N  goes to 

infinity.  Therefore 01 0h  and 0  as N .  Now checking the 

conditions for convergence, we have 
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 NNOh ln11 2
1

21021  (8.5) 

where 5.0,5.0 , 21 .  Since 01 0h , we have that 11 0h  and 

 2121  

where 1 . 

The same analysis, applied to the other two cases, confirms the conditions for 

convergence.  Since NNO ln1 2
1

00 , the fixed point of the procedure is 

0 .  Using equation (5.17), the variance of the estimator for  at the thi  iteration is 

given by 

 2

10

2

10

2

10

10
23

22
0

2

10

ˆ1ˆˆ1
ˆsin2

ˆˆvar

iii

i

s

ii

N

f

g

 

Now after the first iteration the estimate is 

 NNOh ln1ˆ 2
1

001  

and the variance is 

 
2
1

01
ˆvar

NO

g

 

Continuing the same argument, we see that after the second iteration we have 

 NNOh ln11ˆ 2
1

2
002  

and the variance is 

 

2
1

00

102

1

ˆˆvar

Nog

hg

g
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Hence it takes only two iterations for the procedure to converge in an almost sure sense.  

This leads us to the following theorem. 

 

8.3.1 Theorem 

Let h  denote Quinn’s first estimator.  The iterative procedure shown in table 8.1 

converges with the following properties: 

 The fixed point of convergence is 0 . 

 The procedure takes 2 iterations for the residual error to become 2
1

No  

and 

 The limiting ratio of the variance of the estimator to the asymptotic CRB is 
3

2

 

uniformly over the interval 5.0,5.0 . 

The theorem implies that the variance of the estimator when implemented iteratively 

worsens as g  has a maximum of 3.2899 at 00 .  The theoretical results were 

confirmed by simulations.  The first plot, shown in figure 8.1 below, displays the 

resulting ratio of the variance to the asymptotic CRB as a function of 0 .  The graph 

consists of two curves obtained after the first and second iteration.  We see that the 

curve resulting from two iterations is almost flat at the peak of the first.  This confirms 

that the iterative algorithm converges to the fixed point at zero for all starting points in 

the interval 5.0,5.00 .  The second plot shows the performance of the iterative 

implementation along with the non-iterative algorithm and the CRB.  The deterioration 

in the standard deviation of the frequency error is visible. 
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Figure 8.1 – Plot of ratio of the variance of the iterative form of Quinn’s first algorithm 

to the asymptotic CRB.  5000 simulation runs were averaged at an SNR = 0dB. 

 

Figure 8.2 – Plot of Standard Deviation of the Frequency Error of the iterative form of 

Quinn’s first algorithm Vs Signal to Noise Ratio.  10000 simulation runs were 

averaged. 
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8.4 Iterative Fractional Fourier Coefficients Interpolation 

In the previous section we showed that the iterative implementation of Quinn’s 

algorithm converges.  We found, however, that the resulting performance deteriorates.  

This is also the case for the entire family of algorithms of chapter 5.  The reason for this 

is that the variance of these estimators has a maximum at 00 .  The interpolators of 

chapter 6, on the other hand, have minimum variance at zero.  In this section, we 

consider the iterative implementation of the FFCI algorithm of section 6.3.  This is 

shown the table below: 

 

 

Table 8.2 – Iterative Implementation of the Fractional Fourier Coefficient Interpolation 

algorithm. 

 

Initialisation: 

 Get the coarse estimate 

 Estimate MBSm  

 Initialise the error and estimate values 

 0ˆ
0  

Loop: For each i from 1 to Q do 

 Calculate the Fourier coefficients 

 5.0,
1

0

ˆ
2 1

pekxX
N

k

N

pm
kj

p

i

 

 Estimate the residual 

 

11

1

ˆˆ

ˆˆ

ii

ii

h
 

 where h  is given by the algorithm in table 6.1 

Return the estimate 

 s

Q
f

N

m
f

ˆ
ˆ  
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We will, now, prove the convergence of the above algorithm and derive the asymptotic 

variance of the estimation error.  Let us first consider the estimator interpolation 

function h .  Referring to table 6.1, h  is given by 

 
5.05.0

5.05.0

2

1

XX

XX
h  

where according to section 6.2, 

 p

N

pj

j

p W

e

e

N
X

1

11

0

0

2

2

 

The noise coefficients pW  are NNO ln2
1

.  Substituting the expressions for 

5.0 , pX p , into h  and carrying out the necessary simplifications yields 

 NNO

N

N
h ln1

sin2

2
sin

2
10

 (8.6) 

Now expanding the interpolation function into a Taylor series about 0  results in, 

 
2

000 NOhhh  

where 

 NNOh ln2
1

0  

and 

 NNO

N
N

h ln1

sin

2
1

0  

Finally, h  becomes, 

 NNOh ln11 2
1

000  (8.7) 



 

 

191 

Looking at the expression for 0h  we note that, as N , it tends to -1 from above.  

In fact we find that 

 
1
22

 0 1 1 lnh O N O N N  

Therefore 

 NNONO ln1 2
1

2
00  

For infinite N , we would, as expected, achieve exact estimation of 0 .  Now we check 

the convergence conditions as follows; 

 

21

2
2121 NO

 

where 1 .  Therefore the conditions for the algorithm convergence are satisfied.  The 

fixed point of the iterative algorithm is 0  as 0h  is asymptotically zero and 

00 .  Furthermore, using equation (6.5), the asymptotic variance after the thi  

iteration is 

 

10
2

2

10

2
2

10
2

3

2

10

ˆcos

1ˆ425.0ˆ

4

ˆˆvar

i

ii
s

ii

N

f

g

 

The limiting asymptotic variance is, as the number of iterations increases, given by 

 

0

ˆlimˆvar 0

g

g i
i  

Following a similar argument to the previous section, the order of the residual after the 

second iteration and the resulting asymptotic variance are determined to be 

 NNOh ln11ˆ 2
1

2
002  

and 
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2
1

102
ˆˆvar

Nog

g

 

respectively.  Hence it takes only two iterations for the procedure to converge almost 

surely.  Finally, we state the following theorem. 

 

8.4.1 Theorem 

Let h  denote the FFCI estimator.  The iterative procedure shown in table 8.2 

converges with the following properties: 

 The fixed point of convergence is 0 . 

 The procedure takes 2 iterations for the residual error to become 2
1

No  

and 

 The limiting ratio of the variance of the estimator to the asymptotic CRB is 
96

4

 

uniformly over the interval 5.0,5.0 . 

The theoretical results presented above were verified through simulations.  The plot in 

figure 8.3 shows the ratio of the variance of the estimator error to the asymptotic CRB 

versus the offset from the bin centre.  Two curves are shown; the first was obtained after 

one iteration and therefore corresponds to the standard FFCI algorithm of section 6.3.  

The second curve shows the results of two iterations.  The results show that the iterative 

procedure converges for all 5.0,5.00  to the fixed point 0 .  Figure 8.4 shows the 

resulting standard deviation of the frequency error as a function of the signal to noise 

ratio.  The improvement of the iterative procedure over the standard procedure is clearly 

visible as the standard deviation curve, after two iterations, almost lies on the CRB 

curve.  In fact, the standard deviation of the error for the IFFCI algorithm is a mere 

1.0073 times the CRB. 
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Figure 8.3 – Plot of ratio of the variance of the iterative form of the FFCI algorithm to 

the asymptotic CRB.  5000 simulation runs were averaged at an SNR = 0dB. 

 

Figure 8.4 – Plot of Standard Deviation of the Frequency Error of the iterative form of 

the FFCI algorithm Vs Signal to Noise Ratio.  10000 simulation runs were averaged. 
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8.5 Iterative Magnitudes Only Interpolation 

In this section we present and analyse the Iterative Magnitudes Only Interpolation 

(IMOI) algorithm.  Using the same approach applied to the previous two algorithms, we 

show that it converges and derive the limiting ratio of the variance to the asymptotic 

CRB. 

The IMOI algorithm is obtained by replacing h , in table 8.2, by the MOI algorithm 

of section 6.4.  That is h  is now given by 

 
5.05.0

5.05.0

2

1

XX

XX
h  

where again, 

 p

N

pj

j

p W

e

e

N
X

1

11

0

0

2

2

 

and the noise coefficients are NNO ln2
1

.  In the analysis of section 6.4.2, we 

divided the interval 5.0,5.0  into two regions, 1  and 2 .  These regions were 

defined as 

 aN
2

1
; 001  

and 

 
2

1

2

1
; 002 aN  

for some 0a  and 0 .  We found that the behaviour of the MOI estimator in region 

1  was “regular”.  In fact, it was found to be identical to the FFCI algorithm.  Thus it is 

straightforward to establish the convergence of the procedure in 1 . 

Substituting the expressions for pX  into that for h  and carrying out the necessary 

simplifications yields 
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NNO

NN

NN
h ln1

5.0
2

cos5.0
2

cos2

5.0
2

cos5.0
2

cos

2

1
2
1

00

00

 (8.8) 

Now expanding the interpolation function into a Taylor series about 0  results in, 

 2
000 NOhhh  

where 

 NNOh ln2
1

0  

and 

 NNO

N

N

N
h ln1

cos1

sin

2
2
1

0  

Let h , we have 

 NNOh ln11 2
1

000  (8.9) 

Similarly to the case of the IFFCI algorithm of the previous section we find that 0h  

tends to -1 from above as N .  In fact, 

 NNONOh ln11 2
1

2
0  

Now checking the convergence conditions, 

 

21

2
2121 NO

 

where 1 .  Therefore, the conditions for the convergence of the iterative procedure 

are satisfied in region 1 .  The fixed point of the iterative algorithm is 0  as 0h  is 

asymptotically zero.  Furthermore, from theorem 6.4.2.1, the asymptotic variance after 

the thi  iteration is, 
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2
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ˆcos

1ˆ425.0ˆ

4
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This is identical to that of the previous algorithm.  We will not repeat the rest of the 

analysis as it is identical to that of the IFFCI algorithm. 

So far we have proved convergence in region 1 .  We will now consider the behaviour 

of the procedure for 20 .  We have determined in section 6.4.2 that the algorithm is 

biased.  This, however, does not preclude the iterative procedure from converging.  As 

long as the first iteration moves the estimator into region 1 , the conclusions obtained 

above continue to apply.  We will now look at the case we examined in section 6.4.2, 

namely 5.00 .  The order of 5.0S  was found to be preserved whereas that of 5.0S  

changes.  That is 

 15.0 OS  

and 

 015.0 oS  

The noise coefficients remain NNO ln2
1

.  Hence the magnitude of 5.0X  is 

 NNOSX ln1 2
1

5.05.0  

whereas 5.0X  is 

 NNOX ln2
1

5.0  

Thus, we find that, for 20 , the expression for h  is 

 NNOh ln1
2

1
2
1

 

After the first iteration the estimate for 0  is 
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NNO

h

ln1
2

1
0

ˆˆˆ

2
1

001

 

This ensures that the residual 10
ˆ  will be NNO ln2

1

 almost surely and the 

iterative procedure is driven into region 1 .  The convergence conditions for region 1  

then apply.  The limiting asymptotic variance, as the number of iterations increases, is 

given by 0g .  The order of the residual after the second iteration and the resulting 

asymptotic variance are determined to be 

 NNOh ln11ˆ 2
1

2
002  

and 

 
2
1

102
ˆˆvar

Nog

g

 

respectively.  Hence it takes only two iterations for the procedure to converge almost 

surely.  We now arrive at the following theorem. 

 

8.5.1 Theorem 

Let h  denote the MOI estimator.  The iterative procedure shown in table 8.2 

converges with the following properties: 

1. The fixed point of convergence is 0 . 

2. The procedure takes 2 iterations for the residual error to become 2
1

No  

and 

3. The limiting ratio of the variance of the estimator to the asymptotic CRB is 
96

4

 

uniformly over the interval 5.0,5.0 . 
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The performance of the iterative algorithm was simulated and the results are shown 

below.  Figure 8.5 shows the ratio of the frequency error variance to the asymptotic 

CRB as a function of the offset from the bin centre for both the MOI and the IMOI 

algorithms.  The IMOI algorithm was run for two iterations.  The improvement resulting 

from the second iteration is evident as the ratio curve converges to the value of 
96

4

.  

Figure 8.6 shows the performance as a function of signal to noise ratio.  The standard 

deviation of the frequency error is shown.  The plot comprises three curves, the CRB, 

the performance of the MOI algorithm of section 6.4 and the IMOI algorithm.  The 

standard deviation of the IMOI algorithm practically lies on the CRB curve for all signal 

to noise ratios above the threshold. 

We also note here that since the performance of the MMSI algorithm of section 6.6 is 

identical to that of the MOI algorithm, its iterative implementation would have identical 

performance to that of the IMOI algorithm and the above analysis is applicable to it. 

 

 

Figure 8.5 – Plot of ratio of the variance of the iterative form of the MOI algorithm to 

the asymptotic CRB.  5000 simulation runs were averaged at a SNR = 0dB. 
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Figure 8.6 – Plot of Standard Deviation of the Frequency Error of the iterative form of 

the MOI algorithm Vs Signal to Noise Ratio.  10000 simulation runs were averaged. 

 

8.6 Iterative Magnitudes Squared Interpolation 

In section 6.5, we showed that the MSI algorithm is not an efficient estimator as it is 

severely biased away from zero.  In this section we present the Iterative Magnitudes 

Squared Interpolation algorithm (IMSI), suggested in [10], and prove that it constitutes 

an efficient estimator.  Using the same approach as the previous two algorithms, we 

derive the limiting ratio of the variance to the asymptotic CRB. 

The iterative MSI algorithm is obtained by replacing h , in table 8.2, by 
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2
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5.0

2

5.0
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1

XX

XX
h  

Now let h .  We must show that  is a contractive mapping for all 

5.0,5.00 .  Consider first 10 , we can easily show that 
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This is due to the fact that 1OS p  for both 5.0p , whereas the noise coefficients 

are NNO ln2
1

.  Substituting the expressions of pS  into that of h  yields 
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Simplifying the above we obtain, 

NNO
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NN
h ln1

5.0
2

cos5.0
2
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cos5.0
2

cos
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1
2
1

00
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 (8.10) 

h  can be expanded into a Taylor series about 0  giving 

 
2

000 NOhhh  

where 

 NNOh ln2
1
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and 
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N
h ln1
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Finally,  becomes 

 NNOh ln11 2
1

000  (8.11) 
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Upon examination of the relative orders of the terms in 0h  we see that it can be 

rewritten as 

 NNONOh ln1
2

1
2
1

2
0  

Therefore, 
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2
2121 ln1

2

1
2
1

NNONO
 (8.12) 

where 1 .  Thus the conditions for the convergence of the iterative procedure in 

region 1  are satisfied.  The fixed point of the iterative algorithm is 0  as 0h  is 

asymptotically zero. 

Now we must consider the behaviour of the procedure for 20 .  The difference 

between the two regions is in the behaviour of the noise terms.  The analysis follows a 

similar argument to that given for the IMOI algorithm.  We will look at the case where 

5.00 .  The order of the coefficient corresponding to 5.0p  is preserved whereas 

that corresponding to 5.0p  changes.  Thus, 

 15.0 OS  

and 

 015.0 oS  

The noise coefficients remain NNO ln2
1

.  Hence 5.0X  is 

 NNOSX ln1 12

5.0

2

5.0  

and 5.0X  is 

 NNOX ln1
5.0  

Substituting into the expression for h  yields, 

 NNOh ln1
4

1 1  
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The estimate after the first iteration is NNO ln
4

1ˆ 1
1  and consequently the 

residual is 110
ˆ  almost surely.  Furthermore, 

 

21

1
2121 ln NNO

 

This implies that after the first iteration the algorithm moves into region 1  and the 

analysis given above for 10  applies.  Thus convergence requirements are satisfied 

and the algorithm converges to the fixed point for 5.0,5.0210 .  The 

limiting variance is therefore equal to that at 00 .  This was found before to be the 

same as the other two algorithms, that is 
96

4

. 

Equation (8.12) implies that the estimate, 1
ˆ , after the first iteration, is almost surely in 

the interval 25.0,25.0 .  Similarly, we have that the estimate after the second iteration 

is 2
1

0ˆ
2 NO .  Therefore, according to the convergence criteria discussed in 

section 8.2.5, a third iteration is needed for the algorithm to converge and the residual to 

become 2
1

No .  In fact, one would expect the algorithm to converge in two iterations 

for 10 .  In the case where 20 , on the other hand, three iterations are required. 

Finally we arrive at the following theorem. 

 

8.6.1 Theorem 

Let h  denote the MSI estimator.  The iterative procedure shown in table 8.2 

converges with the following properties: 

1. The fixed point of convergence is 0 . 

2. The procedure takes 3 iterations for the residual error to become 2
1

No  

almost surely 
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and 

3. The limiting ratio of the variance of the estimator to the asymptotic CRB is 
96

4

 

uniformly over the interval 5.0,5.0 . 

The performance of the iterative MSI algorithm was simulated and the results are shown 

in figures 8.7 and 8.8 below.  The first plot shows the ratio of the frequency error 

variance to the asymptotic CRB as a function of the offset from the bin centre for 1, 2 

and 3 iterations.  After 1 iteration, the IMSI algorithm is equivalent to the MSI 

algorithm of section 6.5.  5000 simulation runs were averaged at each point.  We see 

that, for 10 , the curve after two iterations is almost flat around the value of 
96

4

.  

For 20 , on the other hand, it takes three iterations for the algorithm to converge.  

Figure 8.6 shows the performance as a function of signal to noise ratio.  The standard 

deviation of the frequency error is plotted.  10000 simulation runs were averaged at 

each SNR value and the performance of the IMSI algorithm after 1, 2 and 3 iterations is 

shown.  The performance after 2 iterations asymptotes out to a constant value as the 

SNR goes to .  This is expected as the analysis showed that after two iterations the 

estimator is still biased.  It is to this bias that the curve asymptotes.  The performance 

after the third iteration, however, is on the CRB curve indicating that the algorithm has 

converged uniformly in 0 . 
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Figure 8.7 – Plot of ratio of the variance of the iterative form of the MSI algorithm to 

the asymptotic CRB.  5000 simulation runs were averaged at a SNR = 0dB. 

 

Figure 8.8 – Plot of Standard Deviation of the Frequency Error of the iterative form of 

the MSI algorithm Vs Signal to Noise Ratio.  10000 simulation runs were averaged. 
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8.7 Conclusion 

In this chapter, we presented and analysed three new iterative frequency estimation 

algorithms.  The algorithms all are frequency domain estimators that are based on the 

interpolators of chapter 6.  A coarse frequency estimate is first obtained using the MBS 

algorithm.  The interpolators are then run iteratively to refine the estimate. 

We started by showing that iterative techniques based on the algorithms of chapter 5 do 

not converge.  Quinn’s first algorithm was used as an example.  The new iterative 

algorithms, on the other hand, constitute efficient estimators.  That is, they are unbiased 

and they achieve a frequency variance that is only 
96

4

 or 1.0147 times the CRB.  

Therefore their performance practically lies on the CRB curve.  The IFFCI and IMOI 

algorithms were shown to converge in two iterations whereas the IMSI algorithm 

requires three. 
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Chapter 9 

 

Frequency Assisted Spatial Tracking 

 

 

9.1 Introduction 

As low earth orbit satellites move rapidly with respect to an earthbound observer, a 

spatial tracking scheme must be implemented at the earth station.  The tracking 

requirements depend among other things on the satellite altitude, the antenna beamwidth 

and the maximum tolerable off-boresight pointing error, [107] pp. 2-5.  Thus, the earth 

station needs to determine the satellite orbit and the look-angles needed to correctly 

point to it.  The required spatial information can be obtained from many sources, such 

as NASA TLEs, GPS data and orbital estimation data. 

NORAD, the North American Aerospace Defence Command, tracks objects and outputs 

the data on a NASA Bulletin Board Service (BBS).  The orbital parameters are output 

on the NORAD website as Two Line Elements, or TLEs.  For a discussion of TLEs 

refer to [1] Appendix C and [125].  The publicly available TLEs are updated by 

NORAD when their error exceeds a certain tolerance.  They are used in conjunction 

with an orbital model such as SGP4 to predict the satellite pass.  However, they have 

been shown to be relatively inaccurate, [126].  Therefore, TLEs may be suitable for 

tracking a LEO satellite when the tracking requirements are relaxed, but may not be 

useful, at least on their own, for tight pointing requirements. 

Some satellites, such as FedSat [127], have a GPS as part of their payload.  The GPS 

can log the satellite’s position and the data is then downlinked to earth on the Tracking, 

Telemetry and Command (TT&C) channel.  This orbital information is processed and 

used to predict future passes.  The resulting tracking data becomes less accurate the 

longer the prediction interval is.  The research team from the Queensland University of 

Technology claims that, in the case of FedSat, pointing accuracies of better than 100 m 

or 0.01º can be maintained for over a prediction period of 48 hours, [127]. 
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The above methods require the earth station to have a separate communications link to 

the spatial information source (such as the TT&C earth station or the NASA BBS).  

This is undesirable in the case of remote area communications and for rapidly 

deployable earth stations.  Therefore, it is convenient to have the earth station derive its 

own spatial tracking data.  A number of amplitude based methods are presented in 

[128].  Monopulse systems utilise multiple, slightly displaced, horn feeds to create 

overlapping antenna patterns.  An error signal is then derived and used to correct the 

antenna pointing.  This technique, however requires very expensive and relatively large 

equipment and, hence, is undesirable for a low-cost rapidly deployable earth station.  In 

order to reduce cost, sequential amplitude sensing techniques can be applied to a single 

feed system.  These comprise the conical scanning and the step track methods.  Both of 

these methods use time-division multiplexed, spatially distributed signal strength 

measurements to derive an error signal. 

In this chapter we propose a method of deriving the necessary spatial tracking 

information of a LEO satellite at the earth station without external assistance.  We 

consider the application of the Doppler shift information to the spatial tracking of the 

satellite.  We call this Frequency Assisted Spatial tracking (FAST).  We examine the 

case of LEO satellite with a circular orbit and use the orbital model derived in chapter 3, 

ignoring all perturbations. 

 

9.2 Doppler Based Position Determination 

The tracking of a radiating source using frequency measurements has been dealt with 

extensively in the literature.  This is done primarily in the context of target motion 

analysis based on sonar Doppler measurements, [129-133].  These papers address the 

problem of localising a source that radiates a constant frequency tone using multiple 

sensor data.  Other work dealt with the problem of user location using LEO satellites 

[4].  Position determination using a single satellite is usually considered since LEO 

satellite constellations are designed to have a minimum number of satellites covering 

the earth, [134].  Knowing the satellite’s orbit precisely, the earth terminal measures the 

Doppler shift on the received signal for a period of time before being able to determine 

its own position.  Perhaps the most notable example of such a system is the search and 

rescue Cospas-Sarsat system, [6, 7, 53, 135-138].  In the Cospas-Sarsat system, the 
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Emergency Locator Transmitter (ELT) of a user in distress emits an amplitude 

modulated signal.  This signal is received by the satellite and relayed to a ground station 

called the Local User Terminal (LUT).  The Doppler shift is measured at the LUT and 

the resulting data for the entire visible portion of the pass is processed to obtain the ELT 

location.  In some cases, data from multiple passes is used to resolve the ambiguity in 

the ELT location.  The calculated position is then transmitted to a Mission Control 

Centre (MCC) for search and rescue coordination. 

In this work, we are concerned with the reverse problem of satellite orbit determination 

using frequency measurements at the earth station.  This, as stated before, is necessary 

for the correct pointing of the earth station antenna for successful communications. 

 

9.3 Satellite Orbit Determination 

El-Mahy, in [28], applied an Iterated Extended Kalman Filter (IEKF) to measurements 

of the range, azimuth and elevation in order to determine the satellite orbit.  He 

considered an arbitrary elliptical orbit that is specified by a seven element state vector 

which consists of the semi-major axis, the eccentricity, the inclination, the right 

ascension of the ascending node, the argument of the perigee, the mean anomaly and the 

ballistic coefficient.  The first two elements relate to the ellipse and therefore specify the 

shape of the orbit.  The next three elements relate to the relative orientation of the orbit 

with respect to the frame of reference.  The mean anomaly is the average angular 

motion of the satellite on its orbit [32].  The last orbital element models the shape of the 

satellite and the effect of atmospheric drag on it.  Several radar passes resulting in 

range, azimuth and elevation measurements are used with an Extended Kalman Filter 

algorithm to estimate the orbital elements of the satellite. 

Montenbruck, in [32], addresses the problem of orbital determination in detail.  He 

considers the various tracking system and their corresponding measurement data in 

chapter 6.  He then linearises the different orbital models that these tracking systems 

utilise and derives the transitional equations and partial derivatives necessary for the 

orbital estimation.  In chapter 8, the author looks at the weighted least squares approach 

and the Kalman filtering implementation for orbital estimation.  He implements an 

Extended Kalman Filter processing range, azimuth and elevation measurements to 

obtain an estimate of the satellite orbit. 
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Brush et al, in [52], describe a system which uses Doppler rate to improve the spatial 

tracking of LEO satellites.  Their method is rudimentary and they do not discuss the 

update of orbital elements or the satellite’s position.  They use the orbital elements of 

the satellite to derive the observed Doppler rate at the earth station.  They then correlate 

the theoretical data to the measurements for an entire pass.  The resulting timing error is 

printed out on the computer screen. 

 

9.4 Frequency Assisted Spatial Tracking 

The simplified orbital model derived in chapter 3 gives us some insight into the 

suitability of frequency and frequency rate information for the purpose of orbital 

determination and satellite tracking.  In this thesis we don’t address the problem of 

Doppler rate estimation.  There has been some work reported in the literature on the 

topic.  The estimation of the rate of change of the frequency of a linearly frequency 

modulated signal is considered in [139-141] and, in [142], Giannetti et al examine the 

Doppler rate estimation problem in the context of LEO satellite communications. 

The satellite’s position is, for the purpose of antenna pointing, completely specified by 

the azimuth and elevation pair (or X and Y rotations for an X-Y pedestal).  The 

equations relating the Doppler shift and Doppler rate to the satellite position do not 

differentiate between passes of the same maximum elevation that are east or west of the 

earth station.  A pass is said to be east of the earth station if its maximum elevation 

point is east of the earth station.  Considering, however, the one-sided case, that is 

passes only east (or west of the earth station) we find a one to one mapping between a 

Doppler shift – Doppler rate pair and an azimuth – elevation pair.  This is expressed 

using the following relations 

 

rs

rss

DDf

DDf

,

and

,

2s

1

 (9.1) 

This can be seen by plotting the azimuth versus Doppler shift and Doppler rate for the 

visibility region.  The resulting surface gives a single azimuth for each sD  and rD  pair.  

This also holds for the elevation case.  The Doppler shift and Doppler rate contours 

shown in figure 9.1 on a latitude-longitude plane also demonstrate this.  The symmetry 
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of the contours about the zenith pass is clearly visible.  Therefore, a Doppler shift – 

Doppler rate pair gives two valid satellite positions.  In fact, not knowing whether the 

satellite pass is ascending or descending, results in another ambiguity giving four valid 

satellite positions.  However, as will be shown in section 9.5.2, these conditions can be 

determined based on the previous satellite pass using simple orbital propagation.  Thus, 

knowing which half of the latitude-longitude plane the pass is in, and whether it is 

ascending or descending, the earth station can uniquely determine the satellite’s position 

from the measured Doppler shift and rate. 

 

 
Figure 9.1 – Doppler shift and Doppler rate contours evaluated using the approximate 

orbital equations developed in chapter 3.  The full and dashed lines represent the 

Doppler shift and Doppler rate respectively.  The earth station is marked by the square 

containing an x and the zenith pass is shown. 

 

If the rotation of the earth is taken into account, then passes of equal maximum 

elevation east and west of the earth station give slightly different Doppler shift and 

Doppler rate profiles.  This is due to the fact that the Doppler shift is related to the 

observed angular velocity of the satellite which, as we found from equation (3.7), 

depends on the satellite’s latitude.  Thus, the observed angular velocity profile varies for 
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equal maximum elevation passes that are east and west of the earth station as they occur 

at different latitudes.  A tracking system can use this fact to uniquely determine the 

satellite’s orbit from the Doppler shift and rate measurements.  The asymmetry in the 

Doppler shift and Doppler rate profiles can be seen in the Doppler shift and rate 

contours shown in figure 9.2 below. 

 

 
Figure 9.2 – Doppler shift and Doppler rate contours evaluated using the orbit 

generation algorithm presented in chapter 3.  The full lines represent the Doppler shift 

and the dashed the Doppler rate.  The earth station is marked by the square containing 

an x and the zenith pass is shown. 

 

Figure 9.3 shows the Doppler shift and rate profiles of two similar maximum elevation 

passes that are east and west of the earth station.  Since the inclination of the satellite 

orbit is less than 90º, the western orbit occurs at a higher latitude and the observed 

angular velocity of the satellite, F, is slightly lower.  Thus, the resulting Doppler shift 

and rate profiles are slightly smaller and a little skewed for the western pass with 

respect to the eastern one.  This is clearly visible in the figure below. 

 

-60 -50 -40 -30 -20 -10

10

15

20

25

30

35

40

45

50

55

60

Longitude (º)

L
a
ti
tu

d
e
 (

º)

Contour Plot of Doppler shift and Doppler Rate on a Lat-Long plane with the Earth-Station at 35ºW and 33.5ºN

 -1.63e-005

-1.0194e-005

-1.0194e-005

-1.0194e-005

-4.0889e-006

-4.0889e-006

2.0166e-006

2.0166e-006

 8.122e-006

 8.122e-0061.4227e-005

1.4227e-005

-1.3603e-007

-1.0852e-007

-1
.0

8
5
2
e
-0

0
7

-8
.0

9
9
5
e
-0

0
8

-8.0995e-008

-8.0995e-008

-5.3476e-008

-5.3476e-008

-5.3476e-008

-5.3476e-008

-5
.3

47
6e

-0
08

-2.5956e-008

-2.5956e-008
-2

.5
9
5
6
e
-0

0
8

-2.5956e-008 -2.5956e-008



 

 

212 

 

(a) 

 

(b) 

Figure 9.3 – (a) Doppler shift and (b) Doppler rate curves for passes of maximum 

elevation 74.6º east and west of the earth station. 

 

9.5 FAST Implementations Based on Simplified Equations 

In [51], the authors looked at the implementation of the FAST concept using a look-up 

table.  A one-dimensional case was analysed where the maximum elevation of the pass 
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was assumed to be known and the Doppler shift tabulated.  The frequency 

measurements were then used to determine the satellite’s position along the orbit.  The 

frequency data was assumed to be Gaussian distributed with a variance equal to the 

CRB.  This gives the limit on the accuracy of the algorithm.  The errors were found to 

be much less than 0.1.  The look-up table approach, however, is not attractive due to the 

large amount of memory it would require to cover the entire visibility region in two 

dimensions at the necessary sampling rate. 

In this section we consider the implementation of the FAST concept based on the 

simplified orbital equations presented in chapter 3.  Expressions for calculating the 

zero-Doppler time and the maximum elevation of the pass were presented in [103].  

These expressions can be used to determine the orbit based on Doppler shift and 

Doppler rate measurements.  This approach is simple but is sensitive to noisy data, 

[103].  It will, however, be discussed in section 9.5.1 for the purpose of completeness.  

In section 9.5.2 a method for determining the maximum elevation of a pass based on 

that of the previous pass is presented.  An Extended Kalman Filter spatial tracker is 

implemented in section 9.5.3 for the one-dimensional case of known maximum 

elevation. 

 

9.5.1 One-sided FAST Approach 

The expressions derived in [103] give the zero-Doppler time, 0t , and the maximum 

elevation angle, 0 , in terms of the Doppler shift and rate measurements at two time 

instants t1 and t2.  Once 0t  and 0  are found, the entire visible section of the pass can be 

calculated and the satellite tracked.  As discussed in section 9.4, however, the symmetry 

of the equations about the zenith pass results in an ambiguity with respect to the 

quadrant that the satellite is in. 

Given two Doppler shift and Doppler rate measurements 11, rs DD  and 22 , rs DD  at 

times t1 and t2 respectively, with 12 tt , the maximum elevation time is given by 

 
F

tt 1
10  (9.2) 

where 
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1  (9.3) 

and 

 sTttt 12  

sT  is the spatial sampling period.  Taking 0t  by convention to be the reference time, we 

let 00t .  Therefore, 

 
F

t 1
1

 

The central angle at the maximum elevation point, 0 , is then calculated using 
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Substituting 0 into equation (3.29) gives the maximum elevation angle 0 . 

A straightforward implementation of the above expressions is very sensitive to noise.  

Simulations show that, even at high SNR values, the equations fail to give any 

meaningful result.  This is mainly due to the sensitivity of 0  to noisy sD  and rD  

measurements.  This situation becomes worse as we get closer to the zenith pass due to 

the flatness of the cosine in expression (9.4) near the point 00 .  The authors of [103] 

recognised this and suggested that further research would be necessary to improve the 

algorithm’s performance by reducing its sensitivity to noise. 

An alternative to the above implementation is to use an Extended Kalman Filter (EKF) 

to estimate the satellite position based on the frequency information.  We assume that 

the maximum elevation is known and derive a scalar EKF using only the Doppler shift 

information to filter out the satellite position.  This method amounts to determining the 

satellite’s position along the pass.  As this relies on knowledge of the maximum 

elevation for the upcoming pass, we present in the following section a method for 

calculating the maximum elevation angle of the next pass based on that of the current 

one.  The EKF is then derived in section 9.5.3. 
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9.5.2 Calculation of the Expected Maximum Elevation Point 

In this section we present a method for predicting the maximum elevation of a pass 

based on observatons from the pass immediately preceding it.  In [11], the authors 

present an algorithm for determining whether a pass is visible from a specific terminal 

location.  They characterise the pass by the longitude of its ascending node and 

calculate , the central angle between the satellite and the earth station, at the point of 

closest approach.  If  is smaller than the angle corresponding to the minimum elevation 

for visibility, then the satellite would be visible from the terminal.  In this section, we 

calculate the longitude of the ascending node of the available pass and propagate it to 

give the longitude of the ascending node of the next pass.  That is we adjust it by the 

angle the earth rotates through in one complete satellite revolution.  We then use the 

method of [11] to determine whether the satellite is visible from the earth terminal.  If it 

is, we calculate the expected maximum elevation and its location. 

Let the position of the satellite maximum elevation point of pass p  be pp

00 ,  and that 

of pass 1p  be 1

0

1

0 , pp .  The following analysis refers to figure 3.5 which will be 

reproduced here for the reader’s convenience. 

 

 
Figure 9.4– A reprint of figure 3.5; enlarged view of sub-satellite path. 

 

Consider pass p .  The maximum elevation point corresponds to point 0S .  Applying 

spherical identities (A.3) and (A.6) and combining the results we obtain 
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The longitude of the ascending node of pass p  is therefore given by 
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0  (9.6) 

The angular displacement of the ascending node from the maximum elevation point, 

p
i , is 

 
i

p
p
i

sin

sin
sin 01  (9.7) 

p
i  must then be modified by the angle the earth rotates in the time the satellite takes to 

move through p
i .  Therefore we have 
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Finally p
i  is propagated by the angular movement of the earth during one satellite 

orbital period in order to get that of pass 1p .  Thus, 
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i

21  (9.9) 

If the ascending node of a pass is east of that of another pass then the maximum 

elevation point of the first pass will also be east of that of the other pass.  Therefore, 

comparing the longitude of the ascending node of pass 1p  to that of the zenith pass, 

iz , allows the terminal to determine if the pass is east or west of it.  iz  can be found 

by substituting ES0  and ES0  in equation (9.8). 

Next, the maximum elevation angle is determined from the longitude of the ascending 

node of the pass.  Taking the ascending node to be the time reference, equations (3.23) 

and (3.27) are modified to give , , the position of the satellite in the ECEF frame at 

time t , 

 ti Isinsinsin 1  (9.10) 
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and 

 t
t

e
I

i
cos

cos
cos 1  (9.11) 

As the pass in the ECEF frame is assumed to be a great circle arc, two points, aS  and 

bS , given by aa ,  and bb , , are required to define it.  Let aS  and bS  be the 

ascending node, iS , and the location of the satellite at time t  from iS .  Therefore, the 

first point is given by 0,1p
i  and the second point is obtained from equations (9.10) 

and (9.11).  Without loss of generality, the analysis is carried out on a unit sphere (that 

is the earth’s sphere is taken as the unit measure).  Denote the vectors originating at the 

earth’s centre and ending at the two points aS  and bS  by av  and bv .  These are given 

by 
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and 
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where 

 ti Isinsinsin 1  

and 
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The earth station location, given by ESv  is 
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At the point of closest approach, the arc joining the earth station to the sub-satellite 

point, that is arc 0PS  in figure 9.4, is normal to the sub-satellite path.  The unit normal 

to the plane defined by av  and bv  is obtained from the cross product of these two 

vector.  Hence, 

 
ba

ba

vv

vv
n  (9.15) 

The perpendicular distance from the earth station to the satellite orbit, distance 0PS , is 

given the projection of the earth station vector ESv  onto the unit normal n .  That is, it is 

equal to the dot product between vectors ESv  and n .  The corresponding central angle, 

0, given by POS0 in the figure above, is 

 

nv ES
1

1
0

sin

OS

PS
sin

 (9.16) 

0 can now be substituted into equation (3.29) to give the maximum elevation angle of 

the pass.  The location of the sub-satellite point at the point of closest approach, given 

by vector v0, is 

 nnvvv ESES

0

0
cos

1
 (9.17) 

The location of the maximum elevation point in the latitude-longitude coordinate 

system is calculated from 0v  and the time of closest approach, 0t , is found by 

substituting the value of  into equation (9.10). 

As we move away from the points used to define the great circle arc, the actual orbit 

deviates from the approximation.  Therefore, it is important to refine the estimate of the 

maximum elevation point by using two points closer to the instant of closest approach, 

say at times tt0  and tt0 .  The steps outlined above are then repeated and a 

refined estimate of the maximum elevation point obtained. 

The algorithm presented here was simulated in Matlab.  The earth station was placed at 

35º west and 33.5º north.  An initial longitude for the ascending node was specified and 

two successive passes calculated using the orbital propagation algorithm of section 3.3.  

The maximum elevations of passes one and two were determined using the algorithm 
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presented here and the data corresponding to pass one.  t  was set to 120s.  That is for 

the first iteration in the orbit approximation, the second point was chosen to be 2 

minutes after the ascending node.  For the second iteration, the two points were 2 

minutes either side of the maximum elevation point. 

The actual and predicted maximum elevations are shown in figure 9.5.  The maximum 

elevation of pass one was predicted by back-propagating its actual value and applying 

the prediction algorithm.  This involved calculating the longitude of the ascending node 

of the pass using the actual value of the maximum elevation angle and then 

recalculating the maximum elevation using the great circle arc approximation.  The true 

and predicted curves are shown by the solid line and the ‘x’, respectively, in figure 9.5.  

This method allows the assessment of the errors resulting from the great circle 

approximation.  The dashed line and the ‘o’ show the results for the forward 

propagation and prediction of the maximum elevation of pass 2 based on the maximum 

elevation of pass 1 and its location.  The resulting errors between the two curves for 

both cases of passes 1 and 2 are shown in figure 9.6.  The error curve for pass 1 results 

solely from the great circle arc approximation whereas that for pass 2 also includes the 

forward propagation error of the longitude of the ascending node.  We can see that the 

two curves are nearly identical in shape but shifted with respect to one another.  This 

implies that the error in the propagation of the longitude of the ascending node is very 

small.  In fact, an examination of this error reveals that it is in the order of 10
-5

 degrees. 
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Figure 9.5 – Actual and predicted maximum elevations for passes 1 and 2. 

 

 

Figure 9.6 – Errors in the predicted maximum elevations for passes 1 and 2. 
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Figure 9.7 shows the errors in the longitudes and latitudes of the predicted maximum 

elevation positions of pass 2.  The axis on the left belongs to the longitude error curve, 

marked with ‘x’, while that on the right is for the latitude error curve marked with 

circles.  The errors are in the order of a 0.01º which validates the algorithm presented 

here as a method of predicting the value and location of the maximum elevation of a 

pass based on data from the preceding pass. 

 

 

Figure 9.7 – Error in the predicted locations of the maximum elevations for pass 2. 

 

9.5.3 Extended Kalman Filter for the Simplified Model 

The non-linear equations presented in section 9.5.1 suffer from poor performance in the 

presence of noise.  Therefore, a filtering scheme must be employed in order to improve 

the algorithm.  Although a linearised Kalman filter would have also been suitable, we 

will in this section use an EKF to implement the FAST concept based on the simplified 

orbital model.  For a discussion of Kalman filtering theory refer to section 2.4.  We will 

assume the maximum elevation to be known and derive the filter and update equations. 

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5
-0.048

-0.046

-0.044

-0.042

-0.04

-0.038

Longitude of Ascending Node of Pass 0 (º)

L
o
n
g
it
u
d
e
 E

rr
o
r 

(º
)

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5
0

0.01

0.02

0.03

0.04

0.05

Longitude of Ascending Node of Pass 0 (º)
L
a
ti
tu

d
e
 E

rr
o
r 

(º
)

Errors in the Positions of the Predicted Maximum Elevations Vs Longitude of Ascending Node of First Pass (º)

Latitude Error

Longitude Error

 

 



 

 

222 

9.5.3.1 Derivation of the EKF with the Maximum Elevation assumed known 

Assuming the maximum elevation of the pass is known, the whole pass can be 

calculated using the simplified orbital equations of chapter 3.  The tracking problem 

essentially reduces to the determination of the timing of the satellite along the pass.  We 

will here derive and implement a scalar EKF that uses the Doppler shift information to 

estimate , the angular displacement of the satellite from the maximum elevation point.  

The ability of a terminal to do this stems from the fact that estimating the frequency of a 

satellite beacon is normally achieved even with large antenna pointing error.  Thus the 

Doppler shift information is usually available before the communications link is closed 

and can be used to reduce the antenna pointing error. In a practical spatial tracking 

system, the EKF can be combined with the maximum elevation determination algorithm 

presented in the previous section to characterise the pass and then locate the satellite 

along it.  Upon the conclusion of the period of visibility, the maximum elevation 

prediction algorithm is used to predict the maximum elevation value of the next pass 

and set up the EKF for tracking the satellite. 

In the following we proceed to derive and implement the scalar EKF spatial tracker.  Let 

the state variable be .  The state transition equation is 

 sFnn T1  

where sT  is the spatial sampling period.  The measurements consist of the Doppler shift 

values and the measurement equation is 

 nsn fD  

where f  is the Doppler expression given in equation (3.45). 

The state transition factor, , is 1 and the observation factor is given by the derivative 

of the Doppler with respect to the state variable, 
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The Kalman filtering procedure comprises the following steps: 
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 Set the initial value of  to the maximum value based on the known maximum 

elevation angle.  That is, calculate the visibility duration, vT , of the pass for the 

expected maximum elevation angle.  The initial value for  is then given by 

2
vFT

. 

 Initialise the variance of the measurement errors 2
f .  The Doppler shift is 

usually measured at a much higher sampling rate than the spatial tracking.  In 

the case of FedSat, for instance, the frequency measurement rate is 100 times the 

spatial update rate.  Thus, the variance of the Doppler measurements can be 

calculated from the measurements themselves. This is advantageous as the 

quality of the frequency measurements normally improves as the elevation of the 

satellite increases. 

 Set the initial value of p to 0.25.  This accounts for the error in the initial value 

of . 

 Set the value of 
2

 to 0.1.  This accounts for the model errors arising from the 

assumptions used. 

 

Iterate through the following steps: 

 Propagate the state variable 

 sFnn T1
ˆ  

 Update the Kalman gain 

 
1

22

1

nnf

nn
n

pm

mp
K  

 Filter the state variable 

 nsnnnn fDKˆ  

 Update the mean square error 

 
2

11 nnnn pmKp  

 

The filter was implemented in Matlab and its performance simulated.  Figure 9.8, 

below, shows the performance in an almost noiseless case (with the signal to noise ratio 

set to 100 dB).  The pass has a maximum elevation of 74.6º.  The two curves were 
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obtained for each of the ECEF angular approximation strategies discussed in section 

3.4.  The off-boresight error has a local maximum at the point of closest approach.  This 

is due to the fact that the observed satellite velocity in the direction perpendicular to the 

earth station to satellite line of sight is highest at that point.  Thus, at that instant, the 

look-angles experience their highest rates of change. 

 

 
Figure 9.8 – EKF spatial tracker performance in the noiseless case. 

 

Figure 9.9 shows the actual and tracked sub-satellite paths as well as the resulting off-

boresight error at a SNR of 0 dB.  A pass with a maximum elevation of 74.6º was 

chosen and the earth station placed at 35º west and 33.5º north.  We can see that the two 

paths, shown in latitude-longitude coordinates, agree well.  The off-boresight error is for 

the majority of the pass below 0.2º.  Communications with a LEO is commonly only 

practical above 20º or 30º elevations, depending on the earth station environment and 

available link margin.  The maximum tolerable off-boresight error is also dependent on 

the available link margin.  For the FedSat Ka band communications link, for instance, 

the minimum visibility angle is taken to be 30º and the maximum allowable off-

boresight error is 0.3º, [2].  From figure 3.6 we see that a minimum elevation angle for 

visibility of 30º results in a visibility duration of just over 300 seconds for a pass with a 
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maximum elevation of 74.6º.  The lower plot in figure 9.9 shows that the off-boresight 

error is much less than 0.1º between -150 s and 150 s. 

 

 

Figure 9.9 – EKF spatial tracker performance at a SNR of 0dB. 

 

Figure 9.10, below, shows the filter performance for different signal to noise ratios.  A 

Monte Carlo simulation comprising 1000 runs was performed at each SNR value.  The 

mean off-boresight error is shown against time from the maximum elevation point.  As 

the SNR decreases, the off-boresight error increases as expected.  The central lobe at the 

maximum elevation point, that is, at zero time, is only visible at the higher SNR and is 

drowned by the effect of the noise as the SNR decreases.  This is due to the fact that the 

noise effects bring the off-boresight error up over the entire pass and therefore obscure 

the modelling error.  The plot also shows that the performance of the filter is very good, 

with an off-boresight error below 0.1º, at the low SNR of -10 dB.  This SNR is close to 

the frequency estimation threshold for the FFCI (and IFFCI) algorithm operating on 

1024 data samples, see figure 6.2.  Hence, we expect that the frequency estimation 

threshold would form the limit of the usefulness of the frequency based tracking system 

proposed here. 
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Figure 9.10 – Off-boresight error for scalar EKF against time for different signal to 

noise ratios. 

 

Figure 9.11 – EKF spatial tracker performance at a SNR of 0dB with a 0.3º error in the 

assumed maximum elevation value. 
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Figure 9.11 above shows the effect of an error in the predicted maximum elevation 

angle on the filter performance.  We see that the off-boresight error at the point of 

closest approach has increased to just over 0.3º.  This is much higher than the error seen 

as a result of the noise alone.  We also see that the central lobe around the maximum 

elevation point reappears.  This is due to the fact that the dominant error is due the orbit 

approximation.  The filter assumes the maximum elevation angle, 0 , is known and 

operates only on the corresponding pass.  It is, therefore, sensitive to errors in the 

predicted value of 0 .  This characteristic is clearly visible in the results of the Monte 

Carlo simulation shown in Figure 9.12 below.  The simulation consisted of 1000 runs.  

The maximum off-boresight error is the middle of the pass is just over 0.3º. 

 

 

Figure 9.12 – EKF spatial tracker performance at a SNR of 0 dB with a 0.3º error in the 

assumed maximum elevation value. 
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(a) 

 

(b) 

Figure 9.13 – (a) EKF spatial tracker performance at a SNR of 0 dB.  A zero-mean 

random (Gaussian distributed) error, with a 5º standard deviation was added to the 

initial value of . (b) Zoomed version of (a). 
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Figures 9.13(a) and (b) show the effect of errors in the initial conditions of  on the 

filter performance.  Although the filter is sensitive to errors in the assumed value of the 

maximum elevation, it would be expected to be tolerant to errors in the initial conditions 

of the state variable.  Figure 9.13 confirms this by showing a large initial off-boresight 

error which is then taken out by the filter and reduced to a similar order to the case 

reported in figure 9.8 where  is correctly initialised. 

 

9.6 Conclusion 

We have, in this chapter, proposed the use of the Doppler shift information to assist the 

spatial tracking of a LEO satellite.  The Doppler shift and rate were shown to form a 

basis for the look-angles required to spatially track the satellite.  In section 9.5.2 we 

presented an algorithm for predicting the maximum elevation of a pass based on the 

pass preceding it.  The FAST concept was then implemented in the one-dimensional 

case by making the assumption that the maximum elevation of the orbit is known a 

priori.  The simplified orbital model, developed in chapter 3, was used to derive the 

tracking and update equations of a scalar EKF spatial tracker.  The filter was then 

simulated and its performance assessed.  It was shown to have an off-boresight error in 

the order of 0.1º.  We also examined the filter’s sensitivity to the model errors, such as 

errors in the expected maximum elevation angle and to errors in the initialization of .  

As was expected, the filter was found to be tolerant to errors in the initial value of .  It 

is, on the other hand, sensitive to errors in the expected maximum elevation angle, as it 

cannot “see” and remove these errors. 
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Chapter 10 

 

Conclusion 

 

10.1 Review of Research Results 

The aim of the dissertation is twofold; firstly, the frequency estimation problem for the 

purpose of the Doppler compensation of a LEO satellite link is studied.  Secondly, the 

possibility of applying the measured Doppler shift information to assist the spatial 

tracking of the satellite is examined.  The research was motivated by the FedSat project 

which is run by the Cooperative Research Centre for Satellite Systems. This project will 

culminate in the launch of FedSat, an experimental LEO micro-satellite, into an 800 km 

sun-synchronous orbit.  The satellite will have, as part of its payload, a Ka band 

communications experiment. 

The relative motion between a LEO satellite and an earth station induces Doppler shifts 

into the transmitted signal.  These shifts must be estimated and removed prior to the 

demodulation of the signal.  In the thesis we assumed the presence of a beacon signal.  

Thus the research dealt with the estimation of the frequency of an unmodulated 

sinusoidal signal. 

The highly dynamic environment of a LEO satellite link limits the available processing 

time and therefore dictates that the estimation algorithms be computationally simple.  

Furthermore, the high Ka band frequencies experience large attenuation and result in a 

narrower beam width for a given antenna.  Therefore, the frequency estimators that are 

employed must perform well at low signal to noise ratios. 

In chapter 2, we presented the necessary theory for the development of the ideas put 

forward in the thesis.  We also included a review of the general literature.  We then 

proceeded to report on the research outcomes.  In the following, we will review these 

outcomes in the light of the stated research aims. 
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10.1.1 Orbital Characterisation 

The low earth orbit was modeled in chapter 3.  We assumed a spherical earth and used a 

first order model ignoring all perturbations.  This served to develop a simple orbital 

propagator which was compared to results obtained from the program STK and found it 

to be accurate.  We then proceeded to obtain the spatial characterisation of the orbit as a 

function of the observed maximum elevation angle at a particular earth station.  The 

analysis was done in the ECEF frame of reference.  We approximated the orbit by a 

great circle arc and assumed the observed angular velocity of the satellite to be constant.  

These approximations are justified by the short visibility period of a LEO satellite and 

by the high velocity of the satellite with respect to the earth’s rotation upon its axis.  Ali 

et al, [103], suggested the approximation of the angular velocity by its minimum value, 

which occurs at the highest latitude reached by the satellite.  We, on the other hand, 

propose the use of the value that is observed at the maximum elevation angle.  We 

showed that this gives better results as it spreads the error more evenly over the 

visibility duration.  Next, we presented simplified equations for the satellite latitude, 

longitude, azimuth, elevation and X and Y rotations.  We showed that the off-boresight 

error for the satellite’s position, that is the angular error that is observed at the earth 

station, is around 0.3º.  Finally, we completed the characterisation of the orbit by giving 

the simplified Doppler shift and Doppler rate expressions as a function of the maximum 

elevation angle. 

 

10.1.2 Frequency Estimation 

The material of chapter 3 is mostly relevant to the FAST concept of chapter 9.  In 

chapters 4 to 8 we addressed the problem of estimating the frequency deviation of the 

received signal.  The techniques we adopted in this dissertation consist of a coarse 

frequency search followed by a fine estimation algorithm.  The coarse search was 

implemented using the Maximum Bin Search (MBS) algorithm.  We proposed and 

analysed a number of novel fine frequency estimation techniques. 
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10.1.3 Threshold effects 

The frequency estimation algorithm must perform well at low SNR and be 

computationally simple.  The advent of digital signal processors has resulted in 

computationally efficient implementations of the FFT algorithm.  Furthermore, 

frequency domain frequency estimators enjoy a better performance at low SNR values 

than comparable time-domain estimators.  This is due to the fact that they avoid the 

phase unwrapping problem and achieve the best possible smoothing of the signal phase.  

These factors have resulted in the research effort being directed towards the FFT based 

frequency estimators.  In chapter 4, we discussed the MBS algorithm which forms the 

coarse estimation stage.  This consists of calculating the periodogram and choosing the 

frequency corresponding to the highest bin.  The resulting estimate for N  samples of 

data is 1NO .  This motivates the use of a fine frequency stage to achieve a resolution 

that is closer to the CRB.  As the SNR drops, however, the probability of choosing an 

incorrect bin, called an outlier, increases.  The expression for the outlier probability was 

derived by Rife and Boorstyn, in [112], under the assumption of AWGN.  The 

expression for the outlier probability, however, is complicated and must be evaluated 

numerically.  As the SNR decreases, a threshold effect, common to nonlinear 

estimators, is observed.  Quinn, [9], derives an approximate expression for the threshold 

SNR.  He obtains upper and lower bounds for the outlier probability.  He then defines 

the onset of the threshold as the point where the total frequency MSE is equal to twice 

the CRB.  This results in an approximate expression of the threshold SNR.  We showed, 

however, that he made an error in the bound calculations and derived the correct form of 

the threshold SNR.  The corrected form, however, is only of theoretical interest (and for 

the sake of correctness) as the difference between it and Quinn’s expression is almost 

negligible. 

 

10.1.4 Interpolation on the Fractional Fourier Coefficients 

The fine frequency estimation stage usually consists of processing the Fourier 

coefficients around the maximum bin.  In chapter 5 we reviewed a number of 

interpolation methods proposed in the literature, including the estimators of Quinn, 

Macleod and Rife and Vincent.  These methods are computationally simple and perform 
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well.  However, they are found to have a frequency dependent performance (periodic 

with period equal to a bin width).  Their worst performance occurs at the centre of the 

bin.  The methods that interpolate on the raw Fourier coefficients generally performed 

better than those that use the moduli.  This is due to the fact that the noise is no longer 

white and its effect around the bin centre is exacerbated.  Therefore, the decision 

whether the true frequency lies above or below the maximum bin fails more often.  This 

is the reason for the problem region at the bin centre.  The complete analysis of Quinn’s 

first estimator was included in section 5.4.  This is intended to serve as a template for 

the analysis of the new algorithms. 

In chapter 6 we proposed three new algorithms that possess a similar performance to 

Quinn’s first estimator but exhibit their best performance at the bin centre.  The 

algorithms interpolate on two fractional Fourier coefficients.  The fractional Fourier 

coefficients are calculated at the edges of the bins rather than the bin centre, that is, 

midway between two bins.  This eliminates the decision step and in effect shifts the 

problem region to the edges of the bin.  We analysed the algorithms and established 

their central limit theorems.  We derived their asymptotic variances and found all three 

estimators to have a minimum asymptotic variance at the centre of the bin.  This 

minimum value is equal to the minimum variance of Quinn’s algorithms and is only 

1.0147 times the asymptotic CRB.  The interpolator on the raw coefficients, the FFCI 

algorithm, performs best as the noise is still white.  The performance of the interpolator 

on the magnitudes of the fractional coefficients, the MOI estimator, is slightly worse 

midway between to bins.  Finally, we found that the algorithm obtained from the 

magnitudes squared, that is the MSI estimator, is severely biased and has poor 

performance away from the bin centre.  The theoretical results were all verified by 

simulation. 

 

10.1.5 Iterative Estimation Using the Dichotomous Search 

The dichotomous search of the periodogram peak, proposed in [86], is examined in 

chapter 7.  It is particularly suitable for DSP implementation as it is devoid of non-linear 

operations and relies completely on multiply, add and compare instructions.  However, 

it requires the data to be padded with zeroes (up to 1.5 times the number of samples) in 

order to obtain a performance approaching the CRB.  The algorithm is essentially a 
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binary search for the frequency.  At each iteration, the decision is directed by a 

comparison of the magnitudes of two DFT coefficients calculated at the edges of an 

interval .  The interval width is then halved and the frequency estimate updated.  As 

the signal to noise ratio increases, the CRB decreases and consequently more iterations 

are needed for the estimator to reach it.  At medium to low SNR, simulation results 

show that the algorithm requires 10 iterations to converge to the CRB. 

Guided by the insight gained from the simulation results, we put forward an explanation 

for the zero-padding requirement.  Similarly to the interpolators on the magnitudes of 

the Fourier coefficients, discussed in the previous section, we expect the dichotomous 

search to have a problem area around the bin centre.  If the data is not padded with 

zeroes, the likelihood of a failure in the decision step is substantial.  Furthermore, as the 

intervals do not overlap, this failure is not recoverable by the algorithm in subsequent 

iterations.  Therefore, a failure in the first iteration has a significant impact on the 

algorithm’s performance.  Padding the data with enough zeroes effectively samples the 

DFT more densely and eliminates the problem.  This led us to propose a modified 

algorithm, which we refer to as the modified dichotomous search.  The new algorithm 

achieves the same performance as the original one without the zero-padding.  It 

consequently is computationally simpler than the original algorithm.  The modified 

estimator simply employs two overlapping intervals at the first iteration, thus allowing 

for the possibility of recovering an incorrect first decision. 

Hybrid estimators that combine the dichotomous search with another estimator in order 

to reduce the computational requirements are given in [85].  We reviewed these 

algorithms and proposed a new hybrid estimator, termed the Guided Search of the 

Periodogram Peak.  The Guided Search combines Quinn’s first algorithm, reviewed in 

chapter 5, with the dichotomous search.  Therefore, it converges to the CRB in four 

iterations without padding the data. 

 

10.1.6 Iterative Interpolation on the Fractional Fourier Coefficients 

The estimators of chapter 5 exhibit their highest estimation variance at their fixed point, 

that is, at the centre of the bin.  Thus their performances deteriorate when they are 

implemented iteratively.  In chapter 8 we use Quinn’s first algorithm to illustrate this 

fact.  The estimators proposed in chapter 6, on the other hand, have their lowest 
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variance at their fixed point (they all have the same fixed point, located at the centre of 

the bin).  We showed that their iterative implementations converge, in an almost sure 

sense, to their fixed point.  Thus, their asymptotic variances become uniform over the 

entire bin, converging, almost surely, to 1.0147 times the asymptotic CRB.  The 

theoretical results were all verified using simulations. 

The IFFCI algorithm, obtained from the FFCI estimator, converges to the asymptotic 

CRB in two iterations.  Here convergence to the asymptotic CRB means that the 

residual after the second iteration is of a lower order than the CRB (in mathematical 

terms this implies that the residual is 2
3

No ).  Similarly to the IFFCI algorithm, the 

iterative MOI (IMOI) estimator was shown to converge in two iterations. 

The magnitudes squared interpolation, MSI, algorithm was found in chapter 6 to be 

severely biased close to the edges of the bin.  Its iterative implementation, the IMSI 

algorithm, is shown to be asymptotically unbiased.  The poor performance of the MSI 

algorithm at the edges of the bin, however, slows the convergence of the IMSI 

estimator.  The algorithm takes three iterations for the residual to become of a lower 

order than the CRB.  Its asymptotic variance is again 1.0147 times the asymptotic CRB. 

 

10.1.7 Frequency Assisted Spatial Tracking 

An earth station usually relies on external data from a terrestrial link in order to obtain 

the necessary tracking information.  This data could be in the form of TLEs supplied by 

NASA or GPS data transmitted by the TT&C station.  However, it is desirable for a 

remote area or rapidly deployable earth station to derive its own spatial data to track the 

satellite.  In chapter 9, we proposed the use of the Doppler measurements to derive the 

satellite’s position.  We call this the Frequency Assisted Spatial Tracking or FAST.  

This minimises the earth station’s reliance on external tracking data.  We started the 

chapter by reviewing the literature on the use of frequency information for the 

derivation of positioning information.  We then showed that the satellite position, in the 

two dimensions required for antenna pointing, is uniquely specified by the Doppler shift 

and Doppler rate pair.  We assumed the maximum elevation of the pass is known and 

implemented the FAST concept in the one-dimensional case using a scalar EKF spatial 

tracker.  We proposed the use of the algorithm published by Ali et al, [11], to predict the 
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maximum elevation of the upcoming pass from that of the last observed pass.  Using 

this predicted value, the EKF uses the Doppler shift to track the satellite’s position 

along the expected pass.  We assessed the performance of the maximum elevation 

prediction algorithm and the EKF spatial tracker using simulations.  We found the 

maximum elevation prediction algorithm to have a maximum error of about 0.3º at an 

elevation of 90º.  This is due to the fact that, at this maximum elevation, the satellite’s 

tangential velocity with respect to the earth station is highest.  The corresponding rate of 

change of the elevation is also at its highest value.  This prediction error is a model error 

that cannot be tracked out.  Therefore, its effect was visible in the performance of the 

EKF tracker.  The EKF off-boresight error showed, in the noiseless case, a local peak at 

the maximum elevation point.  We also obtained simulation results of the performance 

of the EKF tracker in the presence of noise.  We assumed an efficient frequency 

estimator is used to derive the Doppler shift measurements at a signal to noise ratio of 0 

dB.  Thus, we added to the Doppler shift measurements a zero mean Gaussian 

distributed frequency error with variance given by the CRB at SNR equal to 0 dB.  The 

central peak disappeared as the modeling error was essentially drowned by the 

measurement noise effect.  We found the EKF performance to be very good and the off-

boresight error to be generally less than 0.1º for elevations above 30º. 

 

10.2 Suggestions for Future Work 

In the light of the research outcomes of the thesis, we present in this section some 

suggestions for future research.  These include the following: 

 

10.2.1 A Study of the Threshold Properties of the Frequency Estimators 

In this work we assumed that the frequency estimators are operating above the threshold 

and we derived their asymptotic variances.  Although their threshold performances are 

primarily dictated by that of the MBS algorithm, they do differ depending on the 

characteristics of each estimator. A detailed study of their threshold behaviour can be 

done and a comparison of the threshold performances of the different estimators made.  

More research into the extension of the threshold is also needed.  This might be 

achieved through pre-processing the data, post-processing the frequency estimates, or 
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by understanding the threshold behaviour of the particular estimator and designing it to 

have better characteristics at low SNR. 

 

10.2.2 Implementation of the Algorithms Recursively 

It may be desirable to implement an algorithm recursively in some frequency tracking 

applications. The new algorithms presented of chapter 8 are suitable for recursive 

implementation.  This would extend the iterative algorithms into a frequency tracking 

form, giving an updated estimate for every new data sample.  The resulting recursive 

estimators would then require memory for N  complex samples.  The new sample is 

added to Fourier coefficients and the oldest data sample subtracted from the coefficients 

and shifted out of memory.  The number of operations per frequency estimate would 

then be reduced.  It is also possible to implement the algorithms using a sliding window 

with overlapping frames. 

 

10.2.3 Extension of the Family of Interpolators on Fractional Fourier 

Coefficients 

In chapter 5 we examined the family of interpolators on Fourier coefficients, including 

three-coefficient and five coefficient interpolators.  As more coefficients are added, the 

performance of the interpolators was found to get closer to the asymptotic CRB.  This is 

due to the fact that more information about the signal is used in the interpolation.  In a 

similar way, the family of interpolators on fractional Fourier coefficients might be 

extended to include algorithms using any number of coefficients. 

 

10.2.4 Rigorous Analysis of the Estimators of Chapter 7 

Zakharov and Tozer, [85, 86], proposed the dichotomous search algorithms and 

evaluated their performances using simulations.  In chapter 7, we reviewed these 

algorithms.  We offered an insight into the necessity of padding the data with zeroes and 

proposed new algorithms that eliminate this need.  However, we only evaluated the 

estimators using simulation.  Further research could be done on the effect of zero-
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padding the data.  This would allow the rigorous analysis of these estimators to be 

carried out. 

 

10.2.5 Strategies for the Doppler Shift Compensation 

In this thesis we dealt with the estimation of the frequency of a sinusoidal signal for the 

purpose of compensating, at the earth station, for the total frequency uncertainty in the 

received signal of a LEO satellite link.  More research is required on the efficient 

application of the frequency measurements to the Doppler pre-compensation of the 

uplink.  As it is desirable to keep the satellite onboard processing to a minimum, the 

uplink Doppler must be pre-corrected at the earth station prior to the transmission or of 

the signal.  The uplink Doppler can be calculated from the downlink Doppler shift.  

However, as the measured frequency shift also includes the LO drift, this would require 

the extraction of the downlink Doppler shift. 

 

10.2.6 Development of a More Accurate Orbital Model 

In chapter 3 we presented an orbital model for low earth orbits that is based on a 

number of simplifying assumptions.  We ignored all second order influences on the 

satellite and assumed the earth to be spherical.  Furthermore, we approximated the 

satellite orbit in the ECEF frame by a great circle arc and the observed angular velocity 

by a constant.  While this is valid in many applications, for instance where the earth 

station antenna has a broad beam width, there are situations where a more accurate 

model is needed.  The first step in improving the model’s performance is to include 

second order effects such as the oblateness of the earth and the atmospheric drag.  The 

oblateness of the earth can be accounted for by transforming the calculated geocentric 

latitude into its geodetic equivalent.  The effect of the atmospheric drag becomes more 

pronounced as the altitude of the orbit decreases.  Research is then needed to 

implementation the FAST concept using the higher accuracy model. 
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10.2.7 Implementation of a Two-dimensional Spatial Tracker 

In chapter 9 we proposed the use of the Doppler information to assist the spatial 

tracking of the satellite.  We assumed the maximum elevation to be predictable by 

propagating the last observed pass.  We implemented a one-dimensional EKF spatial 

tracker that uses the Doppler shift to derive the satellite’s position along the pass.  The 

assumption of a known maximum elevation can, however, be discarded and a two-

dimensional EKF implemented.  The two-dimensional spatial tracker would then use the 

Doppler shift and Doppler rate information to derive the satellite’s position. 

 

10.2.8 Frequency Rate Estimation 

A two dimensional frequency based spatial tracker would require the Doppler shift and 

Doppler rate as inputs.  A limited number of publications on the estimation of the rate of 

change of frequency were found.  Thus, research on the topic of estimation of the rate of 

change of frequency at low SNR is required. 

 

10.3 Conclusion 

In this dissertation we discussed the estimation of the frequency of a sinusoidal signal 

for the Doppler compensation of a LEO satellite link.  We also proposed the use of the 

Doppler shift measurements for the derivation of the spatial tracking information 

required for antenna pointing. 

The frequency estimation strategy we adopted consists of a coarse search followed by a 

fine estimator.  The coarse estimation stage was implemented using the periodogram 

maximiser.  The threshold effect of the periodogram maximiser was studied and an 

approximate expression for the threshold signal to noise ratio derived.  A number of 

new algorithms were proposed for the fine estimation stage.  The theoretical variances 

of the new estimators were derived.  They were shown to have performances that are 

practically on the asymptotic CRB.  The theoretical results were verified by simulations. 

The low earth orbit was also completely characterised.  A simplified orbital model was 

presented.  The resulting orbital equations were used to show that the Doppler shift and 

Doppler rate form a basis for the satellite position in an azimuth-elevation (or X-Y) 



 

 

240 

coordinate system.  This implies that the earth station can derive its own tracking 

information using the frequency measurements obtained from the downlink.  This is 

called the FAST concept.  A maximum elevation prediction algorithm was suggested.  

Finally, the FAST concept was implemented in one dimension using an extended 

Kalman filter. 
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Appendix A. 

 

Spherical Geometry 

 

In this appendix we present some spherical trigonometry results that are necessary for 

the development of the ideas of chapters 3 and 9.  Consider the spherical triangle shown 

below: 

 

 

 

The following Spherical geometry identities hold, [143]: 

 Acbcba cossinsincoscoscos  (A.1) 

 AcbcbaB coscossinsincossincos  (A.2) 

 AbaB sinsinsinsin   (A.3) 

If C is a right angle we get the following identities: 

 bac coscoscos  (A.4) 

 Aca sinsinsin  (A.5) 

 )sin()cos()cos( AbB  (A.6) 

 

A 

B C 

a 

c b 

Figure A1.1 – Spherical triangle geometry 
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Appendix B. 

 

Asymptotic Theory 

 

In this appendix we present some asymptotic theory results that are necessary for the 

derivation of the asymptotic properties of some of the frequency estimators.  Porat, in 

[20], presents a discussion on asymptotic theory in appendix C (pp. 421 – 428).  We 

will, in this appendix, briefly review some asymptotic theory results that are relevant to 

the derivation of the asymptotic properties of the frequency estimators presented in the 

thesis. 

 

B.1 The Notations op and Op 

Let nX  be a sequence of scalar random variables on a probability space { ,A,P}.  For a 

discussion of probability spaces and measures refer to [144] and [145].  The sequence 

nX  is said to converge to zero in probability if 

 0lim ,0 n
n

XP  

Written another way, for all  > 0, and all  > 0, there exists n0 such that 

 0, nnXP n  

Such a sequence is said to be op(1), written as 1pn oX . 

If the sequence converges in probability to a random variable X, defined on the same 

probability space, we say that 1pn oXX . 

The sequence, nX , is said to be bounded in probability if 

 nXPn  ,such that  0 ,0  

This is written as 1pn OX . 
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The notations above can be generalised as follows.  Let na  be a sequence of real 

positive numbers.  The sequence nX  is said to be np ao  if 1p

n

n o
a

X
.  We write 

npn aoX .  Similarly, npn aOX  means that 1p

n

n O
a

X
. 

 

B.2 Properties of op and Op sequences 

Let nX  and nY  be sequences of random variables defined on the same probability space 

{ ,A,P}.  a  is a finite real scalar, that is a .  The following properties hold: 

B.2.1 Lemma 

1. if 1pn oX , then 1pn oaX  

2. if 1pn OX , then 

a. 1pn OXa  

b. 1pn OaX  

3. If 1pn oX  and 1pn oY , then 

a. 1pnn oYX  

b. 1pnn oYX  

4. If 1pn oX  and 1pn OY , then 1pnn oYX  

5. If 1pn OX  and 1pn OY , then 

a. 1pnn OYX  

b. 1pnn OYX  

The proofs of parts 1, 2.a, 2.b, 3.a and 5.a are straightforward.  We will only present 

proofs for 1, and 3.a.  For the proofs of 3.b, 4.b and 5.b refer to ([20], pp. 422). 
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B.2.2 Proof 

1. 1pn oX   0lim ,0 n
n

XP  

Therefore, 

 0lim aaXP n
n

 

Let a1 , we have that 

 0lim ,0 11 n
n

aXP  

and hence 1pn oaX . 

3.a For all 0 , we have 

 

22

inequality gle     trian,

nn

nnnn

YPXP

YXPYXP
 

This is shown in the following way: 

 
22 nnnn YPXPYXP  

Hence 

 
22

11 nnnn YPXPYXP  

Therefore 

 

22

2222

2
1

2
11

nn

nnnn

nnnn

YPXP

YPXPYPXP

YPXPYXP

 

Taking the limit as n   we get 

 

000

2
lim

2
limlim n

n
n

n
nn

n
YPXPYXP

 

Hence 1pnn oYX . 
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B.2.3 Corollaries 

In the following na  and nb  are deterministic, real, sequences. 

1. If npn aoX  and npn boY , then nnpnn baoYX  

2. If npn aOX  and npn boY , then nnpnn baoYX  

3. If npn aOX  and npn aOY , then nnpnn baOYX  

4. If npn aOX  and npn aOY , and nn ba  then npnn aOYX  

5. If npn aoX  then 
m
np

m

n aoX  

6. If npn aOX  then 
m
np

m

n aOX  

 

B.3 Convergent and Bounded Deterministic Sequences 

We say that a deterministic sequence, nx , converges to zero if 

 0lim n
n

x  

In other words, for all 0  and 0 , there exists 0n  such that 

 0, nnxn  

and we write 1oxn . 

For a number x , 1oxxn  means that nx  converges to x  as n  tends to . 

For a deterministic real sequence na , nn aox  means that 1o
a

x

n

n . 

A sequence, nx , is bounded from above if for all n , there exists x  such that 

 xxn
n1

max  

We write that 1un Ox . 

A sequence, nx , is bounded from below if for all n , there exists x  such that 
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 xxn
n1

min  

We write that 1Ln Ox . 

A sequence that is bounded from above and below is said to be bounded and is denoted 

by 1O .  We have that, 

 xxOx n
n

n
1

max)1(  

nn aOx  means that 1O
a

x

n

n . 

 

B.4 Properties of Convergent and Bounded Sequences 

For the sequences nx  and ny , and scalar a  such that a , the following properties 

hold: 

 

B.4.1 Lemma 

1. if 1oxn , then 1oaxn  

2. if 1Oxn , then 

a. 1Oxa n  

b. 1Oaxn  

3. If 1oxn  and 1oyn , then 

a. 1oyx nn  

b. 1oyx nn  

4. If 1oxn  and 1Oyn , then 1oyx nn  

5. If 1Oxn  and 1Oyn , then 

a. 1Oyx nn  
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b. 1Oyx nn  

The proofs of parts 1, 2.a, 2.b, 3.a and 5.a are analogous to those of the po  and pO  

sequences.  We will therefore only present proofs for 1, and 3.a.  For the proofs of 3.b, 

4.b and 5.b refer to ([20], pp. 422). 

 

B.4.2 Proof 

1. 1oxn   0lim n
n

x  

Therefore, 

 0limlim n
n

n
n

xaax  

Hence 1oaxn . 

3.a 1oxn   0lim n
n

x  

and 

1oyn   0lim n
n

y  

Therefore 

0

limlimlim n
n

n
n

nn
n

yxyx
 

and 1oyx nn  

3.b 1oxn   0lim n
n

x  

and 

1oyn   0lim n
n

y  

Therefore 

0

limlimlim n
n

n
n

nn
n

yxyx
 

And consequently 1oyx nn . 
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B.4.3 Corollaries 

In the following na  and nb  are deterministic, real, sequences. 

1. If nn aox  and nn boy , then nnnn baoyx  

2. If nn aOx  and nn boy , then nnnn baoyx  

3. If nn aOx  and nn bOy , then nnnn baOyx  

4. If nn aOx  and nn bOy , and nn ba  then nnn aOyx  

5. If nn aox  then 
m
n

m

n aox  

6. If nn aOx  then 
m
n

m

n aOx  
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Appendix C. 

 

Fourier Coefficients of AWGN 

 

C.1 Properties of AWGN Fourier Coefficients 

Let kw , 10 Nk , be zero-mean complex additive white Gaussian noise 

(AWGN) with variance 2 .  The real and imaginary parts of kw  are also independent 

and identically distributed (i.i.d.) with mean zero and variance equal to 
2

2
.  The 

samples, w(k), then, satisfy 

 0kwE  (C.1) 

and 

 2
,lklwkwE  (C.2) 

where the ( )* indicates the complex conjugate of ( ) and lk ,  is the kronecker delta 

defined as 

 
otherwise,0

,1
,

lk
lk  

The properties of the Fourier coefficients of AWGN have been discussed quite 

extensively in the literature, [115] and [21], and the material here is included for the 

reader’s convenience and for the sake of completeness.  The Fourier coefficients of the 

noise are given by 

 
1

0

21 N

k

N
knj

ekw
N

nW  (C.3) 

As the Fourier transformation is a linear one, the resulting Fourier coefficients are zero-

mean AWGN with variance 
N

2
.  In fact we have 
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and 

 

otherwise
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2
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0

ln
21

0
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(C.5) 

It is also well known, [115] pp.101 – 103, that the magnitude and phase are independent 

and follow Rayleigh and uniform distributions respectively.  That is, writing nW  as 

 nj
neRnW  (C.6) 

The distributions of R  and  are given by 

 0            ,)(
2

2

2
2

re
Nr

rp

Nr

R  (C.7) 

and 

 -         ,
2

1
p  (C.8) 

The mean and variance for the Rayleigh distributed random variable shown in equation 

(C.7) are, [115]: 

 
N

R
2

 (C.9) 

and 
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N

RVar
2

42  (C.10) 

For the expectation of a non-negative random variable R  and 0 , the following 

inequality holds, [144], 

 RERP
1

 

Substituting the expression for the expectation, we obtain 

 
2

1

N
RP  (C.11) 

From (C.11) we see that for any 0  and 0 , if we choose 0N  such that 

 
22

2

0
2

N  

we obtain 

 0        , NNRP  

Hence by the definition of 1po  random sequences in B.1, we see that 

 1poR  (C.12) 

In fact it was shown in [19] (also see chapter 2, section 2.2) that 

 NNOR p ln2
1

 

 

C.2 Fractional Fourier Coefficients of AWGN 

In the previous section we considered the standard Fourier coefficients of Additive 

White Gaussian Noise.  This is sufficient in the majority of cases.  However, in some 

cases, we might require to work with “Fractional Fourier Coefficients”, that is Fourier 

coefficients obtained at non-integer indices.  In this section we examine the properties 

of such coefficients as pnW  for 
2

1p  with a particular emphasis on the special 

case 
2

1p . 
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The fractional Fourier coefficients of the AWGN samples are given by 

 
1

0

21 N

k

N
pnk

j
ekw

N
pnW  (C.13) 

As the Fourier transformation is a linear one, we expect that the resulting Fourier 

coefficients are Gaussian with mean 0.  In fact the mean of the pnW  is 
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N
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 (C.14) 

While the general form of the covariance is given by 

1
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1

1
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 (C.15) 

In this thesis we are primarily concerned with the case where 
2

1p , therefore we 

will use the term fractional Fourier coefficients to refer to 
2

1
nW .  The elements of 

the covariance matrix, therefore, simplify to 

 

otherwise

qnpmif
NqnWpmWE

,0

 ,
2

 (C.16) 

We observe that like the standard Fourier coefficients, the fractional Fourier coefficients 

are independent.  That is expected as the fractional Fourier coefficients can also be 

obtained by shifting the signal by a frequency equal to half a bin prior to the FFT.  As 

the shift is a linear operation which does not affect the statistical properties of the noise 
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samples, we expect the FFT coefficients of the shifted signal to have the same statistical 

properties as the original signal.  In fact, we find that any two Fourier coefficients that 

are separated by an integer multiple of 
N

f s  are independent and identically distributed.  

It is only when any two Fourier coefficients are separated by a non-integer multiple of 

N
f s  that they become correlated.  Also note that, like the standard coefficients, the 

fractional Fourier coefficients are NNOp ln2
1

. 

 

C.3 Fourier Coefficients of Signal plus Noise 

In the following we will look at the properties of the Fourier coefficients of a sinusoidal 

signal plus noise.  Consider the signal kx , given by 

 kwkskx  (C.17) 

where ks  is the sinusoidal signal 

 sf
f

kj

Aeks
2

 (C.18) 

with f  being the signal frequency, sf  the sampling frequency and  the signal phase. 

By the linearity property of the Fourier transform, the Fourier coefficients are of x  are 

the sum of those of s  and w .  That is, 

 nWnSnX  (C.19) 

If the signal frequency lies on a bin centre, that is, the signal frequency is equal to 

N
mfs , where m is an integer, then the Fourier Transform of the signal is given by 

 
otherwise

mnAe
nS

j

,0

,
 (C.20) 

Thus, equation (C.20) implies that, for mn , nX  is Rayleigh distributed as shown in 

equation (C.7).  mX , on the other hand, follows the Ricean distribution shown below, 
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 0            ,)(
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R  (C.21) 

where xI0  is the modified Bessel function of the second kind, given by, [143], 
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For the general case, all of the nX  follow a Ricean distribution with A  replaced by 

nSBn  in (C.21).  Let 
N

fm
f s , then nS  can be expressed as 
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 (C.22) 

Thus, nB  is given by 

 

nm
N

N

A
Bn

sin

sin
 (C.23) 

The resulting Ricean distribution is 

 0            ,)(
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