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The circuit equations for certain series arrays of Josephson junctions can be mapped onto a simple model

originally introduced by Kuramoto @in Proceedings of the International Symposium on Mathematical Problems

in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics Vol. 39 ~Springer, Berlin, 1975!# to study

fundamental aspects of frequency locking in large populations of nonlinear oscillators. This correspondence

makes it possible to derive accurate theoretical predictions of transitions signaling the onset of partial and

complete locking, respectively. We calculate that both transitions should be observable experimentally using

present fabrication tolerances. @S1063-651X~98!06102-9#

PACS number~s!: 05.45.1b, 74.50.1r, 74.40.1k

I. INTRODUCTION

Josephson junction arrays are of interest for a variety of

reasons, both fundamental and applied @1–4#. On the funda-

mental side they have been used to study two-dimensional

melting, flux creep in type-II superconductors, and the non-

linear dynamics of coupled oscillators @5#. Josephson arrays

are presently used to maintain the U.S. Legal Volt @6#, and
researchers are pursuing applications where arrays could be
used as sensitive parametric amplifiers @7# and tunable local
oscillators @8# at millimeter and submillimeter wavelengths.

This last application directly overlaps with a particular
fundamental topic drawn from the field of nonlinear dynam-
ics, namely, mutual synchronization. It is well known that
populations of coupled nonlinear oscillators can spontane-
ously synchronize to a common frequency, despite differ-
ences in their natural frequencies. This phenomenon has
been observed in many physical and biological systems, in-
cluding relaxation oscillator circuits, networks of neurons
and cardiac pacemaker cells, chorusing crickets, and fireflies
that flash in unison @9,10#. The first systematic experimental
study was performed in 1665 by Huygens with two marine
pendulum clocks hanging from a common support @11#.

In a pioneering study, Winfree @12# developed a math-
ematical framework for studying large populations of limit-
cycle oscillators and showed that the onset of synchroniza-
tion is analogous to a thermodynamic phase transition. This
observation was refined by Kuramoto @13#, who proposed
and analyzed an exactly solvable mean-field model of
coupled oscillators with distributed natural frequencies. The
Kuramoto model has stimulated much theoretical work @14–
22#, thanks to its analytical tractability.

In this paper we show how the lump circuit equations for
a series array of zero-capacitance Josephson junctions can be
mapped onto the Kuramoto model in the limit of weak cou-
pling and weak disorder. This allows us to answer the ques-
tion how large a spread in the junction parameters can be

tolerated if the array is to achieve perfect frequency locking.
In fact, we can analytically determine the fraction of junc-
tions that frequency lock as a function of the various circuit
parameters. The Josephson array can display two transitions:
The first corresponds to the onset of dynamical order, the
second coincides with complete frequency locking. We find
that both transitions should be experimentally accessible
with existing technology.

In Sec. II we review both the lump circuit model for Jo-
sephson series arrays and the Kuramoto model for coupled
oscillators. Section III establishes the connection between
the two models. The analytical results known for the Kura-
moto model are summarized in Sec. IV and then used in Sec.
V to predict the synchronization properties of Josephson ar-
rays. We show that these predictions are in good agreement
with numerical simulations of the full equations for the lump
circuit. Some of the work reported here was presented earlier
in abbreviated form @23#.

II. BACKGROUND

Consider a series array of N junctions, biased with a con-
stant current IB and subject to a load with inductance L ,
resistance R , and capacitance C ~Fig. 1!. For junctions with
negligible capacitance, the governing circuit equations are
@24#

\

2er j

ḟ j1I jsinf j1Q̇5IB , j51, . . . ,N ~1!

LQ̈1RQ̇1

1

C
Q5

\

2e (k51

N

ḟk , ~2!

where f j is the wave-function phase difference across the
j th Josephson junction, r j is the junction resistance, I j is the
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junction critical current, Q is the charge on the load capaci-
tor, \ is Planck’s constant divided by 2p , and e is the el-
ementary charge. The overdot denotes differentiation with
respect to time. The voltage drop across the j th junction is

(\/2e)ḟ j .
Equation ~1! shows that the coupling between the junc-

tions is mediated by the load current Q̇ . In the absence of a
load the junctions are dynamically uncoupled and ~for IB

.I j) the j th element executes voltage oscillations at its bare
frequency

v j5

2er j

\
~IB

2
2I j

2!1/2. ~3!

The load causes the elements to oscillate at shifted frequen-

cies $ṽ j%, making it possible for junctions with different bare
frequencies $v j% to oscillate at a common frequency V . This
requires the coupling to be large enough to overcome the
intrinsic spread in the bare frequencies; the larger the cou-
pling, the greater the number of elements entrained.

Our goal is to calculate, as a function of the various sys-
tem parameters, the fraction of junctions that become per-
fectly frequency locked. We also want to calculate the total
power generated at the locking frequency V , a quantity that
also involves the relative phases of the locked elements. We
can achieve these goals by mapping Eqs. ~1! and ~2! onto the
Kuramoto-Sakaguchi model @15# for a set of N globally
coupled limit-cycle oscillators

u̇ j5v j2

K

N (
k51

N

sin~u j2uk1a ! ~4!

for j51, . . . ,N , where u j is the phase of the j th oscillator,
v j is its bare frequency, K is the coupling constant, and a is
a constant whose role is discussed below. The Kuramoto-
Sakaguchi model can be solved in the large-N limit using a
self-consistency approach. In Sec. III we derive Eq. ~4! from
the Josephson circuit equations, in the limit of weak disorder
and weak coupling; the quantitative consequences for the
dynamics of the Josephson array are tackled in the following
sections. The remainder of this section is devoted to a sum-
mary of the qualitative picture that emerges from that analy-
sis.

The essence of the problem is the competition between
the intrinsic disorder ~i.e., variations in the junction resis-
tances and critical currents! and the dynamical coupling
strength. In the Kuramoto model, the disorder enters via the
distribution of natural frequencies, while the effective cou-
pling strength is set by the parameter combination l
5Kcosa. If l.0 then the coupling is ‘‘attractive’’ and
tends to induce frequency locking. As l is decreased from a
large positive value, three dynamical regimes are encoun-
tered, as shown in Fig. 2. For l.l2 all of the oscillators are
frequency locked, for l2.l.l1 some finite fraction is
locked, and for l1.l there is no frequency locking.

In the Josephson junction array, one does not have inde-
pendent control over the parameters appearing in Eq. ~4!. For
example, the most natural control parameter is the bias cur-
rent IB and ~as we shall see! varying this parameter simulta-
neously changes all of the quantities K , cosa, and the N bare
frequencies $v j%. Moreover, the effective coupling strength
l cannot be increased to an arbitrarily large value. As might
be expected, the values of the transition points increase with
increasing intrinsic disorder. Consequently, depending on the
various circuit parameters, it can happen that one or both of
the transition points (l1, l2) are not observed in a particular
array. However, we find that complete frequency locking
should be observable using present technology, with toler-
ances in the junction parameters on the order of a percent
@25#. We discuss this point in Sec. V.

III. DERIVATION OF THE AVERAGED EQUATIONS

In this section we show that the Josephson system ~1! and
~2! can be mapped onto Kuramoto’s model ~4! in the limit of
weak coupling and weak disorder. Our derivation is a
straightforward extension of the averaging procedure previ-
ously applied to identical junction arrays @26,27#.

The first step is to introduce ‘‘natural angles’’ u j defined
by

2er j

\

du j

v j

5

df j

IB2I jsinf j

. ~5!

The angles u j are natural in the sense that, in the uncoupled
limit, they rotate uniformly, while the f j do not. Direct in-
tegration of this equation yields the useful trigonometric re-
lation

FIG. 1. Circuit model for a current biased series array of Joseph-

son junctions shunted in parallel by an inductor-capacitor-resistor

load.

FIG. 2. Typical behavior of the fraction of frequency locked

oscillators f as a function of coupling strength l .
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IB2I jsinf j5~IB
2
2I j

2!/~IB2I jcosu j!. ~6!

Thus Eq. ~1! can be rewritten as

u̇ j5v j2

v jQ̇

IB
2
2I j

2
~IB2I jcosu j!. ~7!

We assume that the disorder is weak, so it is convenient to
write

r j5 r̄ ~11er j!, ~8a!

I j5 Ī ~11ez j!, ~8b!

v j5v̄~11ed j!, ~8c!

where e is a formal parameter used to keep track of small
quantities and the overbar denotes a sample mean. Note that
r j , z j , and d j are not independent: From Eq. ~3!, we see that
to leading order,

d j5r j2

Ī

IB
2
2 Ī 2

z j1O~e !.

In what follows we also assume that the bias current is not
too close to the critical current @IB2I j.O(e)# and that the

coupling is weak @Q̇5O(e)#. Thus Eq. ~7! becomes

u̇ j5v̄1ev̄d j2

v̄Q̇

IB
2
2 Ī 2

~IB2 Ī cosu j!1O~e2!. ~9!

The basic idea behind the averaging method is as follows.

Equation ~9! shows that u̇ j2v̄5O(e); hence u j(t)2v̄t is a
slowly varying quantity that changes significantly only on a
long time scale t5O(1/e). Hence, on the fast O(1) time

scale of a single oscillation, u j(t)2v̄t is almost constant and
may therefore be replaced by its running average over one

cycle. To determine how u j(t)2v̄t varies on the long time
scale, we time average the right-hand side of Eq. ~9! and

replace u j(t) with v̄t1u j(0)1O(e). This procedure yields
an equation correct to first order for the slow evolution of

u j(t)2v̄t . To do the calculation explicitly we need an ex-

pression for Q̇(t), but this is readily obtained from Eq. ~2!,
as we now show.

To find Q̇ , note first that Eqs. ~1! and ~6! imply

\

2e
ḟ j5

IB
2
2I j

2

IB2I jcosu j

r j2Q̇r j , ~10!

so that Eq. ~2! becomes

LQ̈1S R1(
k

rkD Q̇1

1

C
Q5(

k
rk

IB
2
2Ik

2

IB2Ikcosuk

. ~11!

To leading order in e ,

LQ̈1~R1N r̄ !Q̇1

1

C
Q

5 r̄ ~IB
2
2 Ī 2!(

k

1

IB2 Ī cos@v̄t1uk~0 !#
. ~12!

This is the equation for a periodically driven harmonic oscil-
lator. For convenience, introduce the Fourier cosine series

1

IB2 Ī cos~v̄t !
5 (

n50

`

Ancosnv̄t ~13!

so that, for example,

A15

2

Ī
S IB

AIB
2
2 Ī 2

21 D . ~14!

Then Eq. ~12! has the steady-state solution

Q~ t !5 (
k51

N

(
n50

`

Bncos@nv̄t1nuk~0 !1bn# , ~15!

where

Bn
2
5

r̄ 2~IB
2
2 Ī 2!2An

2

~Ln2v̄2
21/C !2

1n2v̄2~R1N r̄ !2
~16!

and

bn5arctan
nv̄~R1N r̄ !

Ln2v̄2
21/C

. ~17!

The relative sign between An and Bn determines the correct
branch of the inverse tangent: One can easily check that
sinbn has the opposite sign of the ratio An /Bn and, for v

.1/ALC , cosbn also has the opposite sign of An /Bn . We
choose the Bn to be positive; consequently, if An is positive
then 2p,bn,2p/2.

Having found Q(t) to leading order in e , we are now
ready to derive the averaged equations for the phases. Sub-
stitution of expression ~15! into Eq. ~9! and taking the time
average over one period yields

u̇j5v̄1ev̄d j2

v̄2 Ī

IB
2
2 Ī 2

B1

2 (
k51

N

sin~uk2u j1b1!, ~18!

where uk(0)2u j(0) has been replaced by uk(t)2u j(t).
@This replacement introduces another negligible error of
O(e2) into the averaged equations.# To recast these equa-
tions into the form of the Kuramoto model, set a52p
2b1. Then sin(uk2uj1b1)5sin(uj2uk1a). Finally, to first
order in e , Eq. ~18! is equivalent to

u̇ j5v j2

K

N (
k51

N

sin~u j2uk1a !, ~19!

where, in terms of the original circuit parameters,
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K5

N r̄ v̄S 2e

\
r̄ IB2v̄ D

@~Lv̄2
21/C !2

1v̄2~R1N r̄ !2#1/2
~20!

and

cosa5

Lv̄2
21/C

@~Lv̄2
21/C !2

1v̄2~R1N r̄ !2#1/2
, ~21!

where 2p/2<a<0.

IV. ANALYSIS OF THE KURAMOTO MODEL

Equation ~4! is a variation of the Kuramoto model studied
by Sakaguchi and Kuramoto @15#, who analyzed the problem
using a self-consistency approach. First, one introduces a
complex order parameter

se ic
5

1

N (
k51

N

e iuk, ~22!

which is a useful measure of the phase coherence of the
dynamical state. For instance, s50 corresponds to an inco-
herent state, whereas s51 for perfect in-phase locking. For
a symmetric, unimodal bare frequency distribution g(v) and
in the large-N limit, numerical simulations indicate that s
settles down to a constant value and c rotates uniformly,
with c5Vt . Thus V represents the mutual locking fre-
quency, which in general differs from the mean bare fre-

quency v̄ .
We can readily determine which set of oscillators mutu-

ally lock. Upon multiplying Eq. ~22! by e2i(u j1a) and taking
the imaginary part, we can rewrite Eq. ~4! as

u̇ j5v j2Ks sin~u j2c1a !. ~23!

Using variables in a rotating frame defined by w j5u j2Vt ,
this equation becomes

ẇ j5v j2V2Ks sin~w j1a !. ~24!

Thus the j th oscillator locks to the frequency V provided
uv j2Vu<Ks . In the infinite-N limit, the fraction f of
locked oscillators is

f 5E
V2Ks

V1Ks

dvg~v !. ~25!

What about the oscillators that do not lock? Equation ~24!
can be explicitly integrated and one finds that each drifting

oscillator winds at a dressed frequency ṽ j given by

ṽ j
2
5~v j2V !2

2~Ks !2. ~26!

For the order parameter to remain constant in the rotating
frame ~as assumed!, it is necessary to impose the further
condition that the drifting oscillators arrange themselves in a
stationary distribution around the circle. The story of how
this comes about ~and in what sense it is true! is an interest-
ing one @14,28#, but here we simply assume its validity.

By solving for the stationary density of these drifting os-
cillators, along with the phase positions of the locked oscil-
lators, and then substituting the results into the definition
~22!, one arrives at the self-consistency relation @15#

se ia
5KsS iJ1E

2p/2

p/2

dj g~V1Ks sinj ! e ijcosj D ,

~27!

where

J5E
0

p/2

dj
cosj~12cosj !

sin3j
@g~V1m !2g~V2m !#

~28!

and m5Ks/sinj. Given the parameters of the problem,
namely, K , a , and the function g(v), this equation can be
solved to yield the desired quantities s and V , which in turn
allows one to compute the fraction of locked oscillators via
Eq. ~25!.

There is always the trivial solution s50, corresponding
to a completely desynchronized state. But for K large
enough, there is also a nontrivial solution with s.0. Typi-
cally one needs to solve Eq. ~27! numerically. For example,
suppose one wants to map out the nonzero solution branch as
a function of the width D of the given bare frequency distri-
bution. An efficient scheme is to start with a very small value
of D , so that practically all the junctions are locked and the
corresponding solution (V ,s) lies very close to the initial

guess (v̄ ,1). The precise solution can be determined by us-
ing, e.g., Newton’s method for computing the zeros of func-
tions. Then one can follow the solution branch from there by
slowly increasing the width D , using the most recently cal-
culated values of V and s as the initial guess for the next
case. Notice also that the numerical integration on the right-
hand side of Eq. ~27! may require special care if D is very
small.

V. COMPARISON WITH NUMERICAL SIMULATIONS

Having established the connection with the Kuramoto
model, we are in a position to make quantitative predictions
about the dynamical transitions in the Josephson array. As a
first example we consider an array of N5100 with disorder
in the junction critical currents only. Figure 3 shows the
fraction of locked junctions versus the spread D in critical
currents. The critical currents were chosen to match a nor-

malized parabolic distribution with mean Ī and full width
2D:

P~I !5

3

4D3 @D2
2~I2 Ī !2# . ~29!

The other parameter values are listed in the figure caption.
For these parameter values, one calculates from Eqs. ~20!
and ~21! the corresponding Kuramoto parameters K

50.0601 and cosa50.3878. The solid curve is then gener-
ated by solving Eqs. ~27! and ~25! for each value of D . The
open circles are the results from direct numerical simulations
of the original circuit equations ~1! and ~2!. The agreement is
very good.
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We see that there are three different dynamical regimes.
As the disorder is decreased from a large value, there is a
transition at D5Dc signaling the onset of frequency locking;
for DL,D,Dc there is partial frequency locking; for D
,DL the frequency locking is complete. The inset shows the
distribution of bare and dressed frequencies at D50.06 mA,
where about half of the junctions are locked.

Each transition is accompanied by a distinctive signature
in the power spectrum for the total voltage across the array.
As D is lowered below DL the power spectrum develops a
sharp line at the locking frequency V ~and its harmonics!,
while at D5Dc the broadband spectrum is completely
quenched. These features are readily apparent in Fig. 4,
which shows the results of numerical simulations for three
values of D corresponding to the labeled a ,b ,c in Fig. 3. In
principle, the addition of thermal noise can wash out these
sharp freatures; however, we have run simulations including
Johnson noise generated by both junction and load resis-
tances for a temperature of 4 K and the spectra in Fig. 4 are
essentially unchanged except for the presence of a flat noise
floor at 1025.

We consider as a next example a situation more natural
for real experiments, where the bias current IB is used as the
control parameter rather than the disorder level D . Varying
IB simultaneously affects all of the Kuramoto parameters
v j , K , and a . As IB is decreased from a large value, the
effective coupling strength Kcosa passes through a maxi-
mum as shown in Fig. 5. As a result, the effective coupling
strength may never be strong enough to induce complete
locking.

Figure 6 shows the results for two levels of intrinsic dis-
order, plotting the fraction of frequency locked junctions vs
IB . For these runs, the junction critical currents I j were cho-
sen to match Eq. ~29! as before, but the product I jr j was the
same for all junctions, a situation more typical of disorder in
superconductor-normal-superconductor arrays @29#. Note

that for a given D , keeping the product I jr j constant in-
creases the spread in bare frequencies and so increases the
effective disorder. Once again, we see that the predictions
based on the Kuramoto model agree quite well with the nu-
merical simulations. Note that for the larger disorder case
shown, D50.002 mA ~asterisks!, complete frequency lock-
ing is never achieved. Even so, for somewhat larger critical
currents ~e.g., 2 mA! full locking is seen at larger values of

D/ Ī ~e.g., 2%). This is in the range of present fabrication
techniques @25#.

We turn next to an issue concerning experimental obser-
vation. Although recent developments have made it possible
to directly image and identify mutually locked junctions
@30#, a more standard alternative is to measure the frequency
spectrum of the total voltage across the load. As mentioned
earlier, the onset of order is signaled by the birth of a narrow
line at frequency V @compare Figs. 4~b! and 4~c!#. We can
calculate an explicit expression for the strength AV of this
line from the Kuramoto model as follows.

According to Eq. ~15!, the load current Q(t) is

FIG. 3. Fraction of junctions locked to a common frequency as

a function of the spread D of critical currents for N5100, IB51.5

mA, R550 V , L525 pH, C50.04 pF, Ī 50.5 mA, and all junc-

tions r i50.5 V . Circles correspond to numerical simulations of

Eqs. ~1! and ~2!. The solid line corresponds to Eq. ~25!. Power

spectra for regimes a –c are shown in Fig. 4. The inset shows his-

tograms for the bare ~thin line! and dressed ~thick line! frequencies

at the point D50.06 mA.

FIG. 4. Power spectra ~in arbitrary units! for the ac component

of the total array voltage (\/2e)((ḟk2^(ḟk&), where angular

brackets indicate time average, for the three different regimes of

Fig. 1: ~a! D50.005 mA, ~b! D50.06 mA, and ~c! D50.14 mA.

FIG. 5. Typical dependence of the effective coupling strength

Kcosa vs bias current IB .

57 1567FREQUENCY LOCKING IN JOSEPHSON ARRAYS: . . .



Q~ t !5(
n

Bn(
k

cos@nuk~ t !1bn# . ~30!

Using a52p2b1, the fundamental (n51) component Q1

can be written as

Q1~ t !52B1(
k

cos@uk~ t !2a# . ~31!

By definition of the order parameter ~22!, we have

Q1~ t !52NB1s cos~c2a ! ~32!

or, using the Kuramoto ansatz c5Vt , the load current is

Q̇1~ t !5NB1sV sin~Vt2a !. ~33!

The voltage drop V across the array is directly related to the

load current by the load circuit equation V5LQ̈1RQ̇

1Q/C . Thus the fundamental component of the voltage V1

is given by

V1~ t !5AVsin~Vt1g2a !, ~34!

where the amplitude is

AV52Ks
IB

2
2 Ī 2

v̄2 Ī
A~LV2

21/C !2
1V2R2 ~35!

and the dephasing g is given by

cosg5

LV2
21/C

A~LV2
21/C !2

1V2R2
. ~36!

Figure 7 shows the results of simulations for the same set
of circumstances as Fig. 6, except now AV is plotted as a
function of IB . The agreement between simulations and the
predicted behavior is once again very good. The shape of the
AV-IB curves is very similar to that of the corresponding f -
IB curves. The main difference is that AV shows no dramatic
change at the complete-locking transition; consequently, for
this transition it is better to monitor the broadband low-
frequency part of the voltage output, which is quenched at
this transition @compare Figs. 4~a! and 4~b!#. On the other
hand, since AV is directly proportional to s @cf. Eq. ~35!# it
is a good order parameter for determining the onset of co-
herence.

Finally, we note that the power delivered to a matched

load at frequency V is given by PV5 f AV
2 /2R , which for

these parameters is about 30 nW per junction. This should be
sufficient power to detect using on-chip measurements.
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