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IMPORTANCE Osteosarcoma, the most common malignant bone tumor in children and
adolescents, occurs in a high number of cancer predisposition syndromes that are defined by
highly penetrant germline mutations. The germline genetic susceptibility to osteosarcoma
outside of familial cancer syndromes remains unclear.

OBJECTIVE To investigate the germline genetic architecture of 1244 patients with
osteosarcoma.

DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing (n = 1104) or targeted
sequencing (n = 140) of the DNA of 1244 patients with osteosarcoma from 10 participating
international centers or studies was conducted from April 21, 2014, to September 1, 2017. The
results were compared with the DNA of 1062 individuals without cancer assembled internally
from 4 participating studies who underwent comparable whole-exome sequencing and
27 173 individuals of non-Finnish European ancestry who were identified through the
Exome Aggregation Consortium (ExAC) database. In the analysis, 238 high-interest
cancer-susceptibility genes were assessed followed by testing of the mutational burden
across 736 additional candidate genes. Principal component analyses were used to identify
732 European patients with osteosarcoma and 994 European individuals without cancer,
with outliers removed for patient-control group comparisons. Patients were subsequently
compared with individuals in the ExAC group. All data were analyzed from June 1, 2017, to
July 1, 2019.

MAIN OUTCOMES AND MEASURES The frequency of rare pathogenic or likely pathogenic
genetic variants.

RESULTS Among 1244 patients with osteosarcoma (mean [SD] age at diagnosis, 16 [8.9] years
[range, 2-80 years]; 684 patients [55.0%] were male), an analysis restricted to individuals
with European ancestry indicated a significantly higher pathogenic or likely pathogenic
variant burden in 238 high-interest cancer-susceptibility genes among patients with
osteosarcoma compared with the control group (732 vs 994, respectively; P = 1.3 × 10−18).
A pathogenic or likely pathogenic cancer-susceptibility gene variant was identified in 281
of 1004 patients with osteosarcoma (28.0%), of which nearly three-quarters had a variant
that mapped to an autosomal-dominant gene or a known osteosarcoma-associated cancer
predisposition syndrome gene. The frequency of a pathogenic or likely pathogenic
cancer-susceptibility gene variant was 128 of 1062 individuals (12.1%) in the control group
and 2527 of 27 173 individuals (9.3%) in the ExAC group. A higher than expected frequency
of pathogenic or likely pathogenic variants was observed in genes not previously linked to
osteosarcoma (eg, CDKN2A, MEN1, VHL, POT1, APC, MSH2, and ATRX) and in the Li-Fraumeni
syndrome-associated gene, TP53.

CONCLUSIONS AND RELEVANCE In this study, approximately one-fourth of patients with
osteosarcoma unselected for family history had a highly penetrant germline mutation
requiring additional follow-up analysis and possible genetic counseling with cascade testing.
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T he peak incidence of osteosarcoma (OMIM 259500)
occurs during the pubertal growth spurt.1-3 Osteo-
sarcoma risk factors include tall height,4,5 high

birth-weight,4,5 previous radiotherapy,6 and at least 8 estab-
lished cancer predisposition syndromes,7,8 including autoso-
mal-dominant disorders (Li-Fraumeni syndrome [OMIM
151623],9,10 hereditary retinoblastoma [OMIM 180200],11,12 and
Diamond-Blackfan anemia [OMIM 105650]13,14) and autosomal-
recessive disorders (primarily DNA helicase disorders,15-18

such as Rothmund-Thomson syndrome [OMIM 268400],
RAPADILINO syndrome [OMIM 266280], Werner syndrome
[OMIM 277700], and Bloom syndrome [OMIM 210900]). Can-
didate gene and genome-wide association studies suggest that
common single-nucleotide polymorphisms are also associ-
ated with osteosarcoma,19-21 affirming a complex underlying
architecture for its genetic etiology but one that appears to be
weighted disproportionately toward rare variants.

An earlier study reported that 4% of patients with osteo-
sarcoma younger than 30 years with an unknown family his-
tory of cancer carried a pathogenic germline variant of TP53
(OMIM 191170) that was known to be or highly likely to be as-
sociated with Li-Fraumeni syndrome; in addition, 6% of those
patients carried rare likely pathogenic TP53 variants.22 A sur-
vey of 72 candidate genes across 1162 sarcomas, including 124
osteosarcomas, observed that 217 individuals (18.7%) had a
pathogenic or likely pathogenic (pathogenic/likely patho-
genic) germline variant in autosomal-recessive or autosomal-
dominant genes; 7% of variants were in autosomal-dominant
genes.23 Previous studies estimated that approximately 8% to
10% of all children with cancer carry a pathogenic germline
variant in a known cancer-susceptibility gene.24,25 The fre-
quency of pathogenic/likely pathogenic variants in children
with osteosarcoma was reported to be between 3 of 42 pa-
tients (7.1%)25 and 7 of 39 patients (17.9%).24

We used a 2-phase approach to evaluate rare germline vari-
ants in 1244 patients with osteosarcoma, beginning with assess-
ment of 238 cancer-susceptibility genes followed by burden test-
ing for an additional 736 candidate genes. We compared the fre-
quency of pathogenic/likely pathogenic variants in patients with
those of 1062 individuals without cancer (the control group), and
forsignificantfindings,with27 173individualsofnon-FinnishEu-
ropean ancestry who were identified through the Exome Aggre-
gation Consortium (ExAC) database26 (the ExAC group; Figure 1).

Methods
The NCI Retrospective Study of Genetic Risk Factors for
Osteosarcoma was approved by the institutional review board

Key Points
Question What is the frequency of pathogenic or likely
pathogenic germline genetic variants in known cancer-
susceptibility genes in a large population of patients with
osteosarcoma who were unselected for family history?

Findings In this next-generation exome sequencing study of
1244 patients with osteosarcoma, 28.0% of patients in the
discovery set carried a rare pathogenic or likely pathogenic
germline variant in a cancer-susceptibility gene compared with
12.1% of individuals without cancer who were comparably
sequenced and 9.3% of individuals of non-Finnish European
ancestry identified through the Exome Aggregation Consortium
database.

Meaning A higher than expected frequency of patients with
osteosarcoma carrying a pathogenic or likely pathogenic germline
variant suggests germline genetic testing may be warranted for
individuals with osteosarcoma.

Figure 1. Overview of Study Samples and Design
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CSG indicates cancer-susceptibility gene; ExAC, Exome Aggregation Consortium
database; NCI, National Cancer Institute; P/LP, pathogenic/likely pathogenic;
and UMN, University of Minnesota.
a Genetic ancestry was determined using the available microarray from

single-nucleotide polymorphism genome-wide association studies or

whole-exome sequencing data from structure and principal component
analyses. Individuals with more than 80% European ancestry were considered
European.

b Sequencing of 238 cancer-susceptibility genes.
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of the National Institutes of Health. All of the participants in
the Genetic Epidemiology of Osteosarcoma study provided
written informed consent, and the study was approved by
the institutional review board of the University of Minne-
sota. The study was also approved by the respective local in-
stitutional review boards, and all participants provided writ-
ten informed consent.

Study Populations
A total of 1244 patients with osteosarcoma were assembled
from 10 participating centers and studies, including the Na-
tional Cancer Institute retrospective Children’s Oncology Group
study of genetic risk factors for osteosarcoma19 (United States);
the Genetic Epidemiology of Osteosarcoma study of
the Children’s Oncology Group21 (United States); the Clinica
Universidad de Navarra (Pamplona, Spain); the Instituto de
Oncologia Pediatrica, Grupo de Apoio ao Adolescente e a Cri-
anca com Cancer/Universidade Federal de Sao Paulo27 (Sao
Paulo, Brazil); the Childhood Cancer Survivor Study28 (United
States); the National Cancer Institute Bone Disease and
Injury Study of Osteosarcoma29 (United States); the Unidad
Nacional de Oncologia Pediatrica30 (Guatemala City, Guate-
mala); the Royal National Orthopaedic Hospital NHS Trust and
University College London Cancer Institute (Middlesex, United
Kingdom); the Istituto Ortopedico Rizzoli (Bologna, Italy); and
the Ankara Oncology Training and Research Hospital (An-
kara, Turkey; eMethods and eTable 1 in the Supplement). Of
those, 782 patients were previously reported in a genome-
wide association study,19,27 which included 48 patients from
the Instituto de Oncologia Pediatrica, Grupo de Apoio ao Ado-
lescente e a Crianca com Cancer /Universidade Federal de Sao
Paulo. A total of 462 additional patients were included, drawn
from the Childhood Cancer Survivor Study, the NCI Bone Dis-
ease and Injury Study of Osteosarcoma, the Hospital Infantil
Manuel De Jesus Rivera (Managua, Nicaragua), and from the
Unidad Nacional de Oncologia Pediatrica. Each center pro-
vided data on patient and clinical variables, which were
harmonized across studies.

A total of 1004 patients who underwent whole-exome se-
quencing at the National Cancer Institute were included as a
primary discovery set, and 240 additional (nonoverlapping)
patients with osteosarcoma21 comprised a replication set of pa-
tients who underwent whole-exome sequencing (n = 100) or
targeted sequencing (n = 140) at the University of Minnesota
(Figure 1; eMethods in the Supplement). Patients from the
replication sets were drawn from the Genetic Epidemiology
of Osteosarcoma study of the Children’s Oncology Group
(United States). Neither family history nor tumor sequence data
were available for the patients in this study.

The 1062 individuals without osteosarcoma who were as-
signed to the control group were assembled internally from 4
participating studies. This group included 994 adults of Eu-
ropean ancestry (mean [SD] age at enrollment, 64.6 [7.2] years)
who were drawn from 3 large studies: the Prostate, Lung, Co-
lon and Ovarian Cancer Prevention clinical trial (United
States),31 the American Cancer Society Cancer Prevention Study
II (United States),32 and the Environment and Genes in Lung
Cancer Etiology study (Italy).33 In addition, 68 individuals were

enrolled from the Instituto de Oncologia Pediatrica, Grupo de
Apoio ao Adolescente e a Crianca com Cancer/Universidade
Federal de Sao Paulo study and were drawn from the same
population as the 48 patients with osteosarcoma from Sao
Paulo, Brazil (eMethods and eTable 1 in the Supplement).

The population substructure was determined for the pa-
tient group and the control group using the available single-
nucleotide polymorphism microarray data or whole-exome se-
quencing data based on structure and principal component
analyses, as previously described.19,34 Individuals with more
than 80% European ancestry were considered European
(Figure 1; eTable 1 in the Supplement).

The population frequency of pathogenic/likely patho-
genic germline variants was estimated for 238 cancer-
susceptibility genes using publicly available noncancer
whole-exome sequencing data from the ExAC database.26

Variant data for each gene were analyzed for secondary com-
parisons with individuals in the ExAC group using similar
pathogenicity scoring and in silico analysis.

Sequencing
Whole-exome sequencing was performed on a discovery set
of 1004 patients and 1062 individuals in the control group using
germline DNA extracted from either leukocytes or buccal
samples between April 21, 2014, and July 1, 2017, at the
National Cancer Institute (eMethods in the Supplement;
Figure 1).34-36 All analyses evaluated variants with minor al-
lele frequencies of less than 0.01 that passed quality-control
filters.34,35,37 For the patient replication sets, we used buccal
sample DNA to conduct whole-exome sequencing on 100 pa-
tients with osteosarcoma and targeted sequencing of 238 can-
cer-susceptibility genes on an additional 140 patients at the
University of Minnesota from August 1, 2017, to September 1,
2018 (eMethods in the Supplement).

Genes and Variants
We assembled a set of 238 cancer-susceptibility genes, includ-
ing 114 cancer-predisposing genes,38 14 genes associated with
Diamond-Blackfan anemia,34,39-41 and 110 cancer-associated
genes previously described25,42,43 or reported to have germ-
line associations in the Catalogue of Somatic Mutations in
Cancer44 (eTable 2 in the Supplement). These genes were
grouped by mode of inheritance: 141 genes were autosomal-
dominant, 45 were autosomal-recessive, 25 were autosomal-
dominant and autosomal-recessive, 11 were X-linked, 1 was
Y-linked, and 15 had de novo or unknown inheritance pat-
terns (eTable 2 in the Supplement). An additional 736 candi-
date genes were evaluated, including 140 genes associated with
osteosarcoma that were identified through the Human Ge-
nome Epidemiology (HuGE) phenopedia45 and manual cura-
tion of published reports and 596 genes somatically altered in
pediatric bone cancers or recurrent in any pediatric cancer that
were identified through the Catalogue of Somatic Mutations
in Cancer44 and annotation of published osteosarcoma so-
matic data46-49 (eTable 3 in the Supplement).

A stepwise pipeline was constructed to evaluate each rare
variant that passed quality-control filters in the genes of in-
terest. Variants were classified as pathogenic, likely patho-

Research Original Investigation Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma

726 JAMA Oncology May 2020 Volume 6, Number 5 (Reprinted) jamaoncology.com

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197


genic, of uncertain significance, likely benign, or benign based
on previous reports24,25 and recommendations from the Ameri-
can College of Medical Genetics and Genomics and the Asso-
ciation for Molecular Pathology50 (eMethods and eTable 4 in
the Supplement). An in silico prediction algorithm was also
used to further filter the variant of uncertain significance cat-
egory as damaging or not damaging (eMethods in the Supple-
ment). All pathogenic/likely pathogenic variants are summa-
rized in eTable 5 in the Supplement.

Statistical Analyses
We analyzed the 1004 patients with osteosarcoma in the dis-
covery set, which included 732 patients of European ances-
try, with the 1062 individuals in the control group, which in-
cluded 994 patients of European ancestry (Figure 1; eMethods
in the Supplement). The replication set consisted of 240 pa-
tients with osteosarcoma who had germline whole-exome
sequencing or targeted sequencing data available, and we
performed secondary patient comparisons with individuals in
the ExAC group.26

Rare-variant burden tests were conducted on the 732
European patients in the discovery set and the 994 Euro-
pean individuals in the control group using burden and opti-
mal sequence kernel association tests.51 The comparisons
between the patient group and the ExAC group were
restricted to genes identified as substantially different
between the primary discovery set of patients and the con-
trol group. Comparisons among individuals with and with-
out pathogenic/likely pathogenic variants were performed
using 2-sided χ2 or Fisher exact tests for categorical variables
and Mann-Whitney U tests for continuous variables (eg, age).
We used 2-sided exact binomial tests and logistic regression
models to compare the frequencies of pathogenic/likely
pathogenic variants between patients and individuals in the
ExAC group only for the selected genes identified as sub-
stantially different between the primary discovery set of
patients and individuals in the control group who had com-
parable whole-exome sequencing performed at the National
Cancer Institute. We compared overall survival between
patients carrying pathogenic/likely pathogenic variants and
individuals without pathogenic/likely pathogenic variants
for all cancer-susceptibility genes and the TP53 gene using
adjusted Cox proportional hazards regression models and
estimated hazard ratios (HRs) and 95% CIs. All data were
analyzed from June 1, 2017, to July 1, 2019.

Results
Among 1244 patients with osteosarcoma, the mean (SD) age
at diagnosis was 16 (8.9) years (age range, 2-80 years), and 684
patients (55.0%) were male (eTable 1 in the Supplement). Our
primary analyses were based on patients and individuals in the
control group with whole-exome sequencing data jointly called
that yielded comparable quality-control measures and cover-
age (Figure 1; eFigure 1 in the Supplement).

We assessed the frequency of pathogenic/likely patho-
genic variants in 238 cancer-susceptibility genes in the dis-

covery set of patients and the control group. Overall, 281 of
1004 patients with osteosarcoma (28.0%; 95% CI, 22.7%-
33.2%) had a pathogenic/likely pathogenic variant in a gene
of interest, which was significantly higher than the fre-
quency observed in the control group (128 of 1062 individu-
als [12.1%]; 95% CI, 6.4%-17.7%; Fisher exact P = 1.3 × 10−18;
Figure 2A, Figure 2B, and Figure 3; eTable 6 in the Supple-
ment). The pathogenic/likely pathogenic frequency among Eu-
ropean patients with osteosarcoma was also higher com-
pared with the frequency among individuals in the ExAC group
(2527 individuals [9.3%]; 95% CI, 8.2%-10.5%; Fisher exact
P = 2.3 × 10−53; Figure 2A and Figure 2B; eTable 6 in the Supple-
ment). Patients with pathogenic/likely pathogenic variants
were significantly younger (mean [SD] age, 15.3 [7.2] years; age
range, 2-61 years) than patients without pathogenic/likely
pathogenic variants (mean [SD] age, 16.9 [10.2] years; age range,
2-80 years; Mann-Whitney U P = .02; Figure 4; eFigure 2 in the
Supplement).

Among 364 patients with osteosarcoma subtype informa-
tion, cancer-susceptibility genes with pathogenic/likely patho-
genic variants were less common in those with surface sub-
types (3 of 22 patients [13.6%]) vs conventional subtypes (104
of 342 patients [30.4%]; eTable 8 in the Supplement). A path-
way enrichment analysis52,53 of the 101 cancer-susceptibility
genes with pathogenic/likely pathogenic variants indicated
enrichment in DNA repair pathway genes (Fisher exact
P = 3.4 × 10−28; eFigure 3 and eTable 9 in the Supplement).

Autosomal-Dominant Genes
Overall, 185 of 1004 patients (18.4%; 95% CI, 12.8%-24.0%) with
osteosarcoma had a pathogenic/likely pathogenic variant in an
autosomal-dominant or an autosomal-dominant and autoso-
mal-recessive cancer-susceptibility gene, whereas the vari-
ant frequency was 56 individuals (5.3%; 95% CI, 0%-11.1%) in
the control group and 1494 individuals (5.5%; 95% CI, 4.3%-
6.6%) in the ExAC group (Figure 2A and Figure 2B; eTable 6
in the Supplement). The highest frequency of pathogenic/
likely pathogenic autosomal-dominant cancer-susceptibility
gene variants was found in patients aged 0 to 10 years (37 of
151 patients [24.5%]; Mann-Whitney U P = .006; Figure 4). The
732 European patients with cancer had a higher burden of
pathogenic/likely pathogenic autosomal-dominant variants
than the 994 European individuals in the control group (bur-
den P = 1.9 × 10−16). This higher burden translated to a nearly
4-fold greater risk of carrying a pathogenic/likely pathogenic
variant compared with the ExAC group (odds ratio [OR], 3.9;
95% CI, 3.3-4.6).

Eighteen patients (1.8%) had more than 1 pathogenic/
likely pathogenic autosomal-dominant variant compared
with 4 individuals (0.4%) in the control group (Fisher exact
P = .002). No significant difference was observed in overall
patient survival for those carrying any pathogenic/likely
pathogenic variant or an autosomal-dominant pathogenic/
likely pathogenic variant compared with patients without
these variants (Cox [adjusted for age, sex, and tumor loca-
tion] P = .55 for all genes and P = .34 for autosomal-dominant
genes) in the subset of 407 patients for whom outcome data
was available.
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Pathogenic/likely pathogenic variants in the TP53 gene
were the most frequent of all autosomal-dominant genes (44
of 1004 total patients [4.4%]; 30 of 732 European patients
[4.1%]) and substantially higher than those observed in the con-
trol group (3 of 1062 total individuals [0.3%]; 3 of 994 Euro-
pean individuals [0.3%]; burden P = 3.2 × 10−8) and the ExAC
group (27 individuals [0.1%]; Fisher exact P = 9.0 × 10−44;
Figure 2B and Figure 3; eTable 7 and eTable 10 in the Supple-
ment). This finding is consistent with a previous study,22 which
included 360 patients who were also in the current study.
Analyses restricted to European patients who did not partici-
pate in the previous study found that 32 of 644 patients (5.0%)
had a pathogenic TP53 variant.

All pathogenic/likely pathogenic TP53 variants were ob-
served in patients younger than 30 years at diagnosis, with the
exception of 1 patient, who was aged 39 years at diagnosis
(Mann-Whitney U P = .05; eFigure 2 and eTable 8 in the Supple-
ment). Patients aged 0 to 10 years (n = 151) had the highest es-
timated likelihood of carrying a TP53 pathogenic/likely patho-
genic variant (OR, 108; 95% CI, 47-247; Figure 2B and Figure 4).
Patients with a pathogenic/likely pathogenic TP53 variant were
more likely to have osteosarcoma of the axial skeleton
(χ2 P = .001), and the data suggested that patients with TP53
pathogenic/likely pathogenic variants were more likely to have
metastases at diagnosis (χ2 P = .06; eTable 8 in the Supple-
ment). In the subset of patients with outcome data, an ad-
justed Cox proportional hazards model indicated that pa-
tients carrying a TP53 pathogenic/likely pathogenic variant had
significantly worse overall survival compared with patients
without these variants (HR, 2.2; 95% CI, 1.2-4.0; Cox P = .009).
These variants occurred in several functional domains, includ-

ing the DNA-binding domain (subregion-based burden54

P = 1.5 × 10−6; eFigure 4A in the Supplement), which is con-
sistent with previous studies.55-59

The gene CDKN2A (OMIM 600160) had the second highest
frequencyofpathogenic/likelypathogenicvariantsinthepatients
with osteosarcoma (12 of 1004 total patients [1.2%]; 8 of 732
European patients [1.1%]) compared with no pathogenic/likely
pathogenic variants among individuals in the control group
(burden P = 3.1 × 10−3) and the ExAC group (Fisher exact P = 2.2
× 10−13; Figure 2B and Figure 3; eTable 7 in the Supplement). In-
dividuals with a CDKN2A pathogenic/likely pathogenic variant
wereyounger(mean[SD]age,12.9[4.4]years)thanpatientswith-
out pathogenic/likely pathogenic variants (mean [SD] age, 6.9
[10.2] years; Mann-Whitney U P = .03). Notably, the youngest pa-
tients (aged 0-10 years) had the highest frequency of these vari-
ants (3 of 151 patients [2.0%]; Figure 4). The CDKN2A variants
mapped to sites that were somatically mutated in bone cancers58

(eFigure 4B in the Supplement). Five additional autosomal-
dominant genes (MEN1 [OMIM 613733], VHL [OMIM 608537],
POT1 [OMIM 606478], APC [OMIM 611731], and MSH2 [OMIM
609309]) had a significantly higher pathogenic/likely pathogenic
burden in European patients compared with European individu-
als in the control group (Figure 3; eTable 7 in the Supplement).

We compared the frequency of pathogenic/likely patho-
genic variants among individuals in the ExAC group and ob-
served that the risk of carrying a pathogenic/likely patho-
genic variant in genes MEN1, VHL, POT1, and APC was elevated
in European patients with osteosarcoma after a Bonferroni ad-
justment (Figure 2B; eTable 7 in the Supplement). Fifty-five
additional autosomal-dominant genes had pathogenic/likely
pathogenic variants in 1 or more patients (each were present

Figure 2. Frequency of Rare Pathogenic or Likely Pathogenic Germline Variants in Cancer-Susceptibility Genes
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in 0.1%-0.6% of patients; Figure 3; eTable 10 in the Supple-
ment). Most of the specific variants observed in patients were
absent in individuals in both the control group and the ExAC
group as well as other public databases (the 1000 Genomes
Project and the Exome Sequencing Project).

In addition, 316 patients (25.4%) with osteosarcoma had
a rare variant of uncertain significance that was predicted to
be damaging in silico in an autosomal-dominant gene, in the
absence of another pathogenic/likely pathogenic autosomal-
dominant variant. Altogether, 545 patients (43.8%) had at least
1 pathogenic variant, likely pathogenic variant, or variant of
uncertain significance that was predicted to be damaging in
silico in an autosomal-dominant gene. The European pa-
tients had more variants of uncertain significance that were

predicted to be damaging in silico in the genes RB1 (OMIM
614041) and VHL (OMIM 608537) compared with individuals
in the control group after adjustment for multiple testing
(eTable 7 in the Supplement).

Autosomal-Recessive Genes
A total of 92 of 1004 patients (9.2%; 95% CI, 3.3%-15.1%) had
a pathogenic/likely pathogenic variant in 33 autosomal-
recessive genes, which is higher than that of the control group
(72 of 1062 individuals [6.8%]; burden P = .03) and the ExAC
group (1041 individuals [3.8%]; Fisher exact P = 2.6 × 10−13;
Figure 2A and Figure 2B; eTable 6 in the Supplement). All au-
tosomal-recessive gene variants were present as single het-
erozygotes, with the exception of 1 patient aged 13 years who

Figure 3. Frequency of Pathogenic or Likely Pathogenic Variants

ERCC2
RECQL4a
DHCR7

SERPINA1
WRNa

DIS3L2
G6PC

MUTYH
PRF1

ABCB11
FAH

FANCA
FANCD2

NBN
AGL

ERCC3
ERCC4
FANCC
FANCE
GBA
SBDS

BUB1B
CTC1

DOCK8
ERCC5
FANCG
FANCL

HFE
MSH3
NTRK1

SLC25A13
TRIM37

XPC
BLMa

WAS
DKC1
GPC3

IDH1
SMARCA2

Au
to

so
m

al
-r

ec
es

si
ve

 g
en

es

XLR genes

Unknown

0 1 2 3 4 5

Individuals, %

P <.05

P <.05

P <.05

P <.05

TP53a
CDKN2A
BRCA2
SMO
TP63
POT1

CHEK2
EGFR
MEN1
ATM

COL7A1
FANCM

MPL
BRCA1
RB1a
VHL

MSH2
POLE
APC
TSC2

PALB2
TERT
EZH2
LZTR1
NF2

PRKAR1A
PTCH1

RAD51D
SOS1

FH
MLH1
PMS2
RTEL1
AXIN2

CREBBP
CYLD

DICER1
ELANE
EXT2
FGFR2

GALNT12
HMBS
HNF1A
KRAS
MC1R
MET
NF1

PMS1
POLD1
PTEN
RAF1

RPL35Aa
RPL5a

RPS19a
RPS7a
SAMD9

ACD
BRIP1

MRE11A
MSH6
NHP2
SDHA
TINF2

Au
to

so
m

al
-d

om
in

an
t g

en
es

0 1 2 3 4 5

Individuals, %

Patients

Control group

P <.05P <.05

P <.0002

P <.05P <.05

P <.05P <.05

P <.05P <.05
P <.05P <.05

P <.05P <.05

Frequency of pathogenic or likely
pathogenic variants in the 1004
patients and 1062 individuals in the
control group. P values represent
European patient-control group
burden tests, with P < .0002
significant at the Bonferroni
threshold.

Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma Original Investigation Research

jamaoncology.com (Reprinted) JAMA Oncology May 2020 Volume 6, Number 5 729

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://omim.org/entry/614041?search=RB1%20gene&highlight=gene%20rb1
https://omim.org/entry/608537?search=VHL%20gene&highlight=gene%20vhl
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2020.0197?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197
http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2020.0197


had osteosarcoma with 2 RECQL4 (OMIM 603780) pathogenic/
likely pathogenic variants; we were unable to phase the vari-
ants. The gene RECQL4 had the highest frequency of patho-
genic/likely pathogenic variants in European patients with
osteosarcoma (7 of 732 patients [1.0%]) compared with Euro-
pean individuals in the control group (1 of 994 individuals
[0.1%]; burden P = .02; Figure 2B and Figure 3; eFigure 4C and
eTable 7 in the Supplement). One RECQL4 variant was previ-
ously reported in a patient with Rothmund-Thomson syn-
drome and osteosarcoma (c.2476C>T, p.Arg826*).60 Several
other autosomal-recessive genes had more pathogenic/likely
pathogenic variants in patients than in the control group but
were not significantly associated (Figure 2B and Figure 3;
eTable 7 and eTable 10 in the Supplement).

We observed a preponderance of male patients (4 of 1004
patients [0.4% of the total patients and 0.7% of the 540 male
patients in the discovery set]) who carried a pathogenic/
likely pathogenic variant in an X-linked cancer-susceptibility
gene (DKC1 [OMIM 300126], GPC3 [OMIM 300037], or WAS
[OMIM 300392]) compared with no individuals in the control
group and 7 individuals (0.03%) in the ExAC group (OR, 15.5;
95% CI, 5-53; Fisher exact P = 4.4 × 10−9; Figure 2; eTable 6 in
the Supplement).

Known Osteosarcoma Syndrome Genes
Genes associated with cancer-predisposing syndromes associ-
ated with the occurrence of osteosarcoma were also associated
with sporadic osteosarcoma or patients unselected for family his-
tory. We identified that 6.5% of the patients had a pathogenic/
likely pathogenic variant in 1 of the following syndromic genes:
RB1, RECQL4, RPL35A (OMIM 180468), RPL5 (OMIM 603634),
RPS19 (OMIM 603474), RPS7 (OMIM 603658) , TP53, and WRN
(OMIM 277700). A total of 2.2% of patients had a pathogenic/
likely pathogenic variant in a syndromic gene without TP53. A
total of 19.6% of patients had either a pathogenic/likely patho-
genic variant in any autosomal-dominant gene or an osteosar-
coma-associated autosomal-recessive syndrome gene.

Replication of Findings
Two independent patient data sets were used to evaluate the
frequency of pathogenic/likely pathogenic variants in the can-
cer-susceptibility genes; set 1 comprised 100 patients with
whole-exome sequencing data, and set 2 comprised 140 pa-
tients with targeted sequencing data. The overall prevalence
of pathogenic/likely pathogenic variants in the replication sets
(28 patients [28.0%] in set 1 and 38 patients [27.1%] in set 2;
eTable 6 in the Supplement) was consistent with the carrier
rates observed in our larger discovery set of 1004 patients with
osteosarcoma (281 patients [28.0%]).

Of note, pathogenic/likely pathogenic variants in specific
genes identified in our discovery set were also identified to have
pathogenic/likely pathogenic variants in the 240 total pa-
tients in the replication sets; these genes were TP53 (13 pa-
tients [5.4%]), MEN1 (1 patient [0.4%]), MSH2 (1 patient [0.4%]),
FAH (OMIM 613871; 4 patients [1.7%]), RECQL4 (8 patients
[0.8%]), DKC1 (1 patient [0.4%]), and WAS (1 patient [0.4%];
eTable 10 and eTable 11 in the Supplement).

Candidate Gene Rare-Variant Burden
To explore whether unidentified germline genetic associa-
tions with osteosarcoma existed, we evaluated rare variants
in 736 candidate genes, which included 140 genes previously
associated with osteosarcoma and 596 somatically altered
genes (eTable 3 in the Supplement).

Burden tests of in silico–predicted damaging variants
(minor allele frequency ≤0.005) and all rare variants (minor
allele frequency ≤0.01) did not identify an association with the
evaluated genes (eTable 12 in the Supplement). One excep-
tion was observed; the gene ATRX (OMIM 300032) had a higher
rare-variant burden in European patients (28 of 732 patients
[3.8%]) compared with European individuals in the control
group (18 of 994 individuals [1.8%]). One variant was patho-
genic (c.6532C>T, p.Arg2178Trp, in 1 male patient; absent in
the control group) and was previously reported to be patho-
genic for alpha-thalassemia X-linked (ATR-X) intellectual dis-
ability syndrome in a patient with ATR-X syndrome who also
developed osteosarcoma.61,62

Discussion
We report that 28.0% of patients with osteosarcoma had a
pathogenic/likely pathogenic variant in a cancer-susceptibil-
ity gene, with 18.4% of those variants in an autosomal-
dominant gene; to our knowledge, this frequency is higher than
previously reported for any other pediatric cancer.23-25,63 The
highest carrier frequency was observed in the youngest
patients, with 24.5% of patients aged 0 to 10 years carrying
a pathogenic/likely pathogenic variant in an autosomal-
dominant gene. An additional 25.4% of the total patients had
an in silico–predicted damaging variant of uncertain signifi-
cance in an autosomal-dominant cancer-susceptibility gene.
We confirmed previous observations of a high frequency of
germline TP53 pathogenic/likely pathogenic variants in pa-
tients with osteosarcoma22,49 with double the sample. These
data suggest that germline TP53 pathogenic/likely patho-

Figure 4. Frequency of Rare Pathogenic or Likely Pathogenic Variants
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genic variants are associated with a younger age at diagnosis,
an axial tumor location, and worse survival.

Previous reports of smaller numbers of patients with osteo-
sarcoma have suggested enrichment of pathogenic/likely patho-
genicvariantsinotherautosomal-dominantcancer-susceptibility
genes.24,25 We similarly identified pathogenic/likely pathogenic
variants in the genes RB1, APC, MSH2, and PALB2 (OMIM 610355)
. We additionally report that 6.5% of patients with osteosarcoma
unselected for family history had a pathogenic/likely pathogenic
variantinageneassociatedwithacancer-predisposingsyndrome
that is associated with osteosarcoma.

This study identified several new candidate osteosarcoma-
susceptibility genes that are worthy of additional study, in-
cluding CDKN2A, MEN1, VHL, POT1, APC, MSH2, and ATRX.
Notably, CDKN2A had the second highest frequency (1.2%) of
pathogenic/likely pathogenic variants in patients with osteo-
sarcoma and has not been associated with pediatric cancer;
however, it has been associated with melanoma and pancre-
atic cancer.64-66 A germline variant located 150 kilobases up-
stream of CDKN2A has been associated with the risk of ca-
nine osteosarcoma,67 which has biologic similarity to human
osteosarcoma.68 Somatic CDKN2A loss is an important so-
matic event in human osteosarcomas.48,49,69,70 Four of 6 of the
CDKN2A pathogenic/likely pathogenic variants (p.Asp125His,
p.Gly101Trp, p.Ile49Ser, and p.Ile49Thr) observed in the pa-
tients with osteosarcoma have been previously associated with
a predisposition for melanoma or pancreatic cancer.71-74

The X-linked cancer-susceptibility genes have not been pre-
viously associated with osteosarcoma and were identified in both
the discovery and replication patient sets. We report 2 patients
withpathogenicDKC1variants(c.1223C>Tandc.-142C>G)thatare
known to cause dyskeratosis congenita,75,76 which is associated
with a high risk of select solid tumors77,78 but has not been pre-
viously associated with osteosarcoma.79 We identified WAS loss-
of-functionmutations,whichareassociatedwithWiskott-Aldrich
syndrome and have previously been associated with lymphoma
susceptibility but not with osteosarcoma. Our data further asso-
ciate osteosarcoma with rare variants in ATRX, which has been
reported to have somatic driver mutations in osteosarcoma.48

Osteosarcoma has been reported in 5 children with the rare
ATR-X genetic disorder, which is associated with heterozygous
pathogenic germline variants in ATRX.62,80,81 One of these pre-
viously reported patients with ATR-X syndrome developed
osteosarcoma61,62 andhadaworseoutcome,whichiscomparable
with the osteosarcoma patient who had the same ATRX variant.

Strengths and Limitations
A strength of our study is that, to our knowledge, the 1244 pa-
tients with osteosarcoma in our analysis represent the largest

set of patients with a single solid pediatric cancer to be evalu-
ated for cancer-susceptibility gene pathogenic variants to date
and consequently provide more precise pathogenic/likely
pathogenic carrier prevalence estimates. The use of internal
individuals without cancer who were jointly called with the
patients improved the whole-exome sequencing quality-
control measures.

The limitations of our study include the inability to as-
sess family history, the incomplete data on important clinical
variables from all centers, and the use of ExAC whole-exome
sequencing data, which could not be directly used for discov-
ery analyses or burden testing owing to distinct biases asso-
ciated with its accumulation of data from many sources. In ad-
dition, 284 of the 1004 patients in the discovery set were
derived from the Childhood Cancer Survivor Study, which
could have resulted in survival bias for this subset. Notably,
patients in the Childhood Cancer Survivor Study had a lower
carrier frequency of TP53 pathogenic/likely pathogenic vari-
ants compared with all other patients (2.8% vs 5.0%, respec-
tively; Fisher exact P = .17).

Conclusions
We report that an estimated 28.0% of patients with osteosar-
coma carried a rare germline pathogenic/likely pathogenic vari-
ant in a cancer-susceptibility gene, and more patients carried
likely damaging variants in autosomal-dominant cancer-
susceptibility genes. We confirm known associations and iden-
tify new genes that provide insight into the biology of osteo-
sarcoma. Our findings have important implications for the
genetic testing of patients, especially younger patients, who
are newly diagnosed with osteosarcoma because these pa-
tients were more likely to have a potentially clinically rel-
evant disease-associated pathogenic/likely pathogenic vari-
ant. We acknowledge that our estimates, particularly those
based on in silico analyses, may be high because functional
studies are required to prove pathogenicity.

Our data underscore the high frequency of potentially
actionable cancer risk variants in patients with osteosar-
coma, suggesting a need for further preventive and early
detection strategies as well as a consideration of cascade
genetic testing for the patient and the entire family.82-84 We
note that individuals harboring Li-Fraumeni syndrome–
associated TP53 mutations benefit from active screening,
which could translate into improved outcomes.85,86 Further
studies are needed to refine our observations and identify
optimal approaches to genetic testing and counseling for
patients with osteosarcoma.
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