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Abstract Dynamical systems which generate periodic
signals are of interest as models of biological central

pattern generators (CPGs) and in a number of robotic

applications. A basic functionality that is required in

both biological modelling and robotics is frequency mod-

ulation. This leads to the question of whether there are
generic mechanisms to control the frequency of neural

oscillators. Here we describe why this objective is of

a different nature, and more difficult to achieve, than

modulating other oscillation characteristics (like am-
plitude, offset, signal shape). We propose a generic way

to solve this task which makes use of a simple linear

controller. It rests on the insight that there is a bidirec-

tional dependency between the frequency of an oscilla-

tion, and geometric properties of the neural oscillator’s
phase portrait. By controlling the geometry of the neu-

ral state orbits, it is possible to control the frequency on

the condition that the state-space can be shaped such

that it can be pushed easily to any frequency.

Keywords Reservoir Computing · Pattern Genera-

tors · Frequency Modulation

1 Introduction

Across the animal kingdom, many biological functions
involve the neural generation of periodic motor pat-
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terns. Classical examples include processes of ingestion,
digestion, breathing, heartbeat, eye motion, reproduc-

tion, grooming and locomotion. The generation of the

requisite periodic motion signals is commonly attributed

to central pattern generators (CPGs, Grillner (1985),

reviews: Ijspeert (2008); Büschges et al (2011)). In the
classical understanding of this concept, a CPG is a

small, genetically archaic, neural circuit, typically lo-

cated in the brainstem or spinal cord, which is often ca-

pable of autonomous oscillations even in the absence of
neural input. Models of CPGs range in abstraction from

detailed reconstructions of neural circuits to simplified

ordinary differential equations (ODEs) which capture

essentials of the observable dynamics. All of these mod-

els can be considered small in the sense that they em-
ploy low-dimensional state spaces and/or a small num-

ber of neurons (say, order of 10 or less).

However, there are indications that biological CPGs

are embedded in, or closely interact with, larger cir-
cuits than what has standardly been realised in models.

For instance, recent studies in a leech model (Briggman

and Kristan Jr. (2006), see Briggman and Kristan Jr.

(2008) for a review), show that crawling and swimming
are effected by two CPGs of which most neurons over-

lap, forming a comprehensive, multi-functional circuit,

which can operate in at least two different regimes at

very different timescales. Büschges et al (2011) sup-

ply further evidence for a more complex and larger-
scale picture, afforded by the advent of genetic ma-

nipulation techniques. Furthermore, humans (and pos-

sibly other animals) are capable of voluntary action

with periodic components which obviously involve cor-
tical contributions, e.g., in sports, music or dance. Re-

gardless of whether cortical signals are themselves peri-

odic, or whether they interact with “lower” CPGs, the
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2 Francis wyffels et al.

complete dynamics involves neural populations of sizes

much larger than in “classical” CPGs.

In robot engineering, tuneable periodic patterns have

to be generated for a variety of motor behaviours. The

field has been inspired by biological CPG research and
has adopted concepts and terminology. Collaborations

between roboticists and biologists aim at testing bio-

logical theory in robot models (e.g., stick insect walking

(Cruse et al, 1995; Dean et al, 1999) or salamander loco-
motion (Ijspeert et al, 2007)) or, vice versa, at making

biological solutions fertile for engineering (e.g., for hu-

manoid (Nakanishi et al, 2004) or quadruped (Fukuoka

et al, 2003) locomotion).

Like their counterparts in biological modelling, CPG
models employed in robots have almost always been re-

alised as ODEs or as small-sized neural oscillators. Typ-

ically, these models are autonomous dynamical systems

and embed at least one limit cycle attractor. In order to
add modulation capabilities, such systems have a small

number of tuneable parameters. This enables the trans-

parent modulation of dynamical characteristics such as

amplitude, offset, phase lags and frequency, but also less

trivial modulations such as independently adjusting the
swing and stance phase (survey of design strategies in

Buchli et al (2006)). Alternatively, by driving such a

small dynamical system with a forcing term, the output

can be shaped such that it follows a desired trajectory
(see Ijspeert et al (2013) for a review).

Like in biological research, also in robotics there is

a good reason to consider larger-scale dynamical sys-

tems for pattern generation – say, in the order of hun-

dreds of dimensions or neurons. The reason is that one
wishes to endow the pattern generators with a rich and

learnable repertoire of a variability that extends far

beyond the customary modulation of amplitude, off-

set and frequency. Such additional degrees of flexibil-

ity include waveform, relative phase angles (in multidi-
mensional output systems), input and control gains, ob-

stacle avoidance, phasing-in and phasing-out, starting

and stopping, coordinated interaction with other be-

haviours, adaptation to different environments and tar-
get objects, high-dimensional sensor input, user com-

mand interfacing, and more. While for each of these

qualities specific solutions have been proposed for small-

sized CPGs, these have not been combined into inte-

grated systems. It seems likely that pattern generation
modules which can offer such flexibility would need to

be larger than the customary CPGs. Furthermore, us-

ing neural networks seems to be a plausible route to-

ward realising learnability of such functionalities.

In other work we and partners in the European

AMARSi project (see acknowledgments) have taken first

steps toward training large neural networks for robotic

CPGs (Reinhart and Steil, 2008; wyffels and Schrauwen,

2009; Wrede et al, 2010; Rolf et al, 2010a,b; Reinhart

and Steil, 2011;Waegeman and Schrauwen, 2011;Waege-

man et al, 2012b). Specifically, we are using recurrent

neural networks (RNNs) of the echo state networks (ESN)
type, a particular flavour of what has become known

as the reservoir computing (RC) paradigm. This ap-

proach led to encouraging progress in robust training

and modulation of waveforms (wyffels and Schrauwen,
2009; Waegeman et al, 2012b), in merging the pat-

tern generation with the end-effector control (Waege-

man et al, 2012c), in bidirectional forward-inverse kine-

matic transformations (Reinhart and Steil, 2008), in

fast learning of human-demonstrated motions (Wrede
et al, 2010), in endowing a single RNN with the capacity

to handle different tool objects (Rolf et al, 2010b), us-

ing a RNN for feedback control by online learning an in-

verse model (Waegeman et al, 2012a), or learning rhyth-
mical patterns with tensegrity structures (Caluwaerts

et al, 2013a). However, attempts have essentially failed

so far to extend generic learning and control mecha-

nisms, which work well for amplitude and offset modu-

lation, to frequency modulation (Li and Jaeger, 2011).
We will argue below in Section 4 that frequency mod-

ulation is a task which is intrinsically different from

modulating other characteristics of a neuro-dynamical

system.

The biological perspective adds another angle to

this riddle. Humans can generate voluntary action at

varying speeds, both periodic/rhythmic (e.g., walking,

singing) and non-periodic (e.g., reaching). Some of these

can possibly be explained by specific speed modulation
mechanisms of basal CPGs, but the human ability to

reproduce arbitrary teacher motions ad hoc at different

speeds suggests the existence of generic speed regula-

tion mechanisms for some cortical processes which com-
prises large neural populations. But, individual neurons

cannot be simply sped up or slowed down by changing

a time constant like it is possible with ODEs. Alterna-

tively, the oscillation period of small-sized ODEs can

be modulated by an external input (Curtu et al, 2008;
Daun et al, 2009; Zhang and Lewis, 2013). However, it

is not clear how this scales up to large populations of

interacting neurons.

In this article we propose a generic basis for neu-

ral processing speed adjustments of large oscillatory
RNNs which does not hinge on time-constant chang-

ing mechanisms. The key observation is that when a

(large or small) RNN is driven by a periodic signal

which passes through a frequency sweep, the geome-
try of the phase portrait co-varies with the driving fre-

quency (Section 4). This connection can be exploited

in reverse direction: if, in a suitable training setup, the
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Frequency Modulation of Large Oscillatory Neural Networks 3

RNN has been trained as an oscillator, its frequency in

signal generation mode can be modulated by controlling

geometric properties of the phase portrait (Section 3).

Indeed, adjusting a scalable bias suffices. We unfold

this scenario within the reservoir computing framework,
whose basics are briefly outlined in Section 2. A po-

tential obstacle to frequency control is that disruptive

bifurcations might occur during attempts to regulate

the frequency. This danger can be kept at bay by a
special kind of network regularisation which we call

equilibration and explain in Section 5. We demonstrate

the robustness of the method by showing that it al-

ways worked across all instances of a large sample of

randomly varied RNNs, provided that the equilibration
was successful (Section 6). In the concluding Section 7

we discuss in more depth the main contributions and

results of this work.

2 Designing an Echo State Network pattern

generator

In setting up and training our systems, we follow the

principles of reservoir computing (RC) (Verstraeten et al,

2007). More specifically, we use a flavour of RC known

as echo state networks (ESNs) (Jaeger, 2001). We first

recall the basic usage of this method for training neural
pattern generators.

2.1 ESN pattern generator design

An ESN setup for generating a desired one-dimensional

periodic sequence ydesired is governed by the discrete-

time state update equations

x[k + 1] = (1− λ)x[k] +

λ tanh (Wresx[k] +Wfby[k] +Wbias) , (1)

y[k + 1] = W
ᵀ

outx[k + 1], (2)

where x is the N -dimensional internal network state, y

the (here: one-dimensional) output signal, Wres is the

N×N internal weight matrix, Wfb is the N×1 output
feedback weight vector,Wbias is a bias vector,W

ᵀ

out are

the output weights, and λ functions as a leaking rate.

We adhere to the terminology of the field and call the

recurrent internal layer governed by Wres the reservoir

and x the reservoir state. This setup is illustrated in
Fig. 1.

When creating such an ESN, the reservoir weights

Wres are usually sampled from a standard normal dis-

tribution and then scaled to tune the dynamics of the
ESN. For this, the spectral radius ρ, which is defined

as the largest absolute eigenvalue of Wres, is used and

often ρ = 1 is taken as a reference point (Lukoševičius,
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Fig. 1 Schematic overview of a reservoir system for robustly
generating periodic patterns, i.e., an ESN pattern generator.
Only the readout weights (dashed connections) are trained.

2012). Similarly, Wfb and Wbias are typically sampled
from a standard normal distribution with variances scaled

to o and β respectively. It is known that with small

reservoir weights (and thus a small spectral radius), the

system, when run with zero input, will possess dynam-

ics characterised by a single global stable fixed point
(which is zero if the bias Wbias is zero). When the

weights are scaled up, at some point this globally stable

fixed point dynamics undergoes a bifurcation. Gener-

ally, the weights are scaled up to a point just before this
bifurcation (see Verstraeten et al (2007); Lukoševičius

and Jaeger (2009); Sussillo and Abbott (2009); Yildiz

et al (2012); Caluwaerts et al (2013b) for analysis and

discussion of the impact of ρ on the system dynamics).

Table 1 gives an overview of the system’s parameters
and their typical range.

Apart from the weights, the timescale on which the

system operates plays an important role. This can be

effectively tuned by choosing the sample rate for the in-

put and output signals of the system (Schrauwen et al,

2007). Alternatively, as applied in this work, the timescale
can be set by tuning the leaking rate λ (Jaeger, 2001).

In reservoir computing, the only parameters that

are traditionally modified/calculated in training are the

output weights Wᵀ

out. All other weights remain at their

random, globally scaled, creation-time values.

Table 1 Typical parameters for ESN pattern generators.

Parameter Description Value
N number of neurons 50 to 2000
ρ spectral radius 0.5 to 2.0
β bias weight variance 0 to 1
o output feedback scale 0 to 10
λ leak-rate 0 to 1
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4 Francis wyffels et al.

2.2 Training the readout weights using FORCE

learning

The optimisation criterion for trainingWout is the squared

error between the actual output y[k] and a desired

output ydesired[k], averaged over time. Computing the
weights Wout can be done with a variety of computa-

tional schemes, online or offline, each of which imple-

ments a linear regression of the reservoir states x[k] on

the targets ydesired[k]. In order to ensure stability of
the reservoir-output feedback loop dynamics, the stan-

dard approach is to regularise the output weights. For

offline training, state noise injection (Jaeger, 2002) and

ridge regression (wyffels et al, 2008) are commonly used.

When training the readout weights Wout online, Sus-
sillo and Abbott (2009) introduced a weight adaptation

algorithm called FORCE learning, which we find works

well for training ESNs with output feedback, which is

why we use it here.

FORCE learning differs from standard (offline) ap-

proaches to reservoir training in three ways. First, it

is an online learning method, where the output weights
are adapted at each training time step. Second, the net-

work weights are initialised before training such that

the spectral radius of the overall weight matrix is signif-

icantly larger than 1. As a result, the reservoir exhibits

spontaneous activity. Third, the actual self-generated
output – and not the correct teacher signal – is fed

back into the ESN pattern generator during training.

For training the output weightsWout, FORCE learn-
ing prescribes to use learning algorithms that rapidly

reduce (and keep small) the magnitude of the difference

between the actual and desired output (Sussillo and

Abbott, 2009). For this, the well-known recursive least
squares (RLS) online learning algorithm is adopted.

With RLS, the reservoir states x[k + 1] are updated

using Equation 1, while at every time step the readout

weightsWout[k+1] and the output y[k+1] are adjusted

according to the following equations:

e[k + 1] = W
ᵀ

out[k]x[k + 1]− ydesired[k + 1] (3)

P[k + 1] = P[k]−
P[k]x[k + 1]xᵀ[k + 1]P[k]

1 + xᵀ[k + 1]P[k]x[k + 1]
(4)

Wout[k + 1] = Wout[k]− e[k + 1]P[k + 1]x[k + 1] (5)

y[k + 1] = W
ᵀ

out[k + 1]x[k + 1]. (6)

Here e[k + 1] is the difference between the actual

output y[k + 1] and the desired output ydesired at time

step k + 1. P (N × N) is an estimation of the inverse
of the correlation matrix of the network states x and is

initialised at P[0] = α−1
I, where I is the identity ma-

trix, with α typically small (set at 0.1 in this work).

The readout weights Wout[k] at time step k are ini-

tialised to Wout[0] = 0. After K time steps, when

training is finished, the readout weights are kept fixed

(Wout = Wout[K]) and the reservoir system can be

used for recursively generating patterns by using equa-
tions 1 and 2. Previous work on FORCE learning (Sus-

sillo and Abbott, 2009) and its applications (Waegeman

et al, 2012a) have shown that e[k+1] (see equation 3),

and, consequently also the readout weightsWout[k+1],
converges.

Using the above procedure, we can train a reservoir

system with any rhythmic signal such that it generates
this periodic pattern and thus becomes an ESN pattern

generator.

3 Modulating an ESN pattern generator

The objective of this work is to realise frequency mod-

ulation of ESN pattern generators. One way to do this

is by directly training the ESN pattern generator such

that its output changes under the influence of an addi-

tional input signal (see for example Jaeger (2002); Sus-
sillo and Abbott (2009)). However, the problem with

these input driven systems is that their modulation

range is defined by a well chosen training set of input-

output combinations during the training phase. Any
unseen input might lead to an undesired shape mod-

ulation during the modulation phase due to the open

loop nature of controlling the output.

To overcome this problem, Li and Jaeger (2011) pro-

posed a method to control a number of characteristics

of an oscillating ESN pattern generator by means of an

external, trainable control loop. While this worked well

for modulating amplitude and shift, attempts to regu-
late frequency essentially failed. This indicated that fre-

quency modulation of CPG output may have a different

nature compared to those of other characteristics.

In this work, the objective of this controller (Fig. 2)

is to make the network-generated oscillation track a

desired frequency, of which the measured and desired

period lengths at time step k are denoted by T [k] and

T̂ [k], respectively. Therefore, the controller needs access
to measurements of period length T [k]. For the purpose

of our demonstrations a coarse, simple observer is suffi-

cient. We counted the number of simulation time steps

between two successive maxima of the the network out-
put signal, where a maximum at time k was defined by

the condition (y[k − 1] < y[k]) ∧ (y[k] > y[k + 1]). No-

tice that these measurements result in integer readings

which are constant for at least the duration of a period.

The target value T̂ [k] is likewise integer-valued. Its

interpolation should be changing on a timescale that is
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Fig. 2 Schematic overview of the control architecture. For
explanation see text.

at least one order of magnitude slower than the timescale

of the individual oscillations. Comparing the measured

period signal with the target gives a (normalised) error

ε =
T̂ [k + 1]− T [k + 1]

T [k + 1]
. (7)

The control input to the reservoir is simply a bias

vector Wc (N × 1) which is scaled with a constant pro-

portional gain cP (a scalar that has to be tuned) and the
error ε (scalar), leading to a controlled network update

equation of the form

x[k + 1] = (1− λ) x[k]

+λ tanh
(

Wres x[k] +Wfb y[k]

+Wbias + ε cP Wc

)

. (8)

This method obviously hinges on finding a suitable

control bias Wc. In (Li and Jaeger, 2011) we used a

perturbation-based learning approach to train Wc, and

in (Jaeger, 2010) a technique based on a correlational
analysis. In this work, we employ a third, simple and

intuitive method which assumes that, as sketched in

Fig. 3, the location of the oscillations in state space

vary monotonically with frequency. We constitute Wc,

as follows:

– Drive the reservoir using equation 1 with an exter-

nal oscillating signal of length K with decreasing
frequency. The driving is effected by writing the tar-

get oscillation into the output neuron y (“teacher

forcing”). Collect the driven neuron states x[k].

!"#$

%&!'

%()*+),-.

/01

/02

Fig. 3 Sketch of the 2-dimensional projection of the state-
space of a linearly tuneable ESN pattern generator. The pro-
posed control architecture hinges on a smooth monotonic
variation of the oscillation signal in state space.

– Smoothen this raw network signal by taking a mov-

ing average, to obtain xavg[k]. In this work we used a

time window of 2T0 with T0 the initial period length.
– Calculate the control weights:Wc = xavg[K]−xavg[2T0].

As mentioned before, achieving frequency modula-

tion by using this simple control scheme can be very

hard. The question that remains is: How can we shape

the state-space of the ESN pattern generator such that

it looks like the one sketched in Fig. 3?

4 Frequency expressed as geometrical

characteristics of the reservoir

The difficulties of achieving frequency modulation with

the described control framework indicate that frequency
modulation of the CPG’s output may be of different na-

ture compared to those of other characteristics.

This difference can be illuminated in two ways. Most
non-frequency related properties of an output signal

generated from a CPG can be modulated by post-processing

the output with suitable filters. All of these filters do

not interfere with the core CPG dynamics. Such a de-

coupling of modulation from generation is not possi-
ble when frequency is at stake. Another view on the

same conundrum is obtained when one considers phase

portraits of ODE-based CPGs which are modulated by

varying control parameters (Buchli et al, 2006). When
the modulation target is not frequency, the phase por-

traits invariably alter their geometry; when conversely

frequency is changed (by varying the ODE’s time con-

stant), the phase portrait remains the same.

Previous work on small-sized ODEs (Curtu et al,

2008; Daun et al, 2009; Zhang and Lewis, 2013) suggest
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Fig. 4 Driving an ESN pattern generator by a oscillation
with gradually decreasing frequency (top plot) does not cause
the dynamics to simply slow down. Instead, as can be ob-
served in the bottom plots, the geometrical/metric proper-
ties of the phase portraits change. From left to right one can
observe that the geometry of the phase portrait is changing
while the frequency of the teacher signal is decreased. For the
three phase portraits we used Principal Component Analysis
(PCA) (Jolliffe, 2005) to obtain a 2-dimensional projection of
the reservoir states.

that the oscillation period of half-center oscillators can

be controlled by external inputs, a mechanism which

does not rely on changing the time constant. To un-
derstand the nature of frequency modulation of a large

non-linear dynamical system such as the discussed ESN

pattern generator, we first investigate the dynamics of

ESN pattern generator under external driven input.

Specifically, we inject a gradually changing oscilla-

tion (y[k] = sin(0.075s[k]k), with s[k] a time dependent

scaling factor which linearly decreases from 2 to 1, see

top panel in Fig. 4) through the feedback weights Wfb

of an ESN pattern generator to drive the reservoir, and
record the reservoir states. Then we visualise the phase

portraits of this system by computing the 1st and 2nd

largest principal component (PC) of the trajectory, and

plotting the projections of reservoir states on the 1st PC
versus that of the 2nd PC (bottom panels in Fig. 4).

From the bottom panels of this figure one can see clearly

that the phase portraits of the reservoir change in shape

and offset across this driving input frequency-sweeping

oscillation, and do so quite substantially. Details of the
experimental setup are documented in Section 6.

So it appears that when a reservoir network is pas-

sively driven by an external signal with varying fre-

quency characteristics, its excited dynamics responds
with a variation not only of its speed but also of its geo-

metrical characteristics. In the remainder of this article

we investigate whether this causation can be reversed:

is it possible to modulate (only) the geometrical char-
acteristics of the internal dynamics of a reservoir, have

this reservoir actively generate an output signal, and

obtain a purely frequency variation in the latter? In

other words: Can we train an ESN pattern generator

such that, in state space, the oscillating signal changes

in a smooth monotonic way, i.e., its 2-dimensional pro-

jection looks similar to the sketch in Fig. 3.

The answer, as we will see, is yes. Indeed, in the case

study that we are going to present, it is enough to add
a bias of varying scale to the network dynamics in order

to obtain a geometry change that induces a frequency

sweep in the output. However, implementing a robust

geometry-to-frequency causation is not without diffi-
culties. The main challenge that we encountered was to

avoid bifurcations along the scaling route of the addi-

tional bias input. The key to success turned out to be

a reservoir pre-training which we termed equilibration

in earlier work (Jaeger, 2010; Li and Jaeger, 2011). In
the next section we recapitulate the basic ideas of this

technique.

5 Equilibration

The mechanism behind equilibration – namely, “inter-

nalizing” a driven dynamics into a reservoir – has been
independently (re-)introduced under different names and

for a variety of purposes (self-prediction Mayer and

Browne (2004), equilibration Jaeger (2010), reservoir

regularisation Reinhart and Steil (2012), self-sensing

networks Sussillo and Abbott (2012), innate training

Laje and Buonomano (2013)). It appears to be an RNN

adaptation principle that is fundamental, versatile and

simple. In the following subsections we explain the con-

cept of equilibration by a simple example, after which
we discuss the equilibration of ESN pattern generators.

5.1 Synthetic example of equilibration

To illustrate the concept of equilibration it is helpful

to consider a simple synthetic example (repeated from

Li and Jaeger (2011)). At the top of Fig. 5 the phase
portrait of a stable circular oscillation defined in cylin-

drical coordinates by ṙ = τ(−r+expx), θ̇ = 1, ẋ = −cx

is shown. Here r is a radius, θ an angle, and x a posi-

tion. This system has a globally attracting limit cycle at

x = 0, r = 1. If we would treat x as an input control pa-
rameter, we would be left with a 2-dimensional system

in r and θ whose dynamics is controlled by x. Feeding

x with different constant values would yield stable cir-

cular oscillations with radius equal to exp(x) (bottom
panel). There is another way to obtain exactly the same

bottom-panel phase portrait: use the 3-dimensional au-

tonomous system equation
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Frequency Modulation of Large Oscillatory Neural Networks 7

Fig. 5 Two phase portraits. Top panel: this system is gov-
erned by ṙ = τ(−r + expx), θ̇ = 1, ẋ = −cx. The por-
trait at the bottom can be interpreted in two ways: (i)
as a collection of phase portraits of a 2-dimensional sys-
tem ṙ = τ(−r + expx), θ̇ = 1 in variables r, θ, controlled
by an external input x, or (ii) as a 3-dimensional system

ṙ = τ(−r + expx), θ̇ = 1, ẋ = 0. The polar coordinates
θ, r are plotted to the y, z plane. For further comments see
text.

ṙ = τ(−r + expx), (9)

θ̇ = 1, (10)

ẋ = 0. (11)

Notice that the dynamics of this 3-dimensional au-
tonomous system is neutrally stable in the x direction,

while in the y, z directions it produces a stable oscilla-

tion whose amplitude depends on x.

The bottom-panel system exhibits what we call equi-

libration. Intuitively, it has internalised the x-input con-
trolled dynamics in which x essentially stands still at

different values and maintains a fixed circular oscilla-

tion. In this equilibrated system, each circle oscillation

(together with its x-value) is now an indifferently sta-
ble behaviour mode of the system. Furthermore, small

noise added to the system evolution will send the oscil-

lation amplitude (and x) on a slow random walk.

Now assume that the two systems shown in Fig. 5

were used as sine-wave generators, by extracting the y-

coordinate (y = r cos θ) as the output signal. The orig-

inal (un-equilibrated) system at the top will generate

a stable oscillation with a stable unit amplitude, i.e.,
from any initialisation this un-equilibrated system will

converge to the state where x = 0 and where the sys-

tem exhibits a stable oscillation with unit amplitude.

The equilibrated companion will likewise stably gener-
ate oscillations, but their amplitude will only be neu-

trally stable and would go through a random walk in

the presence of state noise. Now, if the objective were to

obtain an oscillator whose amplitude can be controlled

by an external controller, it seems intuitive that the
equilibrated system should be easier to control than

the un-equilibrated one. The equilibrated system al-

ready “knows how” to oscillate at different amplitudes.

In order to make it exhibit one of its “stored” oscilla-
tion pattern, the external controller only has to gently

steer the x-value to the appropriate value. Since the x-

dynamics is neutrally stable, this can be achieved with

minimal control energy (with zero magnitude in the adi-

abatic limit). The un-equilibrated system seems harder
to control: the native x-dynamics, which always tries

to push x toward 0, has to be overcome by a suitable

counter-action - for instance, by regulating x with a

proportional controller of high enough gain. This re-
quires that the system has to undergo a control input

of significant magnitude. While for the simple system

that we used here for illustration this would pose no

real obstacle, it is not trivial to steer the dynamics of

a very complex system (e.g., a high-dimensional RNN)
by large-magnitude control input.

The discussed example is about an oscillatory sys-

tem where the target characteristic, which we aim to

modulate, is amplitude. We used this example because
amplitude can be more readily visualised than frequency.

The topic of this article is however frequency control.

It should be clear that the same story could be told for

that case. The “raw” system would then be given, for

instance, by ṙ = τ(−r+1), θ̇ = exp(x), ẋ = −cx, while
the equilibrated system would again have ẋ = 0.

5.2 Equilibrating ESN pattern generators

Similar to the synthetic equilibrated example, we want
to build an equilibrated ESN pattern generator which

internally hosts a collection of oscillators of different fre-

quencies. By externally driving it to a particular differ-

ent condition, the pattern generator can spontaneously
produce the oscillating output with a particular fixed

frequency. To construct such an equilibrated ESN sys-

tem, we use the FORCE learning procedure (Section 2)
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8 Francis wyffels et al.

to build an ESN pattern generator of 1, 000 neurons and

train the system’s readout weights Wout with a spe-

cially designed target signal, namely, an oscillation with

a gradually changing frequency: ydesired[k] = sin(0.075s[k]k)

with s[k] a time dependent scaling factor which linearly
increases from 1 to 3 and k from 1 to 10, 000. Fig. 6 de-

picts this target signal.

An intuitive explanation for this training scheme is

that the network is trained to oscillate in different fre-
quencies. Consequently, when the training is successful

the system will be able to oscillate in different frequen-

cies by itself. In other words, the network should con-

tain a collection of oscillators of different frequencies.

If such a network can be made to oscillate at any fre-
quency in the training range, with frequency neutrally

stable (similar to amplitude in the synthetic example of

Section 5.1), this would demonstrate that we have an

instantiation of equilibration.

However, to our knowledge, with the current train-

ing methods for large RNNs, only an approximately

equilibrated system can be realised. Its hallmark would

be that when it is initialised to a particular frequency

by external driving, after releasing it from the driving
signal its frequency will slowly migrate toward a pre-

ferred frequency. In terms of our synthetic example (see

Section 5.1): the system from Eqns. 9 – 11 would be ap-

proximately equilibrated if Eqn. 11 would for instance
read ẋ = −εx for some small ε (or any other slow re-

laxation dynamics for x).

In our experiments we set the approximately equi-

librated ESN pattern generator to six different initial

oscillation conditions by driving the reservoir through
feedback weights Wfb with external oscillations of dif-

ferent but fixed frequency (period lengths between 28

and 87, e.g., the highest and lowest frequency used in

the training sequence). Then we let the ESN pattern

generator freely run by itself which results into the so-
called cueing plots (see for example Fig. 7). Indeed,

we then observe that the equilibration-trained reser-

voir slowly converges to a fixed frequency independent

of the initial condition we chose. The bottom plot in
Fig. 7 shows the output of an approximately equili-

brated ESN pattern generator starting from high fre-

quency initial oscillation condition. In contrast, the top

plot in Fig. 7 shows the behaviour of the same network

that was trained on a single frequency. Note again that
the details (parameters) of the experimental setup are

documented in Section 6.

It is interesting to compare the reservoir trajectories

of an ESN pattern generator under different conditions,
namely, (i) driven by external input (Section 4), (ii)

trained with an equilibration training method (trained

with a gradually changing frequency), and (iii) trained
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Fig. 7 The behaviour of a non-equilibrated (top) and an ap-
proximately equilibrated (bottom) ESN pattern generator.
Both systems were primed by driving them through their
output feedback with a high-frequency oscillation. After step
1, 250, each system was unclamped and let run freely. The
non-equilibrated system changes abruptly into its preferred
frequency, while the approximately equilibrated system ex-
hibits a slow drift of frequency toward its preferred frequency.

with the basic learning method (Section 2, trained with

on one frequency). Fig. 8 provides a PC-projected phase

portrait view on the differences between these condi-
tions. When the approximately equilibrated setup is

cued with a high-frequency driving signal and then re-

leased, its circling trajectory moves “monotonically”

and slowly toward the preferred (slower) frequency. This

behaviour is very similar to the setup while the reser-
voir was driven by an external (gradually) frequency

changing oscillation. The non-equilibrated setup, when

started from the same fast oscillation, displays a tra-

jectory which quickly moves from the initial cycle to
the final one, but on the way changes direction (moves

first upwards, then downwards in the vertical plotting

dimension). If the aim is to control frequency, it seems

plausible that a smooth monotonic change of geomet-

rical location leads to easier control mechanisms than
non-monotonic changes of geometrical localisation of

trajectories. All of this would deserve a more in-depth

study, but for the present purpose we are contented

with these intuitive impressions.
Here we have effected (approximate) equilibration

by only training the readout weights of the ESN. In

some of our earlier work (Jaeger, 2010; Li and Jaeger,

2011), approximately equilibration of an ESN pattern

generator was achieved through recomputing all the
system weights (Wres, Wout, Wfb and Wbias). A sys-

tematic investigation of training methods for equilibra-

tion remains for future work.

6 Simulation results

We first exhibit a typical example of a working fre-

quency control (Section 6.1) and then report findings
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Fig. 6 The signal used for equilibration training: ydesired[k] = sin(0.075s[k]k), with s[k] a time dependent scaling factor
which linearly increases from 1 to 3.
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Fig. 8 Comparison of the state evolution (projections of
the first and second principal components of the reservoir’s
states) of a driven (left), approximately equilibrated (middle)
and a non-equilibrated (right) network. For explanation see
text.
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Fig. 9 Output of a frequency adjustable system (top). The
desired frequency (light gray, bottom) goes through a slow
dip and is tracked reasonably well (black curve, bottom).

from a survey of trials with a large number of randomly

created reservoir systems (Section 6.2).

6.1 A typical example

Here, we use the reservoir system that was used through-

out this paper as an example to illustrate its frequency

modulating capabilities. To recapitulate, this reservoir

system has size N = 1, 000, a leak-rate set at 0.1 and
weightsWres,Wfb andWbias respectively sampled from

normal distributions N (0, 1), N (0, 1.5) and N (0, 0.5).

The scaling factors were obtained by manual tuning.
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Fig. 10 Output of a frequency adjustable system (top). The
control target follows a random walk (bottom, target: light
grey, measured frequency: black).

After creation of the weight matrices,Wres was rescaled
such that the spectral radius ρ was set at 1.8. The read-

out weights Wout were trained for equilibration with

a 10, 000 step oscillation ydesired[k] = sin(0.075s[k]k)

whose frequency was linearly sped up by a factor of 3

by ramping s[k] from 1 to 3 (see Fig. 6 for an illustra-
tion). For this, we followed the procedure outlined in

Section 2. After this preparation, we verified that the

equilibration was successful by visually inspecting its

cueing plots. In these plots the frequency must change
gradually (i.e., like the one in the bottom plot in Fig. 7).

After having obtained an approximately equilibrated
reservoir, we computed the control bias Wc and acti-

vated the control loop, as described in section 3. The

proportional control gain cP was determined by coarse

hand-tuning. For this cP = 1 was considered as a start-
ing point after which cP was decreased or increased in

order to achieve a more accurate tracking or larger con-

trol range, respectively. Figs. 9 and 10 demonstrate that

frequency could be controlled in a range of a factor 3.

6.2 From equilibration to modulatability

The equilibration procedure does not always result in
a system which behaves as “smoothly” as shown in

Figs. 7 (bottom) and 8 (middle). We found two con-

ditions which impede subsequent controllability. First,
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10 Francis wyffels et al.

it occurs that the equilibration-trained system escapes

into aperiodic (presumably chaotic) or fixed-point dy-

namics. These systems are not able to maintain a fixed

frequency oscillation and consequently are not suitable.

Second, even if the equilibration-trained system exhibits
periodic behaviour and has only a single preferred fre-

quency, convergence toward this frequency from other

cueing frequencies may be too strong (e.g., Figs 7 (top)

and 8 (right)). For these systems, the equilibration worked
out to an insufficient degree. Consequently, these sys-

tems can not be frequency-controlled by using a simple

linear controller.

We carried out a two-stage screening, starting from
a population of 20, 000 randomly created reservoirs.

From these, we first discarded the ones that showed

aperiodic or fixed-point behaviour, and in a second step

the ones that showed an insufficient degree of equili-

bration. The ones that were left over were tested for
controllability.

Specifically, the 20, 000 raw reservoirs, similar to

subsection 6.1, all had 1, 000 neurons and a leak-rate

of 0.15. The spectral radius ρ, feedback scaling o and
bias β scaling was set at 1.8, 1.5 and 0.5 respectively.

Each of these reservoirs was then equilibration-trained

as described in subsection 5.2. Each system thus pre-

pared was then cued with six oscillations whose periods
spanned the training range of 28 to 87 steps. After cue-

ing for 1, 250 steps, the system was let run freely until

10, 000 time steps were passed. We assumed that con-

vergence to any preferred dynamic mode would occur

within this runtime.

For each pattern generator we first checked whether

all of its six free runs converged to a fixed frequency os-

cillation. Therefore, we removed all systems which free

run let to a fixed point or aperiodic behaviour.

Next, we checked whether the equilibration had worked

out in the desired fashion, ideally looking like the bot-

tom plot in Fig. 7.

In order to automatically glean systems which have

the desired “smooth and slow” transient from a cued

period length toward the preferred one, we employed

the following heuristic. From among the six cueing runs

we used the one that started from the highest (period
28) and the lowest (period 87) frequency. From the gen-

erated time series, we obtained the evolution of period

lengths T1, ..., Ti, ..., TK (e.g., Fig. 11) with TK the last

measured period length from the free run. The sequence
T1, ..., Ti, ..., TK was then smoothed by a moving aver-

age filter. From the smoothed sequence, we calculated

heuristic measures Ξ, Ψ , Υ for speed of convergence,
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Fig. 11 Three examples of period length transient dynamics
from a (cued) short period to a (preferred) longer period.
Plots show progression of period length against number of
periods. Only the example in the top plot exhibits the desired
quasi-linear ramping-up.

curvature and monotonicity, respectively:

Ξ = max|Ti+1 − Ti| for ∀i = 1...K − 1 (12)

Ψ = max|(Ti+1 − Ti)− (Ti − Ti−1)| (13)

for ∀i = 2...K − 1

Υ =

K−1
∑

i=2

|sgn(Ti+1 − Ti)− sgn(Ti − Ti−1)| (14)

We considered a period sequence T1, ..., Ti, ..., TK as
proof of a successful equilibration if it was monotonic

(in the sense that Υ = 0), not too steep (Ξ < 2.0) and

not too curved (Ψ < 0.2).

Out of the 20, 000 systems, 1, 573 remained after our

selection procedure. All 1, 573 systems were found fre-
quency adjustable which was determined by the mean

absolute error (MAE) between the desired period lengths

and the observed period lengths. The same target as in

Fig. 9 was used and the threshold for acceptance was set

at MAE = 4.0. In roughly half of the cases the default
initial proportional gain cP, which was obtained after

rough manual tuning in the example from Section 6.1,

was sufficient to meet the objective. In the other cases,

manual tuning of cP was necessary.

These empirical results show that frequency mod-
ulation can be realised in high dimensional non-linear

pattern generators provided that they are successfully

(approximately) equilibrated.

7 Discussion

In this contribution we argued that

– biological and robotic pattern generators need to be

adjustable in many ways, and

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Frequency Modulation of Large Oscillatory Neural Networks 11

– modulation of speed differs fundamentally frommod-

ulation of other, “geometric” characteristics, and

– richly trainable and adjustable pattern generators

are likely to require neural networks of substantial

size, –
– which leads to the question of generic mechanisms

for frequency control of neural pattern generators.

Here we considered the special case of oscillatory

networks, and demonstrated that their frequency can
be made controllable by

– training the network in a way that it is forced to

adapt its weights to accommodate to a range of fre-

quencies (“equilibration”),
– which, if is successful, results in a monotonic inter-

dependence between temporal and spatial proper-

ties of the network dynamics,

– which in turn can be exploited for controlling time
by spatial state shifts through a bias term in a pro-

portional control loop.

Our study is a proof of principle, with many de-

sign decisions made ad hoc. Variations and extensions
offer themselves in many ways, e.g., improved control

schemes (for example, PID controllers instead of simple

P controllers, or making the bias weightsWc frequency-

dependent), more sophisticated observers for frequency,

other equilibration methods (for instance, training all
reservoir weights instead of training only the output

weights, as done in Jaeger (2010)), investigating other

signal shapes, etc. Furthermore, in our groups we also

investigate altogether different learning architectures
for making frequency adjustable ESN pattern gener-

ators. For instance, in (Jaeger, 2007) a multifrequency

generator is directly trained as an open-loop control

system. Thus, the present study does not claim to offer

the solution for constructing large frequency adjustable
oscillatory neural networks. We nonetheless consider

the following as relevant contributions:

– pointing out the importance and difficulty of the

neural speed control problem in the first place,
– clarifying the existence and functional role of equili-

bration of dynamics for making selected character-

istics robustly controllable, and

– demonstrating that a temporal – spatial interdepen-
dency of trajectories can be shaped and exploited

for control.

Biological evolution is likely to adopt whatever works

well. Biological research has identified frequency control
mechanisms in small CPG model systems which rely

on specific, idiosyncratic mechanisms. Roboticists sim-

ply adapt the speed of ODE based pattern generators

by changing the time constants. The work presented in

this article does not aim at replacing or refuting any of

these insights or techniques. However, in higher corti-

cal processing domains in biological systems, or in flex-

ibly trainable RNN-based robotic control modules, we
perceive an arena where generic neural speed control

schemes such as the one illustrated in this work might

become important.
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