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FREQUENCY-LIMITED BALANCED TRUNCATION
WITH LOW-RANK APPROXIMATIONS∗

PETER BENNER† , PATRICK KÜRSCHNER‡, AND JENS SAAK†

Abstract. In this article we investigate model order reduction of large-scale systems using
frequency-limited balanced truncation, which restricts the well known balanced truncation framework
to prescribed frequency regions. The main emphasis is put on the efficient numerical realization of this
model reduction approach. We discuss numerical methods to take care of the involved matrix-valued
functions. The occurring large-scale Lyapunov equations are solved for low-rank approximations for
which we also establish results regarding the eigenvalues of their solutions. These results, and also
numerical experiments, will show that the eigenvalues of the Lyapunov solutions in frequency-limited
balanced truncation often decay faster than those in standard balanced truncation. Moreover, we
show in further numerical examples that frequency-limited balanced truncation generates reduced
order models which are significantly more accurate in the considered frequency region.
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1. Introduction.

1.1. The infinite Gramians and balanced truncation. Our investigations
are centered around continuous-time, linear, time-invariant (LTI) systems of the
form

ẋ(t) = Ax(t) +Bu(t),(1.1a)

y(t) = Cx(t)(1.1b)

with A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n. We assume that A is Hurwitz, i.e.,

Λ(A) ⊂ C−. Then, the continuous-time, algebraic Lyapunov equations (CALEs)

AP + PAT = −BBT , ATQ+QA = −CTC(1.2)

have unique, symmetric, positive semidefinite solutions P, Q. Commonly, P, Q are re-
ferred to as infinite controllability and observability Gramian of (1.1). Strict positive
definiteness of P and Q is obtained if (1.1) is controllable and, respectively, observable.
The eigenvalues of the product PQ are system invariants (w.r.t. state space transfor-
mations) and are called Hankel singular values of (1.1). Their magnitude constitutes a
joint measurement for controllability as well as observability of the corresponding state
components and the aim of balanced truncation (BT) [41] is to identify and truncate
components that are weakly controllable and observable. This is achieved by trans-
forming (1.1) into a balanced realization, such that P = Q = Σ = diag(σ1, . . . , σn).
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Algorithm 1.1. Square-root balanced truncation (low-rank version).

Input : System matrices A, B, C defining an asymptotically stable
dynamical system (1.1).

Output: Matrices Ã, B̃, C̃ of the reduced system.
1 Compute low-rank solution factors ZP , ZQ of the solutions of (1.2), such that

P ≈ ZPZ
T
P , Q ≈ ZQZ

T
Q.

2 Compute and partition a (thin) singular value decomposition

XΣY T =
[

X1 X2

]

diag(Σ1, Σ2)
[

Y1 Y2

]T
= ZT

QZP ,

where Σ1 = diag(σ1, . . . , σr) contains the largest r (approximate) Hankel
singular values.

3 Construct T := ZPY1Σ
− 1

2

1 and S := ZQX1Σ
− 1

2

1 .
4 Generate reduced order model

Ã := STAT, B̃ := STB, C̃ := CT.(1.3)

Neglecting all states in the balanced realization corresponding to small values σj

gives the reduced order model. Obtaining the Gramians is the computationally most
demanding part of BT. Solving (1.2) by methods employing dense numerical linear
algebra typically leads to a cubic complexity and quadratic memory demands, which
is hardly applicable for large-scale systems. If p, m ≪ n, which we assume in the
remainder, it can be shown that the Gramians often have a small numerical rank
[1, 22, 45, 55, 3]. Hence, there exists, e.g., for P , low-rank approximations ZPZ

T
P ≈ P

with low-rank solution factors ZP ∈ Rn×kP , rank(ZP ) = kP ≪ n. Several algo-
rithms exist for computing low-rank solution factors of large-scale CALEs; see, for
instance, the survey articles [9, 53]. Having computed ZP , and similarly ZQ such that
ZQZ

T
Q ≈ Q, BT for (1.1) using low-rank solution factors of the Gramians (1.2) can be

sketched as in Algorithm 1.1. It can be shown that the reduced system generated
in (1.3) is asymptotically stable (Ã is Hurwitz) and that the following error bound
holds:

‖H − H̃‖H∞
= max

ω∈R

(‖H(ıω)− H̃(ıω)‖2) ≤ 2

n
∑

j=r+1

σj ,(1.4)

where

H(s) = C(sIn −A)−1B, H̃(s) = C̃(sIr − Ã)−1B̃(1.5)

are the transfer function matrices of the original and reduced order systems. It is
important to note that both the stability preservation as well as the error bound (1.4)
are intrinsically only proven for the case when ZP , ZQ are exact solution factors, i.e.,
ZPZ

T
P = P , ZQZ

T
Q = Q solve (1.2) exactly. The effects of using inexact Gramians in

BT have been investigated, e.g., in [2, 26, 58], but to the authors’ knowledge, precise
ramifications of this inexactness are still not well understood.

1.2. Goals and overview of this article. By looking at the error bound (1.4),
the above BT framework generates reduced order models that are accurate for all
values ω ∈ R, which, from an application oriented view, are typically considered as
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frequencies. In several applications, however, the underlying physical or technical
system operates only in a small frequency interval [ω1, ω2] of interest. Restricting
the BT procedure to this frequency interval has lead to frequency-limited balanced
truncation (FLBT), which was proposed in [19]. One motivation for FLBT is that,
compared to ordinary BT, by restricting to a small interval [ω1, ω2], we hope to obtain
higher accuracies with reduced order models of the same dimension, or to achieve a
comparable accuracy with smaller reduced order models inside the interval, while
allowing for larger errors outside.

The main purpose of this article is to provide a numerically efficient framework for
carrying out FLBT for high-dimensional systems. We start by reviewing the concept
of frequency-limited Gramians and show how to formulate a procedure similar to the
square root approach in Algorithm 1.1. In section 3, we investigate the eigenvalue
decay of the frequency-limited Gramians. For the occurring CALEs, we will, as in the
unlimited case, employ low-rank approximations of the solutions. It turns out that
FLBT involves, in addition to solving these CALEs, evaluating a nonlinear matrix-
valued function. Hence, we discuss in section 4 the efficient numerical treatment of the
involved matrix-valued function. It will turn out that it is possible to deal efficiently
with both the matrix-valued function and the CALEs in a single algorithm using
extended or rational Krylov subspaces with appropriate shifts. Extensions to gener-
alized LTI systems and some comments on further modifications and variations of BT
are given in section 5. Numerical experiments in section 6 illustrate the performance
of our approaches with respect to the accuracy of the constructed reduced systems
and the computational efficiency regarding the generalized CALE (GCALE) solution.

1.3. Notation. In this paper R and C denote the real and complex numbers,
and R− (R+), C− (C+) refer to the set of strictly negative (positive) real numbers and
the open left (right) half plane. Likewise, Rn×m, Cn×m denote n×m real and complex
matrices. For a complex quantityX = Re (X)+ı Im (X), Re (X) , Im (X) are its real
and imaginary parts, ı denotes the imaginary unit, and X = Re (X)− ı Im (X) is the
complex conjugate of X . The absolute value of a complex scalar z ∈ C is denoted by
|z|, and arg z is its argument. By α↓

j we refer to the jth largest element in magnitude
of a complex set {αi} ⊂ C, i ≥ 1, i.e., the αi’s are assumed to be ordered like
|α1| ≥ · · · ≥ |αn|. If not stated otherwise, ‖ · ‖ is the Euclidean vector or subordinate

matrix norm (spectral norm). Moreover, AT and AH = A
T

are the transpose and
complex conjugate transpose of a real and, respectively, complex matrix. The inverse
of a nonsingular matrix A is denoted by A−1, and A−H = (AH)−1. The identity
matrix of dimension n is indicated by In. Symmetric positive (negative) definiteness
of symmetric and Hermitian matrices is denoted by A ≻ 0 (≺ 0). The spectrum of a
matrix pair (A, E) is given by Λ(A, E) := {z ∈ C : det (A− zE) = 0}, where det is
the determinant. The second argument is neglected if E = I. The spectral radius of
a matrix A is given by ρ(A) := max{|λ|, λ ∈ Λ(A)}.

2. Balanced truncation in limited frequency intervals.

2.1. Frequency-limited Gramians. By employing the Fourier transformation,
the Gramians (1.2) can be represented in the frequency domain as

P =
1

2π

∫ ∞

−∞

Ψ(ıν)BBTΨ(ıν)Hdν, Q =
1

2π

∫ ∞

−∞

Ψ(ıν)HCTCΨ(ıν)dν(2.1)

with the resolvent Ψ(ıν) := (ıνI−A)−1. Restricting the integration limits in the inte-
grals (2.1) to certain (unions of) intervals Ω ⊆ R gives the frequency-limited Gramians

PΩ, QΩ.
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Definition 2.1 (frequency-limited Gramians [19]). For the system (1.1), the

frequency-limited reachability and observability Gramians w.r.t. Ω ⊂ R are defined by

PΩ =
1

2π

∫

Ω

Ψ(ıν)BBTΨ(ıν)Hdν, QΩ =
1

2π

∫

Ω

Ψ(ıν)HCTCΨ(ıν)dν.(2.2)

Since the system (1.1) is defined by real matrices, the considered frequency region
should be symmetric w.r.t. zero: Ω = −Ω, for instance, in the form

Ω := [−ω2,−ω1] ∪ [ω1, ω2], 0 ≤ ω1 < ω2 < ∞.(2.3)

The following Theorems 2.2–2.3 give important representations of PΩ and QΩ. Their
proofs can be found, e.g., in [19, section 4] and [46, section 3.1].

Theorem 2.2 (CALEs for the frequency-limited Gramians [19, 46]). Consider

the system (1.1) and a frequency region Ω ⊂ R, Ω = −Ω. Then the frequency-limited

Gramians PΩ and QΩ are given in the following equivalent ways:

1. Using the ordinary reachability and observability Gramians P and Q from

(1.2), it holds that

PΩ = FΩP + PFT
Ω , QΩ = FT

ΩQ+QFΩ(2.4)

with

FΩ :=
1

2π

∫

Ω

Ψ(ıν)dν.(2.5)

2. One can also express PΩ, QΩ as the solutions of the frequency-limited reach-

ability and observability CALEs

APΩ + PΩA
T + FΩBBT +BBTFT

Ω = 0,(2.6a)

ATQΩ +QΩA+ FT
ΩCTC + CTCFΩ = 0.(2.6b)

The eigenvalues of the product PΩQΩ are, in analogy to the case Ω = R, called
frequency-limited Hankel singular values. The matrix FΩ can also be represented via
the matrix-valued natural logarithm, which is established in the next theorem. The
theorem also shows that FΩ is a real matrix.

Theorem 2.3 (expression of FΩ [19, 46]). The matrix-valued integral (2.5) can

be written for Ω as in (2.3) as

FΩ =
1

π
Re

(
∫ ω2

ω1

Ψ(ıν)dν

)

(2.7a)

= Re
( ı

π
ln
(

(A+ ıω1In)
−1(A+ ıω2In)

)

)

= Re
( ı

π
ln (C(A, ıω1, ıω2))

)

,(2.7b)

where

C(A, µ, ν) := (A+ µIn)
−1(A+ νIn), µ, ν ∈ C, µ /∈ −Λ(A),(2.7c)

denotes a generalized Cayley transformation of A and ln(M) is the principal branch

of the matrix-valued natural logarithm of M with Λ(M) ∩R− = ∅.
Note that for frequency regions of the form Ω = [−ω, ω], it can be shown [46]

that (2.7b) simplifies to

FΩ = Re
( ı

π
ln (−A− ıωIn)

)

.
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Moreover, Theorems 2.2 and 2.3 can be generalized to multiple, concatenated fre-
quency segments

Ω =

k
⋃

i=1

[−ω2i, − ω2i−1] ∪ [ω2i−1, ω2i] with 0 ≤ ω1 < ω2 < · · · < ω2k < ∞,

where the matrix-valued logarithm of a product of generalized Cayley transformations
occurs; see [46, Corollary 3.1]. For simplification and brevity, we mainly focus on
frequency restrictions of the form (2.3) in the remainder.

Computing FΩ involves the evaluation of a function f(.) in A with f(z) = ln λ+ıω2

λ+ıω1
,

i.e., the logarithm of a generalized Cayley transformation. For matrices of large
dimensions, this appears to be a very formidable and expensive task. Some strategies
that make an efficient treatment of FΩ possible are proposed in section 4. There, the
numerical approximation of the frequency-limited Gramians by low-rank solutions
PΩ ≈ ZPΩ

ZT
PΩ

, QΩ ≈ ZQΩ
ZT
QΩ

is also investigated. The eigenvalue decay of PΩ, QΩ

and, consequently, how well they can be approximated by such low-rank solutions is
considered in the next section. With the low-rank solution factors ZPΩ

, ZQΩ
, FLBT

can be carried out analogously to Algorithm 1.1 by substituting the CALEs (1.2) for
the infinite Gramians by the frequency-limited CALEs (2.6) in line 1 and using ZPΩ

,
ZQΩ

in the remaining steps. In contrast to BT without frequency restrictions, FLBT
is not guaranteed to preserve the stability of (1.1) such that also no error bound can
be given. We briefly come back to this issue in section 5.2.

3. On the eigenvalue decay of the frequency-limited Gramians. We ex-
pect that the frequency-limited Gramians PΩ, QΩ in (2.6) can be well approximated
by low-rank solutions because their inhomogeneities are of low rank 2m, 2p ≪ n.
Comparing the infinite CALEs (1.2) with the frequency-limited ones (2.6), these in-
homogeneities are the only differences in (2.6). Recalling the theory on the existence
of low-rank solutions of matrix equations [45, 1, 22, 55], the rank of the inhomogeneity
of a matrix equation is an influential factor on the numerical rank of the solution. The
rank of the inhomogeneities in (2.6) is twice as large as the rank of the inhomogeneities
BBT and CTC of the CALEs (1.2) for the infinite Gramians. Thus, one is tempted
to expect that the numerical rank of PΩ, QΩ is larger than the numerical rank of P ,
Q. Observations in practice, however, often show the exact opposite phenomenon,
i.e., PΩ, QΩ are of smaller numerical rank than P , Q.

On the one hand, this seems to be counterintuitive as the coefficient matrices in
both (1.2) and (2.6) are the same. On the other hand, comparing (2.1) and (2.2), it
appears intuitively clear that PΩ, QΩ have smaller numerical rank since the integration
range is smaller such that less information enters the integrals. A general approach
for investigating the numerical rank of solutions of matrix equations is to look at the
eigenvalue decay of the solutions. As for the unlimited Gramians, however, obtaining
a general analytic prediction on the exact eigenvalue decay is difficult. Motivated by
the approaches used in [1, 55], we try to bound the eigenvalues of P and PΩ in the
following. To this end, we restrict to the infinite and frequency-limited reachability
Gramians P , PΩ in the case m = 1, i.e., B = b ∈ Rn. The observability Gramians
can be dealt with similarly and generalizations to the case m > 1 can be drawn from,
e.g, [1]. The next lemma provides useful factorizations of P and PΩ.

Lemma 3.1 (factorization of P and PΩ). Let A in (1.2) and (2.6a) be diagonal-

izable, i.e., there exists a nonsingular matrix X ∈ Cn×n such that A = XΛX−1 with

Λ = diag(λ1, . . . , λn), λi ∈ Λ(A). Furthermore, assume that (A, b) is controllable.
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a) The reachability Gramian P can be expressed as

P = XbKXH
b with Xb := X diag(X−1b).(3.1)

The matrix K =
(

−1
λi+λj

)n

i,j=1
is a Hermitian positive definite Cauchy matrix.

b) The frequency-limited reachability Gramian PΩ can be factored as

PΩ = XbKΩX
H
b , where KΩ := ΓK +KΓH(3.2)

with Γ = X−1FΩX = diag(γ1, . . . , γn). The matrix KΩ is a Hermitian positive

definite Loewner matrix.

Proof. Result a) is established in [1, Lemma 3.2].
For b), the expression (2.4) reveals

PΩ = FΩP + PFH
Ω = XΓX−1XbKXH

b +XbKXH
b X−HΓHXH

= XΓdiag(X−1b)KXH
b +XbK diag(X−1b)HΓHXH ,

from which the factorization follows since diagonal matrices commute. Upon closer

inspection, KΩ := ΓK + KΓH =
(

− γi+γj

λi+λj

)n

i,j=1
is obviously a Hermitian Loewner

matrix [17], which inherits the positive definiteness from PΩ ≻ 0.
For every product FTL of three matrices F, T, L of appropriate dimensions,

there is the well-known result [30, Theorem 3.3.2] that σj(FTL) ≤ ‖F‖‖L‖σj(T ).
Applying this to (3.1) and (3.2) yields

λ↓
j (P ) ≤ ζλ↓

j (K), λ↓
j (PΩ) ≤ ζλ↓

j (KΩ)(3.3)

with ζ := ‖Xb‖2. Here, we use that for any Hermitian positive definite matrix,
its eigenvalues in a decreasing order coincide with its singular values. Hence, the
eigenvalues of P and PΩ are bounded by the eigenvalues of K and KΩ, respectively.
However, as ‖Xb‖ can be arbitrarily large, e.g., when A is nonnormal (κ(X) > 1),

there might be a large deviation between λ↓
j (P ), λ↓

j (PΩ) and λ↓
j (K), λ↓

j (KΩ). The
effect of nonnormality to CALE solutions is investigated from a different perspective
in [3]. At this point we stress that the focus of this section is not to give a precise

estimation of the eigenvalue decay of the Gramians, but to relate λ↓
j (P ) to λ↓

j (PΩ) in

the sense that λ↓
j (KΩ) can be bounded by λ↓

j (K). For this, the following bound can
be readily established.

Lemma 3.2. For the eigenvalues of the matrices K and KΩ in (3.1) and (3.2),
respectively, it holds for j = 1, . . . , n that,

λ↓
j (KΩ) ≤ 2|λ↓

j (Γ)|λ↓
j (K) ≤ 2ρ(Γ)λ↓

j (K),

and, thus, λ↓
j (PΩ) ≤ 2ζ|γ↓

j |λ↓
j (K).

Proof. Recall that for any matrix M ∈ Cn×n, its Hermitian part is HM :=
1
2 (M + MH). The eigenvalues of HM can be bounded by the singular values of M
by [30, Corollary 3.1.5]. Obviously, KΩ is twice the Hermitian part of N := ΓK,
i.e., KΩ = 2HN = N + NH , and a straightforward application of the said corollary
and [30, Theorem 3.3.2] yields λ↓

j (KΩ) ≤ 2σj(N) ≤ 2σj(Γ)σj(K), which leads to the
result since Γ is diagonal and K Hermitian positive definite.

This result should by no means be understood as very accurate because [30, Corol-

lary 3.1.5] introduces a large overestimation regarding the magnitudes of λ↓
j (KΩ). To
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the authors’ knowledge, there is no tighter bound for the eigenvalues of the Hermitian
part of a matrix available. Nonetheless, Lemma 3.2 reveals that the spectral radius
ρ(Γ) = ρ(FΩ) has a large influence on the eigenvalues of KΩ. In the next lemma, we
derive insightful bounds for the eigenvalues and spectral radius of FΩ.

Lemma 3.3 (eigenvalue bounds for FΩ). Let A satisfy the same assumptions as

above and let

ρ̂ := |λq|, η̂ := | Im (λq) |, λq := argmax
λ∈λ(A)

∣

∣

∣

Im (λ)
Re (λ)

∣

∣

∣
.

Then FΩ is nonsingular and for γj ∈ Λ(FΩ), j = 1, . . . , n, it holds that

0 < Re (γj) <
1

2
,(3.4a)

| Im (γj) | < 1
4π ln ρ̂+η̂

ρ̂−η̂ =: χ(3.4b)

and, consequently, ρ(FΩ) = ρ(Γ) < 1
2

√

1 + 4χ2.

Proof. Since A is assumed to be diagonalizable, we have

FΩ = Re
( ı

π
ln (C(A, ıω1, ıω2))

)

= Re
( ı

π
X ln diag(θ1, . . . , θn)X

−1
)

= Re
(

X diag(γ̂1, . . . , γ̂n)X
−1

)

,

where

γ̂j :=
ı

π
(ln |θj |+ ı arg θj) , θj =

λj + ıω2

λj + ıω1
∈ Λ(C(A, ıω1, ıω2)), λj ∈ Λ(A).

Since θj �= 1 it holds that γ̂j �= 0 ∀j, which proves the nonsingularity of FΩ. Fur-
thermore, the eigenpairs of A occur either in the form (λj , xj) ∈ R− × Rn or as
two complex conjugate pairs (λj , xj), (λj+1 = λj , xj+1 = xj) ∈ C− × Cn. Hence,
there exists a block-diagonal, nonsingular matrix T = diag(T1, . . . , Tn) with Tj = 1 if
λ ∈ R−, and Tj =

[

1 −ı
1 ı

]

if λj ∈ C−, such that XR := XT ∈ Rn×n and, hence,

FΩ = XR Re
(

T−1 diag(γ̂1, . . . , γ̂n)T
)

X−1
R

.(3.5)

Let us at first investigate the case of real eigenvalues λj for which Tj = 1 such that
the diagonal entries above are

γ̂j = γj := Re (γ̂j) =
− arg θj

π
.

Since

θj =
λ2
j + ω1ω2

λ2
j + ω2

1

+ ı
(ω2 − ω1)λj

λ2
j + ω2

1

,(3.6)

we have Re (θj) > 0 and Im (θj) < 0 such that −π
2 < arg θj < 0, which yields the

desired result (3.4a), as well as obviously (3.4b).
For each complex conjugate pair of eigenvalues λj , λj the associated 2× 2 block

in (3.5) isD
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Re
(

T−1
j diag(γ̂j , γ̂j+1)Tj

)

=
1

2
Re

(

[

1 1
ı −ı

]

[

γ̂j 0
0 γ̂j+1

]

[

1 −ı
1 ı

]

)

=
1

2
Re

([

γ̂j+γ̂j+1 −ı(γ̂j−γ̂j+1)
ı(γ̂j−γ̂j+1) γ̂j+γ̂j+1

])

=
1

2π

[

− arg θj−arg θj+1 ln |θj|−ln |θj+1|
− ln |θj |+ln |θj+1| − arg θj−arg θj+1

]

=
1

2π

[

− arg θj ·θj+1 ln |θj/θj+1|

− ln |θj/θj+1| − arg θj·θj+1

]

.

Hence, FΩ has the eigenvalues

{γj, γj+1 = γj} =

{−1

2π
(arg (θj · θj+1)∓ ı ln |θj/θj+1|)

}

corresponding to each complex pair of eigenvalues {λj , λj} ⊂ Λ(A). It holds that

θjθj+1 =
1

z

(

(|λj |2 − ω2
2)(|λj |2 − ω2

1) + 4ω1ω2Re (λj)
2

+ ı2Re (λj) (|λj |2 + ω1ω2)(ω2 − ω1)
)

(3.7)

with z := (|λj |2 − ω2
1)

2 + 4ω2
1 Re (λj)

2
and we find Im (θjθj+1) < 0 such that −π <

arg θjθj+1 < 0 from which Re (γj) = Re (γj) = − 1
2π (arg θjθj+1) <

1
2 follows. For the

imaginary parts of γj assume without loss of generality Im (λj) > 0 and consider

0 < Θj :=
∣

∣

∣

θj
θj+1

∣

∣

∣

2

=
(

|λj |
2+ω2

1−2 Im (λj)ω1

|λj |2+ω2
1+2 Im (λj)ω1

)(

|λj |
2+ω2

2+2 Im (λj)ω2

|λj |2+ω2
2−2 Im (λj)ω2

)

= ζ1ζ2

with 0 < ζ1 ≤ 1 < ζ2. Hence,

| lnΘj| < max (lnmaxΘj, | lnminΘj |).

Now, ζ2 is, for a fixed λj , maximal if ω2 = |λj |. In that case

ζ2 =
|λj |+Im(λj)
|λj |−Im (λj)

=

√
1+q2

j
+qj√

1+q2
j
−qj

, qj :=
Im (λj)
|Re (λj)|

,

which increases as qj increases and, hence, the maximum value of ζ2 is attained at

qmax =
Im (λq)
|Re (λq)|

, i.e., for λq. Using also max ζ1 = 1 (attained at ω1 = 0) yields

maxΘj <
(

ρ̂+η̂
ρ̂−η̂

)

.

Furthermore, min ζ2 = 1 and, for a fixed λj , ζ1 is by a similar reasoning minimal if
ω1 = |λq|. This leads finally to

| lnΘj| < max
(

ln ρ̂+η̂
ρ̂−η̂ ,

∣

∣

∣
ln ρ̂−η̂

ρ̂+η̂

∣

∣

∣

)

,

from which (3.4b) follows.
Because the proof deals with the real and imaginary parts of the γi independently,

the results represent upper bounds for the largest attainable real, imaginary part
and spectral radius. Also, if ω1 = 0, the bound for ρ(Γ) can be slightly altered to

ρ(Γ) < 1
4

√

1 + 16χ2. Together with Lemma 3.2 these bounds reveal how the spectral
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radius of Γ influences the eigenvalues of KΩ. In particular, we can deduce possibilities
when the λ↓

j (KΩ) are significantly smaller than the λ↓
j (K). For matrices A with real

spectra, FΩ also has only real eigenvalues with 0 < γj <
1
2 by Lemma 3.3. Thus, Γ ≻ 0

such that the bound in Lemma 3.2 becomes λ↓
j (KΩ) ≤ 2γ↓

j λ
↓
j (K) for j = 1, . . . , n.

Obviously, if the considered frequency interval is small, i.e., ω2−ω1 is small compared
to

λj

λ2
j
+ω1ω2

, then Im (θj) will be close to zero and so will arg θj .

If Λ(A) has complex eigenvalues the situation is considerable more subtle, but the
proof of Lemma 3.3 already indicates that setting the interval limits ω1, ω2 equal or
close to absolute values of eigenvalues of A can increase the spectral radius ρ(FΩ). In
particular, setting the interval limits close to |λq| will lead to the largest values of χ
in (3.4b) and, thus, to large spectral radii. This is observed in numerical experiments
but, even if ρ(FΩ) > 1

2 , the eigenvalues of KΩ seem to be never much greater than
the ones of P .

To conclude, we expect that the values of λ↓
j (KΩ) will be noticeably smaller than

λ↓
j (K) if the chosen interval [ω1, ω2] is small compared to the spectral radius of A and

if the interval boundaries ω1, ω2 are not close to the magnitude of the eigenvalues
of A whose imaginary parts dominate their real parts. This argumentation will also
carry over to λ↓

j (PΩ) and λ↓
j (P ) by (3.3).

The main conclusion of this section is that although

rank (FΩBBT +BBT
ΩF

T
Ω ) = 2 rank (BBT ),

under reasonable and quantifiable assumptions on the interval [ω1, ω2], the eigenvalues
of PΩ decay at a faster rate than those of P . Hence, PΩ has a smaller numerical rank
than P . Consequently, we can expect that there exist low-rank solution factors ZP

and ZPΩ
leading to low-rank solutions of comparable accuracy in the sense

‖P − ZPZ
H
P ‖ ≈ ‖PΩ − ZPΩ

ZH
PΩ

‖

but with rank(ZP ) ≥ rank (ZPΩ
). This is also confirmed by our numerical exper-

iments. The same holds trivially also for low-rank approximation of Q and QΩ.
Moreover, it will turn out later that in some cases computing ZPΩ

, ZQΩ
is less costly

than computing ZP , ZQ, which can even make FLBT numerically cheaper than the
standard (unlimited) BT. Algorithms for computing the low-rank solution factors are
the topic of the next section.

Remark 3.4.
(a) For the standard CALEs (1.2), the above considerations of Lemma 3.1 are

continued in [1], where a square-root free Cholesky factorization of the form
K = L∆LH with a unit lower triangular L and ∆ = diag(δ(1), . . . , δ(n)) ≻ 0
is used. There are explicit formulas [20] for the diagonal entries δ(i), which
appear to decay to zero at a similar rate as the eigenvalues of P , especially
if A is not too far from normal. A square-root free Cholesky factorization
also exists for the frequency-limited Gramian: KΩ = LΩ∆ΩL

H
Ω with ∆Ω =

diag(δ
(1)
Ω , . . . , δ

(n)
Ω ) ≻ 0. A basic Cholesky algorithm [21] can be employed to

find how the entries of LΩ and ∆Ω are built from the entries of L, ∆, and Γ.

It is easy to show that δ
(1)
Ω = 2Re (γ1) δ

(1) < δ(1), but the calculations for
the remaining entries become very tedious and lengthy such that we do not
report them here for the sake of brevity.

(b) In [22], another well-known theoretical result regarding the existence of low-
rank solutions of large matrix equations is proposed. Following [22], low-rank
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solutions of P and PΩ are given by Pk :=
∑k

i=−k ξiBiB
T
i , Bi := exp(tiA)B

and PΩ,k :=
∑k

i=−k ξiB̃iFmB̃T
i , B̃i := exp(tiA)[B, BΩ], respectively, with

the flipping matrix

Fh := [ 0 1
1 0 ]⊗ Ih.(3.8)

The constants ξi, ti are quadrature weights and nodes not important for the
discussion here. Moreover, the approximation errors can be bounded by

‖P − Pk‖ ≤ φπ−1‖B‖2, ‖PΩ − PΩ,k‖ ≤ φπ−1‖[B, BΩ]Fm[B, BΩ]
T ‖,

where the constant φ depends entirely on A. Obviously, the bound
rank(PΩ,k) ≤ 2(k + 1)m is larger than rank (Pk) ≤ (k + 1)m and the above
error bounds differ only by the norms of the inhomogeneities of the CALEs
(1.2), (2.6a). Notice that the difference in the decay rates of the eigenvalues
of P and PΩ also can be observed if the inhomogeneities would be scaled
to unit norm. Hence, this approach offers no useful explanation for why PΩ

can in practice often be approximated by low-rank solutions of smaller rank
compared to P .

4. Numerical methods for computing the low-rank approximations.
Motivated by the expected low numerical rank of PΩ, QΩ, we aim at computing,
as in standard BT, low-rank approximations PΩ ≈ ZPΩ

ZT
PΩ

, QΩ ≈ ZQΩ
ZT
QΩ

with

ZPΩ
∈ Rn×r1 , ZQΩ

∈ Rn×r2 , r1, r2 ≪ n. Before the frequency-limited CALEs can be
approached by numerical methods, which compute low-rank solution factors, the ma-
trix FΩ has to be treated. This is the subject of the next subsection. After that, some
strategies for computing the low-rank solution factors ZPΩ

, ZQΩ
will be discussed.

4.1. Dealing with the matrix-valued logarithm. In FLBT, the matrix FΩ

requires the evaluation of a matrix-valued function f in A. Most state-of-the-art
algorithms for that purpose work, e.g., with the Schur form of A and additional
matrix multiplications [28]. In our situation, f(A) = Re

(

ı
π ln C(A, ıω1, ıω2)

)

such
that the Schur form of C(A, ıω1, ıω2) can be deduced from the Schur form of A. For
the matrix-valued logarithm, a very robust and often applied method is the inverse

scaling and squaring algorithm [28, Chapter 11] and its variants. The method is called
by the MATLAB routine logm. However, as computing the Schur form has a cubic
complexity and quadratic memory demands, these approaches are not feasible for the
large-scale case we are interested in.

If we plan to obtain the frequency-limited Gramians PΩ, QΩ from solving the
frequency-limited CALEs (2.6), we observe that only

BΩ := FΩB = f(A)B(4.1a)

and CΩ : = CFΩ = Cf(A)(4.1b)

are required for setting up the inhomogeneities in (2.6). Hence, only the products
f(A)B and f(A)HCT , i.e., m and p matrix-vector products with f(A) and f(A)H ,
respectively, are needed. Although f(A) is still involved, computing the matrix-vector
products of the form

w = f(A)v, w, v ∈ C
n(4.2)
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constitutes a much more attractive problem to overcome, even for large matrices A;
see, for instance, [28, Chapter 13], [35, 10, 18, 36, 27], and the references therein,
which provide several efficient numerical methods for this task.

Remark 4.1. The computation of the frequency-limited reachability Gramians
PΩ by (2.4) and using a low-rank solution factor ZP of the ordinary Gramian P can
also be reduced to the problem of computing the matrix-vector products of f(A) with
ZP ∈ Rn×kP and similarly the problem of computing QΩ by (2.4) using f(A)HZQ ∈
Rn×kQ . This approach is in general more expensive than using (4.1) and subsequently
solving (2.6) because, in general, kP > m and kQ > p, such that significantly more
matrix-vector products with f(A) would be required. In the following we discuss some
approaches for (4.2) and their applicability for FLBT.

4.1.1. Quadrature based approaches. Recall that FΩ was at first defined as
the integral (2.5), which simplifies to (2.7a). Taking BΩ = FΩB as an example, an
intuitive idea is to approximate (5.6) by means of a quadrature rule, i.e.,

BΩ =
1

π
Re

(
∫ ω2

ω1

(ıνIn −A)−1Bdν

)

≈ 1

π
Re

(

h
∑

k=1

ζk(ıνkIn −A)−1B

)

(4.3)

using quadrature nodes νk ∈ [ω1, ω2], k = 1, . . . , h, and weights ζk whose choice
depends on the selected quadrature rule. In principle, any quadrature rule can be ap-
plied, where for reasons of accuracy, as well as efficiency, a method using an adaptive
selection of nodes and weights is typically chosen. The integral command in MAT-
LAB, e.g., employs the adaptive Gauss–Kronrod quadrature [34] and will be used in
our numerical examples. Using (4.3) requires the solution of h shifted linear systems
with m right-hand sides, which might easily become expensive, depending on the
number of quadrature nodes. In [31], numerical quadrature is applied directly to the
integrals (5.6) to obtain low-rank solution factors of PΩ, QΩ. The POD approach in
[16] is analogous.

4.1.2. Projection type methods. A further, frequently successfully applied
and investigated approach for the matrix function times vector problem (4.2) is to use
projections onto low-dimensional subspaces. Let Q ⊂ Cn be a subspace with dimQ =
k ≪ n and let Qk = [q1, . . . , qk] ∈ Cn×k with {q1, . . . , qk} being an orthonormal basis
of Q. Typically, v ∈ Q such that v = Qkṽk with ṽk := QH

k v ∈ Ck. Approximating w
by its orthogonal projection onto Q gives

w ≈ QkQ
H
k w = Qkw̃ ∈ Q, w̃k := QH

k w ∈ C
k.

Imposing a Ritz–Galerkin orthogonality condition on the error of this approximation
yields

Qkw̃k − f(A)Qkṽk ⊥ Q ⇔ w̃k = QH
k f(A)Qkṽk ≈ f(Tk)ṽk

with Tk := QH
k AQk. The matrix Tk is also called restriction of A onto Q. Hence, the

approximate result is obtained by

wk := Qkf(Tk)Q
H
k v.

Due to the small size of Tk ∈ Ck×k, the computation of f(Tk) can then be carried
out using methods for small, dense problems, e.g., the inverse scaling and squaring
method discussed earlier in this section for our particular application. The quality of
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the approximation wk depends on how well Qkf(Tk)Q
H
k v approximates f(A)v, which,

for general matrices A and functions f , is difficult to predict. The above projection
framework is usually carried out in an iterative manner using a sequence of nested
subspaces Q1 ⊆ Q2 ⊆ · · · ⊆ Qk ⊆ Qk+1 with increasing dimensions. To stop this
iteration, we employ the simple stopping criterion

(4.4) ‖wk − wk−1‖ ≤ τf‖wk‖.

For certain choices of Q, special matrices, and functions, more advanced, specially
tailored stopping tests as well as error bounds can be found, e.g., in [28, Chapter
13.2], [18, 36, 27, 33]. The subspace Q, or more precisely the sequence of subspaces,
can be constructed in different ways and we restrict ourselves to the most common
ones.

Setting up the subspace Q as standard Krylov subspace

Kk(A, v) = span
{

v,Av,A2v, . . . , Ak−1v
}

is used for the approximation of (4.2) in, e.g., [35, 49]. The construction of the matrices
Qk, Tk is usually done by the Lanczos or the Arnoldi algorithm [21] for Hermitian
and, respectively, non-Hermitian A. It can be shown that with Kk, the function f
is approximated by a polynomial pk−1 of degree at most k − 1 whose roots are the
eigenvalues of Tk. To obtain a good approximation of (4.2), often large dimensions k
are needed, which makes this approach less practical.

Rational Krylov subspaces [12, 27] often provide much better approximations with
smaller subspace dimensions k. They can be defined by

Krat
k,ξ(A, v) = d

(ξ)
k−1(A)

−1Kk(A, v)

with the denominator polynomial d
(ξ)
k−1(z) =

∏k−1
j=1 (1 − z

ξj
) of degree k − 1 having

the poles ξ1, . . . , ξk−1 ∈ C ∪ {∞}. Hence, with Krat
k the function f is approximated

by a rational function rk = pk−1/d
(ξ)
k−1. The poles ξ of rk are typically referred to

as shifts for the rational Krylov subspace. The orthonormal basis for Krat is usually
constructed with the rational Arnoldi algorithm [47] whose main numerical costs occur
at solving linear systems of the form (I −A/ξ)s = u for s.

The shifts are crucial for a fast convergence and good approximation results. A
nice overview addressing various choices of a priori selected shifts for several functions
f can be found in [27]. In [12], an adaptive strategy is proposed, where the shift ξk+1

is computed from the data available after the rational Arnoldi iteration step k is
completed. The main idea is to consider the greedy method

ξk+1 = argmax
s∈Dk

|rk(s)|−1,

where Dk is a set of discrete points from the boundary of the convex hull of −Λ(Tk).
We will use this adaptive shift generation in our numerical examples.

In our situation, since f can be represented as integral (see (2.1)) of Ψ(ıν) within
the integration domain Ω, it appears reasonable to restrict the shifts to the imaginary
region ıΩ. We therefore propose as modifications of the adaptive shift strategy to
choose the set Dk a set of discrete points from ıΩ, i.e., Dk ⊂ ıΩ. In most examples
this leads to better results compared to the adaptive shifts based on the convex hull
of −Λ(Tk).
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A simplification of this approach is to use the shifts ξ2k = ıω1 and ξ2k−1 = ıω2

alternatingly.
Choosing the shifts ξ2k = ∞ and ξ2k−1 = 0 in an alternating fashion yields the

extended Krylov subspace:

Kext
k (A, v) = span

{

v,A, . . . , Ak−1v
}

∪ span
{

A−1v, . . . A−kv
}

,

which is proposed in [11] and further investigated in [36]. In [52], an efficient al-
gorithmic framework for constructing the basis and representation matrix Qk, Tk is
established. One advantage of that choice is that the coefficient matrix of the linear
system to solve does not change such that one can store and reuse a factorization of
A if direct solvers are applied, or recycle preconditioners and subspaces for iterative
solvers. This can also be done if the shifts ξ for Krat are constant, which yields the
shift-and-invert Krylov subspace KSI

k (A, v) [42, 56]. For the alternate use of ıω1, ıω2,
two sparse matrix factorizations might be saved. We end this short introduction to
Krylov subspace methods for v = f(A)w with a number of comments regarding actual
implementations.

Remark 4.2.
1. The matrices Qk, Tk in a basic implementation of the rational Arnoldi process

are complex if some of the shifts ξ are complex. Since in our setting the
defining matrices A, B, C are real, it is wise to construct a real basis for Krat,
e.g., by using the modification to the rational Arnoldi process proposed in [48].
These changes basically amount to augment the basis matrix orthogonally by
Re (s) and Im (s) for s = (I − A/ξ)−1u if ξ ∈ C. This will also yield a real
restriction Tk. Using this modification is, of course, reasonable because the
number of complex arithmetic operations is reduced. In our application, since
establishing the relation (2.7b) from (2.5) relied heavily on the fact that the
matrix A in Ψ(ıν) = (ıνI −A)−1 is real, having a real Tk also appears to be
important if we want to safely employ (2.7b) to Tk. Issues with complex shifts
are not present in methods using standard or extended Krylov subspaces.

2. If the number m of columns in B is larger than one, m matrix-vector products
with f(A) are required. In this case, we utilize block versions [15] of the above
Krylov subspaces, e.g.,

Kk(A, V ) = span
{

V,AV,A2V, . . . , Ak−1V
}

, V ∈ C
n×ℓ.

Similar block versions of Krat and Kext can be easily deduced. Alternatives
might be global Arnoldi methods [54] or, in the case of rational Krylov sub-
spaces, tangential approaches [13]. There, the basis matrix is augmented by
s = (I −A/ξ)−1Ud for U ∈ Cn×m and an appropriately chosen tangential di-
rection vector d ∈ Cm. This approach has also been applied in the context of
H2 model order reduction [25]. A similar framework with respect to low-rank
solutions of CALEs is presented in [57].

3. In our application we also need matrix-vector products z = f(A)Tu of the
transposed matrix function for computing CΩ = CFΩ. Thus, the above
approaches also have to be applied using AT and u, leading to a subspace Z
generated by AT and u, e.g.,

Z = Kk(A
T , u) = span

{

u,ATu, . . . , (AT )k−1
}

and the dual versions of Krat, Kext are easily deduced. It is possible to utilize
a two-sided Petrov–Galerkin condition [29] and construct Z bi-orthogonal to
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Q. Both spaces can be generated simultaneously with the two-sided Lanczos
process or modifications of it. Further details on generating dual subspaces
Q, Z can, e.g., be found in [43, 23, 25].

4.2. Computing low-rank solution factors of the frequency-limited
Gramians. Having computed BΩ and CΩ, the frequency-limited CALEs (see also
(2.6))

APΩ + PΩA
T +BΩB

T +BBT
Ω = 0,(4.5a)

ATQΩ +QΩA+ CT
ΩC + CTCΩ = 0(4.5b)

have to be solved for low-rank approximations. Any low-rank solution algorithm for
large-scale CALEs can be employed here. In the following, we will discuss Krylov
subspace methods as well as the low-rank alternating direction implicit (LR-ADI)
iteration for this task. We will restrict ourselves to the treatment of the frequency-
limited reachability CALE as the frequency-limited observability CALE can be dealt
with in the same way.

4.2.1. Using Krylov subspace methods. In a similar way as we discussed
in section 4.1.2, we can use a projection approach for solving the frequency-limited
CALEs. Having a low-dimensional subspace Qk = span {Qk} constructed, the low-
rank solution is obtained as PΩ ≈ PΩ,k := QkP̃Ω,kQ

T
k , where P̃Ω,k is the solution of

the projected frequency-limited CALE

TkP̃Ω,k + P̃Ω,kT
T
k + B̃Ω,kB̃

T
k + B̃kB̃

T
Ω,k = 0, B̃k := QT

kB.(4.6)

Due to its small dimension, it can be solved by direct methods. Choices for Qk include
the same possibilities as for the matrix-function evaluations: standard [32], extended
[52], as well as rational Krylov subspaces [12, 13], generated using A, B, and possibly
a collection of (adaptively computed) shift parameters. If PΩ,k is not accurate enough,
the particular Krylov process used is continued.

Now assume BΩ is approximated by such a projection approach, i.e., BΩ ≈
BΩ,k := QkB̃Ω,k with B̃Ω,k := f(Tk)Q

T
k B, Tk := QT

kAQk, where Qk is a real or-
thogonal matrix, which spans one of the aforementioned Krylov subspaces. In that
case a nearby strategy is to reuse the information contained in the basis matrix Qk

and continue the Krylov method for solving the frequency-limited CALE. In the ma-
jority of our numerical tests only very few additional iterations of the employed Krylov
method were necessary to obtain the desired accuracy for PΩ once an accurate BΩ,k

was found. Often, accurate approximations BΩ,k and PΩ,k were obtained in the same
iteration step k, which makes this approach exceptionally efficient. Provided that
P̃Ω,k ≥ 0 in the projected equation (4.6), low-rank solution factors of PΩ are given by

ZPΩ,k = QkLk, where Lk is a lower triangular Cholesky factor of P̃Ω,k. Alternatively,

an eigendecomposition of P̃Ω,k can be used which also enables a rank truncation; see,
e.g., [52]. In Algorithm 4.1, we illustrate this strategy for approximating BΩ and PΩ

in a single Krylov subspace algorithm.
In lines 1 and 12, orth should be understood as any stable (block) orthogo-

nalization routine. By adjusting the basis generation in line 12 appropriately, any
version of extended (EKSM), rational (RKSM), or adaptive rational Krylov subspace
methods can be incorporated easily. The restriction Tj in line 3 can be computed
efficiently without additional matrix-vector products with A by using relations devel-
oped in [52] and [47] for the EKSM and the RKSM, respectively. Typically, one has
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Algorithm 4.1. Krylov subspace method for frequency-limited
CALEs (4.5a)

Input : A, B, [ω1, ω2] as in (4.5a), tolerances 0 < τf , τP ≪ 1.

Output: ẐPΩ,j ∈ R
n×kPΩ such that ẐPΩ,jẐ

T
PΩ,j ≈ PΩ with kPΩ

≤ mj ≪ n.

1 Q1 = orth(B).
2 for j = 1, 2, . . . do

3 Tj = QT
j AQj , B̃j = QT

j B.

4 B̃Ω,j = Re
(

ı
π ln (C(Tj, ıω1, ıω2))B̃j

)

, BΩ,j = QjB̃Ω,j .

5 if ‖BΩ,j −BΩ,j−1‖/‖BΩ,j‖ < τf then

6 Solve TjP̃Ω,j + P̃Ω,jT
T
j + B̃Ω,jB̃

T
j + B̃jB̃

T
Ω,j = 0 for P̃Ω,j .

7 Set µj :=
∥

∥BΩ,jB
T +BBT

Ω,j

∥

∥ =
∥

∥

∥
B̃Ω,jB̃

T
j + B̃jB̃

T
Ω,j

∥

∥

∥
and

Lj :=
∥

∥

∥
A
(

QjP̃Ω,jQ
T
j

)

+
(

QjP̃Ω,jQ
T
j

)

AT +BΩ,jB
T +BBT

Ω,j

∥

∥

∥
/µj.

8 if Lj < τP then

9 Compute (and truncate) eigendecomposition P̃Ω,j = X̃jΛ̃Ω,jX̃
T
j ,

X̃T
j X̃j = Imj , Λ̃Ω,j = diag(λ̃1, . . . , λ̃mj).

10 Construct low-rank solution factors ẐPΩ,j = QjX̃jΛ̃
1
2

Ω,j .

11 Stop Krylov process.

12 Orthogonally extend basis matrix Qj by new basis vectors S:
Qj+1 = orth([Qj , S]).

span {B} ⊂ span {Qj} and, thus, B̃j = QT
j B = [βT , 0]T ∈ Rmj×m with β ∈ Rm×m

such that the inhomogeneity of the projected CALE in line 6 is given by

B̃Ω,jB̃
T
j + B̃jB̃

T
Ω,j =

[

β̃βT + ββ̃T gT

g 0

]

,

where g : = δβT , B̃Ω,j =

[

β̃
δ

]

, β̃ ∈ R
m×m, δ ∈ R

(j−1)m×m.

(4.7)

After ‖BΩ,j −BΩ,j−1‖/‖BΩ,j‖ < τf is achieved, one can also skip the computation of
newer approximations BΩ,k, k > j, in the following iterations to save some computa-
tions in line 4. In line 8, we employed a stopping criterion based on the scaled norm
of the Lyapunov residual matrix. This norm can be computed efficiently without
working with matrices A, B, BΩ,j , Qj of leading dimension n [52]. If the RKSM with
the adaptive, imaginary shifts has been used to approximate BΩ,j , one should switch
to the convex hull based adaptive shifts [12] in the iterations steps for computing the
low-rank solution factor of the CALE.

A potential weakness of Algorithm 4.1 and, in fact, of all Krylov subspace methods
for CALEs is when A+AT is not negative definite (i.e., A is not dissipative) because
it can happen that Tj has unstable eigenvalues such that the projected frequency-
limited CALE (4.6) has no semidefinite solution, or no unique solution at all. Hence,
the generated low-rank solution factors are not useful. We point out that a violation
of the property A+ AT < 0 does not at all mean that these problems have to occur
inescapably in Krylov subspace methods for CALEs. In fact, we successfully ran
several numerical tests, where A + AT was indefinite. If such issues really occur,
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the LR-ADI iteration discussed next might be an alternative as it is unaffected by
indefinite A+AT .

4.2.2. Using the LR-ADI iteration. The LR-ADI iteration is another well
established, understood, and successfully applied method to solve large-scale matrix
equations for low-rank solution factors. For the CALEs of the infinite Gramians, the
LR-ADI iteration [39] in the form given in [5, 6] produces a low-rank solution factor
of (2.6a) via ZP,j = [ZP,j−1, α̂jVj ], where

(4.8) Vj = (A+ αjIn)
−1Wj−1, Wj = Wj−1 − 2Re (αj)Vj ,

with α̂j :=
√

−2Re (αj), W0 := B, ZP,0 := [ ], and αj , j = 1, . . ., are shift parameters
that are crucial for a fast convergence. Here, we employ a strategy proposed in [6],
which produces the shifts adaptively in the course of the iteration. The original LR-
ADI iteration, however, expects that the inhomogeneity of the CALE to be solved
is given in a symmetric definite form, BBT . However, the inhomogeneities of the
frequency-limited CALEs (4.5) are given by

BΩB
T +BBT

Ω = B̂FmB̂T , B̂ = [B, BΩ],

CT
ΩC + CTCΩ = ĈTFpĈ, Ĉ =

[

C
CΩ

]

,

with the flipping matrix Fh from (3.8). Since λ(Fh) = {±1}, these inhomogeneities
are in general indefinite matrices. To tackle the indefiniteness of the inhomogeneities,
the LDLT -variant [37, Algorithm 1], [38] of the LR-ADI iteration can be used. This
will only slightly alter the iteration (4.8) and the computed approximate solution after
j iteration steps is of the form

PΩ ≈ PADI
Ω,j = ZPΩ,j (Ij ⊗ Fm)ZT

PΩ,j.

Although Ij ⊗ Fm is an indefinite matrix, we assume PADI
Ω,j � 0 since PΩ ≻ 0. In

practice this might hold only if PADI
Ω,j is a sufficiently accurate approximation of PΩ.

A semidefinite factorization of PADI
Ω,j can be obtained as follows: compute a thin

QR-decomposition U1R = ZPΩ,j followed by a spectral decomposition U2Λ̂U
T
2 =

R (Ij ⊗ Fm)RT with UT
2 U2 = I2mj , Λ̂ = diag(λ̂1, . . . , λ̂2mj). Then, the approximate

solution PADI
Ω,j can be represented by a semidefinite factorization

PADI
Ω,j = ẐPΩ,jẐ

T
PΩ,j, ẐPΩ,j := U1U2Λ̂

1
2 .

By neglecting very small eigenvalues λ̂ and the corresponding columns of U2, this
procedure also enables a rank truncation of the approximate solution PADI

Ω,j , similar
to line 10 in Algorithm 4.1, to get rid of nearly linearly dependent columns.

Alternatively, by observing that PΩ = NΩ + NT
Ω , where NΩ solves the Sylvester

equation

ANΩ +NΩA
T +BBT

Ω = 0,(4.9)

the modification of the factored ADI iteration [7], [4, Algorithm 4] can be applied
directly to (4.9) and yields, after j iteration steps,

NΩ ≈ NΩ,j = Z̃PΩ,j Ỹ
T
PΩ,j , Z̃PΩ,j, ỸPΩ,j ∈ R

n×mj .
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Hence, one obtains a low-rank approximation PΩ ≈ [Z̃PΩ,j, ỸPΩ,j ]Fjm[Z̃PΩ,j , ỸPΩ,j ]
T

which can be transformed into a semidefinite factorization using similar steps as above.
Neglecting this transformation, both approaches are equivalent. The numerical effort
of both methods is also identical and we use the LDLT version of the LR-ADI iteration
in the remainder.

The additionally needed QR-decomposition for constructing the semidefinite low-
rank factorization introduces additional costs. This can be seen as a disadvantage of
the LR-ADI iteration. Another shortcoming is that the information from computing
BΩ is not reused which, as observed in practice, often leads to more required iteration
steps of the LR-ADI iteration compared to the projection type approach mentioned
above, e.g., Algorithm 4.1.

5. Related problems.

5.1. Generalized state-space systems. Until now we have considered only
standard state-space systems, but everything can easily be modified to handle gener-
alized state-space systems

Eẋ(t) = Ax(t) +Bu(t),(5.1a)

y(t) = Cx(t)(5.1b)

with a nonsingular E ∈ Rn×n by using similar techniques as in the unlimited BT
framework. As, e.g., shown in [50], the reachability and observability Gramians of
(5.1) are P , ETQE, where P , Q are the solutions of the GCALEs

(5.2) APET + EPAT = −BBT , ATQE + ETQA = −CTC.

Corollary 5.1 (frequency-limited Gramians for generalized systems). For

a generalized state-space system (5.1) and the frequency intervals Ω in (2.3), the

frequency-limited Gramians are PΩ and ETQΩE, which are obtained from either of

the following two approaches:

1. Using the solutions P and Q of the ordinary reachability and observability

and GCALEs (5.2), it holds that

PΩ = FΩEP + PETFT
Ω , QΩ = FT

ΩETQ+QEFΩ(5.3)

with

FΩ :=
1

2π

∫

Ω

(ıνE −A)−1dν.(5.4)

2. The frequency-limited Gramians are given from the solutions of the frequency-

limited reachability and observability GCALEs

APΩE
T + EPΩA

T +BΩB
T +BBT

Ω = 0, BΩ := EFΩB,(5.5a)

ATQΩE + ETQΩA+ CT
ΩC + CTCΩ = 0, CΩ := CFΩE.(5.5b)

The matrix-valued integral can be represented in terms of the matrix logarithm via

FΩ = Re
( ı

π
ln
(

(A+ ıω1E)−1(A+ ıω2E)
)

)

E−1(5.6a)

= E−1 Re
( ı

π
ln
(

(A+ ıω2E)(A+ ıω1E)−1
)

)

.(5.6b)
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Proof. Using the equivalent standard state-space system defined by Â := E−1A,
B̂ := E−1B, C leads, by employing (2.5) and (5.4), to

1

2π

∫

Ω

(ıνIn − Â)−1dν = FΩE,

which, by applying [46, Theorems 3.1–3.2] and (2.4), immediately gives (5.3). The
reachability CALE w.r.t. Â, B̂ is

0 = ÂPΩ + PΩÂ
T + FΩEB̂B̂T + B̂B̂TFT

ΩET

= E−1APΩ + PΩA
TE−T + FΩBBTE−T + E−1BBTFT

Ω

⇔ 0 = APΩE
T + EPΩA

T + EFΩBBT +BBTFT
ΩET

and (5.5a) is established. The frequency-limited observability GCALE (5.5b) is de-
rived using similar steps. For (5.6), first note that FΩ = 1

2π

∫

Ω
(ıνIn − Â)−1dνE−1

from which (5.6a) easily follows by using Theorem 2.3. Alternatively, it holds that
FΩ = E−1 1

2π

∫

Ω(ıνIn − AE−1)−1dν, which again, by applying Theorem 2.3, leads
to (5.6b).

The algorithms we suggested in the standard state-space case for computing ap-
proximations of BΩ, CΩ, PΩ, and QΩ are also applicable here with minor modifica-
tions. Some care must be taken when Krylov subspace methods are used for this
purpose, since they implicitly work on E−1A or on L−1AL−T if 0 ≺ E = LLT .
Hence, the correct formulation of FΩ should be chosen. As an alternative, the use of
the generalized LR-ADI (G-LR-ADI) iteration [6] for the GCALEs is straightforward.

5.2. Stability preservation and modified FLBT. The inhomogeneities of
the Lyapunov equations (1.2) are in general indefinite and, hence, it is not guaranteed
that stability is preserved in the reduced order model [19]. In [24], a modification of
frequency-limited BT is presented that does preserve stability. Consider the eigenvalue
decompositions of the inhomogeneities of (4.5) and (5.5):

BΩB
T +BBT

Ω = QBSBQ
T
B, SB = diag(ηB1 , . . . , ηB2m, 0, . . . , 0) ∈ R

n×n,

CT
ΩC + CTCΩ = QCSCQ

T
C , SC = diag(ηC1 , . . . , η

C
2p, 0, . . . , 0) ∈ R

n×n

with QT
BQB = QT

CQC = I, QB, QC ∈ Rn×n. Assuming that rank [B, BΩ] = rB ≤
2m and rank [CT , CT

Ω ] = rC ≤ 2p, it holds that ηBi , ηCj �= 0 for i = 1, . . . , rB ,

j = 1, . . . , rC . However, there can be both negative and positive values of ηBi , ηCj .
Now let QB,1 ∈ Rn×rB , QC,1 ∈ Rn×rC be the first rB as well as rC columns of
QB, QC , and consider the modified frequency-limited GCALEs

APmod
Ω ET + EPmod

Ω AT +Bmod
Ω Bmod

Ω

T
= 0,

ATQmod
Ω E + ETQmod

Ω A+ Cmod
Ω

T
Cmod

Ω = 0
(5.7)

with Bmod
Ω := QB,1 diag(|ηB1 |, . . . , |ηBrB |)

1
2 , Cmod

Ω := diag(|ηC1 |, . . . , |ηCrC |)
1
2QT

C,1.

That is, the negative values in SB and SC are essentially simply negated. Notice
that computing the rB , rC ≪ n nonzero eigenvalues ηBi , ηCj and their corresponding
eigenvectors can be done very inexpensively. Performing the balancing and truncation
on the basis of these modified frequency-limited Gramians Pmod

Ω , Qmod
Ω yields modified

FLBT (FLBTmod). This approach ensures that, under some mild conditions [24,
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Theorem 11], the reduced order model is asymptotically stable and that, similar to
(1.4), the error bound

‖H − H̃‖H∞
≤ 2‖JB‖‖JC‖

n
∑

j=r+1

σmod
j ,(5.8)

JB := diag(|ηB1 |, . . . , |ηBrB |)−
1
2QT

B,1B, JC := CQC,1 diag(|ηC1 |, . . . , |ηCrC |)−
1
2 ,

can be established, where the σmod
j denotes the modified frequency-limited singular

values, i.e., the square roots of the eigenvalues of Pmod
Ω Qmod

Ω . The computation of
low-rank factors of Pmod

Ω , Qmod
Ω can be carried out similarly as without this mod-

ification using Algorithm 4.1, i.e., after an accurate approximation of, e.g., BΩ has
been computed, Bmod

Ω is constructed as above. For reusing the generated Krylov basis
to subsequently compute low-rank solution factors of Pmod

Ω , some small changes are
necessary. Since Bmod

Ω is obtained by altering B, BΩ, the inhomogeneity of the pro-
jected, modified, frequency-limited GCALE cannot be built similar to (4.7). Hence,
Bmod

Ω has to be projected explicitly via QT
kB

mod
Ω . The inhomogeneities of (5.7) are

symmetric positive semidefinite, such that the (G-)LR-ADI iteration can be applied
directly. However, because Pmod

Ω , Qmod
Ω do not fulfill the relations (2.4) and (5.3),

one cannot expect that they also exhibit a fast eigenvalue decay similar to PΩ, QΩ.
Some numerical experiments in section 6 show that the eigenvalues of Pmod

Ω , Qmod
Ω

can even decay at a similar speed as those of the infinite Gramians P , Q. This can
also lead to more iteration steps required by the applied Krylov subspace method or
the G-LR-ADI iteration compared to PΩ, QΩ.

5.3. Time-limited variants of BT. In [19], a series of related approaches is
proposed which restrict BT for (1.1) in certain ways. One possibility is to consider a
time interval T, e.g., T = [0, t1], t1 < ∞. Restricting BT to T leads to time-limited
BT and aims at finding a reduced model whose output ỹ is an accurate approximation
of the original output y, but only within the time frame T. This leads to time-limited
Gramians PT, QT which are the solutions of the time-limited CALEs

APT + PTA
T +BBT −BTB

T
T
= 0,

ATQT +QTA+ CTC − CT
T
CT = 0,

where BT := FTB, CT := CFT

with FT := eAt1 . Hence, the numerical approaches for FLBT presented above can be
easily adjusted to this setting. The main difference is that one has to deal with the
matrix-valued exponential. It is also possible to combine frequency- and time-limited
BT, where products of the form FΩFT occur.

5.4. Restricted BT for discrete-time systems. Both frequency- and time-
limited BT can also be carried out for discrete-time systems

xi+1 = Axi +Bui, yi = Cxi.

Let Ωd = [−ω1, ω1], ω1 < π, and Td = [0, i1], i1 ∈ N+, be the considered
frequency- and discrete-time intervals. The infinite, frequency-limited, and time-
limited Gramians are the solutions of the discrete-time, algebraic Lyapunov equa-
tions (DALEs)

P −APAT = BBT , Q−ATQA = CTC,

PΩd
−APΩd

AT = BΩd
BT +BBT

Ωd
, QΩd

−ATQΩd
A = CT

Ωd
C + CTCΩd

,

PTd
−APTd

AT = BBT +BTd
BT

Td
, QTd

−ATQTd
A = CTC + CT

Td
CTd

,
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where

BΩd
:= FΩd

B, CΩd
:= CFΩd

, FΩd
:= 1

2π Re
(

ω1I − 2ı ln (I −Ae−ıω1)
)

,

BTd
:= FTd

B, CTd
:= CFTd

, FTd
:= Ai1 ,

see, e.g., [19, 46]. Approximating the products with the different matrix-valued func-
tions FΩd

, FTd
can be done exactly as we described above. Subsequently, computing

low-rank solution factors of the DALEs can also be done by similar methods as we
used before, which again enables an efficient realization of these BT variants also for
large-scale systems. We plan to investigate the eigenvalue decay of the Gramians
mentioned in this section, as well as specially tailored numerical algorithms for their
approximation, in future work.

5.5. BT at a single frequency. Another conceptually very different modifica-
tion is presented in [14], which tries to restrict BT to a single frequency ω1 ∈ R+.
There, the CALEs to be solved are

Aω1
Pω1

+ Pω1
AH

ω1
+Bω1

BH
ω1

= 0, AH
ω1
Qω1

+Qω1
Aω1

+ CH
ω1
Cω1

= 0,

where Bω1
:= Fω1

B, Cω1
:= CFω1

with Fω1
:= ǫ(ǫIn + ıω1In − A)−1 and Aω1

:=
ıω1In+Fω1

(ıω1I−A), ǫ > 0. The CALEs are defined by complex data such that Pω1
,

Qω1
will be complex. An extension of this approach to frequency intervals is under

current research. First experiments in [14] raise the expectation that the eigenvalues
of Pω1

, Qω1
also decay faster than those of P , Q.

6. Numerical examples. Here, we numerically evaluate the results of section
3 regarding the eigenvalue decay of the frequency-limited Gramians, the numerical
approaches presented in section 4 to approximate the product with the matrix-valued
function as well as the low-rank approximations of the GCALE solutions, and the
accuracy of the reduced order models obtained by the considered BT variants em-
ploying these low-rank approximations. The numerical experiments are carried out
in MATLAB 8.0.0.783 (R2012b) on an Intel Xeon CPU X5650 @ 2.67 GHz with 48
GB RAM.

6.1. Eigenvalue decay and numerical rank of the Gramians. For illus-
trating the eigenvalue decay, we use a standard five-point, centered finite difference
discretization of the differential equation

∆v + 102ξ1
∂v

∂ξ1
+ 103ξ2

∂v

∂ξ2
= 0

for v = v(ξ1, ξ2) defined on Ω = (0, 1)2 with homogeneous Dirichlet boundary con-
ditions. Using n0 = 30 equidistant grid points for each spatial dimension yields
n = n2

0 = 900 for A. The input matrix B ∈ Rn is chosen as vector with random en-
tries from a normal distribution (initialized via randn(’state’, 0);). This small system
admits an exact numerical computation of the controllability Gramians P , PΩ, and
Pmod
Ω (cf. (5.7)) by using the lyap routine of MATLAB R©.

At first, the frequency interval boundaries are ω1 = 103, ω2 = 104 and the matrix
valued function FΩ is dealt with by the logm routine. The eigenvalues of all three
Gramians P , PΩ, and Pmod

Ω , scaled by their respective largest entry, are plotted in
the left plot of Figure 1. Apparently, the eigenvalues of PΩ decay significantly faster
than the ones of P and Pmod

Ω , which decay nearly identically. From now on, we
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Fig. 1. Left: Scaled eigenvalues of the Gramians. Right: Transfer function plot of the system.

Table 1
Computed numerical rank of the different Gramians w.r.t. various frequency interval bound-

aries. Here, rank(P, ǫ) = 72 and |λq| = 2.5337 · 104.

ω1, ω2 ρ(Γ) rank(PΩ, ǫ) rank(Pmod
Ω

, ǫ)

103, 104 0.43 39 74

102, 103 0.21 10 69

103, |λq| 0.57 67 74

0, 105 0.49 74 74

use the following definition of the numerical rank of a matrix X w.r.t. a threshold
τ ≥ 0: rank(X, τ) := argmaxj{σj(X)/σ1(X) > τ}. The numerical rank of the infinite
Gramian P w.r.t. the machine precision ǫ = 2.2204 · 10−16 is rank(P, ǫ) = 72.

In Table 1 we list the numerical ranks of the frequency-limited Gramian PΩ, of the
modification Pmod

Ω , and the spectral radius of the matrix Γ. For the used frequency
interval, the numerical rank of PΩ is, as predicted by Figure 1, noticeable smaller than
the numerical rank of P . We also tested other frequency intervals, where we used the

quantity |λq| from Lemma 3.3 , i.e., the magnitude of the eigenvalue at which | Im (λ)|
|Re (λ)|

is maximal. Notice that in the right plot of Figure 1, the Bode magnitude plot of the
transfer function matrixH shows a distinct bulk near |λq|. According to the discussion
in the end of section 3, setting the interval boundaries equal to |λq | can increase the
spectral radius ρ(Γ) and, thus, slow down the eigenvalue decay of PΩ. The results in
the last row confirm this for the choice ω2 = |λq| which yields ρ(Γ) > 1

2 and very close
numerical ranks of PΩ and P . In conclusion, the results in Table 1 seem to confirm the
expected influence of ρ(Γ) on rank (PΩ, ǫ). For the last frequency interval [0, 105],
one can also see that ρ(Γ) approaches 1

2 for increasingly large frequency intervals. The
numerical rank of the modified frequency-limited Gramian Pmod

Ω appears to be largely
unaffected by different frequency intervals and is always very close to the numerical
rank of P .

6.2. Influence of the different inhomogeneities to the low-rank solvers.
In the subsequent numerical experiments, we use the test systems summarized in
Table 2, which also gives the frequency interval boundaries ω1, ω2 that are chosen
purely for testing purposes and without any background from the applications. The
example fdm is actually obtained by using n0 = 350 grid points in the construction
of the small system above. The other test systems mainly represent finite element
discretizations (w.r.t. the spacial dimensions) of similar partial differential equations.

Before we test the proposed Algorithm 4.1 and carry it out using the computed
low-rank GCALE solutions, we consider how the different low-rank solvers perform
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Table 2
Dimensions, frequency interval boundaries, matrix properties, and source of the test systems.

Here, OC is the Oberwolfach Model Reduction Benchmark Collection and IFISS refers to the finite
element package; see, e.g., [51].

Example n m p ω1, ω2 Properties Source

chip 20082 1 5 10, 102 E spd OC1, ID=38867

ifiss 66049 5 5 1, 102 E spd, B,C random, randn(‘state’, 21314) IFISS [51] T-CD3

rail 79841 7 6 10−2, 10 A snd, E spd OC1, ID=38881

fdm 122500 5 5 10, 103 E = I, B,C random, randn(‘state’, 0) [44]

when applied to the standard GCALE (5.2), the frequency-limited GCALEs (2.4)
and (5.3), as well as the modified frequency-limited GCALE (5.7). In other words, we
investigate how the performance of the low-rank solvers differs w.r.t. to the different
inhomogeneities, as these are the only differences in all three GCALEs. For this, we
restrict the investigation to the controllability Gramians P , PΩ, and Pmod

Ω . Since the
direct calculation of the matrix-valued logarithm via the logm command is too memory
and time consuming, we use approximations of BΩ obtained by numerical quadrature
employing the integral command. The necessary eigenvalues and eigenvectors to
construct Bmod

Ω for (5.7) (cf. section 5.2) are computed using the eigs routine, which
took less than one second in all cases. We employ the EKSM [52], the RKSM with the
convex hull based adaptive shifts (RKSM(D)) [12], as well as the LR-ADI iteration
[44, 5, 6] (and its LDLT -variant [38] for PΩ) for computing the low-rank solution
factors. We point out that computing low-rank solution factors of PΩ and Pmod

Ω in
this way only serves a comparative purpose. As shown later in section 6.3, using the
proposed approach in Algorithm 4.1 is clearly more practical and efficient as it also
provides approximations to BΩ at once. The shifts for the LR-ADI iteration are gen-
erated adaptively using the V -shift strategy proposed in [6]. Only for the symmetric
rail example are the approximate Wachspress shifts [8] used because these led to the
fastest convergence. All methods are terminated as before when the scaled GCALE
residual norm (cf. line 8 in Algorithm 4.1) drops below τP = 10−8. Afterward, a
rank truncation (cf. lines 9–10 in Algorithm 4.1) is invoked, where all eigenvalues
of the low-rank solution with λ/λmax ≤ 10−12 are neglected. The required subspace
dimensions d = dim(Q), the ranks g of the obtained low-rank solutions after this
truncation, as well as the computation times tc for all methods and test systems are
summarized in Table 3. Due to the applied rank truncation, g also coincides with the
column dimension of the low-rank solution factors. For the LR-ADI methods, d is the
column dimension of the computed low-rank solution factor.

The different inhomogeneities of the frequency-limited GCALEs (2.4) and (5.3)
clearly affect the performance of EKSM and RKSM. As expected in section 3, the
ranks g of the low-rank approximations of PΩ are smaller compared to the approxi-
mations of P . However, the required subspace dimensions d for the low-rank approxi-
mations of PΩ are smaller only for the examples fdm and chip, where the computation
time is also smaller compared to that for P . For the ifiss and rail examples, these
differences are less pronounced since the subspace dimensions d = dim(Q) and com-
putation times tc are higher for PΩ. However, recalling that the inhomogeneities of
(2.4) and (5.3) are of rank 2m, one can see that the number of required iteration steps
is actually less compared with P . For the rail system, the ranks of the approximations
for P and PΩ show a less pronounced difference, which also explains the higher sub-
space dimensions. The LR-ADI iteration seems to be somewhat less affected by the

1Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark.
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Table 3
Required subspace dimension d, rank g, and computation time tc (in seconds) of the approximate

low-rank solutions of P , PΩ, and Pmod

Ω
by different methods.

P PΩ Pmod
Ω

Example Method d g tc d g tc d g tc

chip

EKSM 56 23 27.44 16 8 5.43 88 22 24.79

RKSM 23 22 25.47 14 8 9.02 34 22 19.76

LR-ADI 24 24 24.31 40 11 22.48 54 27 28.23

ifiss

EKSM 890 340 319.07 940 235 236.12 1160 346 392.75

RKSM 335 319 169.01 510 240 217.27 970 356 567.37

LR-ADI 405 343 66.39 930 248 115.72 1160 376 142.81

rail

EKSM 812 202 157.38 1260 190 304.12 952 213 149.72

RKSM 238 202 71.05 280 173 65.07 336 207 84.12

LR-ADI 266 199 69.48 532 182 118.11 532 204 103.87

fdm

EKSM 800 345 258.79 60 38 9.64 no conv.

RKSM 305 305 155.32 110 38 34.01 840 294 487.95

LR-ADI 420 353 117.05 730 43 145.05 880 309 174.09

different inhomogeneities since the computation times for PΩ are in the majority of
cases larger than for P . It achieves, however, the smallest computation times for the
infinite Gramian P for the examples fdm, ifiss, and chip. The time for the rail example
is also comparable but slightly higher than the times of EKSM and RKSM. Note that
we did not include further recent improvements of RKSM [13], which could accelerate
its performance. An implementation of this method is not available to the authors.
A basic reduction of the computational complexity of both EKSM and RKSM is to
solve the reduced GCALE only every couple steps, e.g., every fifth iteration step. In
most cases, computing the low-rank solution factors of the modified frequency-limited
Gramians Pmod

Ω seems to be more demanding for all methods compared to P , PΩ.
Apparently, the ranks of the computed low-rank approximations for Pmod

Ω are very
close to those for P , which is one explanation for the greater numerical effort.

6.3. Numerical approximations for f(A)b and the Gramians. Here, we
evaluate the numerical strategies presented in section 4.1 for obtaining approximations
of BΩ and PΩ. We employ the projection approach given in Algorithm 4.1 for different
choices of Krylov subspaces. The results are summarized in Table 4. For RKSM, the
abbreviations (D), (ıΩ), (ı[ω1, ω2]) refer to the use of the adaptive shifts based on
the convex hull, the imaginary interval ıΩ, and the alternating usage of ıω1, ıω2, and
their complex conjugates. The approximation of BΩ is regarded as accurate enough
when the criterion (4.4) is satisfied with τf = 10−8. After reaching this condition,
Algorithm 4.1 continues with computing the low-rank solution factor of PΩ, until the
criterion based on the Lyapunov residual norm in line 8 with τP = 10−8 is satisfied. In
case of RKSM(ıΩ) and RKSM(ı[ω1, ω2]), these iteration steps devoted to the GCALE
solution were carried out using the convex hull based adaptive shifts, i.e., RKSM(D).
We also list the dimension d = dim(Q) of the generated subspaces. More precisely,
d = dBΩ

+ dPΩ
, where dBΩ

denotes the subspace dimension necessary to approximate
BΩ to the desired accuracy and dPΩ

denotes the number of (additional) basis vectors
required to achieve also the desired accuracy w.r.t. the GCALEs. The quadrature
approximation of BΩ from the examples in section 6.2 serves as reference solution
Bref

Ω . The final relative error

Rfinal := ‖Bref
Ω − B̃Ω‖/‖Bref

Ω ‖,
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Table 4
Results for approximating BΩ, PΩ by Algorithm 4.1 using extended and rational Krylov sub-

spaces with different (adaptive) shifts.

Example Method d dBΩ
dPΩ

Rfinal Lfinal tc

chip,
tquad = 279

EKSM 26 26 0 2.12·10−9 6.36·10−9 14.23

RKSM(D) 31 29 2 2.64·10−9 1.56·10−9 32.56

RKSM(ıΩ) 14 14 0 6.84·10−11 1.98·10−10 14.16

RKSM(ı[ω1, ω2]) 16 16 0 1.16·10−12 2.20·10−11 16.10

ifiss,
tquad = 788

RKSM(D) 435 435 0 5.78·10−9 4.35·10−9 273.51

RKSM(ıΩ) 290 290 0 2.87·10−9 1.89·10−9 153.00

rail,
tquad = 556

EKSM 868 868 0 8.06·10−9 7.79·10−9 421.12

RKSM(D) 322 322 0 1.76·10−8 5.79·10−9 131.73

RKSM(ıΩ) 280 280 0 1.93·10−8 1.66·10−8 74.38

RKSM(ı[ω1, ω2]) 406 266 140 1.19·10−8 6.12·10−8 115.37

fdm,
tquad = 374

EKSM 130 130 0 2.44·10−10 2.26·10−10 23.50

RKSM(D) 325 325 0 1.18·10−8 1.08·10−8 178.73

RKSM(ıΩ) 70 70 0 1.81·10−11 1.64·10−11 23.93

RKSM(ı[ω1, ω2]) 70 70 0 1.16·10−11 1.07·10−11 24.06

the final normalized GCALE residual norm Lfinal obtained after a rank truncation,
as well as the consumed computing times tquad and tc in seconds for the quadrature
approximation Bref

Ω and the Krylov method (Algorithm 4.1), respectively, are also
given.

Apparently, the projection approaches need less time than the quadrature ap-
proximation. Also, once the approximation of BΩ is found, in all but two situations,
there are no additional basis vectors necessary for generating the low-rank solution
factor of PΩ. Using RKSM with adaptively computed shifts based on ıΩ appears to
be the best choice regarding the required subspace dimensions (which directly reflect
the required iteration steps) as well as the consumed computation time. RKSM(D)
leads to higher subspace dimensions and longer computing times for all test systems.
The simplification RKSM(ı[ω1, ω2]) of RKSM(ıΩ) as well as EKSM are competitive
candidates only for the fdm and chip examples, whereas they required larger sub-
spaces for the rail example and failed to compute accurate approximations for the
ifiss example. Notice that in section 6.3, EKSM did not manage to compute a low-
rank solution factor of PΩ (cf. Table 3) for the ifiss system. To conclude, using the
adaptive, purely imaginary shifts from ıΩ leads to a fast convergence of RKSM for ap-
proximating BΩ and sufficiently accurate low-rank solutions of the frequency-limited
GCALEs are obtained immediately from the generated rational Krylov basis.

6.4. Reduction results. Now we carry out the standard BT, the frequency-
limited BT, the and its stability preserving modification [25] on the basis of low-rank
solutions of the respective GCALEs. For the infinite Gramians P, Q, we use the low-
rank solution method that achieved the smallest time in the experiment in section
6.2 (cf. Table 3). The low-rank factors of PΩ are selected from the fastest method
from Table 4. The observability Gramians as well as the modified frequency-limited
Gramians Pmod

Ω , Qmod
Ω are similarly dealt with by Algorithm 4.1 with the same settings

of τf , τP . The obtained low-rank solution factors are used within Algorithm 1.1 to
carry out the three BT variants to generate reduced order models of a prescribed
order r. It is noteworthy that no significantly differing reduced order models were
constructed when another method was employed to compute the low-rank solution
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Table 5
Reduction result obtained by different BT versions.

Example, settings BT type Algorithms tMOR Emax(Ω) Bound Stable?

chip
[ω1, ω2] = [10, 102],
r = 8

BT LR-ADI 59.49 1.39·10−3 4.7·10−2 1

FLBT RKSM(ıΩ) 30.16 4.56·10−7 – 1

FLBTmod RKSM(ıΩ) 63.12 6.32·10−4 4.94 ·10−1 1

ifiss
[ω1, ω2] = [1, 102],
r = 160

BT LR-ADI 147.89 1.48·10−4 1.9·102 1

FLBT RKSM(ıΩ) 276.70 8.82·10−6 – 1

FLBTmod RKSM(ıΩ) 573.27 5.68·10−5 1.2 ·103 1

rail
[ω1, ω2] = [10−2, 10],
r = 50

BT RKSM(D) 126.07 1.53·10−2 1.54·10−4 1

FLBT RKSM(ıΩ) 150.92 2.59·10−3 – 1

FLBTmod RKSM(ıΩ) 209.51 2.41·10−2 3.42 ·10−4 1

fdm
[ω1, ω2] = [10, 103],
r = 30

BT LR-ADI 230.23 8.76·10−2 1.1·10−1 1

FLBT EKSM 47.82 1.03·10−7 – 0

FLBTmod RKSM(ıΩ) 350.54 7.61·10−2 2.17 1

factors. The relative error of the obtained reduced order models is

E(ω) = ‖H(ıω)− H̃(ıω)‖2/‖H(ıω)‖2, ω ∈ R+,

with the transfer function matrices H and H̃ of the original and reduced systems as in
(1.5). For each test system, the Bode magnitude plots of H , H̃ and the relative errors
E(ω) are shown in Figure 2, where the thick vertical lines indicate the frequency inter-
val boundaries ω1, ω2. We also indicate the theoretical error bounds (1.4) and (5.8) of
BT and FLBTmod, respectively, computed on the basis of the obtained approximate
singular values. For the ifiss example, (1.4) and (5.8) overestimate the true error by
several orders of magnitude (cf. Table 5) and are thus not shown in the respective
error plot in Figure 2. While the reduced systems from BT match H in the entire
frequency range, those obtained with the frequency-limited variants FLBT, FLBTmod

show slight deviations outside the considered frequency interval [ω1, ω2]. The relative
error plots clarify this as they reveal smaller errors obtained by the frequency-limited
approaches within [ω1, ω2], where especially unmodified FLBT yields superior approx-
imations. Except for example rail, FLBT also achieves a somewhat higher accuracy
for ω ≤ ω1.

To quantitatively measure the approximation quality, we consider the largest
relative error within the relevant frequency region Ω via

Emax(Ω) := max
ω∈[ω1,ω2]

E(ω).

The results are given in Table 5, which also includes the overall time tMOR, which sums
up the computation time to acquire the low-rank Gramian factors and the generation
of the reduced order model by Algorithms 4.1 and 1.1, respectively. We also indicate
if the constructed reduced system is asymptotically stable.

It can be clearly confirmed that FLBT provides reduced order systems with the
best approximation quality in Ω for all test systems. Hence, the goal, mentioned
in the beginning, to achieve better accuracies at the same reduced order is fulfilled.
For comparison, BT achieves a comparable accuracy in Ω, e.g., for system ifiss, if the
reduced order is increased to r ≈ 200. Regarding the computation times tMOR, FLBT
is in some cases more expensive due to the required handling of the matrix function.
If an efficient numerical low-rank approach is used, computing the required low-rank
solution factors of the frequency-limited Gramians can, however, be cheaper compared
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Fig. 2. Results obtained by different BT versions. Left: Bode magnitude plot of original and
reduced transfer functions. Right: Relative errors and theoretical error bounds.

to the infinite Gramians. This is especially the case when the numerical ranks of the
frequency-limited Gramians are noticeable smaller than those of the infinite ones. In
our examples this is the case for the chip and fdm examples. There, carrying out
FLBT requires less time than BT.

For the fdm example, FLBT returned an asymptotically unstable reduced system.
This was also observed for the other systems for some smaller reduced dimensions r.
The stability preserving modification FLBTmod does always provide a stable reduced
order model, but the computation times are significantly higher than for BT and
FLBT. Similar to the experiments in section 6.2, it seems to be harder to solve (5.7)
for low-rank solutions. Moreover, this stability preservation appears to sacrifice the
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obtained accuracy in [ω1, ω2]. In particular for the rail and fdm systems, the accuracy
of FLBTmod is close to the accuracy of ordinary BT, which renders the introduction
of the frequency limitations essentially redundant. If stability preservation is really
crucial and FLBT fails on that score, but if also the efficient numerical realization of
the model order reduction approach is of importance, we recommend to still use BT
without frequency limitations.

It is also important to point out that, for the rail example, Figure 2 and Table 5
show a violation of both theoretical error bounds (1.4), (5.8) for BT, FLBTmod. For
the example fdm only the BT bound (1.4) is violated. This is most likely caused by
the usage of approximate GCALE solutions since (1.4), (5.8) are proven only when
exact solution factors are used.

7. Conclusion and outlook. We considered BT restricted to limited frequency
intervals. Compared to standard BT, a matrix-valued function occurs now in the defi-
nitions of the Gramians which have to be computed. The effects of this matrix-valued
function on the eigenvalues of the Gramians within frequency-limited BT have been
investigated and the established bounds indicate that the frequency-limited Grami-
ans have faster decaying eigenvalues than the infinite Gramians, which also results
in a smaller numerical rank. Due to some of the employed eigenvalue inequalities,
the found bounds are not very tight such that further research should be devoted in
that direction. The matrix-valued functions, as well as the computation of low-rank
solution factors of the occurring GCALEs, can be dealt with efficiently by a single
RKSM employing suitable shift parameters. This proposed method was in the nu-
merical test superior to other approaches, e.g., the EKSM or the LR-ADI iteration.
We plan to introduce further improvements of RKSM [13, 40] for this purpose in the
future. Carrying out FLBT using this method leads to reduced order models of better
accuracy compared to BT. In some situations, the numerical effort of FLBT was even
smaller because of the lower effort to approximate the frequency-limited Gramians.
The stability preserving modified FLBT approach was also considered, but although
similar techniques can be employed, the occurring modified, frequency-limited CALEs
appear to be much harder to solve for low-rank solution factors, mainly regardless of
the used method. Improving the handling of these modified Gramians, as well as
related approaches with restrictions on time or for discrete-time systems, are also
further research perspectives.
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[4] P. Benner and P. Kürschner, Computing real low-rank solutions of Sylvester equations by

the factored ADI method, Comput. Math. Appl., 67 (2014), pp. 1656–1672.
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