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Abstract Vibrations of a nonlinear self- and parametrically

excited MEMS device driven by external excitation and time

delay inputs are analysed in the paper. The model of MEMS

resonator includes a nonlinear van der Pol function produc-

ing self-excitation, a periodically varied coefficient which

represents Mathieu type of parametric excitation and fur-

thermore, periodic force acting on the resonator. Analysis of

frequency locking zones is presented with suggestions for a

strategy of a closed loop control. Interactions between self-

and parametric excitation lead to quasi-periodic oscillations

but under specific conditions the motion becomes harmonic.

The so called frequency locking, near the resonance zones is

observed. This is caused by the second kind Hopf bifurca-

tion (Neimark–Sacker bifurcation). The amplitudes of peri-

odic oscillations are determined analytically by the multiple

time scale method (MS) in the second order perturbation.

The effect of external force has been observed by the inter-

nal loop occurring inside the frequency locking zone. The

localisation of the zones and existence of the internal loop

can be controlled by a selection of gains and time delay of

displacement or velocity feedbacks.

Keywords Hopf bifurcations ·Quasi-periodic oscillations ·
Frequency locking zones · Self-excitation · Parametric

vibrations · Time delay · Control

1 Introduction

Many mechanical macro, micro or nano-scale devices have

to be studied as nonlinear structures in order to explain

J. Warminski (B)

Department of Applied Mechanics, Lublin University of Technology,

Nadbystrzycka 36, 20-618 Lublin, Poland

e-mail: j.warminski@pollub.pl

properly their dynamics. Micro–Electro–Mechanical Sys-

tems (MEMS) can be used as specific resonators designed

in order to work as amplifiers, sensors, filters or nonlinear

mixers. They can also be applied in various kind of scanning

probe microscopes. As an example we can mention papers

[1–3], or [4,5] where MEMS devices are used as radio fre-

quency resonators. In such MEMS devices different vibration

modes may interact in the same time.

Reduced (simplified) models of MEMS devices are often

proposed to reduce more accurate but computationally

expensive models. Such approach is essential if the nonlinear

resonator has to work in a complex network. A MEMS device

designed as thin planar radio frequency resonator is presented

in papers [4,6]. The nonlinear dynamics of the MEMS is

described by a one degree of freedom system modelled by

Mathieu–van der Pol–Duffing ordinary differential equation

with additional periodic force. It has been shown that the sys-

tem can exhibit quasi-periodic motion or frequency locking

either harmonic 1:1 or subharmonic 2:1. Analytical results

obtained by the method of multiple scales have been com-

pared with experimental tests for entrainment in a continuous

wave (CW) laser driven limit cycle disc resonator. Recently,

Duffing–van der Pol model has also been used for mathemat-

ical description of nonlinear dynamics of simply supported

Si beams of 200 nm thick and 35 µm long [7]. The device

self-oscillated in its first bending mode. Due to compressive

prestress the micro-beam buckled, leading to a strong ampli-

tude frequency dependence. Regions of the primary and sec-

ondary resonances have been measured experimentally and

on this basis a reduced one degree of freedom model has been

created. Limit cycle micro-oscillators have been studied in

[8,9]. A ten parameter theoretical model has been fit with

experimental results. Apart from mechanical also a thermo-

dynamical model has been adopted in order to couple average

temperature to a nonlinear displacement field. The temper-
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ature effect on MEMS beams dynamics has been discussed

recently in [10,11].

The mentioned above MEMS models include interacting

three different modes of vibrations: self-, parametric and

external excitation. Specific phenomena which may occur

while all of them interact in the same time have been pre-

sented in [12,13]. It has been demonstrated that the interac-

tion between parametric and self-excitation leads to the sec-

ondary Hopf bifurcation and frequency locking zones. The

studied models took into account self-excitation defined by

nonlinear Rayleigh or van der Pol functions and paramet-

ric excitation by time varying coefficients. The influence of

external force has been demonstrated for one degree of free-

dom (DOF) [12–14] and for a two DOF [15] system. It has

been shown there that small external force may qualitatively

change vibrations near the principal parametric resonance.

The added force affected the resonance curve by the inter-

nal loop occurrence. The loop phenomenon was also studied

in [16] for a two degrees of freedom system in a contents

of a nonlinear normal modes formulation. A study of quasi-

periodic oscillations driven by parametric and external exci-

tations have been presented in [17–19]. Apart from suppres-

sion of the primary and subharmonic resonances also analysis

of an existence of quasi-periodic vibrations and suppression

of chaotic motion have been presented there.

The secondary Hopf bifurcation and frequency quenching

near parametric resonances for various type of damping mod-

els have been analysed in [20–25]. Parametric resonances

and Hopf bifurcations in a harmonic oscillator with nonlin-

ear damping and elasticity with application to MEMS device

consisting of 30 µm diameter silicon disk have been pre-

sented in [26]. In [27] perturbation analysis of quasi-periodic

Mathieu equation have been studied in order to determine the

size of instability regions.

It is worth mentioning that the mathematical models

applied to MEMS devices have important meaning in macro

structures as well. In papers [28,29] wind-induced vibrations

of a tower system have been presented. A model of the struc-

ture with self-excited vibrations, interacting with external

or/and parametric excitations confirmed results published in

[16].

Time delays may occur in the model as inputs of a nat-

ural process or can be considered as control signals artifi-

cially imposed to the system in order to control its dynamics.

A control strategy for a self-excited Rayleigh type system

driven by parametric and external excitation by adding a time

delay signal has been presented in paper [30]. The effect of

time delay on nonlinear oscillations near the resonance zones

has been shown there. The added displacement feedback has

been proposed to control the system response. A harmon-

ically forced Duffing oscillator with time delay have been

studied in [31] and recently in [32]. By using the method

of multiple scales the resonances have been derived and the

concept of an equivalent damping related to the delay feed-

back has been proposed. Dynamics of a delayed nonlinear

Mathieu equation with cubic nonlinearity, near 2:1 paramet-

ric resonance has been presented in [33]. It has been shown

that the instability region can be eliminated for sufficiently

large delay gains and appropriately chosen time delay. Con-

trol of van der pol–Duffing oscillator under time delayed

position and velocity feedbacks has also been studied in [34]

by perturbation method. The effective control of vibration

amplitude has been possible if time delay and feedback gains

have been chosen properly.

This paper is a continuation of the study of a self- and para-

metrically exited system presented in [30] where Rayleigh–

Mathieu–Duffing model was analysed with influence of

external force and displacement feedback. In this paper we

consider van-der Pol–Mathieu–Duffing model correspond-

ing to MEMS devices discussed above in the literature review.

The van der Pol damping is taken into account as a term

which can produce self-excitation. This is a phenomenolog-

ical approach which is used to describe specific dynamics of

selected MEMS or NEMS resonators. The limit cycle oscil-

lations occur in micro beams, disks or dome shaped sys-

tems. Driving these devices by using either a piezoactua-

tor or a modulated laser at certain energy level the devices

may spontaneously transit into limit cycle oscillations. The

sign of damping may become negative, making unstable the

equilibrium position and leading to self-excited oscillations

represented by a limit cycle. This phenomenon can be well

represented by van der Pol model of damping [7,8,10,11].

Furthermore, we consider an effect of external force, dis-

placement and velocity feedbacks in order to control the

MEMS device.

2 Model

The MEMS resonator is modelled by a one degree of free-

dom (DOF) oscillator, composed of nonlinear spring with

cubic nonlinearity and a damper with nonlinear van der Pol

damping. The assumed nonlinear damping may produce self-

excitation as a stable limit cycle with an unstable equilibrium

point inside. A periodically varied in time coefficient repre-

sents parametric excitation of Mathieu type. Furthermore the

system can be excited externally by external harmonic force.

The mathematical model of the MEMS resonator is formu-

lated on the basis of papers [4,6]. The considered Mathieu–

van der Pol–Duffing model is a phenomenological reduction

of a real MEMS device. In spite of the fact that the struc-

ture is simple, just with one degree of freedom, its dynamics

may be complex. Interactions between three different vibra-

tions: self-, parametric and external, may lead to specific

phenomena. Dynamics of such a MEMS resonator may be

controlled by adding external harmonic force (open loop con-

trol) or time delay function taken from response of the system
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Fig. 1 Nonlinear model of a self-, parametric and externally excited

system with time delay signal

(closed loop control). In this paper we focus on the influ-

ence of external force on MEMS dynamics and furthermore

we study the effect of two delayed inputs, displacement and

velocity delay. A physical model of the MEMS resonator is

presented in Fig. 1.

The dynamics of the resonator is governed by the nonlin-

ear ordinary differential equation:

ẍ +
(

−α + βx2
)

ẋ + (1 − µ cos 2Ωt) x + γ x3

= f cos Ωt + g1x (t − td) + g2 ẋ (t − td) . (1)

Equation (1) includes: van der Pol term of self-excitation

represented by parameters α and β, Mathieu parametric term

with amplitude µ and frequency 2Ω , cubic Duffing nonlin-

earity with γ coefficient. On the right hand side, there are:

external harmonic force with amplitude f and frequency Ω

and two feedbacks considered as displacement and veloc-

ity control signals with time delay td and gains g1 and g2.

Equation (1) has a very general form. It allows an analysis of

interesting singular cases by switching on–off selected terms.

We note that external force excites the system in 1 : 2 ratio

with respect to parametric excitation. It means that near the

principal parametric resonance the system is excited para-

metrically with frequency 2Ω while its response is subhar-

monic with frequency Ω . Thus, the external force excites the

system additionally with frequency equal to the response.

Equation (1) can be solved numerically. The numerical

solution is close to the strict one. But in such approach the

qualitative analysis and parameters influence is limited. The

model based control strategy is also difficult to realise. There-

fore in this paper the system is solved analytically with the

direct numerical simulation used for results validation.

The system is nonlinear thus we apply an approximate

method in order to get analytical solution. Following the

paper [30] where the Rayleigh model of self-excitation was

analysed, in similar way we apply the multiple time scale

method [35]. We derive the ‘slow flow’ in the second order

perturbation and on this basis we find fixed points corre-

sponding to periodic solutions of the original system. The

slow-flow equations will allow also determining bifurca-

tion points of periodic into quasi-periodic solutions and then

amplitudes of quasi-periodic oscillations (see [17,18,36]). In

this paper however, we focus on the periodic oscillations and

their bifurcation points close to the frequency locking zones.

3 Slow flow: periodic solutions

In order to study the systems dynamics, we solve Eq. (1) ana-

lytically by the multiple time scale method [35]. We assume

that the system is weakly nonlinear. Thus the differential

equation of motion is rewritten in the form

ẍ + x = ε

[(

α̃ − β̃x2
)

ẋ + xµ̃ cos 2Ωt − γ̃ x3 + f̃ cos Ωt

+g̃1x (t − td) + g̃2 ẋ (t − td)

]

(2)

where ε is a formal small parameter, used for grouping ’small’

terms on the right hand side of Eq. (2). Now, the parameters

are defined as: α = εα̃, β = εβ̃, µ = εµ̃, γ = εγ̃ , f = ε f̃ ,

g1 = εg̃1, g2 = εg̃2. In further notation however, ’tilde’ is

dropped for simplicity.

The whole procedure for obtaining the analytical solu-

tion is presented in “Appendix”. The approximate solutions

are sought near the principal parametric resonance zone in

the second perturbation order. According to the method we

assume the solution in a series of a small parameter (18).

We also introduce different scales of time (19). Around the

principal parametric resonance, frequency of excitation Ω is

expressed by the detuning parameter σ1

Ω2 = ω2
0 + εσ1 (3)

where, ω0 is natural frequency of a linear system and in our

case ω0 = 1. Following the procedure given in “Appendix”,

the solution takes the form

x (t) = a cos (Ωt + φ) − ε
a

16Ω2

[

µ cos (3Ωt + φ)

−
1

2
γ a2 cos 3 (Ωt + φ) +

1

2
a2βΩ sin 3 (Ωt + φ)

]

(4)

Amplitude a = a(t) and phase φ = φ(t) are time dependent

functions and they are determined from modulation equa-

tions (slow flow)

2Ωa
da

dt
= ε

(

αΩa −
1

4
a3βΩ −

1

2
aµ sin 2φ − g1a sin τ

+ g2Ωa cos τ − f sin φ)

+ε2

{

−
3

8Ω
a3αγ +

1

16Ω
βγ a5

−
1

2Ω2
g2

1a cos τ sin τ −
1

2
g2

2a cos τ sin τ

+ f

[

1

4Ω

(

−α +
1

4
a2β

)

cos 2φ
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+
1

4Ω2

(

1

2
µ − σ1 +

9

2
a2

)

sin 2φ

+
1

32Ω2
a3µ (βΩ cos 2φ + 5γ sin 2φ)

]

+ g1
1

2Ω2

[

a

(

−σ1 +
3

2
γ a2

−
1

2
µ cos 2φ

)

sin τ −
1

2
f sin (φ + τ)

]

+ g2

[

1

4Ω

(

−
1

2
γ a3 cos τ − f cos (φ + τ)

)

+
1

2

(

−αa +
1

4
βa3 +

1

2Ω
µa sin 2φ

)]}

2Ωa
dφ

dt
= ε

(

3

4
a3γ − aσ1 −

1

2
aµ cos 2φ − g1a cos τ

− g2aΩ sin τ − f cos φ)

+ ε2

{

−
1

4
aα2 +

3

32Ω2
aµ2 +

3

8Ω2
a3γ σ1

+
1

4
αβa3 −

1

4Ω2
aσ 2

1

−
1

128
a5

(

7β2 + 15γ 2
)

−
1

4Ω2
g2

1a cos 2τ

−
1

4
g2

2a cos 2τ −
1

16Ω2
µa3(γ cos 2φ

+βΩ sin 2φ)

+ f

[

1

4Ω2

(

1

2
µ − σ1 +

3

4Ω2
a2

)

cos φ

+
1

4Ω

(

α −
3

4
βa2

)

sin φ

]

+ g1

[

1

2Ω2
a

(

3

4
a2γ − σ1

)

cos τ

−
1

8Ω
βa3 sin τ −

1

4Ω2
f cos (φ + τ)

+
1

8Ω2
aµ (cos (τ − 2φ) − cos (τ + 2φ))

]

+ g2

[

1

2
a

(

−α +
1

4
βa2

)

cos τ

+
1

4Ω
f sin (φ + τ)

+
1

8Ω
aµ (sin (τ − 2φ) + sin (τ + 2φ))

]}

(5)

Parameter τ is time delay defined as: τ = Ωtd . On the basis

of the above slow flow equations we can study analytically

amplitude and phase of vibrations and also the bifurcation

points. Equations (5) are also used to study an influence of

the most important parameters.

As we can notice the modulation equation in the second

order perturbations have quite complex form, therefore we

start the analysis from the first order approximation. Neglect-

ing in Eq. (5) terms of ε2 order, assuming a steady state

da
dt

= 0,
dφ
dt

= 0, we get

a

[

Ω

(

α −
1

4
a2β

)

−
1

2
µ sin 2φ − g1 sin τ

+g2Ω cos τ

]

= f sin φ

a

(

3

4
a2γ − σ1 −

1

2
µ cos 2φ − g1 cos τ

−g2Ω sin τ

)

= f cos φ (6)

Equations (6) describe amplitudes of periodic oscillations

near the principal parametric resonance. The first order per-

turbation solution are less precise then those of the second

order. But the advantage of using them is their simpler form,

often giving possibility to be solved. The equations in the

first order perturbation (6) can be used as a starting point for

solving the second order problem (5).

In further numerical analysis, on the basis of papers [12–

14,30] we accept the values of parameters:

α = 0.01, β = 0.05, γ = 0.1, µ = 0.2,

f ∈ (0, 0.5), g1 ∈ (−1, 1), g2 ∈ (−1, 1), τ ∈ (−2π, 2π)

(7)

Selected parameters are varied in wide ranges in order to

demonstrate specific dynamic phenomena.

4 Stability analysis

Stability of the solutions is determined on the basis of the

first order perturbation. Taking into account terms of ε order,

Eqs. (5) are rewritten in the shorter form

da

dt
= f1 (a, φ)

dφ

dt
= f2 (a, φ) (8)

where

f1 (a, φ) =
1

2Ωa

(

αΩa −
1

4
a3βΩ −

1

2
aµ sin 2φ

−g1a sin τ + g2Ωa cos τ − f sin φ

)

f2 (a, φ) =
1

2Ωa

(

3

4
a3γ − aσ1 −

1

2
aµ cos 2φ

−g1a cos τ − g2aΩ sin τ − f cos φ

)

(9)

To analyse stability of the steady-state solutions, Eqs. (8)

are linearized with respect to a and φ and then the Jacobian

matrix is defined

J =
[

∂ f1

∂a
∂ f1

∂φ
∂ f2

∂a
∂ f2

∂φ

]

(10)
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The characteristic equation of the Jacobian (10) takes the

form

λ2 − T r(J )λ + Det (J ) = 0 (11)

where λ is an eigenvalue of the Jacobian matrix. The trace

T r(J ) and determinant Det (J ) are defined as:

T r =
1

2
α −

3

8
βa2 +

1

4Ω
µ sin 2φ +

1

2Ω
g1 sin τ

+
1

2
g2 cos τ +

1

2aΩ
f sin φ

Det =
µ

4Ω

[

3

4Ω
a2γ cos 2φ +

(

α −
3

4
a2β

)

sin 2φ

]

−
µ2

8Ω2
sin2 2φ

+
f

4Ω

[

3

4Ω
aγ cos φ +

(

α

a
−

1

4
aβ

)

sin φ

+
µ

aΩ

(

cos φ cos 2φ −
1

2
sin φ sin 2φ

)]

−
g1

4Ω2

(

f

a
sin φ + µ sin 2φ

)

sin τ

+
g2

4Ω

(

f

a
cos φ + µ sin 2φ

)

cos τ +
f 2

4a2Ω2
cos2 φ

(12)

The solution is asymptomatically stable if the roots of

the characteristic equation have negative real parts. From the

Routh-Hurwitz criterion, the solution of the system is stable

if and only if

T r(J ) < 0 and Det (J ) > 0. (13)

5 Parametric and self-excited system with time delay

Let us consider a case without external force. Substituting in

Eq. (6) f = 0, after simple algebraic manipulations we get

the equation for amplitude

1

4
a4

(

9γ 2 + β2Ω2
)

+ a2
[

Ω

(

−2αβΩ2 − 6γ σ1

)

+2g1 (−3σ1 cos τ + βΩ sin τ)

−2g2Ω (βΩ cos τ + 3γ sin τ)
]

+4
(

σ 2
1 + α2ω2 − µ2 + g2

2Ω2 + g2
1

)

= 0 (14)

and phase

tan 2φ =
4αΩ − a2βΩ + 4g2Ω cos τ − 4g1 sin τ

−3a2γ + 4σ1 + 4g1 cos τ + 4g2Ω sin τ
(15)

From Eq. (14) we find vibration amplitudes

a1,2 =

√

1

9γ 2 + β2Ω2

{

4g1 (3γ cos τ − βΩ sin τ) + 4g2Ω (3γ sin τ + βΩ cos τ) + 6γ σ1 + 2αβΩ2

±
1

4

√

64
[

3γ σ1 + αβΩ2 +
(

3g1γ + g2βΩ2
)

cos τ − (g1β − 3g2γ )Ω sin τ
]2 − 16

(

9γ 2 + β2Ω2
)

×
[

4g2
1 − µ2 + 4σ 2

1 + 4g2
2Ω2 + 8

(

g1σ1 + g2αΩ2
)

cos τ − 8 (g1α − g2σ1) Ω sin τ
]

}

(16)

Above amplitudes represent the region of a periodic solu-

tion which corresponds to frequency locking or frequency

quenching zone [20–22,24]. This phenomenon consists in

quenching frequency of self-excited vibrations by paramet-

ric excitation [30]. Outside this region the motion is quasi-

periodic, demonstrated by a limit cycle on Poinceré map or

modulated oscillations in time domain. In the present analy-

sis we will focus mainly on periodic response and frequency

locking regions.

Amplitudes (16) depend on the structural parameters, and

gains g1 and g2 and time delay τ of delayed signals. Select-

ing properly these three coefficients of input signals we can

control the system’s response. If we assume that g1 and g2

are equal to zero then we get dynamics of the system without

the feedbacks. This state corresponds to a case without con-

trol. Next, we look for a possible dynamics modification by

the delayed signals activation. The influence of the delayed

signals we demonstrate by switching on-off selected gains

g1 or g2. The resonance curve without any feedbacks is pre-

sented in Fig. 2a. The black curve shows the response for

g1 = 0 and g2 = 0 with solid and dashed line denoting

stable and unstable solutions, respectively. We see that the

resonance curve is located around Ω ≈ 1 with Hopf bifur-

cation point (HB) indicated on the left branch. Out of the

frequency-locking zone quasi-periodic solutions exist. They

bifurcate into the periodic solution in HB point located on

the solid line. It means that adding the displacement feedback

with gain g1 and delay τ = 0 we may shift the frequency

locking zone with a minor change of the amplitude and the

HB point localisation (Fig. 2a). However, varying time delay

τ we may influence essentially the amplitudes with a minor

shift of the curves. This is shown in Fig. 2b. The displace-

ment feedback with g1 = 0.15 and τ = −0.5 increased

amplitudes, moved the HB point and enlarged the unstable

solution region. For positive values of time delay τ = 0.49

amplitudes have been decreased and left branch of the curve

stabilised.

The analytical results have been validated by direct numer-

ical simulations of Eq. (2) by means of Runge–Kutta method
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(b)(a)

a

g =0.251

g =-0.151

g =01

HB HB HB

RK

a

=0.49

=0

=-0.5

HB

HB

RK

Fig. 2 Resonance curves a for τ = 0 and selected values of gain g1:= (0.25, 0,−0.15), and b for g1 = 0.15 and selected values of time delay τ :=

(−0.5, 0, 0.49); f = 0, g2 = 0; HB—Hopf bifurcation point, RK—direct numerical simulation by Runge–Kutta method

Fig. 3 Time histories for Ω = 0.83 a and Ω = 0.84 b; gain g1 = 0.25, τ = 0, f = 0, g2 = 0—numerical simulations

(RK) of the forth order. Obtained numerically amplitudes

are marked by circles and denoted by RK in Fig. 2. For the

curve g1 = 0.25 and τ = 0 (Fig. 2a) there is a very good

agreement of the numerical and analytical results, as well as

the prediction of the Hopf bifurcation point. Numerical solu-

tions just before (Ω = 0.83) and after the Hopf bifurcation

point (Ω = 0.84) are presented in Fig. 3a, b respectively. As

predicted analytically, the quasi-periodic solution bifurcates

into periodic one.

Another comparison has been done for g1 = 0.15 and

τ = −0.5. In this case the analytical prediction of ampli-

tudes again corresponds very well to numerical simulations

(see circles in Fig. 2b). However, the prediction of the Hopf

bifurcation differs in the sense that numerical results are sta-

ble in wider region then predicted analytically (see circles on

the left, next to the HB point). This difference results from the

accuracy of the analytical method. We have to consider this

fact designing the control strategy close to the HB point. For

Ω = 0.94 we get quasi-periodic motion and for Ω = 0.95

the solution tends to periodicity (Fig. 4).

We may want to act on the system response if the excitation

frequency is fixed. Such a situation is presented in Fig. 5. The

gain g1 has an influence similar to the detuning parameter.

The curve in Fig. 5a remains the resonance curve. Starting

from zero value the increase or decrease of g1 increases or

decreases amplitudes respectively. The delay τ changes the

amplitude in rather limited way (Fig. 5b) but it may cause

instability in a relatively large region.

Similar analysis we perform for velocity feedback, assum-

ing that g1 = 0. The influence of gain g2 is different than g1.

Varying gain g2 and keeping τ = 0 we may influence ampli-

tudes with almost no shift of the resonance curves (Fig. 6a).

A shift of the resonance zone can be controlled by a proper

selection of time delay τ which is demonstrated in Fig. 6b.

Analytical results are validated by bifurcation diagrams

obtained from direct numerical simulation of Eq. (1). Dia-

grams in Fig. 7 correspond to the curves presented in Fig. 6a

for g2 = 0.05 and g2 = −0.05. Solid line in Fig. 7a rep-

resents the frequency locking zone, black regions denote

quasi-periodic oscillations. When we increase value of gain
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Fig. 4 Time histories for Ω = 0.94 a and Ω = 0.95 b; gain g1 = 0.15, τ = −0.5, f = 0, g2 = 0—numerical simulations

a

g1

a

(a) (b)

Fig. 5 Influence of displacement feedback for fixed excitation frequency Ω = 1.05, a versus gain g1 for τ = 0 and b time delay τ for g1 = 0.15;

f = 0, g2 = 0

a

g =-0.052

g =0.052

g =02

a

=-1
g =0, =02

=1

(a) (b)

Fig. 6 Resonance curves for a τ = 0 and selected values of gain g2 := (−0.05, 0, 0.05) and b for g2 = 0.05 and time delay τ := (−1, 1) and

g2 = 0, τ = 0; g1 = 0, f = 0

g2 then we can decrease amplitudes in the frequency locking

zone and furthermore, eliminate quasi-periodicity (Fig. 7b).

The effect of the velocity feedback is demonstrated also for

fixed excitation frequency Ω . We see that varying the gain

g2 we may influence amplitudes in a relatively small inter-

val with the solutions in some intervals becoming unstable
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(a) (b)

Fig. 7 Bifurcation diagrams for gain a g2 = 0.05, τ = 0 and b g2 = −0.05, τ = 0; f = 0

a

g2

a

(a) (b)

Fig. 8 Influence of velocity feedback for fixed excitation frequency Ω = 1.05, a versus gain g2 for τ = 0 and b time delay τ for g2 = 0.05;

f = 0, g1 = 0

(Fig. 8a). The variation of delay τ does not influence stabil-

ity for the selected frequency but just changes the amplitude

a ∈ (1.4, 1.83).

Let assume that we are looking for gains values and time

delay leading to amplitude reduction to zero a = 0. Equaling

to zero Eq. (16) we find

g2Ω =
√

µ2 − 4
[

g2
1 − σ 2

1 − α2Ω2
(

−1 + cos2 τ
)

+ 2g1αΩ sin τ

+σ 2
1 sin2 τ + 2σ1 cos τ (−g1 + αΩ sin τ)

]

(17)

Equation (17) allows determining gain g2 for selected values

of structural parameters, versus gain q1 and time delay τ

for which amplitude of periodic oscillations is equal zero. In

Fig. 9 we present gain g2 as a function of frequency Ω for

different values of gain g1 and delay τ . We may observe that

time delay τ turns left the solutions (Fig. 9b), gain g1 shifts

the solution left (Fig. 9c) and both g1 and τ move the solution

left and up (Fig. 9d).

The surfaces of gain g2 against frequency Ω and gain g1

as well as g2 against frequency Ω and delay τ are presented
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(b)(a)

(d)(c)

Fig. 9 Gain g2 against frequency Ω computed from Eq. (17) for a g1 = 0, τ = 0, b g1 = 0, τ = 0.8, c g1 = 0.1, τ = 0, d g1 = 0.1, τ = 0.8;

f = 0

Fig. 10 3D plots of gain g2

against a frequency Ω and gain

g1 or b frequency Ω and τ

computed from Eq. (17) for a

τ = 0, b g1 = 0.05; f = 0

in Fig. 10 in 3D plots. Curves presented in Fig. 9 are cross-

sections of the 3D surfaces. In Fig. 10b we see periodicity

with respect to time delay τ . On basis of 3D plots (Fig. 10)

and their 2D cross-sections (Fig. 9) we can find values of the

control parameters g1, g2 and τ for which the amplitude is

suppressed to zero.

6 Parametrically and self-excited system with external

force and time delay

Let us consider the resonator which apart from self- and para-

metric excitation is forced by harmonic force. Frequency of

external force is tuned 1:2 with respect to parametric excita-

tion. The model of the resonator with external force has been

derived for MEMS device in papers [4,6]. This kind of equa-

tion was studied before in [14]. Periodic, quasi-periodic and

chaotic oscillations with detailed description of the bifurca-

tion scenario were presented there. In this paper we focus on

periodic oscillations and frequency locking zones, mainly.

In this section we study the slow flow dynamics described

by Eq. (5) with imposed external force, displacement and

velocity feedbacks. The steady state solutions we can find

from the second order perturbation or we can simplify the

problem to the first order Eq. (6). Because it has not been

possible to solve analytically the set of nonlinear algebraic

equations either in the second or the first perturbation order,

therefore we decided to solve the modulation equations
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a
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d)(c)(

a

HB2

a

HB1

HB2

f=0.4

f=0.2

Fig. 11 Resonance curves for various values of external force a f = 0.05 b f = 0.15, c f = 0.15—zoom around H B2, d f = 0.2—black and

f = 0.4—red; g1 = 0, g2 = 0. (Color figure online)

numerically. The second order Eqs. (5) have been introduced

to Auto package and then studied by the continuation method

[37].

At first we consider the model without feedback influ-

ence, g1 = 0, g2 = 0. The added external harmonic force

changed the response of the resonator. The frequency locking

zone is qualitatively different. Small harmonic force caused

appearance of the internal loop. The stability analysis shows

that only upper branch of the internal loop is stable. We get

five steady state solutions: two upper stable and three lower

unstable (Fig. 11a). The loop diminishes when the external

force increases (Fig. 11b) and finally, after a certain threshold

it vanishes (Fig. 11d) and the resonance curve gets a classical

shape. Another important phenomenon is the second kind of

Hopf Bifurcation (HB) point (Neimark–Sacker bifurcation)

in which quasi-periodic oscillations bifurcate into periodic.

For small force there is only one HB point located on the

left branch (Fig. 11a), for increased force apart from H B1

also the second H B2 occurs on the right branch (Fig. 11b, c,

d). The right branch, initially unstable, transforms into sta-

ble one, with H B2 point. The zoom of the zone near H B2 is

presented in Fig. 11c.

The external force has important influence on the system

dynamics. It may change the resonance curve course and

a number of obtained solutions. In Fig. 12 we demonstrate

influence of external force for fixed frequency Ω = 1.05

(region with three solutions) and Ω = 1.1 (region with five

solutions). In fact, increasing external force above f > 0.13

or below f < −0.13 we move from triple solution to a single

solution region (Fig. 12a). For Ω = 1.1 the five solution

region is located in f ∈ (−0.2, 0.2). Increasing f for 0.2 <

| f | < 0.24 we get the triple solution region and above | f | >

0.24 the single stable solution (Fig. 12b).

In order to control system response we take the reso-

nance curve for f = 0.15 (Fig. 12b) as a basic curve.

Then we introduce displacement feedback. The response for

fixed frequency Ω = 1.1 and varied g1 gain and time delay

τ is presented in Fig. 13. The gain g1 behaves similar to
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b)(a)(

f

a a

f

HB HB

Fig. 12 Bifurcation diagram of amplitude a against external force amplitude f for a Ω = 1.05, b Ω = 1.1; g1 = 0, g2 = 0

b)(a)(

g1

a a

g =0.11 g =-0.11

Fig. 13 Bifurcation diagram of amplitude a versus a gain g1 for τ = 0 and b versus τ and g1 = 0.1 or g1 = −0.1; Ω = 1.1, g2 = 0, f = 0.15

detuning parameter, we get the curve remaining the reso-

nance response. Varying time delay τ we may modify ampli-

tude, which repeats periodically depending on the sign of g1

(Fig. 13b). This is in an accordance with results presented

in Chapter 5. The modification of the resonance curve due

to displacement feedback is demonstrated in Fig. 14. The

gain g1 mainly moves the curve into left (Fig.14a) or right

(Fig. 14b) direction while time delay τ may eliminate the

internal loop and stabilise unstable branches (Fig. 14c, d).

The influence of velocity feedback is more complicated.

We demonstrate this assuming g1 = 0. For fixed frequency

Ω = 1.1 we get a double loop curve with two Hopf bifur-

cation points H B1 and H B2 leading to instability (Fig. 15).

Changing time delay of the velocity feedback we can get dif-

ferent scenarios. Depending on gain value we change ampli-

tude (Fig. 16a) or we can get stable and unstable branches

with Hopf bifurcation (Fig. 16b). By a proper selection of the

velocity feedback we can modify frequency locking zones

making solutions stable into unstable (see unstable branches

in Fig. 17a) or we can stabilise and enlarge the resonance

zones (Fig. 17b).

The analytical results are validated by the bifurcation dia-

gram obtained by a direct numerical simulation of the original

system (2). Bifurcation diagram (Fig. 18) is in a very good

agreement with analytical result presented in Fig. 17a. We

can see the stable solution with the internal loop and quasi-

periodic oscillations out of the resonance zone.

7 Conclusions

Dynamical properties of MEMS resonator described by

Duffing-van der Pol-Mathieu oscillator have been presented
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b)(a)(

a a

d)(c)(

a a

Fig. 14 Influence of gain g1 on the resonance curves a g1 = 0.5, τ = 0, b g1 = −0.5, τ = 0, c g1 = 0.1, τ = 0.1, d g1 = 0.1, τ = 0.5; f = 0.15,

g2 = 0

g2

a
HB1

HB2

Fig. 15 Bifurcation diagram of amplitude a against gain g2 for τ = 0,

Ω = 1.1, g1 = 0, f = 0.15

with focus on its periodic oscillations, frequency locking

zones and possible control. We show that small external force

makes qualitative changes. In the frequency locking zone a

new internal loop occurs with only upper branch stable. The

increase of external force diminishes the loop and, above

the certain threshold the loop disappears. Furthermore, the

increased force stabilises the resonance curve on which one

or two Hopf bifurcation points arise. By adding feedback

signals we can design feedback control and, depending on

the assumed goal, we can stabilise, destabilise or shift the

solutions. In some cases we can reduce vibrations to zero.

On the basis of the analytical solutions we can design a

model based controller which may adopt to varied parame-

ters. The results show that the gain of displacement feedback

g1 mainly shift the frequency locking zone while its time

delay τ may stabilise the solutions. The velocity delayed

signal gain g2 and its time delay modify the solution and

stability.

The open problem is the analytical approach to quasi-

periodic dynamics, out of the frequency locking zones. This

can be done by determining slow-slow flow by using second

time the multiple scale method for slow flow. The first attempt
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b)(a)(

a

HB

a

Fig. 16 Bifurcation diagram of amplitude a versus a time delay τ for g2 = 0.1 and b versus τ and g2 = −0.1; g1 = 0, f = 0.15

b)(a)(

a a

Fig. 17 Influence of gain g2 on the resonance curves a g2 = 0.1, τ = 0, b g2 = −0.1, τ = 0; f = 0.15, g1 = 0

x

-4

4

0.6 1.6

Fig. 18 Bifurcation diagram around the principal resonance for g2 =
0.1, τ = 0, f = 0.15, g1 = 0

has been done in [36] and it will be developed in the future to

get analytical form for quasi-periodic oscillations of MEMS

resonator.
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Appendix: Second order perturbation analysis—multiple

time scale method

The solution of Eq. (2) is assumed in the form of a series of

the small parameter ε
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x(t, ε) = x0(T0, T1, T2) + εx1(T0, T1, T2)

+ε2x2(T0, T1, T2)

xτ (t, ε) = x0τ (T0, T1, T2) + εx1τ (T0, T1, T2)

+ε2x2τ (T0, T1, T2) (18)

where x j (T0, T1, T2), x jτ (T0, T1, T2) means the solution or

delayed solution expressed as a function in the zeroth, first

and second order perturbations (j=0,1,2), where T0, T1, T2

are respectively the fast and slow time scales. Time is

expressed by a series of the small parameter

t = T0 + εT1 + ε2T2 (19)

The introduced time definition results consequently in new

definitions of the first and the second time derivatives

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
= D0 + εD1 + ε2 D2

d2

dt2
= D2

0 + 2εD0 D1 + ε2
(

2D0 D2 + D2
1

)

(20)

where Dm
n = ∂m

∂Tn
denotes the mth order partial derivative

with respect to the nth time-scale.

Solutions are sought near the principal parametric reso-

nance therefore excitation frequency satisfies the condition

(3). Substituting solution (18) into (2), taking into account

introduced time scales and the derivatives definition (20),

expressing the natural frequency according to (3), after

grouping terms with respect to ε, we get a set of differen-

tial equations in the successive perturbation orders

ε0 : D2
0 x0 + Ω2x0 = 0 (21)

ε1 : D2
0 x1 + Ω2x1 = σ1x0 − 2D0 D1x0 + αD0x0

−βx2
0 D0x0 + µx0 cos 2ΩT0 − γ x3

0

+g1x0τ + g2 D0x0τ (22)

ε2 : D2
0 x2 + Ω2x2 = σ1x1 + α (D0x1 + D1x0)

−β

[

x2
0 (D0x1 + D1x0) + 2x0x1 D0x0

]

−2D0 D1x1 − 2D0 D2x0 − D2
1 x0 + µx1 cos 2ΩT0

−3γ x2
0 x1 + g1x1τ + g2 (D1x0τ + D0x1τ ) (23)

The solution of Eq. (21) has the form

x0(T0, T1, T2) = A(T1, T2) exp(iΩT0)

+ Ā(T1, T2) exp(−iΩT0)

x0τ (T0, T1, T2) = A(T1, T2) exp(iΩT0 − τ)

+ Ā(T1, T2) exp(−iΩT0 − τ) (24)

where i =
√

−1 is the imaginary unit, A is the complex

amplitude and Ā its complex conjugate and τ = Ωtd .

Next, the solution (24) is substituted into (22) and, after

grouping the terms in exponential functions, we get

D2
0 x1 + Ω2x1 = ST1eiΩ T0 +

(

1

2
µA

−γ A3 − βiΩ A3
)

e3iΩ T0 + cc (25)

where cc means complex conjugate functions to those writ-

ten on the right side of Eq. (25) and ST1 represents secular

generating terms. We require vanishing this term therefore

ST1 = 0, thus we have

2 i Ω D1 A − σ1 A − iαAΩ + iβΩ A2 Ā + 3γ A2 Ā

−
1

2
µ Ā − (g1 + g2iΩ) Ae−iτ −

1

2
f = 0 (26)

Next, rejecting the terms ST1 we determine the particular

solutions of Eq. (25)

x1 =
1

16Ω2

(

2γ A3 − µA + 2βiΩ A3
)

e3iΩT0 + cc. (27)

Substituting solutions (27) into (23) we get

D2
0 x2 + Ω2x2 = N ST2 + ST2eiΩ T0 + cc (28)

where N ST2 are nonsecular generating terms and they are

not directly reported here, and ST2 are secular generating

terms of the second order which we require vanishing

D2
1 A + 2iΩ D2 A − αD1 A + β A

(

2 ĀD1 A + AD1 Ā
)

+
1

2Ω
βγ i A3 Ā2 −

1

16ω
iβµA

(

A2 + Ā2
)

+
1

32Ω2
µ2 A +

3

8Ω2
γ 2 A3 Ā2 −

1

8
β2 A3 Ā2

−
1

16
γµA

(

A2 + 3 Ā2
)

− g2 D1 Ae−iτ = 0 (29)

Taking into account the particular solutions (24) and (27),

expressing the complex amplitudes in the polar form:

A =
1

2
aeiφ (30)

then using expansion (18), and after transformation to the

trigonometric form, we obtain approximate solutions in the

zeroth and the first order approximation (4).

Applying the so called reconstitution method [35], on the

basis of Eqs. (26) and (29) we reconstruct the ordinary differ-

ential equation for a modulation of the complex amplitudes

A. Expressing complex amplitude A in the polar form (30)

and separating the real and imaginary parts, we get the mod-

ulation Eqs. (5) for amplitude a and phase φ. These are so

called ‘slow flow’ equations.
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