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A B S T R A C T

Purpose
The aim of the current study was to determine the prevalence and clinical predictors of germline
cancer susceptibility mutations in patients with malignant mesothelioma (MM).

Methods
We performed targeted capture and next-generation sequencing of 85 cancer susceptibility genes
on germline DNA from 198 patients with pleural, peritoneal, and tunica vaginalis MM.

Results
Twenty-four germline mutations were identified in 13 genes in 23 (12%) of 198 patients. BAP1
mutations were the most common (n = 6; 25%). The remaining were in genes involved in DNA
damage sensing and repair (n = 14), oxygen sensing (n = 2), endosome trafficking (n = 1), and cell
growth (n = 1). Pleural site (odds ratio [OR], 0.23; 95% CI, 0.10 to 0.58; P, .01), asbestos exposure
(OR, 0.28; 95%CI, 0.11 to 0.72; P, .01), and older age (OR, 0.95; 95%CI, 0.92 to 0.99; P= .01) were
associated with decreased odds of carrying a germline mutation, whereas having a second cancer
diagnosis (OR, 3.33; 95% CI, 1.22 to 9.07; P = .02) significantly increased the odds. The odds of
carrying a mutation in BAP1 (OR, 1,658; 95% CI, 199 to 76,224; P , .001), BRCA2 (OR, 5; 95% CI,
1.0 to 14.7; P = .03), CDKN2A (OR, 53; 95% CI, 6 to 249; P, .001), TMEM127 (OR, 88; 95% CI, 1.7
to 1,105; P = .01), VHL (OR, 51; 95% CI, 1.1 to 453; P = .02), andWT1 (OR, 20; 95% CI, 0.5 to 135;
P = .049) were significantly higher in MM cases than in a noncancer control population. Tumor
sequencing identifiedmutations in a homologous recombination pathway gene in 52% (n = 29 of 54).

Conclusion
A significant proportion of patients withMMcarry germlinemutations in cancer susceptibility genes,
especially those with peritoneal MM, minimal asbestos exposure, young age, and a second cancer
diagnosis. These data support clinical germline genetic testing for patients with MM and provide
a rationale for additional investigation of the homologous recombination pathway in MM.

J Clin Oncol 36:2863-2871. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Malignant mesothelioma (MM) is an aggressive
malignancy with poor survival.1,2 MM develops
in the pleura (MPM; 80% to 95%), the perito-
neum (MPeM; 5% to 20%), and, rarely, the
pericardium and tunica vaginalis of the testis.3,4

Globally, MM mortality has been estimated at 9.9
per million with large regional variations that
correlate with asbestos use.5 Both MPM and
MPeM are strongly associated with prior asbestos
exposure.2 Heavy occupational exposure or long-
standing, low-level environmental exposure in-
creases the risk, yet only a fraction of exposed

individuals develop MM.6,7 Other patients with
MM have no identifiable history of exposure to

asbestos or asbestiform minerals. These data sug-
gest that individuals who are not resistant to the

carcinogenic effects of asbestos and those who de-

velop MM with minimal or no asbestos exposure
may have an underlying inherited susceptibility.

Identification of germline mutations in BAP1
in families with multiple relatives with MM8 and

studies that have demonstrated more frequent
and accelerated MM development in mice that

carry one abnormal copy of Bap1 exposed to even

low levels of asbestos compared with wild-type
mice9,10 provide a proof of principle that germline
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genetics contribute to MM risk. More recently, germline mutations
in other cancer susceptibility genes, including ATM, CDKN2A,
BRCA1, BRCA2, MSH6, MLH1, PALB2, and TP53, have been
reported in individual patients11-16; however, the prevalence and
causative role of germlinemutations in known cancer susceptibility
genes in MM remain unknown.

In the current study, we screened patients with MPM, MPeM,
or tunica vaginalis mesothelioma for germline mutations in
85 cancer susceptibility genes. We describe the prevalence and
spectrum of germline mutations in MM, report disease features
that predict the presence of a germline mutation, and compare
the prevalence of germline mutations with that of a control
population.

METHODS

Study Population
Unrelated patients with MMwho attended The University of Chicago

Medicine (UCM) MM clinic from April 2016 to August 2017 were pro-
spectively consented. Saliva, peripheral blood, and tumor specimens were
collected. A detailed personal and family history of malignancy and as-
bestos exposure were obtained in person by trained interviewers using
a standardized questionnaire. Asbestos exposure was self-reported as
definite, probable, possible, or no known exposure and categorized as
primary for those with known occupational or environmental exposure
and as secondary for those exposed through family members’ exposures.
Deceased patients who had previously consented to an historical tumor
banking protocol from whom germline DNA was available were also
included. Clinical information was abstracted from the medical record.
The UCM Institutional Review Board approved this study.

Germline Mutation Detection and Interpretation
Germline variants were identified in DNA that was extracted from

saliva or peripheral blood using a customized, Clinical Laboratory Im-
provement Amendments–certified targeted gene panel designed by The
University of Chicago Genetic Services Laboratory to capture and sequence
the coding and flanking intronic regions of 85 cancer susceptibility genes17

(Data Supplement). All variants were analyzed by two independent re-
viewers and interpreted according to the American College of Medi-
cal Genetics and Genomics and Association for Molecular Pathology
consensus guidelines (Data Supplement).18 Pathogenic and likely patho-
genic variants—hereafter termed germline mutations—including non-
sense, frameshift, splice site, and missense variants, in genes with known
moderate-to-high penetrance cancer susceptibility were reported. For
missense variants, only those with published evidence of a damaging effect
on protein function were included. All germline mutations were validated
by Sanger sequencing, correlated with clinical and family history, and
segregated in family members when possible.

Population Frequency Estimates
We estimated the population frequency of germline mutations in

each gene using the publicly available noncancer exome sequencing data
set from the Exome Aggregation Consortium19 (ExAC; Data Supplement).
Individual variant data for each gene were analyzed and interpreted
according to American College of Medical Genetics guidelines.18

Somatic Mutation Detection
Somatic mutations were identified in DNA that was extracted from

fresh-frozen, paraffin-embedded MM specimens using one of two next-
generation sequencing platforms, UCM-OncoPlus20 (n = 147 gene panel;
Data Supplement) and Foundation Medicine21,22 (n = 315 gene panel).

Functional Tumor Studies
Microsatellite instability was assessed using a polymerase chain

reaction–based assay with fluorescently labeled primers to five DNA
mononucleotide repeat markers, and/or a clinically validated method
using 336 loci on UCM-OncoPlus. We performed immunohistochemistry

Table 1. Patient Characteristics

Characteristic No. (%)

Total 198 (100)
Sex

Male 136 (69)
Age at diagnosis, median (IQR) 67 (59-73)
Ethnicity

Non-Hispanic white 192 (97)
Black 3 (2)
Asian 3 (2)

Site of origin
Pleura 148 (75)
Peritoneum 44 (22)
Pleura and peritoneum 3 (2)
Tunica vaginalis 3 (2)

Histology
Epithelioid 157 (79)
Sarcomatoid 13 (7)
Biphasic 23 (12)
Unknown 5 (3)

Additional cancer primary*
Yes† 27 (14)
Hematologic 8 (4)
Breast 7 (4)
Prostate 5 (3)
Melanoma 4 (2)
Colon 2 (1)
Renal 2 (1)
Other 3 (2)

FDR with cancer*
Yes 142 (72)
No 54 (27)
Unknown 2 (1)

FDR and/or SDR with cancer *
Yes 173 (87)
No 23 (12)
Unknown 2 (1)

Asbestos exposure
Definite 104 (53)
Probable 22 (11)
Possible 35 (18)
None 35 (18)
Unknown 2 (1)

Type of asbestos exposure‡
Primary 98 (49)
Secondary 32 (16)
Primary and secondary 31 (16)

Smoking status
Current 1 (1)
Former 89 (45)
Never 106 (54)
Unknown 2 (1)

Treatments received for MM
Curative intent surgery 100 (51)
Chemotherapy 165 (83)
Platinum-based chemotherapy 159 (80)

Abbreviations: FDR, first-degree relative; IQR, interquartile range; MM, ma-
lignant mesothelioma; SDR, second-degree relative.
*Excludes nonmelanoma skin cancer.
†Twenty-seven patients had 31 total additional cancer primaries. Other includes
ovarian cancer (n = 1), Wilms tumor (n = 1), and GI stromal tumor (n = 1).
‡Asbestos exposure type with possible, probable, or definite exposure
(n = 161).
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(IHC) on fresh-frozen, paraffin-embedded tumor sections to assess for the
presence of BAP1, MLH1, MSH6, MSH2, and PMS2 proteins (Data
Supplement).

Statistical Analysis
Two-sided Fisher’s exact tests andWilcoxon rank-sum tests were used

to test the difference between categorical and continuous variables, re-
spectively. We used logistic regression to assess associations between
clinical characteristics and the presence of a germline mutation. Nested
models were compared using likelihood ratio tests. Two-sided exact bi-
nomial tests were used to compare the frequencies of germline muta-
tions in genes that were identified in our patients with MM versus those
in the noncancer population in ExAC. P values , .05 were considered
significant. Statistical analyses were performed with STATA software
(version 15; STATA, College Station, TX; Computing Resource Center,
Santa Monica, CA).

RESULTS

Study Population
Of 250 unrelated, eligible patients, 186 prospectively con-

sented and 12 historical patients had sufficient germline DNA
available for sequencing and were included (Data Supplement).
Among these 198 patients, median age at MM diagnosis was 67
years (range, 24 to 88 years). The majority of patients were male
(n = 136; 69%), had pleural disease (n = 148; 75%), epithelioid
histology (n = 157; 79%), a history of occupational asbestos
exposure (n = 129; 65%), and were never smokers (n = 106;
54%; Table 1). Twenty-seven patients (14%) had additional pri-
mary cancer diagnoses, with hematologic (n = 8; 4%), breast (n =
7; 4%), prostate (n = 5; 3%), and melanoma (n = 4; 2%) as the
most frequent. Most had a family history of first-degree relatives

(FDRs) and/or second-degree relatives (SDRs; n = 173; 87%) with
cancer. Breast, lung, colorectal, and prostate cancers accounted
for the majority of cancers in FDRs or SDRs (n = 67, 53, 46,
40 relatives, respectively), but hematologic malignancies (n = 34)
were also frequent (Data Supplement). Thirteen probands had one
or more FDR or SDR with MM (Data Supplement).

Germline Mutations
Twenty-three (12%) of 198 patients with MM carried

a germline mutation, including one patient (UC049) who carried
twomutations, one in BAP1 and one in TMEM127 (Fig 1A, Table 2,
and Data Supplement). The 24 mutations were distributed among
13 genes. BAP1mutations were the most common, accounting for
25% (n = 6). The remaining were in genes involved in cell-cycle
and DNA repair (n = 14), oxygen sensing (n = 2), endosome
trafficking (n = 1), and cell growth and development (n = 1).

Germline Mutations and Clinical Characteristics
Germline mutation frequency was highest in patients with

peritoneal MM (n = 11 [25%] of 44 v n = 11 [7%] of 148 for
pleural), no known asbestos exposure (n = 9 [26%] of 35 v n = 7
[7%] of 104 for those with definite exposure), those with a second
cancer diagnosis (n = 7 [26%] of 27 v n = 16 [9%] of 171 in those
without), and epithelioid histology (n = 21 [13%] of 157 v n = 1
[4%] of 23 [biphasic] and n = 0 [0%] of 13 [sarcomatoid]; Fig 1B).
The proportion of patients who carried a germline mutation
significantly increased with decreasing age from 4% of those older
than 75 years to 20% of those age 55 years or younger at diagnosis
(test of trend; P = .01). Sex, histology, FDR with cancer, FDR/SDR
with MM, and smoking status did not significantly differ between
those patients with a germline mutation and those without (Table 3).

A

WT1
1VHL

1
SDHA

1

MSH6
1

TP53
1

MRE11A
1

BRCA1
1

ATM
2

CDKN2A
2

CHEK2
3

BRCA2
3

BAP1
6

TMEM127
1

B

BAP1

BRCA1

BRCA2

CHEK2

ATM

MRE11A

CDKN2A

TP53

MSH6

SDHA

VHL

ET1

0.00

Epithelioid (n = 157)

Biphasic (n = 23)

Sarcomatoid (n = 13)

Pleural (n = 148)

Peritoneal (n = 44)

Both (n = 3)

None (n = 35)

Possible (n = 35)

Probable (n = 22)

Definite (n = 104)

≤ 55 (n = 30)

56-65 (n = 61)

66-75 (n = 79)

> 75 (n = 28)

Se
co

nd
Ca

nc
er

Di
ag

no
si

s

Ag
e 

at
Di

ag
no

si
s

As
be

st
os

Ex
po

su
re

Si
te

 o
f

Or
ig

in
Hi

st
ol

og
y

Yes (n = 27)

No (n = 171)

0.05 0.10 0.15 0.20

Proportion With a Germline Mutation
0.25 0.30 0.35 0.40

Fig 1. Germline cancer susceptibility gene mutations identified in patients with malignant mesothelioma. (A) Distribution of the 24 mutations identified in 23 patients
among 13 genes. (B) Proportions of patients with a germline mutation by specific clinical characteristics.
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In univariable analysis, pleural site (odds ratio [OR], 0.23; 95% CI,
0.10 to 0.58; P, .01), asbestos exposure (OR, 0.28; 95% CI, 0.11 to
0.72; P, .01), and age (OR, 0.95; 95%CI, 0.92 to 0.99; P = .01) were
associated with decreased odds of carrying a germline mutation,
whereas having a second cancer diagnosis (OR, 3.33; 95% CI, 1.22 to
9.07; P = .02) significantly increased the odds (Data Supplement).
In multivariable analysis, adjusting for age, asbestos exposure, and
a second cancer diagnosis, all three remained significant predic-
tors. The addition of the site of origin did not improve model fit
(likelihood ratio test, P = .13), and OR estimates remained similar.

Of 23 patients with a germline mutation, seven (30%) had
a personal and/or family history that met clinical genetic testing
criteria for hereditary breast and ovarian cancer (n = 6) or colon
cancer23,24 (n = 1; Table 2). Of these, three patients had undergone
prior clinical genetic testing that identified the germline mutation
confirmed in this study in two patients. The third patient had prior
negative clinical testing via a panel that did not include SDHA in

which a mutation was identified in this study. Only one (10%) of
10 patients found to carry mutations in hereditary breast cancer
genes met clinical genetic testing criteria.23 Three (50%) of six
patients who were found to carry a germline BAP1 mutation met
clinical recommendations for BAP1 genetic testing25,26 (Table 2
and Data Supplement). The familial BAP1 mutation segregated
with BAP1 syndrome-related tumors in two of two families tested.
Among 13 total families with more than one case of MM, three
carried a germline mutation, all in BAP1 (Data Supplement).

Germline Mutation Frequency in MM Cases Versus
Controls

Compared with the noncancer ExAC population, the odds of
carrying a mutation in BAP1 (OR, 1,658; 95% CI, 199 to 76,224;
P, .001), BRCA2 (OR, 5; 95% CI, 1.0 to 14.7; P = .03), CDKN2A
(OR, 53; 95% CI, 6 to 249; P, .001), TMEM127 (OR, 88; 95% CI,
1.7 to 1,105; P = .01), VHL (OR, 51; 95% CI, 1.1 to 453; P = .02),
andWT1 (OR, 20; 95% CI, 0.5 to 135; P = .049) were significantly
higher in our study population (Table 4).

Somatic Mutations
Fifty-four patients had adequate specimens available for tu-

mor sequencing, including 37 MPM and 17 MPeM specimens.
Thirty-two specimens were sequenced using UCM-OncoPlus and
22 had been sequenced as part of clinical care using Foundation
Medicine (Fig 2 and Data Supplement). Acquired pathogenic
mutations in BAP1 were the most common, found in 13 MPM
(43%) and 11 MPeM (65%) specimens. Only two (6%) of 31 BAP1
mutations were germline. Rare BAP1 variants of uncertain signifi-
cance were common, found in six (22%) of 27 tumors with a known
pathogenic BAP1 variant and eight (30%) of 27 of those without
a pathogenic BAP1 variant.CDKN2A (n = 10 [19%] of 54),NF2 (n =
10 [19%] of 54), SETD2 (n = 6 [11%] of 54),DDX3X (n = 4 [7%] of
54), and FBXW7 (n = 4 [7%] of 54) were also commonly mutated in
both MPM and MPeM. TP53 mutations were only found in MPM
(n= 7 [19%] of 37). In total, 52% (29 of 54) of tumors tested had one
or more germline or acquired mutation in a homologous recom-
bination (HR) DNA repair pathway gene. Twelve (38%) of 32 MM
tested on UCM-OncoPlus had 10 or more copy number changes.

Among the five patients with germline mutations whose
tumor was also sequenced (Fig 2 and Table 2; UC016, 059, 041,
102, and 170), the tumors acquired zero to three additional
pathogenic mutations. Both individuals with germline BAP1
mutations (UPIN041 and 102) acquired a second pathogenic BAP1
mutation in the tumor, with one confirmed in trans configuration
(Data Supplement). Patient UPIN059, who developed MPeM in
the radiation field post-treatment of Wilms tumor, had a germline
WT1 mutation and acquired a pathogenic BAP1 mutation in the
context of a complex karyotype that was detected by conventional
karyotyping. Patient UPIN081 carried a germlineMSH6mutation.
His MPM, as well as a colon cancer sample from an unrelated
patient with Lynch syndrome that carried the exact same germline
MSH6mutation, were both microsatellite stable and demonstrated
the presence of all four mismatch repair (MMR) proteins on IHC
(Data Supplement), which suggests that this specific mutation may
not cause the usual microsatellite instability (MSI) phenotype. An
additional five MM specimens that were tested by polymerase

Table 3. Comparison of Clinical Characteristics Between Germline Mutation
Carriers and Nonmutation Carriers

Characteristic
Germline

Mutation Carrier
No Germline
Mutation P

Total 23 (12) 175 (88)
Sex
Female 9 (39) 53 (30) .47
Male 14 (61) 122 (70)
Age at diagnosis, median (IQR) 61 (56-71) 67 (59-73) .04
Site of origin
Pleura 11 (48) 137 (78) .01
Peritoneum 11 (48) 33 (18)
Pleura and peritoneum 1 (4) 2 (1)
Tunica vaginalis 0 (0) 3 (2)

Histology*
Epithelioid 21 (95) 136 (80) .26
Sarcomatoid 0 (0) 13 (7)
Biphasic 1 (5) 22 (13)

Additional cancer primary†
Yes 7 (30) 20 (11) .02
No 16 (70) 155 (89)

FDR with cancer†
Yes 17 (74) 119 (69) .81
No 6 (26) 54 (31)

FDR or SDR with mesothelioma
Yes 3 (13) 10 (6) .18
No 20 (87) 165 (94)

Asbestos exposure*
Definite 7 (30) 97 (56) .02
Probable 4 (17) 18 (10)
Possible 3 (13) 32 (19)
None 9 (39) 26 (15)

Type of asbestos exposure (n = 161)
Primary 7 (50) 91 (62) .62
Secondary 4 (29) 28 (19)
Primary and secondary 3 (21) 28 (19)

Smoking status
Current 0 (0) 1 (1) .28
Former 7 (30) 82 (47)
Never 16 (70) 90 (52)

NOTE. Data are given as No. (%) unless otherwise noted.
Abbreviations: FDR, first-degree relative; IQR, interquartile range; SDR, second-
degree relative.
*Patients with missing values excluded histology (n = 5), asbestos exposure
(n = 2), type of asbestos exposure, and smoking.
†Excludes nonmelanoma skin cancer.

jco.org © 2018 by American Society of Clinical Oncology 2867

Spectrum and Predictors of Germline Mutations in Malignant Mesothelioma

http://jco.org


chain reaction and IHC and 32 tested by UCM-OncoPlus were all
microsatellite stable.

DISCUSSION

We found that 12% of patients with MM carry germline cancer
susceptibility gene mutations. This prevalence is strikingly similar
to the proportion found in other solid tumors, including ovarian,
colon, metastatic prostate cancer, and diverse advanced solid
tumors.16,27-29 The recognized MM susceptibility gene, BAP1,
accounted for only one quarter of mutations identified. This may
help explain why many patients with MM who have a strong
personal or family cancer history reported in the literature tested
negative for germline mutations in BAP1.8,30,31 We demonstrate
that 13 genes, including genes that were previously identified in
single MM cases,11-16 as well as genes that have not been previously
linked to MM, including TMEM127, CHEK2, MRE11A, VHL,
WT1, and SDHA, contribute toMM and other cancer susceptibility
in these patients and their families. Our finding that pathogenic
mutations in BAP1, CDKN2A, BRCA2, TMEM127, VHL, andWT1
are overrepresented in patients with MM compared with a control
population provides additional evidence that supports the asso-
ciation of cancer susceptibility genes with MM carcinogenesis.

Specific clinical characteristics predict the presence of
germline mutations and provide insight into differences in subset-
specific MM etiology. First, we found that minimal-to-no asbestos
exposure was the most significant predictor of the presence of
a germline cancer susceptibility mutation, which confirmed an
observation made for germline BAP1 mutations8 and similar
observations in patients with MPM.12 Two other important
predictors—younger age and having had a second cancer—are
not surprising given the known association of cancer susceptibility
gene mutations and earlier onset and multiple cancers. Second,
although the spectrum of mutations is similar across MPM and
MPeM, the overall proportion of patients with mutations was

significantly different (7% v 25%; P , .01, respectively), which
implies that inherited susceptibility may play a larger role in MPeM
than in MPM. This is an interesting observation given the over-
lap in site and cisplatin sensitivity of MPeM and ovarian cancer,
a cancer for which 18% to 24%27,32 of patients will carry a germline
mutation in some of the same genes identified here. Furthermore,
although MPeM is also associated with asbestos exposure, the
strength of this association is weaker than for pleural site of or-
igin.33 Our data suggest that genetic susceptibility and/or a gene by
environment interaction effect, as previously demonstrated for
asbestos exposure in Bap1-deficient mouse models,9,10 may con-
tribute to these differences.

Our findings add to the accumulating evidence of the im-
portance of deficits in DNA damage response pathways in MM.12

Six of the genes with germline mutations in this series—BAP1,
BRCA1, BRCA2, CHEK2, ATM, and MRE11A—have a well-
established role in the HR DNA repair pathway.34-38 WT1 may
also be involved in HR-mediated repair.39,40 We found acquired
mutations in additional HR pathway genes, including FANCA and
ATR, in MM tumors. In total, 52% of MM tumors sequenced had
an HR pathway defect either as a result of a germline or acquired
event, and 12 (38%) of 32 tested had multiple copy number
rearrangements. These observations are consistent with prior data
that demonstrate multiple chromosomal rearrangements in the
majority of MM cases,41 with the genomic instability pattern
observed in other tumors with HR defects, and with the obser-
vation of the loss of BRCA1 expression in 39% of MM tumors.42

These data are immediately relevant for potential prognostic
biomarkers and chemotherapeutic targets for MM. In other
cancers that are commonly caused by HR defects, such as ovarian
cancer, the subset of patients who carry germline BRCA1 or BRCA2
mutations is more likely to respond to cisplatin and have a better
prognosis.43 Our study’s findings may help explain the cisplatin
sensitivity of a substantial subset of MM and the observed im-
provement in prognosis in patients with MMwho carry a germline
BAP1 mutation.44 Furthermore, poly (ADP-ribose) polymerase

Table 4. Mutation Frequencies in Patients With Malignant Mesothelioma Versus a Noncancer Population Estimate

Gene

University of Chicago Patients with MM
(n = 198)

ExAC Noncancer Population
(n = 53,105)*

University of Chicago Versus
ExAC Population, OR (95% CI) P†

No. of Mutated
Alleles

Proportion of Individuals
With a Mutation

No. of Mutated
Alleles

No. of Individuals
Sequenced, Mean*

Proportion of Individuals
With a Mutation

BAP1 6 0.0303 1 53,040 0.000019 1,657.5 (199.0 to 76,224.0) , .001‡
BRCA2 3 0.0152 167 53,007 0.003151 4.9 (1.0 to 14.7) .03
CDKN2A 2 0.0101 10 51,540 0.000194 52.6 (6.0 to 249.0) , .001‡
TMEM127 1 0.0051 3 52,250 0.000057 88.4 (1.7 to 1,105.0) .01
VHL 1 0.0051 5 49,703 0.000101 50.5 (1.1 to 453.0) .02
WT1 1 0.0051 13 51,405 0.000253 20.1 (0.5 to 135.0) .049
ATM 2 0.0101 155 52,921 0.002929 3.5 (0.4 to 12.9) .12
CHEK2 3 0.0152 770 49,743 0.015480 0.98 (0.2 to 2.9) 1.00
BRCA1 1 0.0051 102 51,002 0.002000 2.5 (0.1 to 14.6) .33
MRE11A 1 0.0051 33 52,827 0.000625 8.1 (0.2 to 49.0) .12
TP53 1 0.0051 29 52,875 0.000548 9.3 (0.2 to 56.4) .10
MSH6 1 0.0051 102 52,736 0.001934 2.6 (0.1 to 15.0) .32
SDHA 1 0.0051 53 51,660 0.001026 4.9 (0.1 to 29.0) .18

Abbreviations: ExAC, Exome Aggregation Consortium; MM, malignant mesothelioma; OR, odds ratio.
*The number of individuals sequenced varies by genomic position.
†Two-sided exact binomial tests without adjustment for multiple testing.
‡Remain significant at a , .004 if Bonferroni correction is used.
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inhibitors (PARPi) have demonstrated improved efficacy in ovarian,
breast, and prostate cancers with HR defects.45-47 MM cells lines,
regardless of BAP1 status, have been demonstrated to be sensitive
to PARPi,38,48,49 which supports the hypothesis that PARPi could
be effective inMM.12,48,50 Taken together, PARPi trials in patients with
MM, especially those not refractory to platinum-based chemotherapy,
are justified and already in development. Active investigation of HR
deficits in MM is warranted to identify biomarkers of prognosis and
chemotherapy responsiveness as well as novel drug targets.

We also identified germline (MSH6) and acquired mutations
(MSH6, MLH3) in the MMR pathway. Similar to two other
germline MMR gene-mutated MPeM in the literature,14,15 none of
these tumors featured the MSI pattern typical of other cancers with
MMR deficits.51 We did not observe anMSI pattern in 32 total MM
examined. The role of these genes and the MMR pathway in MM
remains to be determined. Finally, the identification of germline
mutations in VHL and SDHA, genes that induce tumorigenesis
through impaired hypoxia-inducible factor expression,52,53 and in
TMEM127, which negatively regulates the mammalian target of

rapamycin signaling pathway,54 highlight additional pathways that
warrant investigation.

Our data support clinical panel-based genetic testing for all
patients with MM. Clinical genetic testing guidelines23-26 would
identify only 12 (52%) of 23 germline mutation carriers in this
study, which suggests a need for a universal testing strategy. This
testing would allow primary cancer prevention and early detection
in at-risk close relatives and in patients with MM with disease
features that portend extended survival. Lastly, BRCA1 or BRCA2
germline mutation status has been incorporated into US Food and
Drug Administration approvals of specific PARPi for the treatment
of advanced ovarian and breast cancer and is expected for prostate
cancer. Whether a similar paradigm will hold in MM awaits in-
vestigations of the effect of germline mutation status on the re-
sponse to established and novel therapies.

Our study has limitations. First, our germline genetic testing
assay cannot detect copy number variants, and our variant in-
terpretation approach was conservative, including only proven
pathogenic or likely pathogenic mutations. Thus, the proportion of

1 43 249 182 187 204 79 135 14 57 19 36 93 22 20 94 4 29 208 153 23 24 32 77 42 16 83 227 168 73 2 21 100 255 239 76 12 41 102 106 113 170 118 130 212 59 18 10 209 122 103 194 128 247

Origin*

Histology†
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Fig 2. Genetic variants identified by site of origin and histology in 54 malignant mesothelioma specimens. Transcript numbers: ATM [NM_000051.3], AKT2 [
NM_001626]; ASXL1 [NM_015338]; ATR [NM_001184.3]; BAP1 [NM_004656.3]; BRCA2 [NM_000059.3]; CARD11 [NM_032415]; CDKN2A [NM_000077]; CSF1R
[NM_001288705.1]; CTNNB1 [NM_001904]; DDX3X [NM_001356.4]; DNMT3A [NM_022552]; EPHA5 [NM_004439]; EPHB1 [NM_004441]; FANCA [NM_000135];
FBXW7 [NM033632.3]; FOXP1 [NM_032682]; KDM6A [NM_021140]; KDR [NM_002253.2]; MDM4 [NM_002393]; MLH3 [NM_001040108.1]; MSH6 [NM_00179.2]; NF1
[NM_001042492]; NF2 [NM_000268]; NOTCH1 [NM_017617.4]; NRAS [NM_002524]; PIK3CA [ NM_006218]; PTEN [NM_000314.6]; PTPN11 [NM_002834]; RB1
[NM_000321]; SETD2 [NM_014159]; SMARCA4 [NM_003072]; TERT [NM_198253.2]; TP53 [NM_000546.5]; WT1 [NM_24426.4 ]. Mutation types: loss, large deletion or
duplication, nonsense, frameshift, splice site (dark gray); missense, in-frame deletion, promoter mutation (green); amplification (blue). VUS, variant of uncertain sig-
nificance. (*) Origin: Dark blue, pleural; light blue, peritoneal. (†) Histology: Dark red, epithelioid; pink, biphasic; green, sarcomatoid. Germline variants are notated by +.
Tumors with multiple variants in the same gene are notated with the number of unique variants identified.
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patients with MM in our study who carried a pathogenic mutation
may be underestimated. Similarly, the UCM-OncoPlus genes
analyzed in tumors in this study did not include all HR pathway
genes and, similar to other next-generation sequencing–based
assays, may miss small copy number changes.55 Second, UCM is
a tertiary referral center, whichmakes our study population subject
to referral bias. Third, insufficient tumor tissue for many of the
patients who carried a germline mutation and the lack of germline
mutations other than BAP1 in families with more than one MM
case to allow segregation with MM cases limited our ability to
provide more direct evidence of causation. Finally, family history of
malignancy and prior asbestos exposure were self-reported, which
may limit accuracy; however, our observation that lower self-
reported asbestos exposure is a significant predictor of carrying
a germline mutation is concordant with prior work.12 Further-
more, a strong family cancer signal has been previously reported in
patients with MM.8,31,56-61 Our data confirm these observations
and provide a rationale for broader investigations of inherited
genomics in patients with MM.

In conclusion, we found that 12% of patients with MM carry
germline mutations in cancer susceptibility genes; especially those
with peritoneal disease, a second cancer diagnosis, young age at
onset, and minimal known asbestos exposure. These data support
the inclusion of clinical germline genetic testing in the evaluation
of all patients with MM. We found additional evidence of an HR
pathway DNA repair defect in a substantial subset of patients with

MM, providing a rationale for PARPi clinical trials and additional
research into this pathway in MM etiology.
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