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ABSTRACT Frequency estimation of undersampled waveforms receives increasing attention in

communication, radar signal processing, instrumentation and measurements, and so on. However, due to

the lack of recognizing the correct remainder between two side spectra, the existing Chinese Remainder

Theorem (CRT)-based frequency estimators can hardly deal with real-valued signals. To achieve this

goal, this paper proposes an estimator combining spectrum correction (aiming to enhance reconstruction

accuracy by incorporating the fractional parts of DFT remainders), closed-form CRT, and a remainder

sifting approach. Based on the detection of an undersampled waveform’s zero crossing point, this solution

can pick out the correct remainder between two side spectra, which ensures that the CRT achieves a valid

reconstruction. Comparedwith the existingMaroosi-Bizaki estimator, the proposedmethod not only enlarges

the upper bound of frequency recovery but also possesses higher reconstruction accuracy (the relative error

is less than 0.002%) with lower consumption of computational complexity. The numerical results verify the

superior performances of our estimator.

INDEX TERMS Frequency estimation, real-valued undersampled waveforms, remainder sifting, spectrum

correction.

I. INTRODUCTION

Frequency estimation of a high-frequency sinusoidal wave-

form is widely encountered in mobile communication, instru-

mentation and measurements, spectrum sensing in cognitive

radio etc. However, when the signal frequency reaches a high

degree, limited by the contradiction between the Nyquist

sampling rate and the hardware-realizable ADC (Analog to

Digital Converter), both the power consumption and the hard-

ware cost get increasingly large. In some particular circum-

stances (such as the sampling rate fs > 109 samples/s),

it is even unrealizable. For example, the received signals in

the velocity synthetic aperture radar [1] may be of under-

sampled nature. Accordingly, frequency estimation has to

be implemented in undersampled condition rather than in

Nyquist sampling condition. In addition, the problem of
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phase unwrapping, involved in radar signal processing and

sensor networks [2], [3], is essentially a particular case of

undersampled measurement, also. To emphasize, in these

measurements, undersampling from real waveforms is pre-

ferred to complex ones due to hardware source limitation.

Hence, it is urgent to develop an approach to achieve fre-

quency estimation from undersampled real-valued samples.

Maroosi and Bizaki proposed a searching-matching based

frequency estimator [4], [5] for undersampled real-valued

waveforms, in which the frequency estimate is determined

by applying the the minimax-distance criterion (see [4]) to

find out an optimal remainder combination among a pre-set

searching space. Nevertheless, this space consists of all the

direct remainders and their derived eligible remainders (i.e.,

plus integers times of the corresponding undersampling rate)

and thus it is very large, which renders heavy searching

complexity to this estimator. Moreover, as [4] pointed out,

the upper bound of realizable frequency estimator of this
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estimator is a bit low. Besides, Huang and Zhang [6] derived

a three sub-Nyquist channels based estimator. However,

the upper bound of realizable frequency is not sufficiently

high and its fundamental is on basis of the complex signal

model rather than the real-valued model.

Chinese Remainder Theorem (CRT) is another efficient

approach to estimate frequencies of undersampled wave-

forms. Specifically, given L moduli M1, . . . ,ML , CRT can

recover an integer number f from L remainders r1, . . . , rL ,

ri ≡ f mod Mi, i = 1, . . . ,L, (1)

where ‘f ’ stands for the high frequency to be measured,

M1, . . . ,ML refer to the moduli (correspond to sub-Nyquist

sampling rates [7]) and r1, .., rL represent the remainders of

L moduli M1, . . . ,ML (thus 0 ≤ ri < Mi). Hence, the con-

ventional CRT has been applied in co-prime spectrum sensing

(see [8], [9] for details) to explore the spectral characteristic

of undersampled waveforms. However, this estimator suffers

from large latency [8], [10] and high complexity.

In recent years, a lot of improved algorithms [11]–[13],

have been developed to reduce CRT’s complexity and

improve CRT’s robustness. Up to now, the state-of-the-art

CRT algorithms (the closed-form CRT in [14]–[17]) can

bypass the conventional CRT’s searching operation and they

also possess a higher reconstruction accuracy, which greatly

enhances CRT-based estimators’ practicability.

However, there are two improvable points for these

improved CRT estimators.

On one hand, these estimators can only handle under-

sampled complex exponential signals, and they will fall into

failure when dealing with real-valued sinusoidal waveforms.

This arises from the fact that, for each channel, CRT only

requires a single DFT remainder. Nevertheless, a real-valued

signal has two side spectra which provide two candidates

of DFT remainder. Accordingly, L channels of real-valued

waveforms generate 2L remainders. Hence, the core problem

is to sift L remainders from these 2L remainders.

On the other hand, these estimators only consider those

frequencies whose fractional parts of DFT remainders equal

zero (like [11] does) or ignore the fractional parts of DFT

remainders (for example, the fractional part εi of a DFT

remainder is discarded in [18]), which inevitably degrades the

accuracy of frequency estimation.

To solve these two problems, this paper proposes an

improved CRT-based estimator, which can sift the desired

remainders from the DFT spectra of real-valued signals

through combining spectrum correction with phase match-

ing, rendering our estimator with the ability of dealing with

real-valued sinusoidal waveforms. Due to the considera-

tion of detecting an undersampled waveform’s zero crossing

point (not required by the determination algorithm addressed

in [4]), the recoverable frequency can reach the same upper

bound as the determination case of complex exponential

waveforms.

With the above techniques incorporated, the proposed esti-

mator not only acquires a larger reconstruction range than the

estimators proposed in [4], [5], and [6], but also improves the

reconstruction accuracy and widens the application range of

the existing CRT-based estimators.

The remainder of this work is structured as follows:

firstly, we build up a CRT-based estimator model for the fre-

quency estimation of undersampled real-valued waveforms.

Secondly, details on how to sift the desired DFT remain-

ders by means of spectrum correction and remainder sifting

are addressed. Thirdly, numerical results are presented and

finally conclusions are drawn.

II. CRT-BASED ESTIMATION MODEL OF REAL-VALUED

WAVEFORMS

A. SIGNAL MODEL

Consider a high-frequency sinusoidal signal x(t) formulated

as

x(t) = a cos(2π ft + θ0), (2)

where a, θ0 and f are the amplitude, initial phase and the

frequency to be determined, respectively. Suppose that L

undersampling rates fs1, . . . , fsL are specified as

fsi = NŴi, i = 1, · · · ,L, (3)

where the gcd (great common divisor) of any pair Ŵi and Ŵj
for i 6= j is 1 [19] and thus N exactly equals the gcd of the

integer group Ŵ1, · · · , ŴL . Note that, the channel number L

is an integer not smaller than 1 (i.e., L ∈ {2, 3, 4, . . . .} ).

Accordingly, the i-th undersampled sequence xi(m), i =

1, · · · ,L, is

xi(m) = a cos(2π f0/fsim+ θ0), m = 0, · · · ,N − 1. (4)

Hence, the individual frequency fi of xi(m) can be written

as

fi =
f0

fsi
= ni +

ki

N
+

δi

N
, 1 ≤ i ≤ L (5)

where ni is the unknown folding integer, ki refers to the index

of the peak DFT bin and δi is a fractional frequency offset,

i.e.,

ki ∈ {0, 1, . . . ,N − 1}, |δi| ≤ 0.5. (6)

Therefore, (5) can be converted into a simultaneous con-

gruence equation as






















f0 = n1fs1 + (k1 + δ1)fs1/N

f0 = n2fs2 + (k2 + δ2)fs2/N
...

f0 = nL fsL + (kL + δL)fsL/N .

(7)

Eq. (7) shows that, frequency estimation in (5) is equivalent

to CRT reconstruction, in which fs1, . . . , fsL refer to moduli

and the second terms on the right hand side of (7) refer to

remainders r1, . . . , rL , i.e.,

ri =
(ki + δi)

N
· fsi, 1 ≤ i ≤ L. (8)
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FIGURE 1. 3 kinds of sampling structures (Ŵ1 = 3, Ŵ2 = 4, L = 2). (a) Case of Nyquist sampling. (b) Case of
conventional coprime undersampling. (c) Case of proposed coprime undersampling (N = 4).

In fact, the fractional part δi in ri was ignored by the

existing estimators in [7], [11], [12], and [3], [18], [19],

thereby inevitably degrading the reconstruction accuracy.

Also, these estimators only address the frequency estimation

of undersampled complex exponential signals and do not take

real-valued sinusoidal signals into account.

B. SAMPLING STRUCTURE AND RECONSTRUCTION

RANGE

In terms of (2)-(4), the sampling structure of the proposed

estimator is illustrated in Fig. 1(c). Besides, the sampling

structures for the case of Nyquist sampling and the conven-

tional coprime sampling are also plotted in Fig. 1(a), (b),

respectively.

As Fig. 1 (b) depicts, the sampling intervals at two under-

sampling channels are Ŵ1, Ŵ2, whereas the sampling intervals

of the sampling structure in Fig. 1 (c) are NŴ1, NŴ2. There-

fore, this sampling structure exhibits a much more sparse

distribution.

On the contrary, for estimators with distinct sampling

structures, if their ADC sampling rates are at the same amount

level, the proposed estimator surely acquires a higher recon-

struction range. As [19] proved out, the upper bound fmax of

CRT reconstruction with the sampling structure in Fig. 1 (c) is

the least common multiple of all moduli, i.e.,

fmax = N

L
∏

i=1

Ŵi. (9)

Specifically, for the case L = 3, our proposed estimator’s

upper bound fmax = NŴ1Ŵ2Ŵ3, compared to that fmax only

equals Ŵ1Ŵ2Ŵ3 for the estimator in [6].

III. THE PROPOSED ESTIMATOR

A. PRINCIPLE OF IDEAL PHASE RECOVERY USING

SPECTRUM CORRECTION

Combining (4) with (5), one can further rewrite the under-

sampled sequence xi(m) as

xi(m) = a cos[2π (ni + (ki + δi)/N )m+ θ0]

=
a

2
[ejωimejθ0 + e−jωime−jθ0 ]

=
a

2
[ejωimejθ0 + ej(2π−ωi)me−jθ0 ],

ωi = (ki + δi)2π/N , 1 ≤ i ≤ L. (10)

Eq (10) shows that, for a real-valued sinusoidal signal

x(t), each undersampled version xi(m) contains two conjugate

components. Their frequencies are complement (ωi and 2π −

ωi) and their phases are opposite (θ0 and −θ0). In particular,

only the componentωi rather than its complement component

2π − ωi provides the true DFT remainder. As a result, for

a single channel, there exists an ambiguity in distinguishing

the true remainder component ωi from the fake component

2π − ωi.

Further, this ambiguity gets more complex among multiple

undersampling channels. Particularly, for the i-th channel,

if ki < N/2, then, ωi is located at the left half-spectrum and

2π − ωi falls at the right half-spectrum. On the contrary, if

N/2 + 1 ≤ ki ≤ N − 1, then ωi is located at the right
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half-spectrum and 2π − ωi falls at the left half-spectrum.

Hence, for two different channels i1, i2 (i1 6= i2), it is very

likely that their DFT remainder components ωi1 and ωi2 fall

at two distinct half-spectra, respectively. Only when all the

true components ω1, · · · , ωL are correctly recognized (i.e.,

the fake components 2π − ω1, · · · , 2π − ωL are discarded)

can the subsequent CRT achieve frequency estimation for

real-valued waveforms.

It can be inferred from (10) that, for any channel, whether

the true remainder component ωi is located within the left

half-spectrum or the right half-spectrum, its phase value the-

oretically equal θ0. In other words, practically, this expected

component ωi can be recognized by identifying whether its

detection phase approximates the ideal value θ0 or not.

However, due to a nonzero frequency offset δi, the DFT

detection phase always deviates from the ideal value θ0. To

explain this, we can deduce the DTFT result Xi(jω) of xi(m)

in (10) as

Xi(jω) =
a

2

{

sin [(ω − ωi)N/2]

sin [(ω − ωi)/2]
e
j
[

θ0−
N−1
2 (ω−ωi)

]

+
sin [(ω + ωi)N/2]

sin [(ω + ωi)/2]
e
j
[

−θ0−
N−1
2 (ω+ωi)

]}

. (11)

Since the DFT result Xi(k) is no more than the equi-spaced

sampled version of DTFT, i.e.,

Xi(k) = Xi(jω)
∣

∣

ω=k2π/N , k = 0, · · · ,N − 1. (12)

Therefore, substituting (11) and ωi = (ki+δi)2π/N into (12)

yields

Xi(k)=
a

2

{

sin [π (k − ki − δi)]

sin [π (k − ki − δi)/N ]
e
j
[

θ0−
π (N−1)

N (k−ki−δi)
]

+
sin [π (k + ki + δi)]

sin [π (k + ki + δi)/N ]
e
j
[

−θ0−
π (N−1)

N (k+ki+δi)
]}

.

(13)

Recall that the peak DFT bins of two half-spectra are

respectively at k = ki and k = N −ki. Either Xi(ki) or Xi(N −

ki) consists of two terms sampled from the well-known func-

tion sin(πx)/sin(πx/N ). What’s more, one term is sampled

within the mainlobe interval (−1, 1), whereas the other term

is sampled outside this interval. Since sin(πx)/sin(πx/N )

tends to be 0 when x gets farther away from the main-

lobe interval (−1, 1), the interference between these two

half-spectra can be ignored. Thus, one can approximately

deduce Xi(ki) and Xi(N − ki) as

Xi(ki) ≈
a

2
·

sin(δiπ )

sin(δiπ/N )
ej[θ0+δi(N−1)π/N ],

Xi(N − ki) ≈
a

2
·

sin(δiπ )

sin(δiπ/N )
ej[−θ0−δi(N−1)π/N ]. (14)

Hence, the observation phases of Xi(ki) and Xi(N − ki) are

approximately denoted as

φ(ki) ≈ θ0 + δi(N − 1)π/N ,

φ(N − ki) ≈ −θ0 − δi(N − 1)π/N . (15)

FIGURE 2. Samples triggered with the initial phase π/2 at an individual
channel.

Eq (15) shows that, the ideal phase θ0 (or its opposite ver-

sion) can be recovered from two peak DFT bins’ observation

phases φ(ki) and φ(N − ki), i.e.,

θ̂0 ≈ φ(ki) − δi(N − 1)π/N ,

−θ̂0 ≈ φ(N − ki) + δi(N − 1)π/N . (16)

From (16), one can find that, for the purpose of recovering

the ideal phase, the unknown frequency offset δi needs to

be estimated. This can be realized by some frequency cor-

rectors (such as Quinn corrector [20], Candan corrector [21],

phase-difference corrector [22] etc.). For example, if the

remainder component is determined at k = ki, then the

Candan corrector provides the estimate of δi as

δ̂i =
tan(π/N )

π/N
· Real

{

Xi(ki − 1) − X (ki + 1)

2Xi(ki) − Xi(ki − 1) − Xi(ki + 1)

}

.

(17)

The problem lies in identifying whether k = ki falls in the

left half-spectrum or in the right half-spectrum. The following

method of remainder sifting can achieve this task.

B. REMAINDER SIFTING APPROACH

In fact, the initial phase θ0 in (2) is practically easy to be

determined by circuit detection. As Fig. 2 depicts, if we

employ a triggering circuit to detect the zero crossing point

‘O’ (exactly passing from positive to negative) of the orig-

inal analog waveform x(t) and then simultaneously start

the subsequent undersampling operations of all L chan-

nels. Therefore, for any channel, its undersampled sequence

acquires an initial phase θ0 = π/2. Then, remainder sift-

ing can be realized by the following procedure of phase

matching.

Firstly, for the i-th channel, use a spectrum corrector on

the left-half-spectrum peak DFT bin Xi(ki,L) to generate the

estimate δ̂i of the frequency offset. In terms of (16), two

corrected phases ϕ̂i,L , ϕ̂i,R can be calculated as

ϕ̂i,L = φi,ki,L − (N − 1)/N · δ̂i · π. (18)
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ϕ̂i,R = φi,ki,R + (N − 1)/N · δ̂i · π. (19)

Secondly, matching the corrected phases ϕ̂i,L , ϕ̂i,R with the

known triggering phase θ0 to make a decision of ki between

ki,L and ki,R as

k̂i =

{

ki,L , if
∣

∣ϕ̂i,L − θ0
∣

∣ <
∣

∣ϕ̂i,R − θ0
∣

∣

ki,R, else.
(20)

Thirdly, the remainder of the i-th channel is estimated as

r̂i =

{

(k̂i + δ̂i) · fsi/N , if k̂i = k i,L

(k̂i − δ̂i) · fsi/N , if k̂i = k i,R.
(21)

C. SUMMARY OF THE PROPOSED ESTIMATOR

To help readers comprehend the proposed estimator, we inte-

grate the spectrum corrector, the technique of phase match-

ing and the closed-form CRT into a summarized procedure,

which consists of the following stages.

Stage 1 Use L ADCs with undersampling rates fs1, . . . , fsL
to discretize the original waveform x(t) at the initial

phase triggered by a down zero-crossing point (i.e.,

θ0 = 90◦).

Stage 2 Implement N -point DFT on all undersampled

sequences {x1(m)} ∼ {xL(m)} and obtain their DFT

spectra {X1(k)}, . . . , {XL(k)}.

Stage 3 Search out the left-half-spectrum peak index ki,L
and the right-half-spectrum peak index ki,R of Xi(k).

Record their phase observations φi,ki,L and φi,ki,R ,

i = 1, · · · ,L.

Stage 4 Employ a frequency corrector to estimate the fre-

quency offset δ̂i and use (18), (19) to calculate two

corrected phases ϕ̂i,L , ϕ̂i,R. Then, use (20) and (21)

to determine the screened peak index k̂i and the

remainder r̂i.

Stage 5 Substitute the moduli fs1, . . . , fsL , the remain-

ders r̂1, . . . , r̂L into the closed-form robust CRT

addressed in [19] to obtain the final frequency esti-

mate f̂ .

The closed-form CRT involved in Step 5 consists of the

following steps:

Step 1 Use the remainders r̂1, . . . , r̂L to calculate L − 1

difference remainders q̂i,1 as

q̂i,1 =

[

r̂i − r̂1

N

]

, 2 ≤ i ≤ L. (22)

Step 2 Calculate the remainder of q̂i,1Ŵ̄i,1 modulo Ŵi:

ξ̂i,1 = q̂i,1Ŵ̄i,1Ŵi, 2 ≤ i ≤ L. (23)

where Ŵ̄i,1 is the modular multiplicative inverse ofŴ1

modulo Ŵi and can be calculated in advance.

Step 3 Calculate the folding integer n̂1 as

n̂1 =

L
∑

i=2

ξ̂i,1bi,1
γ1

Ŵi
γ1. (24)

where bi,1 is the modular multiplicative inverse of

γ1/Ŵi modulo Ŵi (γ1 = Ŵ2Ŵ3 · · · ŴL).

Step 4 Calculate the other L − 1 folding integers n̂i:

n̂i =
n̂1Ŵ1 − q̂i,1

Ŵi
, 2 ≤ i ≤ L. (25)

Step 5 Calculate the i-th frequency estimate f̂0,i

f̂0,i = n̂ifsi + r̂i, 1 ≤ i ≤ L. (26)

Step 6 Averaging f̂0,1, . . . , f̂0,L yields the final estimate f̂

f̂ =
1

L

L
∑

i=1

f̂0,i. (27)

Now we present an example to explain the above 5 stages

of frequency retrieval.

Example 1:Consider an analog signal x(t) = 2 cos(2π f0t+

π/2), f0 = 748.8Hz. Suppose that x(t) is parallelly dis-

cretized by L = 3 ADCs with sub-Nyquist sampling rates

fs1 = 128Hz, fs2 = 192Hz, fs3 = 320Hz. Hence, the greatest

common divisor N = gcd{fs1, fs2, fs3} = 64.

Stage 1:Use 3 ADCs with the undersampling rates 128Hz,

192Hz and 320 Hz to discretize x(t) at the initial phase

triggered by a down zero-crossing point (i.e., θ0 = 90◦).

Stage 2: Implement 64-point DFT on 3 undersampled

sequences to acquire 3 paths of DFT spectra, whose mag-

nitude spectra |X1(k)|, |X2(k)|, |X3(k)| and phase spectra

φ1(k), φ2(k), φ1(k) are plotted in Fig. 3. It can be seen that,

severe spectral leakage occurs in each DFT spectrum.

Stage 3: From Fig. 3, one can find that the peak indices

ki,L , ki,R of |X1(k)|, . . . , |X3(k)| are {10, 54}, {6, 58} and

{22, 42}, respectively. Moreover, as Table 1 lists, their

phase observations φi,ki,L , φi,ki,R are {−161.30◦, 161.30◦},

{−17.27◦, 17.27◦} and {47.08◦, −47.08◦}, which heavily

deviate from two ideal phases 90◦ or −90◦.

Stage 4: In terms of the Candan formula (17), one can

calculate 3 frequency offset estimates δ̂1 = −0.4010,

δ̂2 = 0.4021, δ̂3 = −0.2400, as Table 1 lists. Sub-

stituting δ̂1, δ̂2, δ̂3 and aforementioned phase observations

into (18) yields the following corrected phases ϕ̂i,k values:

{−90.25◦, 90.25◦}, {−88.52◦, 88.52◦}, {89.60◦, −89.60◦}.

Then, in terms of (20), matching the above corrected phases

with the known triggering phase θ0 = 90◦, one can deduce

that the true DFT remainder bins are at k̂1 = 54, k̂2 = 58,

k̂3 = 22. Further, substituting k̂1, k̂2, k̂3, δ̂1, δ̂2, δ̂3 into (21)

yields the remainder estimates r̂1 = 108.8020, r̂2 =

172.7936, r̂3 = 108.8002.

Stage 5: Substituting the moduli fs1, fs2, fs3, the remainders

r̂1, r̂2, r̂3 into the aforementioned 5 steps of the closed-form

robust CRT, one can calculate the final frequency esti-

mate f̂ = 748.7986Hz (compared to the true value f0 =

748.80Hz), as Table 1 lists.

D. DISTINCTIONS BETWEEN THE PROPOSED ESTIMATOR

AND THE MAROOSI-BIZAKI ESTIMATOR

As mentioned before, the frequency recovery of undersam-

pled real-valued sinusoidal signals was first solved by the
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FIGURE 3. Magnitude and phase spectra plot. (a) Channel 1 (with the sampling rate fs1).
(b) Channel 2 (with the sampling rate fs2). (c) Channel 3 (with the sampling rate fs3).

TABLE 1. Observed peak phases and corrected peak phases of two side spectra.

Maroosi-Bizaki estimator in [4]. The distinctions between

this estimator and our proposed estimator are as the follows.

1) The Maroosi-Bizaki estimator can directly recover the

frequency using multiple undersampled sequences without

any extra hardware circuit, while our proposed estimator

needs a simple circuit to detect the zero crossing point of the

input analog signal. Hence, the proposed scheme obviously

depends on the detection accuracy of the crossing point ‘‘O’’.

2) As [4] pointed out, compared to the determination

case of complex exponential waveforms, the Maroosi-Bizaki

estimator is at the cost of lowering the upper bound for

unambiguous frequency detection. In contrast, by means of

zero-crossing detection and remainder sifting, our proposed

estimator actually transforms the frequency determination

for a real-valued sinusoidal signal into that for a complex

exponential signal. Hence, our estimator shares the same

upper bound of frequency recovery (calculated by (9), i.e., the

least common multiple of all moduli) with the estimators

in [11] and [19]. Specifically, for the 3 undersampling rates

fs1 = 128Hz, fs2 = 192Hz, fs3 = 320Hz in Example 1, one

can calculate the upper bounds of frequency recovery for the

Maroosi-Bizaki estimator (see [4]) and the proposed estima-

tor as 352Hz, 1920Hz, respectively. As a result, the frequency

f0 = 748.8Hz cannot be recovered by the Maroosi-Bizaki

estimator since it exceeds the upper bound 352Hz.

3) The complexity of the proposed estimator is lower than

the Maroosi-Bizaki estimator and the estimator in [6], since

the former can acquire a closed-form solution following the

aforementioned procedure, in which no searching operations

are involved. In contrast, the estimators proposed in [4]–[6]

cannot work in a closed-form way and their solutions are

acquired through searching out the optimal case among quan-

tities of remainder combinations.

IV. NUMERICAL RESULTS

This section aims to investigate the root-mean-square

error (RMSE) of the proposed frequency estimator under

different SNR (signal-to-noise ratio) levels, and compare it

with the Maroosi-Bizaki estimator.

Example 2: In this example, the comparison between

our proposed estimator and the Maroosi-Bizaki estima-

tor is presented. Consider a real-valued analog signal

VOLUME 7, 2019 25985
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FIGURE 4. RMSE curves of the proposed estimator and the Maroosi-Bizaki estimator.

x(t) = cos(2π f0t + π/2), f0 = 193000Hz. Specify the

DFT size N = 800. Moreover, these two estimators share

L = 3 common undersampling rates as fs1 = 18400Hz,

fs2 = 19200Hz, fs3 = 20000Hz. Hence, our proposed

estimator’s co-prime integer set {Ŵ1, Ŵ2, Ŵ3} = {23, 24, 25}

(since Ŵi = fsi/N , i = 1, · · · ,L).

In terms of (9), the upper bound of frequency recovery

equals NŴ1Ŵ2Ŵ3 = 11040000Hz, whereas the upper bounds

of the Maroosi-Bizaki estimator (calculated by (3) in [4])

and the three-channel estimator (calculated by Ŵ1Ŵ2Ŵ3,

as [6] proved) are 230800Hz and 13800Hz, respectively.

Thus, the original signal’s frequency f0 = 193000Hz

can be retrieved by both the proposed estimator and

Maroosi-Bizaki estimator. However, it cannot be recovered

by the three-channel estimator in [6], since f0 exceeds its

upper bound 13800Hz and this estimator is on basis of the

complex-valued model rather than the real-valued model.

To compare these two estimators’ noise robustness and

accuracy, a SNR range varying from −20dB to 50dB was

taken into account. In each SNR case, 1000Monte Carlo trials

were conducted. Fig. 4 illustrates their RMSE curves.

From Fig. 4, the following 2 conclusions can be drawn:

1) In the low SNR region, the Maroosi-Bizaki estima-

tor outperforms our proposed estimator in the noise robust-

ness, since their anti-noise SNR thresholds are −10dB,

−8dB, respectively. This is because, for our estimator, the

zero-crossing moment detected by the triggering circuit tends

to be sensitive to heavy noise, which does not exist in the

Maroosi-Bizaki estimator.

2) In the high SNR region, the RMSEs of Maroosi-Bizaki

estimator are slightly greater than our proposed estimator,

demonstrating that the adoption of CRT and spectrum cor-

rection tends to yield a high recovery accuracy.

Example 3: This example aims to investigate our proposed

estimator’s accuracy when f0 is greater than the upper bound

of Maroosi-Bizaki estimator. Consider a real-valued analog

signal x(t) = 2 cos(2π f0t+π/2), f0 = 5990.4Hz. Specify the

DFT size N = 512, the co-prime integer set {Ŵ1, Ŵ2, Ŵ3} =

{2, 3, 5} and thus the sampling rates of the L = 3 ADCs

are fs1 = 1024Hz, fs2 = 1536Hz, fs3 = 2560Hz (since

N = gcd{fs1, · · · , fsL} = 512). Clearly, the original fre-

quency f0 = 5990.4 Hz exceeds the upper bound of both

the Maroosi-Bizaki estimator (i.e., 2816Hz calculated by (3)

in [4]) and the upper bound of the three-channel estimator

in [6] (i.e., Ŵ1Ŵ2Ŵ3 = 30Hz).

Note that, since the estimators addressed in [7], [11], [12],

and [3], [18], [19] can only deal with complex-valued signals,

it is impossible to compare them with the proposed estimator

in this case of real-valued signals.

To investigate the proposed estimator’s robustness to

noises, a SNR range varying from −15dB to 20dB was

taken into account. In each SNR case, 1000 Monte Carlo

trials were conducted. The RMSE curve is illustrated

in Fig. 5.

From Fig. 5, we can draw that the proposed estimator

also possesses high accuracy. Specifically, in any SNR region

above the threshold, the RMSE is less than 0.1Hz, i.e., the

relative error is smaller than 0.002% since the true frequency

is 5990.4Hz.

The high accuracy lies in 3 reasons: Firstly, the proposed

remainder sifting approach makes the CRT-based estimator

feasible to deal with real-valued signals; Secondly, as [16]

and [19] pointed out, the closed-form CRT itself does not

generate additional reconstruction error; Lastly, the Candan

spectrum corrector can provide a high-accuracy estimate of

the frequency offset.
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FIGURE 5. RMSE curve of the proposed estimator (Candan corrector is incorporated).

In addition, the evaluation of an estimator’s accuracy is

based on the comparison between the estimation error vari-

ance with the Cramer-Rao lower bound (CRB). As far as

the frequency estimation is concerned, D.C.Rife provided

a well-known CRB analytic expression in [23], which only

applies for the single-path Nyquist sampling case. As to the

CRB for the undersampling case across multiple channels,

many researchers recently put forward different opinions

(see [24]–[27]). However, up to now, they have not come to a

unified conclusion. As a result, the deduction of an analytic

CRB expression for multiple-channel undersampling case is

still an open topic.

V. CONCLUSIONS

This paper proposed a novel frequency estimator for under-

sampled real-valued sinusoidal waveforms, which widens

the application range of the existing CRT-based frequency

estimators. Due to the incorporation of Closed-form CRT,

spectrum correction and crossing point circuit triggering,

our proposed estimator concurrently possesses the merits

of large frequency recovery range, low computational com-

plexity, and high accuracy. Therefore, The proposed esti-

mator is hopeful to be applied to those fields involving the

frequency estimation of undersampled waveforms such as

mobile communication, spectrum sensing in cognitive radio

etc.

The future work focuses on two aspects: 1) Make endeavor

to deal with a real-valued undersampledwaveform containing

multiple components [28]–[30], which requiresmore creative

work on remainder sifting, remainder paring, remainder clas-

sification etc. 2) Efforts should also be made to improve the

accuracy at the low SNR region, which seems to a bit inferior

to the Maroosi-Bizaki estimator.
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