
Frequency-Hiding Order-Preserving Encryption

Florian Kerschbaum
SAP

Karlsruhe, Germany
florian.kerschbaum@sap.com

ABSTRACT

Order-preserving encryption allows encrypting data, while
still enabling efficient range queries on the encrypted data.
This makes its performance and functionality very suitable
for data outsourcing in cloud computing scenarios, but the
security of order-preserving is still debatable. We present
a scheme that achieves a strictly stronger notion of security
than any other scheme so far. The basic idea is to randomize
the ciphertexts to hide the frequency of plaintexts. Still, the
client storage size remains small, in our experiments up to
1/15 of the plaintext size. As a result, one can more securely
outsource large data sets, since we can also show that our
security increases with larger data sets.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls; H.2.0 [Database Management]:
General—Security, integrity, and protection

Keywords

Order-Preserving Encryption; Randomization; Indistinguisha-
bility

1. INTRODUCTION
Order-preserving encryption [5, 9, 10, 23, 30, 34] is a pop-

ular tool to encrypt data before outsourcing it. It allows to
perform efficient range queries on the encrypted data. This
makes it very suitable for achieving security and privacy in
cloud computing.

The security of order-preserving encryption is still much
debated. In their extended formal analysis [10] of their first
scheme [9] Boldyreva et al. write that their work should
not be interpreted as saying their scheme is “secure” or “in-
secure”. Yet, we can make some observations about the
security of order-preserving encryption. When encrypting
only one plaintext order-preserving encryption can be per-
fectly secure (e.g. [23]) against a ciphertext-only attack, but
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when more plaintexts are encrypted (deterministic) order-
preserving grows less secure. In any (deterministic) order-
preserving encryption scheme the availability of ciphertexts
for all (distinct) plaintexts lead to a simple attack. The
sorted ciphertexts are mapped one-to-one to the sorted plain-
texts.

This type of attack seems hard to prevent, since it is en-
abled by the ordering information implicit in the type of
encryption. Furthermore, the ordering information is neces-
sary for efficient search. This presents a problem for prac-
titioners, since it is often hard to predict the final size of a
data set and the number of distinct plaintexts and therefore
there is no lower bound on the security of the encryption. In
other cases it is known that all plaintexts in the domain will
be encrypted and hence (deterministic) order-preserving is
pointless.

In this paper we discuss a new option for increasing the
security of order-preserving encryption: randomizing the ci-
phertexts. Our scheme is a new trade-off. We clearly in-
crease security while preserving the functionality for most
queries relying on the ordering information. However, we
also increase client storage size and introduce a small error
in some queries.

We proceed as follows. First, we present a new definition
of security of order-preserving encryption: indistinguisha-
bility under frequency-analyzing ordered chosen plaintext at-
tack. As we show in Section 7.2 the security captured in this
definition is likely to increase when the data set size increases
instead of decreasing. Our security notion is strictly stronger
than indistinguishability under ordered chosen plaintext at-
tack [9].

Second, we present a scheme that implements our secu-
rity notion in Section 5 and prove it secure in Section 7.1.
The basic idea is to randomize ciphertexts, such that no fre-
quency information from repeated ciphertexts leaks. Note
that randomized order-preserving encryption should still pre-
serve the order of the plaintexts and hence any definition
(and scheme) must take this information into account.

Third, we significantly reduce the client storage size by
only approximating the security notion. This final scheme
– we call imperfect frequency-hiding – has stronger security
than any scheme before this paper, but also very accept-
able client storage requirements. The ciphertexts in this
scheme approximate a uniform distribution and hence im-
prove against frequency-analyzing attacks. Furthermore, it
is still indistinguishable under ordered chosen plaintext at-
tack and the client storage size in our experiments was less
than 0.1% of the database size.



We call an encryption scheme mutable, if its ciphertexts
can or must be changed after initial encryption. Any scheme
secure in our notion must be stateful and mutable. Consider
the simplest order-preserving encryption scheme, namely the
order itself as the ciphertexts, i.e. the plaintexts 5, 12, 7 are
encrypted as 1, 3, 2. Given these ciphertexts and a new
plaintext 8, the ciphertext 3 of plaintext 12 needs to be
updated. Popa et al. [30] have shown that such updates are
unavoidable for any scheme with polynomial ciphertext size
secure against ordered chosen plaintext attacks.

With these kind of novel trade-offs – security under an in-
creasing data set size, limited client storage cost and preser-
vation of most order-based queries – we present a new option
to the cloud security practitioner. Order-preserving encryp-
tion can be more trusted and yet remain practical. We sum-
marize our contributions as follows.

• A definition of a new, stronger security notion for order-
preserving encryption than indistinguishability under
chosen plaintext attack.

• A scheme implementing this notion including compres-
sion mechanisms.

• An evaluation of security and client storage cost of this
new scheme.

The remainder of the paper is structured as follows. In
Section 2 we review related work, before we describe the
problem in detail in Section 3. We define the security in Sec-
tion 4 and explain our algorithms in Section 5. We present
the final, practical scheme in Section 6. In Section 7 we
summarize the results of evaluation – including the security
proof – and present our conclusions in Section 8.

2. RELATED WORK

2.1 Order-Preserving Encryption Schemes

OPE scheme IND-OCPA secure frequency-hiding

[5] No No
[9] No No
[10] No No
[34] No No
[30] Yes No
[23] Yes No
[17] No Maybe
[35] No Maybe
Section 5 Yes Yes
Section 6 Yes Imperfect

Table 1: Overview of order-preserving encryption
(OPE) scheme

Order-preserving encryption has been invented in the database
community [5]. Agrawal et al. developed the first order-
preserving encryption scheme. They assume that the distri-
bution of the plaintexts is known. They then modify this
distribution to match a fixed or randomly chosen distribu-
tion. While this also appears to be (somewhat) frequency-
hiding it provides no formal security guarantees. We show
that we can provably hide the information about the plain-
text distribution.

The first formal security guarantee of order-preserving en-
cryption has been provided by the cryptography commu-
nity [9]. Boldyreva et al. introduce the notion of indistin-
guishability under ordered chosen plaintext attack. They
also prove that no stateless scheme can achieve this notion
and settle for an encryption scheme with the weaker secu-
rity of a random order-preserving function. This scheme
requires only storing a key on the client. Later they show
that a random order-preserving function also achieves the
security property of window one-wayness [10]. Furthermore,
they give a scheme that achieves IND-OCPA security, but
requires all plaintexts to be known in advance. Of course,
if all plaintexts are known in advances, their order can be
determined.

Teranishi et al. [34] present another order-preserving en-
cryption scheme that is stateless, i.e. only requires storing a
key on the client. Their idea is to introduce random large
gaps in the ciphertexts and can show that their scheme us-
ing this technique can achieve a stronger notion than ran-
dom order-preserving functions of partial-plaintext indis-
tinguishability. Still, since they are stateless, they cannot
achieve IND-OCPA security.

The first IND-OCPA secure order-preserving encryption
scheme has been presented by Popa et al. [30]. Their scheme
is stateful and requires storing information on an OPE server
that we assume is ideally placed at the client site. They run
a multi-round protocol which makes their scheme very in-
efficient due to the network delay. The size of the stored
information is linear in the number of distinct plaintexts.
Furthermore, their scheme is mutable, i.e. they need to up-
date the order (and hence half of the ciphertexts), on almost
any encryption operation. This has performance implica-
tions on the database server (operated in the cloud).

Kerschbaum and Schröpfer [23] provide the first efficient
IND-OCPA secure order-preserving encryption scheme. They
remove the need for a separate server, but also store infor-
mation linear in the number of distinct plaintexts. Further-
more, they are able to reduce the probability of mutation to
be negligible in n and reduce the number of rounds in the
protocol between client and server to be constant instead
of logarithmic in the number of distinct plaintexts. Their
scheme has constant encryption cost in the average case.

So far, all mentioned order-preserving encryption schemes
have been deterministic. Hildenbrand et al. [17] provide the
first order-preserving encryption scheme which introduces
some randomization. They divide the plaintext domain into
disjoint sets and encrypt each set order-preservingly, but un-
der a different key. They provide no formal security analysis,
yet, since their scheme is stateless, it cannot even be IND-
OCPA secure. We also note that their scheme has significant
implications on the necessary rewriting of range queries on
encrypted data. Wozniak et al. also add more randomization
to a stateless order-preserving encryption scheme, but pro-
vide no security guarantee beyond random order-preserving
functions [35].

Table 1 presents an overview of the discussed order-preserving
encryption schemes. There is also a large number of other
order-preserving encryption schemes [4, 19, 20, 24, 25, 26,
28, 38] which provide no formal, but rather ad-hoc secu-
rity analysis, including the original proposal by Agrawal et
al. [5]. Xiao et al. [37] define a notion based on nearby val-
ues, but it remains unclear how to enforce this in a practical
setting.



2.2 Applications
Order-preserving encryption has many applications. Most

notably database-as-a-service (DAS) [5, 15, 16, 31]. In DAS
the database is outsourced to the cloud and values stored
are encrypted before sent to the cloud. The database then
performs its queries over encrypted data. Order-preserv-
ing encryption enables to perform range queries over an en-
crypted database without any changes to the database man-
agement system. CryptDB [31] has put forth the notion
of adjustable encryption for databases which wraps around
order-preserving encryption. Besides databases order-preserving
encryption has many applications in general cloud software-
as-a-service and web applications, e.g., business software and
e-mail [1, 2].

2.3 Related Cryptographic Schemes
Order-preserving encryption is a special case of property-

preserving encryption [6, 29]. Due to its applications to sort-
ing and searching the order is a particularly useful property
to preserve.

Searches on encrypted data can also be performed using
other cryptographic schemes using modified, usually encryption-
scheme specific search algorithms. Such cryptographic schemes
are searchable, functional and homomorphic encryption.

Searchable encryption [33] achieves a stronger notion of
security than order-preserving encryption. Searchable en-
cryption for range queries has been presented in [12, 27, 32].
It uses a token of range boundaries generated by the secret
key to match ciphertexts which are within the range of this
token. Without the token ciphertexts are indistinguishable
under chosen plaintext attack. Yet, searchable encryption
schemes require a linear scan of the data, unless additional
indexing information is provided. Lu [27] presents a search-
able encryption scheme for ranges with logarithmic time-
complexity, but its indexing information makes it as vul-
nerable as order-preserving encryption, since the proposed
sorted tree reveals the order of all elements.

Searchable encryption is a special case of functional en-
cryption. Functional encryption allows the evaluation of any
function on a set of ciphertexts, such that the result of the
function is revealed. Recently, functional encryption has
been designed for general functions [14]. Specific functions,
such as the inner product, have been proposed before [21].
Functional encryption can also reveal only the order while
else remaining semantically secure [11].

Searching can also be implemented using homomorphic
encryption where the search result remains unknown to the
service provider. This implies if the result size is unbounded,
the entire database needs to be transferred for any query.
Fully homomorphic encryption [13] enables arbitrary search
functions.

3. PROBLEM
Our scheme targets an outsourced, property-preserving

encrypted database as an application. Consider the follow-
ing example of this scenario: A owner of population data
stored in a database encrypts his data using order-preserving
encryption [5, 9, 10, 23, 30, 34] before outsourcing it to the
cloud. The database can have the fields “first name”, “last
name”, “birthday” and “gender” (and many more). When
he wants to perform a range query, he sends the encrypted
boundaries for the search term to the cloud service provider.

The service provider performs a regular range query as he
would on plaintext data using the encrypted boundaries,
since the order of the plaintexts is preserved in the cipher-
texts. The result is the set of encrypted data values in the
queried range.

The performance and implementation flexibility advan-
tages of order-preserving encryption are clear. In order for
the server to perform a range query on a set of ciphertexts
the client sends the ciphertexts for upper and lower bound
of the range to the client. Range query on the server is
then very efficient and can be performed in the same way
as on plaintexts. All ciphertexts included in the range of
the encrypted bounds correspond to plaintexts that are in
the range. Furthermore, the server can optimize the query
using all data structures for plaintext range queries. Hence
such queries can, for example, be effortlessly integrated into
existing database management systems [5, 31].

The original order-preserving encryption proposal [5] was
designed for this scenario, but its security – and its security
definition – leaves a lot to be desired. Obviously order-
preserving encryption cannot be as strong as standard en-
cryption, since by its definition information about the order
is revealed. Some security researchers [10, 34] have shown
that this ordering information also necessarily implies par-
tial information about the distance of two plaintexts. Other
security researchers [36] have argued that at least half of the
bits leak. A complete characterization of the cryptanalytic
implications of ordering information is still lacking.

If we consider the described outsourced database, i.e. struc-
tured data, another security problem of order-preserving en-
cryption becomes apparent. In this case, each column of
a database table is encrypted separately. For example, in
a typical database table about people we would find fields
such as first and last name, birthdate, gender, etc. – each
encrypted with its own key. This allows queries on each
individual field, e.g. all men born on the 4th of July.

Yet, in most of those fields inputs are not distributed uni-
formly. The last name Smith is certainly more common in
the United States than Huxtable. This information about
frequencies of inputs can be used in cryptanalysis of any
database table encrypted with order-preserving encryption.
In fact, Islam et al. [18] have shown that even partial fre-
quency information – as it is the case in searchable encryp-
tion – can be used to decrypt entries with high probability.
For many fields in a typical database information about the
frequency distribution is readily available, e.g. many web
sites list the most common first and last names per region.

The problem can be even more severe. In many fields
we have many more database rows than values in the plain-
text domain, i.e. it is likely that all plaintexts are encrypted
at least once. In this case, the security of order-preserving
encryption (up to this paper) breaks down. The ordered ci-
phertexts can simply be matched to the ordered plaintexts.
Consider, for example, the field “gender”. It is unlikely that
many database tables about people contain only men or
women. Any order-preserving encryption would hence re-
veal the gender, since lexicographically “female”< “male”.1

In this paper we address this problem. We present an
order-preserving encryption scheme that is randomized. Re-
peated plaintexts will (or can) become different ciphertexts.
We define a much stronger notion of security for our scheme

1One could, of course, also sort in the reverse lexicographical
order and have “male”< “female”.



than deterministic (order-preserving) encryption that im-
plies hiding the frequency of any plaintext and no previous
scheme can achieve it. We give a proof of security in this
model and also show that our scheme has practical impli-
cations on the security of order-preserving encryption. Our
scheme could be the first to thwart attacks as outlined above
and still enable efficient range query as on plaintext data.

Consider the following example. When encrypting a database
consisting of two women and two men, the gender attribute
will be encrypted as 1, 2, 3, 4. The first two (1, 2) are cipher-
texts for female and the second two (3, 4) are ciphertexts
for male. The search can still be performed by the server
on the encrypted data. When we search for all women, we
search for the range [1, 2], i.e. from the minimum cipher-
text of the search term to the maximum ciphertext of the
search term. When we search for the range [female,male],
we search for the range [1, 4], i.e. from the minimum cipher-
text of the lower bound to the maximum ciphertext of the
upper bound.

As any order-preserving encryption scheme secure against
ordered chosen plaintext attack we are stateful. Since the
entropy of randomized ciphertexts is much higher than those
of deterministic ciphertexts it is not surprising that in our
randomized order-preserving encryption scheme we need to
store much more state, i.e. much more information on the
client. In fact, it is a major challenge to design a scheme
with our security guarantees that does not imply storing all
plaintexts on the client. We employ a number of data com-
pression techniques described in Section 5.2 that reduce the
amount of information stored on the client. We achieve a
data compression of roughly a ratio of 15 for realistic data
sets. These type of compression techniques make our scheme
somewhat practical while still improving the security of ci-
phertexts. Furthermore, we present a fully practical trade-
off that is less secure (imperfect), but can easily achieve
compression ratios of several thousands. We consider this
the final scheme to be applied.

4. DEFINITIONS
A (stateful) order-preserving encryption scheme ΠFHOPE

consists of the following three algorithms:

• S ← KeyGen(λ): Generates a secret state S accord-
ing to the security parameter λ.

• S′, y ← Encrypt(S, x): Computes a ciphertext y for
plaintext x and updates the state from S to S′.

• x ← Decrypt(S, y): Computes the plaintext x for
ciphertext y based on state S.

We call the encryption scheme correct ifDecrypt(Encrypt(S,
x)) = x for any valid state S and x. We call it order-
preserving if the order is preserved, i.e. yi ≥ yj =⇒ xi ≥ xj

for any i and j.
We now need to define the security guarantees of our

frequency-hiding order-preserving encryption scheme, i.e. why
it is frequency-hiding. We start with the definition of indis-
tinguishability under ordered chosen plaintext attack (IND-
OCPA) from [9]. IND-OCPA is – so far – the strongest
definition of security of order-preserving encryption. It is
achieved by the encryption schemes of [23, 30].

IND-OCPA security is defined by a game between a chal-
lenger and an adversary. The adversary prepares two se-
quences of plaintexts where both sequences have the same

order and each plaintext is distinct within its sequence. He
sends those two sequences to the challenger. The challenger
encrypts one sequence and sends the ciphertexts to the ad-
versary who guesses which of the two sequences it is.

A simple idea to extend the definition of IND-OCPA to
randomized ciphertexts would be to lift the restriction of dis-
tinction of plaintexts. Yet, this is insufficient as the following
example shows. In case of two distinct plaintexts (male and
female), the only sequences with different frequencies that
need to be indistinguishable are those that consists of only
one plaintext. All other sequences of the same order have
the same frequencies of plaintexts and hence this frequency
information may leak from the ciphertexts, since it is present
in both plaintext sequences.

Still, the random choices of the encryption algorithm can-
not be completely independent of the sequence of the plain-
texts (as it is the case for indistinguishability under chosen
plaintext attack for non-order-preserving encryption), since
the order of the plaintext sequences needs to be preserved.
We therefore first define a randomized order. Loosely speak-
ing, a randomized order is a permutation of the numbers
1, 2, . . . , n, which is ordered according to X and ties are
broken randomly.

Definition 1. Let n be the number of not necessarily dis-
tinct plaintexts in sequence X = x1, x2, . . . , xn (∀i.xi ∈ N).
A randomized order Γ = γ1, γ2, . . . , γn (∀i.1 ≤ γi ≤ n,
∀i, j.i 6= j ⇒ γi 6= γj) of sequence X it holds that

∀i, j.xi > xj =⇒ γi > γj

and

∀i, j.γi > γj =⇒ xi ≥ xj

Consider the following example. Let the plaintext se-
quence be X = 1, 2, 2, 3. Possible randomized orders are
Γ1 = 1, 3, 2, 4 and Γ2 = 1, 2, 3, 4. There are many plain-
text sequences with randomized order Γ1 not all of which
have the same plaintext frequencies. Examples with any fre-
quency of 1 are X ′

1 = 2, 2, 2, 3, X ′

2 = 1, 2, 1, 3, X ′

3 = 1, 1, 1, 3
or X ′

4 = 1, 1, 1, 1. There are many more.
The goal of our security definition is that the ciphertexts

only leak the randomized order of the plaintexts, i.e. two
sequences with the same randomized order – but different
plaintext frequencies – should be indistinguishable. Note
that the randomized order does not contain any frequency
information, since each value always occurs exactly once.
We define the following security game GameFAOCPA(λ):

1. The adversary chooses two sequences X0 and X1 of n
not necessarily distinct plaintexts, such that they have
at least one common randomized order Γ.2 He sends
them to the challenger.

2. The challenger flips an unbiased coin c ∈ {0, 1}, ex-
ecutes the key generation KeyGen(λ), and encrypts
Xc as Y , i.e. Si, yi ←Encrypt(Si−1, xi). He sends
the ciphertexts Y to the adversary.

3. The adversary outputs a guess c⋆ of c, i.e. which of the
two sequences it is.

2Multiple common randomized orders are possible and al-
lowed.



We can now define security against frequency-analyzing
ordered chosen-plaintext attack.

Definition 2. We say a (stateful) order-preserving en-
cryption scheme ΠFHOPE is IND-FAOCPA secure against
frequency-analyzing ordered chosen plaintext attack if the ad-
versary A’s advantage of outputting c in GameFAOCPA(λ)
is negligible in λ, i.e.

Pr[A(GameFAOCPA(λ)) = c] <
1

2
+

1

poly(λ)

IND-FAOCPA security is strictly stronger than IND-OCPA
security, since the randomized order of distinct plaintexts is
equal to its order. Hence IND-FAOCPA implies IND-OCPA,
but IND-OCPA does not imply IND-FAOCPA, since as ar-
gued before the frequency of repeated plaintexts may leak,
which may be used for (simple) cryptanalysis. After de-
scribing the algorithms implementing our frequency-hiding
order-preserving encryption scheme we give a proof of secu-
rity in the IND-FAOCPA model in Section 7.1.

4.1 Performing Queries on Randomized Or-
der

The rewriting strategy for queries on a randomized order
is somewhat different than on a deterministic order. We
present an informal discussion. When querying for equal-
ity, e.g. with a WHERE name = ’Alice’ clause, the query is
translated into a range query. Let minC(x) be the mini-
mal ciphertext in numerical order for a plaintext x. Sim-
ilarly, let maxC(x) be its maximal ciphertext. The query
clause then becomes WHERE name >= minC(’Alice’) AND

name <= maxC(’Alice’).
For range queries a similar transformation can be applied.

The query clause WHERE wage >= 10 and wage < 20 be-
comes WHERE wage >= minC(10) and wage < minC(20).

More difficult are queries with comparison of database val-
ues (as opposed to constants). The problem arises, since
a randomized order mixes the results of greater-than (>)
and greater-or-equal (>=) comparisons and we cannot apply
the minC and maxC operators on the database. Consider
the following the query clause WHERE wage > (SELECT wage

WHERE name = ’Alice’) which selects all employees with a
wage greater than Alice’s. Naively executing this query on a
randomized order may introduce some additional employees
which have the same salary as Alice. In this case, it can be
solved by executing the sub-select first, applying the maxC

operator on the client and then executing the query. An
automated rewriting algorithm for such queries is presented
in [22]. For a few, rare queries this download to the client
can imply a significant overhead.

5. ALGORITHMS
We initially proceed as the deterministic order-preserving

encryption scheme of [23] and insert plaintexts into a sorted
binary tree in the order they are encrypted. Differently from
their scheme in our algorithm the data structure on the client
side is very important. We begin to describe the algorithm
using a binary search tree with dynamically allocated leaves
and pointers. Later we describe how we compress the tree
in order to save space compared to storing all plaintexts on
the client.

It is important to note that although our tree is dynamic,
there is a threshold depth beyond which we need to rebal-

ance. This threshold depth is determined by the ciphertext
length and may be exceeded in rare cases of ordering of plain-
texts to encrypt. The scheme in [23] contains a proof that
the probability of exceeding this ciphertext length is negligi-
ble in case of uniformly distributed input. Their Theorem 6
also holds for our encryption scheme.

We begin by encrypting each plaintext as the mean value
of the ciphertexts for the next plaintext just smaller and
greater. We insert this plaintext, ciphertext pair in our bi-
nary search tree. We then handle plaintexts that have al-
ready been encrypted differently. In this case, i.e. when
inserted plaintext and to be encrypted plaintext are equal,
we traverse the tree in a randomly chosen fashion and insert
the new plaintext as a leaf. We first define the basic data
structure of the tree in Algorithm 1.

We fix the following parameters for all of our algorithms:
Let n be the number of not necessarily distinct plaintexts
to be inserted. Let N be the number of distinct plaintexts.
Hence the bitlength is k = ⌈log

2
N⌉ in Algorithm 1. Let λ

be the security parameter and the expansion factor of the
ciphertext. Hence l = λk in Algorithm 1. The security
parameter can also be used to determine the length of the
seed for pseudo-randomness, although this seed should be
much (but polynomial) longer than the expansion factor.

Algorithm 1 Tree Structure Tree

struct Tree {

Tree left;

Tree right;

bitstring<k> plain;

bitstring<l> cipher;

}

We now proceed for encryption as in randomized Algo-
rithm 2. We denote the binary search tree – the state – as
a set T of nodes {t} and do not list it as a separate input.
Furthermore we add inputs t for the current node and min
and max for the lower and upper limit in order to enable
recursion.

Initially the function is called with the plaintext x to be
encrypted, the root of the tree T , min = −1 and max =
2λlog2n. We create a new root, if none exists. If n is un-
known, it needs to be estimated. We denote this initial call
as Encrypt(x) leaving out the state S from our definition
of a frequency-hiding order-preserving encryption scheme
ΠFHOPE. Recall that according to [23] the probability of
rebalancing is negligible in n for uniform inputs, if λ > 6.4.
Furthermore, Kerschbaum and Schröpfer have shown that
for real-world, non-uniform inputs smaller λ are likely to
suffice [23].

An example of encryption is the plaintext sequence X =
1, 2, 1, 3 with min = −1 and max = 128. Then the first
two plaintexts are deterministically y1 = 64 and y2 = 96,
respectively. The ciphertext for the third plaintext x3 = 1
is randomized, since it is a repeated plaintext. It could be
either y3 = 32 or y3 = 80 depending on the random coin.
The fourth ciphertext is deterministic y3 = 112.

The function RandomCoin draws uniformly distributed
random coins from a keyed pseudo-random function. We
now describe the decryption algorithm in the simplified data
structure in Algorithm 3. The idea is to simply traverse
the tree and find the matching ciphertext. We will later



Algorithm 2 Encryption Encrypt

Input: x, t, min, max

Output: y

State: Sorted binary tree T of nodes {t}
Initialization: T is empty

1. If x = t.plain, then coin =RandomCoin() ∈ {0, 1},
else coin = ⊥

2. If x > t.plain or coin = 1, then

3a. If t.right 6=null, then

4. Return Encrypt(x, t.right, t.cipher,max)

3b. Else

5. If max − t.cipher < 2, then return
Rebalance(x,−1, n)

6. Insert t.right = new

Tree
(

x, t.cipher +
⌈

max−t.cipher

2

⌉)

and return
t.right.cipher.

3c. EndIf

7. If x < t.plain or coin = 0, then

8a. If t.left 6=null, then

9. Return Encrypt(x, t.left,min, t.cipher)

8b. Else

10. If t.cipher − min < 2, then return
Rebalance(x,−1, 2λlog2n)

11. Insert t.left = Tree(x,min+
⌈

t.cipher−min

2

⌉

and
return t.left.cipher.

8c. EndIf

describe how to compress the data structure, such that not
all encrypted plaintexts have to be stored on the client. We
add the recursion input t in Algorithm 3 compared to our
formal definition. A decryption call Decrypt(x) forwards
to Decrypt(x, root(T )).

Algorithm 3 Decryption Decrypt

Input: y, t

Output: x

State: Sorted binary tree T of nodes {t}

1. If y > t.cipher, then return Decrypt(y, t.right)

2. If y < t.cipher, then return Decrypt(y, t.left)

3. Return t.plain

Algorithm 4 is an intuitive to understand version of the
rebalancing algorithm and more efficient versions can be en-
gineered if needed.

Algorithm 4 Rebalancing the search tree Rebalance

Input: x, min, max

Output: y

State: Sorted binary tree T of nodes {t}

1. Let X = {t.plain} ∪ {x}

2. Sort X in ascending order

3. Let T = { new Tree(x⌈

|X|
2

⌉, min+
⌈

max−min
2

⌉

)}

4. Let y = T.plain

5. Let X ′ = {xj |xj < y}

6. Let X ′′ = {xj |xj > y}

7. Let y′ =Encrypt(x⌈

|X′|
2

⌉, T0,min,max)

8. Let y′′ =Encrypt(x⌈

|X′′|
2

⌉, T0,min,max)

9. Recursively iterate on line 5 with both y′ and y′′ as y
and X ′ and X ′′ as X, respectively.

10. Find x in T and return Tx.cipher

5.1 Examples
Before describing space-saving measures we give some ex-

amples of trees that can emerge when inserting random
plaintexts. We consider the example of a binary plaintext
domain again, e.g. male and female. We have 4 plaintexts
xi ∈ {0, 1}. We insert the following sequence X = 0, 1, 0, 1.
We set the random coins to the sequence 1, 0. The resulting
sequence of trees is depicted in Figure 1.

Figure 1 is divided into four subfigures numbered 1 to 4.
Each depicts the search tree after inserting one more element
of the sequence with the new node in red. In subfigure 3
we see for the first time a plaintext repeating, but inserted
beneath a parent with a different plaintext. We can trace
the algorithm as follows: When inserting 0 for the second
time, the algorithm encounters a 0 at the root. Due to the
random coins it traverses to the right, where it encounters
a 1 and must make a deterministic choice leading to the
new leaf. In subfigure 4 we see that the next 1 inserted and
plaintext nodes interleaving. In larger plaintext domains
even intermediate elements can be placed at lower nodes.

Of course, repeated plaintexts can also be placed under
parents with the same plaintext. If we insert two more ele-
ments 0, 1 with random coins 0, 1, the search tree will look
as in Figure 2.

5.2 Compression
When storing the plaintexts in this simple tree as de-

scribed we will use more space than when storing only the
plaintexts. We need to accommodate the ciphertext and



Figure 1: Growing Search Tree for Sequence 0, 1, 0, 1

the pointers in the tree. In this section we describe how we
compress the tree.

First, note that the ciphertext does not need to be stored.
It can be computed dynamically as we traverse the tree. We
can already save the space for this field, but we still need to
compress the tree.

We can compress the plaintext using regular dictionary
compression [3, 8, 39] and store repeated values as the index
into the dictionary. This method is very effective in saving
space for column-store databases. Moreover, we can further
compress subtrees of repeated values. As we have seen in
the examples before, repeated plaintexts can have parents
of the same or a different plaintexts. We call subtrees of the
same plaintext clusters.

In a cluster we do not need to store the plaintext for each
node, instead we just store it once in the root of the clus-

Figure 2: Possible Search Tree for Sequence
0, 1, 0, 1, 0, 1

ter. While suppressing a field in a structure is supported
in polymorphic object-oriented languages using inheritance
we compress the tree even further. Instead of storing the
tree structure we only store its traversal thereby compress-
ing the size of the pointers. Let the size of the cluster be
M . First we traverse the tree in post-order traversal order
and assign the nodes the numbers from 1 to M in ascend-
ing order, i.e. the post-order traversal is now 1, 2, 3, . . .. We
then traverse the tree in in-order traversal order and record
the post-order-traversal numbers. As an example, a sim-
ple binary tree with one root and two leaves then becomes
1, 3, 2.

We only store this traversal sequence. Every time we en-
counter a cluster we expand it to the full tree before pro-
ceeding in the traversal. This can be done in linear time and
space using the algorithm of Andersson and Carlsson [7]. Af-
ter proceeding to the next node with different plaintext we
destroy the temporarily expanded tree. Hence, we save not
only on the plaintext storage, but also on the pointer infor-
mation in the tree. We only need to store (long) pointers
between nodes of different plaintexts.

We evaluate the effectiveness of our compression in Sec-
tion 7.4.

6. IMPERFECT FREQUENCY-HIDING
So far our scheme achieves IND-FAOCPA security (see

proof in Section 7.1). This has security advantages, but also
implies high storage space requirements at the client. In
some application scenarios lower security and (significantly)
lower space requirements can be desirable. For example, it
is often enough if the distribution of ciphertexts is not per-
fectly hiding, but approaches a known distribution, most no-
tably the uniform distribution. Islam et al. suggest and pos-
itively evaluate against guessing attacks approximating the
expected frequency by a uniform distribution [18]. We can



approximate a uniform distribution – with some repeated
ciphertexts – using our frequency-hiding encryption scheme
and a heuristic pre-filter. This pre-filter hence trades some
security for significant space savings.

The basic idea is as follows: For each distinct plaintext
x ∈ X we maintain the numbers cx of times it has occurred
and the numbers dx of distinct ciphertexts (for this plain-
text) already generated. We check whether a new plaintext
will skew the distribution, such that the number of plain-
texts per ciphertext for this plaintext is off by a factor more
than r from the number of plaintexts per ciphertext for all
plaintexts. If this is the case, we always generate a new ci-
phertext. Otherwise, we flip a biased coin (with probability
p) and decide probabilistically whether to generate a new ci-
phertext. This randomizes the number of times a ciphertext
can be observed at the cloud provider compared to the deter-
ministic, smallest number of plaintexts. If we do not gener-
ate a new ciphertext, we uniformly chose among the already
generated ones. Let C = {cx|x ∈ X} and D = {dx|x ∈ X}
be the set of counters described before. Our pre-filter is pa-
rameterized by r > 1 and 0 ≤ p ≤ 1. The entire filter is
described in Algorithm 5.

Algorithm 5 Filtering for Imperfect Frequency-Hiding

Input: C,D, r, p, x

Output: y

State: T = {tj} in a sorted binary tree

1. Let cx be the number of occurrences of plaintext x.
Let dx be the number of distinct ciphertexts for x.

2. If

cx + 1

dx
> r

∑

j∈X
cj

∑

j∈X
dj

then increment cx, dx and return y = Encrypt(x).

3. Choose a random coin c ∈ {0, 1} with Pr[c = 1] = p.

4. If c = 1, then increment cx, dx and return y =
Encrypt(x).

5. Build set Y = {tj .cipher|tj .plain = x}. Uniformly
select y among Y , increment cx and return y.

The parameter p also balances storage cost and security.
For p = 1 the result of the filtered scheme is the same as
the perfectly frequency-hiding order-preserving encryption
scheme. For p = 0 and a uniform distribution of plaintexts
the filtered scheme grows near the deterministic encryption
of [23]. Nevertheless, for skewed plaintext distributions (and
finite r) it approximates a uniform distribution and is hence
more secure.

It is noteworthy that this filtered scheme is still IND-
OCPA secure in the worst case and hence more secure than
many other order-preserving encryption schemes. Still, it is
not secure against frequency-analyzing ordered chosen plain-
text attack, since some plaintext repetitions leak (and hence
some frequency information leaks).

We evaluate the effectiveness of this security-reducing com-
pression also in Section 7.4.

7. EVALUATION
We implemented our frequency-hiding order-preserving en-

cryption scheme in Java 1.7. We run in the 64-Bit Hotspot
Server VM on an Intel Core i5-4300 CPU with 1.9-2.5GHz
and 16GB RAM.

7.1 Security Proof
We give a proof of security against frequency-analyzing

ordered chosen plaintext attack of our encryption scheme
of Section 5. We prove by constructing a simulator of the
encryption that produces identical outputs for each of the
two challenge sequences. Hence, the computational indis-
tinguishability stems from implementing the random source
as a pseudo-random function and not any other hardness
assumption. Note that our scheme also trivially fulfills the
notion of same-time security defined in [30] when ciphertexts
are never deleted from the state, but only from the database.

Theorem 3. Our encryption scheme is secure against frequency-
analyzing ordered chosen plaintext attack.

Proof. Our simulator proceeds as follows. The adver-
sary sends the two plaintext sequences X0 and X1 of length
n. The simulator needs to randomly select a randomized
order common to X0 and X1 from the set of all common
randomized orders. It does this using Algorithm 6.

Algorithm 6 Selecting A Randomized Order

Input: X0, X1, s.t. |X0| = |X1| = n

Output: Γ

1. Sort X0 and X1 in ascending order into Z0 and Z1,
respectively.

2. Build a list W of triples 〈z0,i, z1,i, i〉.

3a. For each pair x0,j , x1,j for 1 ≤ j ≤ n do

4. Build set U = {i|〈z0,i, z1,i, i〉 ∈ W ∧ z0,i = x0,j ∧
z1,i = x1,j}.

5. Uniformly select γj in U .

6. Remove 〈x0,j , x1,j , γj〉 from W .

3b. End for each

Theorem 4. Algorithm 6 runs in time O(n2).

Proof. The loop (from line 3a to 3b) iterates n times.
Each operation (lines 4, 5, and 6) takes at most n operations
on the set W or U , respectively. Hence the overall time is
bound by O(n2) operations.

Theorem 4 implies that our simulator is polynomial time
and computational indistinguishability is feasible, even if we
implement the random choices using a pseudo-random func-
tion. Once the randomized order Γ has been selected, the
simulator needs to compute the ciphertexts. It simulates the
RandomCoin function in Algorithm 2 using a simulator of
the random source, i.e. the random source could be replaced
by hash functions (a random oracle).

First, it uniformly random selects plaintext sequence X ∈
{X0, X1}. During encryption, as it store plaintexts in the



state S – the binary search tree T – of the encryption func-
tion, it keeps track of the randomized order values γi. As it
encrypts xi and finally stores xi in T , it also stores γi, i.e. for
each value v in the tree T we also know γv. We denote γi
the randomized order value of the current input plaintext xi

and γv the randomized order value of the current node in
the tree traversal. If during encryption of xi, the simulator
encounters a call to RandomCoin, it calls Algorithm 7 with
γi and γv instead.

Algorithm 7 Programmed Random Oracle for Random-

Coin

Input: γi, γv

Output: 0 or 1

1. If γi > γv, then return 1.

2. Return 0.

Theorem 5. The output of Algorithm 7 in the simulator
is indistinguishable from uniform random coins.

Proof. While the output of Algorithm 7 is deterministic,
the choice of γi and γv is determined by Algorithm 6. Al-
gorithm 6 uniformly selects a randomized order among all
possible randomized orders. Since each randomized order
results in a different binary search tree and each output of
the RandomCoin function also produces a different binary
search tree, the output of Algorithm 7 is indistinguishable
from uniform random coins.

This completes our simulator. The simulator produces
the same output for both sequences, runs in polynomial time
and its random output is indistinguishable from uniform ran-
dom coins. Hence the probability that the adversary wins
GameFAOCPA(λ) against our encryption of Section 5 is neg-
ligible in λ larger than 1

2
.

7.2 Indistinguishable Sequences
We can try to estimate the effectiveness of the two differ-

ent security models – IND-OCPA and IND-FAOCPA – by
estimating the size of the set of indistinguishable plaintext
sequences. Two indistinguishable sequences can be given as
a challenge in the security game and result in an indistin-
guishable ciphertext challenge. Clearly, the larger the set
of sequences indistinguishable from a given one, the more
secure the encryption. Under standard IND-CPA security
any two sequences of plaintexts are indistinguishable.

An IND-OCPA secure scheme may leak the order of the
plaintext sequence. Note that IND-OCPA security is also an
upper bound for weaker order-preserving encryption schemes
such as [9, 34, 35]. We give the number of indistinguishable
sequences in Theorem 6.

Theorem 6. Let D be the number of distinct plaintexts
in the plaintext domain. For any sequence of N distinct
plaintexts there are

(

D

N

)

indistinguishable sequences under
IND-OCPA.

Proof. The order of a sequence of N distinct plaintexts
is a subset of the domain. There are

(

D

N

)

possible subsets
and hence as many indistinguishable sequences.

An IND-FAOCPA secure scheme leaks the randomized or-
der of the plaintext sequence. Hence, an indistinguishable
sequence must have at least one common randomized order.
Different sequences may have different numbers of indistin-
guishable sequences. Consider encrypting two distinct plain-
texts 0 and 1 (“female” and“male”). The sequence X0 = 0, 0
has 4 indistinguishable sequences (including itself), but the
sequenceX1 = 0, 1 has only 3. Consequently, we can only es-
timate the expected number of indistinguishable sequences.
We give a lower bound of the expected number of indistin-
guishable sequences in Theorem 7.

Theorem 7. Let D be the number of distinct plaintexts
in the plaintext domain. For a uniformly chosen plaintext
sequence of size n with N distinct plaintexts there are at

least N (D − 1)
n

N indistinguishable sequences expected.

Proof. For any set X̃ of unique plaintext xwe can flatten
the sub-sequence xi < x to 1 and the sub-sequence xj > x to
D. Then there are D− 1 additional choices for any element
(without counting doubles) and an expected number of n

N

such elements. The order of choices within its repetitions
is independent, since all are from the same plaintext and

there N such sets X̃ . Hence there are at least N (D − 1)
n

N

expected indistinguishable sequences.

We emphasize that the expected number of distinct plain-
texts is E[N ] = D

(

1−
(

D−1

D

)n)

. This number approaches
D as n grows. Hence the number of indistinguishable se-
quences under IND-OCPA approaches 1 as n grows. To the
contrary either n

N
or N (N ≤ n) approaches infinity as n

grows and consequently the number of indistinguishable se-
quences under IND-FAOCPA also approaches infinity as n
grows.

We conclude that the encryption secure against IND-FAOCPA
remains secure (even increases security) for long sequences
whereas the security of encryption secure against (only) IND-
OCPA deteriorates. Hence, the encryption of long (and
growing) sequences of plaintexts is clearly more secure under
an IND-FAOCPA secure scheme than under a scheme that
is only IND-OCPA secure. This applies to any deterministic
order-preserving encryption scheme, since all grow to only
one indistinguishable sequence – the plaintext domain.

7.3 Statistical Security
Each order-preserving encryption scheme – deterministic

or randomized – can be described as a monotonically in-
creasing function. Hence a simple statistical cryptanalysis
technique is to model the encryption as a linear function.
Given two plaintext, ciphertext pairs the parameters of this
function can be estimated.

We can estimate the effectiveness of this attack by mea-
suring the correlation between the ciphertext and plaintext.
For a set of plaintext, ciphertext pairs we compute the Pear-
son correlation coefficient r. The Pearson correlation coeffi-
cient measures a linear relation between two sets of random
variables.

We encrypt n = 16384 (possibly repeated) plaintexts inde-
pendently uniformly chosen from a set of N ∈ {64, 256, 1024,
4096, 16384, 65536} distinct plaintexts. We set the cipher-
text space to 60 bits.3 We make 100 experimental runs and

3As expected with 60 bits ciphertext space in none of our
experimental runs we had to rebalance the search tree.



Figure 3: Pearson correlation coefficient over the
number of different plaintexts in the domain

compute the correlation coefficient r.t’ We also compute the
90% confidence interval.

We compare our frequency-hiding order-preserving encryp-
tion scheme to the deterministic order-preserving encryption
scheme of Kerschbaum and Schröpfer [23]. Their scheme is
IND-OCPA secure and they have shown that their correla-
tion is often lower than the one of the schemes by [9, 30].
We use the same parameters for n and N , but consider two
different options for the ciphertext length. In one case we
keep the expansion factor λ = 5 fixed to the same value,
i.e. the ciphertext length is 5 log

2
N − 10 bits. In the other

case we keep the ciphertext length fixed at 60 bits.
The result is depicted in Figure 3 with the confidence in-

tervals as error bars. We see that the confidence intervals
for the different data series clearly overlap. Hence we can-
not conclude that randomized order-preserving encryption
improves defense against this cryptanalytic attack. Yet, we
can conclude that randomized order-preserving encryption
is no weaker under this attack.

7.4 Client Storage Space
As mentioned client storage space is a limiting resource for

frequency-hiding order-preserving encryption. We encrypt
experimental data sets and measure the storage consump-
tion of our client data structures.

First, we encrypt a database table with all people in Ger-
many. The German population is roughly n = 8× 107. We
encrypt the fields “first name”, “last name”, “birthdate” and
“gender”. We estimate the distribution of those fields using
public information4. We performed 20 test runs and report
the average storage size. The extent of the 90% confidence
is always below 0.05% of the measured value. In none of the
experimental runs we had to rebalance the tree. Our results
are summarized in Table 2.

Overall we achieve a compression ratio of almost 15. This
may suffice for small to medium databases with most clients.
We also see that compression performs better for larger field
sizes like in first and last name. Dictionary compression
performs better for these fields than for small fields. In
fact, for small field sizes – as in the gender attribute – our
compression techniques may even increase the storage space.

4http://de.wikipedia.org/wiki/Familienname http://
www.beliebte-vornamen.de/lexikon

Second, we measure the effectiveness of search tree com-
pression by itself. We consider already dictionary compressed
values, i.e. field size is equal to ⌈log2N⌉ bytes, and measure
the size of our search tree as described in Section 5. We en-
crypt n ∈ {105, 106, 107} plaintexts uniformly chosen among
N ∈ {16, 256, 4096, 65536, 1048576} distinct plaintexts. We
performed 20 test runs and report the average storage size.
The extent of the 90% confidence interval is always below
0.1% of the measured size. In none of our experimental runs
we had to rebalance the tree. We show the computed com-
pression ratio in Figure 4.

We see that search tree compression performs up to a
compression ratio of roughly 2 around the center number of
distinct plaintexts (N ∼ √n). We conclude that for suit-
able plaintext domains our compression technique performs
well, but for others different techniques may be needed.
We therefore also evaluate imperfect frequency-hiding order-
preserving encryption as in Section 6.

We use a plaintext domain of N = 2, since our over-
all compression performed worst with this parameter. We
encrypt n = 106 plaintexts with probability Pr[x = 1] ∈
{0.5, 0.6, 0.7, 0.8, 0.9}, i.e. we also consider skewed distribu-
tions. We fix the parameter r = 1.025, i.e. the deviation
from the expected number of repetitions is bound to 2.5%,
and let the parameter p range over {0, 0.025%, 0.05%, 0.075%,
0.1%}. We perform 20 test runs and report the average num-

Figure 4: Compression ratio of dictionary com-
pressed value over the number of distinct plaintexts
N for different number of plaintexts n

Figure 5: Number of distinct ciphertexts over the
parameter p for different plaintext distributions (r =
1.025)



Field N Field Size Plaintext Size Compressed Size Compression Ratio
(byte) (Mbyte) (Mbyte)

First Name 10000 49 3738.4 106.1 35.2
Last Name 1000000 50 3814.7 104.8 36.4
Birthdate 40000 4 305.2 90.4 3.4
Gender 2 1 76.3 232.4 0.3

Total 104 7934.6 533.8 14.9

Table 2: Compression Effect on Table of People in Germany

ber e of distinct plaintexts. Note that without prefiltering
in our previous experiments the average number of distinct
plaintexts is n. Hence, we achieve an additional compression
of n/e. The extent of the 90% confidence interval is always
below 9.5% of the measured number. We show the number
of distinct ciphertexts in Figure 5.

We see that the number of distinct ciphertexts approx-
imately grows linear with the parameter p. We also see
that the plaintext distribution, i.e. the probability of x = 1,
has minor influence on the number of distinct ciphertexts.
Furthermore, compression is very effective. We achieve a
compression ratio of over 17000 for p = 0 and still over 900
for p = 0.1%.

We also evaluate the impact of the parameter r. We keep
n = 106 and Pr[x = 1] ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. We fix
the parameter p = 0.05%, i.e. the probability of choosing a
new ciphertext without equalizing the distribution is 0.05%
and hence we expect at least 500 distinct ciphertexts. We
also perform 20 test runs and report the average number
e of distinct plaintexts. The extent of the 90% confidence
interval is always below 16.6% of the measured number. We
show the number of distinct ciphertexts in Figure 6.

We see that the number of distinct ciphertexts is slightly
above 500 due to the variance in the input distribution. Yet,
the number approaches 500 as the parameter r increases,
since more variance is tolerated. Again, our compression
is very effective. We achieve a compression ratio roughly
between 1700 (r = 1.025) and 1900 (r = 1.1).

We can conclude that for plaintexts which are not amenable
to our standard compression techniques or very large databases
with resource-constrained clients we can use imperfect frequency-
hiding order-preserving encryption. We remark that imper-
fect frequency-hiding encryption does not achieve our secu-

Figure 6: Number of distinct ciphertexts over the
parameter r for different plaintext distributions (p =
0.05)

rity notion of indistinguishability under frequency-analyzing
ordered chosen plaintext attack.

8. CONCLUSIONS
We present a new, strictly more secure order-preserving

encryption scheme. We show that the size of the set of
indistinguishable sequences and hence security is likely to
increase with increasing data sets. We compress the data on
the client by a ratio of almost 15, but can achieve much
higher ratios (of up to several thousands) with some re-
peated ciphertexts and leaking some frequency information.
This allows the user a choice between security and storage
cost.

In summary we provide a new option for encryption data
in the cloud. This option can be favorable when higher
security than deterministic order-preserving encryption is
desired, but client storage cost (and search time) should still
remain low.
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