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Frequency ratios and the perception
of tone patterns

E. GLENN SCHELLENBERG
University of Windsor, Windsor, Ontario, Canada

and

SANDRA E. TREHUB
University of Toronto, Mississauga, Ontario, Canada

We quantified the relative simplicity of frequency ratios and reanalyzed data from several studies
on the perception of simultaneous and sequential tones. Simplicity offrequency ratios accounted
for judgments of consonance and dissonance and for judgments of similarity across a wide range
of tasks and listeners. It also accounted for the relative ease of discriminating tone patterns by
musically experienced and inexperienced listeners. These findings confirm the generality ofpre­
vious suggestions of perceptual processing advantages for pairs of tones related by simple fre­
quency ratios.
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Since the time of Pythagoras, the relative simplicity of

the frequency relations between tones has been consid­

ered fundamental to consonance (pleasantness) and dis­

sonance (unpleasantness) in music. Most naturally OCCUf­

ring tones (e.g., the sounds of speech or music) are

complex, consisting of multiple pure-tone (sine wave)

components. Terhardt (1974, 1978, 1984) has suggested

that relations between different tones may be influenced

by relations between components of a single complex tone.

For single complex tones, ineluding those of speech and

music, the frequency values (in hertz, or cyeles per sec­

ond) of individual pure-tone components (called har­

monics) are usually integer multiples of the fundamental

frequency, or first (lowest) harmonic. For example, a

complex tone with a fundamental frequency of 100Hz

consists ofharmonics of 100,200,300,400,500 Hz, and

so on. Thus, relations between the lower and most read­

ily perceived harmonics (Plomp, 1964) can be represented

by small-integer frequency ratios such as 2: 1 (between

200 and 100 Hz), 3:2, 4:3, 5:3, 5:4, and so on.

Historically, intervals (i.e., combinations oftwo tones)

formed by complex tones whose fundamental frequencies

are related by simple (i.e., small-integer) ratios have been

considered consonant, smooth, or pleasant; intervals with

complex (i.e., large-integer) ratios have been considered

dissonant, or unpleasant. Rameau (1722/1971) considered

the consonance of intervals with simple frequency ratios

to be a consequence of the simple ratios found among har-
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monics of a single complex tone. Currently, the degree

of perceived consonance is believed to result from both

sensory and experiential factors. Whereas sensory con­

sonance is constant across musical styles and cultures, mu­

sical consonance presumably results from learning what

sounds pleasant in a particular musical style.

Helmholtz (1885/1954) proposed that the consonance

of two simultaneous complex tones is a function of the

ratio between their fundamental frequencies-the simpler

the ratio, the more harmonics the tones have in common.

For two complex tones that stand in a ratio of 2: I, half

of the harmonics of the lower tone are present in the har­

monic series of the higher tone, while all of the harmonics

of the higher tone are present in the series of the lower

tone. For tones that stand in a ratio of 3:2, one third of

the harmonics of the lower tone are present in the series

of the higher tone, while half of the harmonics of the

higher tone are present in the series of the lower tone.

Thus, amplitude fluctuations and sensations of beating

arising from harmonics that are elose but not identical in
pitch are less likely between tones related by simple fre­

quency ratios (more common harmonics) than between

tones related by more complex ratios (fewer common

harmonics) .

Contemporary accounts of consonance and dissonance

(Kameoka & Kuriyagawa, 1969a, 1969b; Plomp &

Levelt, 1965) have incorporated the notion of critical

bands into the earlier formulation (Helmholtz,

1885/1954). Critical bands are presumed to function like

auditory filters. Each tone interacts with other tones within

a certain range of surrounding frequencies (its critical

band); beyond that range (i.e., when tones have nonover­
lapping critical bands), such interactive effects are mini­

mal. Thus, simultaneous pure tones that are proximate

(but not identical) in pitch have overlapping critical bands,

resulting in beating and the perception of dissonance, or
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roughness (Kameoka & Kuriyagawa, 1969a; Plomp &

Levelt, 1965). The most dissonant interval occurs at about

a quarter of a critical bandwidth (Plomp & Levelt, 1965).

The width of the critical band is a constant frequency ra­

tio (between two and three semitones) for tones above

500 Hz; under 500 Hz, the critical band becomes wider

(in number of semitones) as frequency decreases (Plomp

& Levelt, 1965). Thus, intervals that are consonant in the

mid- to upper ranges (e.g., intervals of three and four

sernitones) may be dissonant in the lower ranges; in musi­

cal compositions, these lower intervals are avoided (Huron

& Sellmer, 1992; Plomp & Levelt, 1965). In sum, the

consonance of simultaneous pure tones is considered a

function of frequency distance (i.e., whether or not criti­

cal bands overlap) and absolute frequency, independent

of the simplicity of frequency ratios.

For simultaneous complex tones, dissonance occurs

when the critical bands of adjacent harmonics overlap but

are not identical. Thus, complex tones related by simple

frequency ratios are less likely to cause dissonance than

those related by more complex ratios, not because of the

simplicity of frequency ratios per se, but because the crit­

ical bands of adjacent harmonics are less likely to gener­

ate interference. In the case of successive tones, effects

of ratio simplicity are thought to result primarily from

exposure to a specific musical culture or style, illustrat­

ing the phenomenon of musical as opposed to sensory con­
sonance. In the context of musical consonance, terms such

as tonal affinity, compatibility, and stability are often used.

Because the degree of consonance/dissonance (sensory)

is largely attributed to overlapping critical bands, the

prevailing view is that the relation between frequency ra­

tios and musical intervals is arbitrary, or coincidental

(e.g., Dowling & Harwood, 1986). Indeed, judgments

of dissonance have been found to be independent of ratio

simplicity (Plomp & Levelt, 1965), as have judgments

of sirnilarity (Kallman, 1982). Moreover, the discrimi­

nation of changes in melodic (sequential) intervals by mu­

sically untrained listeners is also reported to be indepen­

dent of the relative simplicity of frequency ratios (Bums

& Ward, 1978).

Trehub and her colleagues (Cohen, Thorpe, & Trehub,

1987; Schellenberg, 1994; Schellenberg & Trehub, in

press; Trainor & Trehub, 1993a, 1993b; Trehub, Thorpe,

& Trainor, 1990) contend, however, that tones related

by simple frequency ratios are inherently easier to pro­

cess than tones related by more complex ratios. They

found processing advantages for simple frequency ratios

in a task that required musically untrained adults and

young children to detect changes in sequences of pure

tones, where overlapping critical bands were not a factor

(Schellenberg, 1994). They also found that discrimina­

tion accuracy improved with the increasing ratio simplicity

of the patterns (Schellenberg & Trehub, in press).

If simple frequency ratios have natural processing ad­

vantages (Schellenberg, 1994; Schellenberg & Trehub,

in press), they should predominate in musical scales cross­

culturally. Indeed, octaves, which exemplify the very sim-

ple ratio of 2: 1, are found in the music of virtually all

cultures (Dowling & Harwood, 1986; Lerdahl & Jack­

endoff, 1983). Moreover, intervals with ratios of 3:2

(fifths) and 4:3 (fourths) have been identified in many cul­

tures (Sachs, 1943), often functioning as stable intervals

or points of resolution (Meyer, 1956).

In the present paper, we explore the perceptual conse­

quences of ratio simplicity by examining interval-perception

data from numerous investigators, representing a wide va­

riety of listeners, listening contexts, and experimental

tasks. Just as grammatical simplicity, defined linguisti­

cally, need not imply psychological simplicity, ratio sim­

plicity , defined mathematically, need not have psycho­

logical consequences. The hypothesis under consideration

is that simple frequency ratios confer perceptual process­

ing advantages relative to complex ratios. Specifically,

simple frequency ratios should facilitate the processing

of patterns comprised of pure or complex tones in the con­

text of melodic (sequential) or harmonic (simultaneous)

intervals. Moreover, tones related by simple frequency

ratios should be perceived as more consonant, or com­

patible, than tones related by more complex frequency

ratios. To rule out exposure to Western music as the prin­

cipal explanatory factor, these effects should be demon­

strable with listeners from widely different musical cul­

tures. The effects should be evident, moreover, relatively

early in life. Finally, the hypothesized effects should be

obligatory-apparent in musical as weil as nonmusical

contexts.

QUANTIFYING THE SIMPLICITY

OF FREQUENCY RATlOS

Dur index of ratio simplicity, essentially a modification

ofprevious indexes (Levelt, van de Geer, & Plomp, 1966;

van de Geer, Levelt, & Plomp, 1962), is the reciprocal

of the naturallogarithm of the sum of the two integers in

a frequency ratio in its simplest form (i.e., no common

factors in the integers). Thus, the simplicity value for ra­

tio X:Y is [log, (X +Yj]". In the special case of simulta­

neous pure tones presented in phase, the index represents

the inverse of the logarithm of the total number of com­

plete cycles of sine waves in the period common to both

• tones. Table 1 presents all intervals from 0 to 12 semi­

tones that are multiples of sernitones, their frequency ra­

tios, and the calculation of the ratio-simplicity values.

The frequency ratios are based on just tuning ; a system

in which notes are tuned to form small-integer ratios with

the tonic of the scale (the tone called do).

Bums and Ward's (1982, Table 1) presentation of fre­

quency ratios for justly tuned intervals was the source of

ratios for the index (intervals were lirnited to integer mul­

tiples of sernitones). Frequency ratios of intervals between

the tonic and other tones of the Western major scale are

relatively consistent across authors (octaves as 2: 1, fifths

as 3:2, etc.), but those of other intervals tend to vary con­

siderably (Bums & Ward, 1982). For example, the tri­

tone is sometimes considered to have a ratio of 64:45 in-
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Table 1
Interval Size (in Semitones) With Corresponding Interval Name,

Justly Tuned Frequency Ratio, Sum of Integers in the Ratio,

Logarithm of the Sum, and Inverse of the Logarithm

Interval

Size

o
1

2
3
4

5
6
7
8
9
10
11

12

Interval

unison
minor second

major second
minor third
major third

perfect fourth

tritone
perfect fifth

minor sixth

major sixth
minor seventh
major seventh

octave

Frequency Sum of Logarithm Reciprocal of

Ratio Integers of Sum Logarithm

1:1 2 0.693 1.443

16:15 31 3.434 0.291
9:8 17 2.833 -0.353

6:5 11 2.398 0.417
5:4 9 2.197 0.455

4:3 7 1.946 0.514

45:32 77 4.344 0.230
3:2 5 1.609 0.621

8:5 13 2.565 0.390

5:3 8 2.079 0.481
16:9 25 3.219 0.311

15:8 23 3.135 0.319
2:1 3 1.099 0.910

Note-The reciprocal of the logarithm of the sum of integers is used as the index of

simplicity of frequency ratios.

Figure I. Quantified values of the simplicity of frequency ratios
as a function of interval size (semitones) and Western music-theoretic

c1assificatious of consonance and dissonance. Higher values cor­

respond to greater simplicity.

and Western music-theoretic classificationsof consonance/

dissonance, dissonant intervals have lower simplicity

values than consonant intervals. Similarly, imperfect con­

sonances have relatively lower values than perfect con­
sonances. Intervals of 0 and 12 semitones (unison and

octave, respectively) have the highest simplicity values

(i.e., the simplest ratios), whereas the interval of 6 semi­

tones (the tritone) has the lowest value (i.e., the most com­

plex ratio). The simplicity values associated with these

particular intervals are consistent with Narrnour's (1992)
suggestion that unisons, octaves, and tritones are inher­

ently special, or "peculiar," with correspondingly dis­

tinctive perceptual properties. For example, Narmour

stead of the more conventional 45:32. For instances in
which Bums and Ward (1982) provide two different ra­

tios for a single interval, we selected the ratio that mini­
mized deviation in size from its equal-tempered counter­

part. (In the equal-tempered scale, an octave is divided

into 12 equal steps, each an equal-tempered semitone.
Thus, all equal-tempered intervals are integer multiples

of equal-tempered semitones. Except for the octave, equal­

tempered intervals are slightly mistuned from exact sim­

ple ratios.) In the case of the tritone, where both ratios

are equidistant from the equal-tempered interval, we se­
lected the smaller integer ratio (45:32 rather than 64:45).
Although these decision rules are arbitrary, the ratios on

which the index is based are widely used for justly tuned

intervals as well as for small-integer approximations to

equal-tempered intervals, and they are identical to those

reported by Krumhansl (1990) for intervals from 0 to 12

semitones.
The index is formulated fromjustly tuned intervals, but

the resulting values are assumed to apply to intervals

slightly mistuned from exact ratios, including equal­

tempered intervals. This assumption gains credence from

the finding that performing musicians often produce small

discrepancies in interval size (Rakowski, 1990), which
listeners still perceive as being "in tune" (Bums & Ward,

1982; Ward, 1970). Only one simplicity value is assigned

to each interval , despite the possibility of justly tuned in­

tervals with the same number of semitones having more

than one ratio, depending on their position in the scale.

The index can also be extended to intervals larger than
12 semitones (one octave) by doubling the first integer

in the ratio of the interval 12 semitones smaller. For ex­

ample, a major ninth (14 semitones) is an octave larger

than a major second (2 semitones); its frequency ratio is

18:8, which can be reduced to 9:4, and its ratio-simplicity

value is [loge(9+4W1 = .391.
As can be seen in Figure 1, which presents simplicity

values for frequency ratios as a function of interval size
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(1990, 1992) eonsiders the tritone to be essentially am­

biguous, having the implieations of either a small or a
large interval, depending on its eontext. Similarly, musie
theory designates the tritone as an augmented fourth or
a diminished fifth; both designations are eonsidered un­
stable, requiring resolution to more stable intervals (Ald­
well & Sehaehter, 1989).

RELATION TO OTHER MEASURES
OF RATIO SIMPLICITY

How does our index relate to other measures of the sim­
plieity offrequeney ratios? Using the larger ofthe two inte­
gers in a frequeney ratio as their measure, van de Geer
et al. (1962) also aehieved mathematieal simplicityand ap­

plicability to both pure and eomplex tones presented simul­
taneously or sequentially. There are notable differenees,
however. One is that van de Geer et al. ealeulated com­

plexity rather than simplieity. Another is that van de Geer
et al. 's measure yielded the same value (16) for justly
tuned minor seeonds and minor sevenths, eompared with
our value of .291 for the minor seeond and .311 (i.e.,
greater simplieity) for the minor seventh. Similarly, major
thirds and sixths would be equally simple (a value of 5)
for van de Geer et al., but somewhat different for our
index (.455 for the major third vs..481 for the major
sixth). Despite the greater differentiation of our index,
the values from the two measures were found to be highly
but negatively eorrelated (r = -.829, N = 23, p <
.0001, for the 23 intervals tested by van de Geer et al.,
1962).
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The only other direet measure of ratio simplieity, that
of Levelt et al. (1966), is almost perfeetly (negatively)
eorrelated with our index for intervals with the same mean
frequeney. Indeed, for the 15 stimulus intervals presented
by Levelt et al., all of whieh had a mean frequeney of
500 Hz, the two indexes yield a eorrelation eoefficient

of r = -.927 (N = 15, p < .0001). Our index is eon­
siderably more useful, however, in that it is applieable
to eomparisons between intervals that are not equated for
mean frequeney (e.g., intervals with the same lower tone,
say middle C). Moreover, because Levelt et al. eomputed
the eommon logarithm (base 10) of the frequeney (hertz)
of the first harmonie eommon to two eomplex tones, the
resulting index is not direetly applieable to pure tones.

Mathematical estimates of the sensory eonsonanee/
dissonanee of two simultaneouseomplex tones ean be eon­
sidered indireet indexes of the simplicity of frequeney ra­
tios. (Sensory eonsonanee is greater for simultaneous com­
plex tones related by simple frequeney ratios than by more
eomplex frequeney ratios, as noted above.) We examined
associations between our index and Helmholtz's (1885/
1954) measure ofthe degree ofroughness, or dissonanee,
between two simultaneous eomplex tones. For the justly
tuned intervals in Table 1, the simplicity values were
negatively eorrelated with the roughness values (r =
-.559, N = 13, p < .05). Standardized justly tuned
roughness values and ratio-simplicity values as a fune­
tion of interval size are shown in Figure 2 (with the sign
of the standardized ratio-simplicityvalue reversed for pur­
poses of eomparison). The two values deviate most for
the unison (0 semitones) and the minor seeond (2 semi-

D ratlo-complexlty

• [ustty-tuned roughness

111 equal-ternpered roughness

o
'---- L-- _ '---- ~ _ '-- '------ _ '------ -

4 6 10 11 12

sermtones

Figure 2. Standardized simplicity values of frequency ratios and standardized roughness values
(HeImholtz, 1885/1954) for justly tuned and equal-tempered intervals as a function of interval size.
For comparison purposes, the sign of the standardized simplicity values has been changed. Thus,
higher values correspond to greater complexity and greater roughness.



tones), which have considerably greater roughness values.
Helmholtz (1885/1954) also calculated roughness values

for equal-tempered intervals, which are mistuned from

exact frequency ratios by up to 16% of 1 semitone. We

also found these roughness values and our ratio-simplicity

values (based on exact frequency ratios) to be negatively

correlated (r == -.576, N == 13, p < .05). As can be
seen in Figure 2, standardized equal-tempered values for

roughness and simplicity are closely related for all inter­

vals except for the unison and the minor second, as they
are for justly tuned intervals. The finding of similar as­

sociations between simplicity and roughness values for

both justly tuned and equal-tempered intervals supports
the assumption that the values generated by our index of

ratio simplicity are not uniquely tied to one tuning system.

Hutchinson and Knopoff (1978) incorporated the con­

cept of critical bandwidth into their computation of the

dissonance of simultaneous complex tones (see also

Kameoka & Kuriyagawa, 1969b). They calculated values
for 1,500 intervals: 25 equal-tempered intervals ranging

from 0 sernitones (unisons) to 24 sernitones (two octaves)

at 60 different pitch positions for each interval (the lower

tone of each interval ranged from Cl, or 32.7 Hz, to Bs ,

or 987.8 Hz).l Overall, smaller intervals had higher dis­

sonance values than larger intervals (smaller intervals are

more likely to have overlapping critical bands), and in­

tervals with a lower mean frequency had higher dis­

sonance values than intervals with a higher mean fre­

quency (for frequencies under 500 Hz, critical bandwidth
increases in number of sernitonesas frequency decreases).

We found the Hutchinson and Knopoff dissonance values

to be negatively correlated with our simplicity values (r =
-.406, N = 1,500, p < .0001). A multiple regression

analysis was used to exarnine the predictive strength of

the ratio-simplicity values, while controlling for interval
size and mean pitch of interval (by including a predictor

variable for both). The result was a highly significant fit
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to the dissonance values (multiple R = .795, N = 1,500,

p < .0001), with all three predictor variables making sig­

nificant independent contributions (ps< .0001).

JUDGMENTSOFCONSONANCE
AND DISSONANCE

As a preliminary test of the generality of ratio simplic­

ity as an explanatory construct, we exarnined the associ­

ation between the simplicity offrequency ratios andjudg­
ments of consonance and dissonance. If simple frequency

ratios confer processing advantages, then intervals with

simpler ratios may be judged more consonant (i.e., more

compatible, pleasant, smooth, etc.) than intervals with

more complex ratios. The effect, if evident, should be

present for patterns of pure or complex tones, and for
listeners with or without musical training.

We compiled data on judgments of consonance and dis­

sonance from several studies. For each study, or group

of studies in the case of research preceding 1918, judg­

ments of consonance and dissonance were rank ordered
and compared with the rank ordering of ratio-simplicity
values for intervals from 1 to 12 semitones. These values

are presented in Table 2 together with rank-order corre­

lations and probability values. The criteria for consonance

and dissonance varied from study to study, as did the type

of tones (pure or complex).
Malmberg (1918) reviewed 10 historical treatments of

consonance and dissonance, from the 13th century to the

early 20th century. For each ofthe 10 studies, he ranked

the intervals from most to least consonant (Malmberg,

1918, Table l,p. 103). Thecompositerankorderofjudg­

ments presented in Table 2 was based on Krumhansl's
(1990, Table 3.1, p. 57) averages ofthe ranks across the
10 studies. Malmberg also presented all possible pairs of

the 12 harmonie (simultaneous) intervals (by means of pi­

ano or tuning fork) to musically trained listeners, who

Table 2

Rank Order of Ratio-Simplicity Values and Consonance Judgments Across Various Studies and Subject Groupings

Interval Size (Semitones)

12 7 5 9 4 3 8 2 11 10 6

Ratio-Simplicity Rank

Study Subjects 1 2 3 4 5 6 7 8 9 10 11 12 r, p

Pre-1918 summary 1 2 3 5 4 7 6 10 11 9 12 8 .895 < .0001

Malmberg (1918)

Piano trained 2 5 3 4 7 6 10 11 9 12 8 .881 < .0005

Tuning fork trained 2 4 3 5 7 6 11 10 9 12 8 .888 < .0005

Guernsey (1928)

Smoothness untrained 1 3 2 5 4 6 8 11 10 7 12 9 .881 < .0005

mod. trained 1 2 5 4 3 7 8 11 10 6 12 9 .839 < .001

trained 1 2 3 4 5 7 6 10 11 8 12 9 .916 < .0001

Pleasantness untrained 4 5 3 1 2 6 7 11 10 8 12 9 .790 < .005

mod. trained 8 6 3 2 1 5 4 10 11 7 12 9 .573 < .1

trained 11 10 2 1 3 4 5 8 9 6 12 7 .203 n.s.

Butler & Daston untrained

(1968) U.S.A. 5 2 6 4 1 8 3 7 11 10 12 9 .734 < .01

Japan (West.) 4 1 2 6 3 7 5 8 12 10 11 9 .853 < .0005

Japan (Trad.) 5 3 2 7 1 6 4 8 12 10 11 9 .755 < .005

Note-mod. = moderately; West. = Western; Trad. = traditional.
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were asked to judge which interval was more smooth,
pure, and well blended. He calculated two composite
scores (one for each timbre), from the three judgments
for each interval, on the basis of how many times it was
chosen over the other 11 intervals . The rank orders of
these scores are presented separately for both timbres (see
Table 2).

In an attempt to determine whether Malmberg's (1918)
findings were independent of musical training, Guernsey
(1928) conducted a similar experiment with listeners who
were rnusicallytrained, moderately trained, or untrained.
She presented (with pure-tone resonators) the 12 inter­
vals used by Malmberg to the three groups of listeners.
In one experiment, the listeners provided smoothness
judgments; in another, they provided pleasantness judg­
ments. The rank orders of intervals, based on smooth­
ness and pleasantness judgments, are listed in Table 2 for
each group of subjects.

Butler and Daston (1968) examined the generality of
Malmberg's (1918) results across cultures by testing col­
lege students from the United States and Japan. The
Japanese students were subdivided into two groups: those
who preferred Western music and those who preferred
traditional Japanese music. All the listeners made pair­
wise preference judgments ofthe 12 intervals, which were
presented on an organ (complex tones). The rank orders
of interval preferences for each group are listed in
Table 2.

Rank-order (Spearman) correlations (Table 2) show
remarkable agreement between interval judgments and the
relative simplicity of frequency ratios across the various
studies and subject groupings. In fact, strong associations
prevailed across different cultural backgrounds, musical
experience, judgment criteria (preference or smoothness),
and tones (pure or complex). Ratio simplicity was less
successful in predicting pleasantness judgments (Guern­
sey, 1928), particularly for listeners with more musical
training. This finding may reflect the influence ofWestern
harmonic structure (i.e., the predominance of thirds and
sixths with their moderately simple frequency ratios) on
listeners with more musical training. Thus, extensive
training in Western music may increase culturally biased
responding, thereby decreasing effects of ratio simplic­
ity. Higher evaluations of moderately simple frequency
ratios (i.e., imperfect consonances) compared with very
simple frequency ratios (i.e., perfect consonances) have
also been reported by van de Geer et al. (1962).

Krumhansl and Kessler (1982) required musically

trained listeners to rate how weIl a test tone fit with a mu­
sical key, establishing the key by playing a scale, chord,
or cadence (a combination of chords signaling the end of
a musical phrase). Because musical keys have a tonic note,

which acts as a perceptual reference point, such ratings
also reflect the consonance of the interval between the
tonic and the test tone. To rninimize the influence of pitch
distance, Krumhansl and Kessler used special tones with
poorly defined pitch height (see Shepard, 1964). They de­
rived two hierarchies of stabilityvalues (a continuous mea-

sure)-one for tones in major keys, and the other for tones
in rninor keys. Ratio simplicity was a significant predic­
tor of the hierarchy of values for both major and minor
keys (major keys, r = .862, N = 13, P < .0005; minor
keys, r = .790, N = 13, p < .005). Thus, regardless
of whether a musical key is in a major or minor mode,
tones are perceived to fit better in the key when they form
simple frequency ratios with the tonic of that key than
when they form more complex ratios. Moreover, the as­
sociation between major and minor hierarchy values was
weaker (r = .651, N = 13, p < .05) than the associa­
tion of either hierarchy with the ratio-simplicity index.

DISCRIMINATION OF TONE SEQUENCES

The current claim of processing advantages for simple
frequency ratios arose from performance on tasks in which
listeners were required to discrirninate changes in interval
size (Schellenberg, 1994; Schellenberg & Trehub, in press;

Trainor & Trehub, 1993a, 1993b). Changes from simple
ratios to more complexratios were foundto be more readily
detectable than changes from complex to simpler ratios.
This pattern of asymmetries implies that intervals with
simple ratios are encoded more efficiently than are inter­
vals with more complex ratios, providing a differentially
effective basis for the detection of changes. Similar asym­
metries have been reported for the detection of changes
to conventionally structured and unconventionally struc­
tured linguistic and nonlinguistic patterns (Bharucha, 01­
ney, & Schnurr, 1985; Bharucha & Pryor, 1986).

Adult and Child Listeners
Schellenberg and Trehub's (in press) listeners, adults

with little musical training, heard a standard five-tone pat­

tern (two component tones in an alternating sequence)
repeating in transposition (same frequency ratio between
component tones, different absolute frequencies), and
were asked to indicate when a comparison pattern (dif­
ferent frequency ratio, different absolute frequencies) was
substituted for the standard. The standard and compari­
son patterns were comprised of perfectly consonant in­
tervals (frequency ratio of 3:2 or 4:3), imperfectly con­
sonant intervals (5:4 or 8:5), or a dissonant interval
(45:32). The effect of ratio simplicity was graded; our
reanalysis of the data showed that performance improved
as the ratio between tones in the standard pattern became

simpler (r = .486, N = 40, P < .005) and as the ratio
between tones in the comparison pattern became more

complex (r = -.536, N = 40, P < .001).
Schellenberg (1994) found comparable perceptual asym­

metries as a function of ratio simplicity when they used
a different methodology (same/different) with adults and
6-year-old children. Performance was more accurate when
the standard interval (presented first) had a simple fre­
quency ratio (2:1,3:2,4:3) and the comparison interval
(presented second) had a more complex ratio (15:8,32: 15,
45:32) than when the simple ratio followed the complex
ratio. The processing advantage for simple frequency



ratios was evident even in 6-year-old listeners with little

or no musical training. For all the listeners, moreover,

performance did not differ from chance levels when the

standard interval had a complex ratio. These results are

consistent with the view that tones related by simple ra­
tios are inherently easier to process than tones related

by more complex ratios. Comparable findings with in­

fant listeners would constitute stronger evidence in this

regard.

Infant Listeners
If processing advantages associated with simple fre­

quency ratios are largely independent of musical encul­

turation, then such advantages should be evident in in­

fancy. An analysis of relevant infant discrimination data

was made possible by the cooperation of Trainor (1991),

who tested 40 infants 9 to 11 months of age with a proce­

dure similar to that used by Schellenberg and Trehub (in

press). Trainor's (1991, chap. 3) infants were trained to

turn their heads toward a loudspeaker when a compari­

son pattern was substituted for the standard. One of her

standard patterns exemplified a structure considered basic
to Western tonal music (the major triad), consisting of

the first, third, and fifth notes ofthe major scale, ascend­

ing and descending (e.g., CCECG4-EcC4). The other

standard pattern (e.g., C 4 - E 4 - G ~ 4 - E 4 - C 4 ' the augmented

triad) was similar in configuration (rise-fall contour) and

pitch range, but much less conventional in structure-its
note set did not belong to any single major scale. Com­

parison patterns were formed by displacing the highest

tone of the pattern upward or downward (from an exact

transposition) by a semitone. In line with earlier findings

(Cohen et al., 1987), Trainor found superior infant dis­

crimination when the standard pattern was convention­
ally structured. In further research (Trainor & Trehub,

1993b), the source ofthe processing advantage was iden­

tified as the relation between the low and high tones (e.g.,

C4 and G4). Sensitivity to the contour of tone sequences

(Chang & Trehub, 1977; Ferland & Mendelson, 1989;

Trehub, BuH, & Thorpe, 1984; Trehub, Thorpe, & Mor­

rongiello, 1985, 1987) may have drawn the infants' at­

tention to the locus of contour change (the high tone) as

well as to the first and last tones (the low tones), enhanc­

ing their sensitivity to relations between the low and high

tones of Trainor's (1991) patterns.
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We reanalyzed Trainor's (1991) data as a function of

the simplicity of frequency ratios between low and high

tones of the standard and comparison patterns. Frequency

ratios are listed in Table 3 for each ofTrainor's four con­

ditions. Mean d' scores and standard deviations are also

presented. As predicted, the infants performed better when

the low and high tones of the standard pattern were re­

lated by a simple ratio (perfect fifth, ratio of 3:2) than

by a more complex ratio (minor sixth, ratio of 8:5)

[t(38) = 3.80, p < .001]. Performance also improved
as the ratio between the low and high tones of the com­

parison pattern became more complex; the correlation be­

tween the infants ' discrimination scores and the ratio sim­

plicity of the comparison pattern was r = -.737 (N =
40, p < .0001). If performance varied as a function of

the simplicity difference between the standard and com­

parison patterns, then the infants should have been most

accurate on the simplest standard and most complex com­

parison pattern (i.e., major triad-downward condition),

least accurate on the most complex standard and simplest

comparison pattern (i.e., augmented triad-downward con­

dition), and intermediate on the other two conditions. As

can be seen in Table 3, the pattern of discrimination scores

is consistent with this prediction. Indeed, we found the

infants ' performance to be a function of the difference

in ratio-simplicity values between standard and compari­

son patterns (r = .670, N = 40, P < .0001). Thus, the

pattern of results for infant listeners is remarkably con­

sistent with that reported for children and adults (Schellen­

berg, 1994; Schellenberg & Trehub, in press), suggest­

ing that advantages for simple over more complex ratios

are independent of musical enculturation.

JUDGMENTS OF SIMILARITY

If the discriminability of intervals is related to differ­

ences in their ratio simplicity, then the perceived simi­
larity of intervals may be affected by similarities in ratio

simplicity. It is unclear, however, whether tones perceived

to be compatible (i.e., the component tones of intervals

with simple ratios) would also be perceived as more sim­

ilar than tones perceived to be incompatible (i.e., the com­

ponent tones of intervals with complex ratios). In any case,

pitch distance is likely to playa critical role, with listeners

perceiving tones closer in pitch as more similar than tones

Table 3
Mean Discrimination Scores (d') and Standard Deviations as a Function

of the Frequency Ratio Between Low and High Tones of
Standard and Comparison Patterns (Trainor, 1991)

Frequency Ratio

Condition

Major-upward change

Major-downward change

Augmented-upward change

Augmented-downward change

Standard Comparison

3:2 8:5
3:2 45:32
8:5 5:3
8:5 3:2

Mean d'

0.50
0.89
0.47

-0.28

SD

0.23
0.43
0.51
0.38
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further apart, and intervals nearer in size (pitch distance
between tones) as more similar than intervals with greater
size differences.

Table 4
Three Models Fit to Similarity Data From Krumbansl

(1979, Table 2)

Predictor Variable df F p

Krurnhansl's (1979) explanation was primarily based
on the stability of test tones within a musical key. Each
test tone was considered to be in one of three tonal cate­
gories: the tonic triad of the implied key (stable tones),
the scale of the implied key but not the tonic triad (mod­
erately stable tones), and nondiatonic (unstable) tones.
Because the order of the test tones and pitch distance
also influenced listeners' ratings, Krurnhansl' s (1979)
"model" of the variation in her data was assumed to be
a 3 X 3 analysisof covariance, with three levelsof the tonal
category of the first test tone, three levels of the tonal cat­
egory of the second tone, and a covariate representing
the distance in pitch between test tones. Results from an
analysis based on this model are provided in Table 4

(music-theoretic model). The resulting multiple R was
.845 (N = 169, p < .00(1), virtually identical to the
psychoacoustic model in goodness of fit. Thus, the per­
formance of musically trained listeners on a musically
relevant task can be explained as effectively with psycho­
acoustic factors as it can with culture-specific, music­
theoretic factors.

The psychoacoustic model predicts that, in general,
tones closer in pitch and those related by a simple ratio
will be rated as more similar than tones more distant in
pitch and those related by a more complex ratio. By con­
trast, the music-theoretic model accounts for the data by
way of pitch distance and the stability of each test tone
in relation to the established key. The addition of a pre­
dictor variable (to the music-theoretic model) for ratio
simplicity between test tones significantly improved the
fit to the data [F(l, 158) = 176.5, p < .0001], generat­
ing a multiple R of .930 (N = 169, p < .0001). Results

Music-Theoretic Model
(Multiple R = .845, N = 169, p < .00(1)

Combined Model
(Multiple R = .930, N = 169, p < .00(1)

Psychoacoustic Model

(Multiple R = .846, N = 169, p < .00(1)

< .0001

< .0001

< .0001
< .0001

< .0001

< .0001

< .0001

< .0001

< .0001

< .0001

< .0001
< .0001

< .0001

169.0

16.19

38.92
94.20

22.28
57.04

33.56

158.4

32.38

95.29

18.54
193.4

176.5

2
2

4

I

2

2

4
I

I

Frequency ratio

Between test tones
Between first test tone and tonic

Between second test tone and tonic

Pitch distance between test tones

Tonality of first test tone

Tonality of second test tone

Tonality of first x second test tone
Pitch distance between test tones

Tonality of first test tone

Tonality of second test tone
Tonality of first x second test tone

Pitch distance between test tones

Frequency ratio between test tones

Similarity Between Tones
Krurnhansl (1979, Experiment 1) presented musically

trained adults with a key-defining tonal pattern (i.e., an
ascending or descending C-major scale or aC-major
chord) followed by two successive test tones taken from

the set of 13 equal-tempered tones in the same octave as
that for the key-defming pattern. Listeners rated how sim­
ilar the first test tone was to the second (in the musical
key suggestedby the context)by providing ratings for each
pair of tones (78 pairs) presented in both possible orders
(a total of 156 ratings). If the simplicity of frequency ra­
tios influenced highly trained listeners, then higher rat­
ings would be expected for tones related by simple ratios

(e.g., perfect fifths: CCG4, G4-C4, C~4-G~4' G~CC~4'

etc.) than for tones related by more complex ratios (e.g. ,

tritones: EcA~4' A~4-E4' FcB4, BcF4, etc.), irrespec­
tive of the influence of the tonal context, the order of the
test tones, and differences in the relative stability between
test tones in the established context. Because Krurnhansl's
(1979) experiment was designed to tap the influence of
a well-defined tonal context (i.e., the key of C major),
it is a conservative test ofthe ratio-simplicity hypothesis,
which is independent of tonal context.

We also examined variation in the sirnilarity ratings as
a function of pitch distance and ratio simplicity. Follow­
ing Krurnhansl (1979, Figure 1), pairs of identical tones
(i.e., the 13 possible unisons in an octave range) were
assumed to have a maximal sirnilarity value of 7 (increas­
ing the total number of intervals to 169). As expected,
listeners gave lower sirnilarity ratings to tones that were
more distant in pitch (in number of sernitones; r = -.502,
N = 169, p < .00(1). Ratio-simplicity values were
strongly associated with sirnilarity ratings for pairs of
tones (r = .714, N = 169, P < .00(1), indicating that
tones related by simpler ratios were judged to be more
similar than tones related by more complex ratios. In a
multiple regression analysis that controlled for effects of
pitch distance, sirnilarity ratings were modeled as a func­
tion of four predictor variables: (1) ratio simplicity be­
tween the two test tones, (2) ratio simplicity between the
first test tone and the tonic, (3) ratio simplicity between
the second test tone and the tonic, and (4) pitch distance
in sernitones between the two test tones. The fit of the
model was highly significant (multiple R = .846, N =
169, p < .00(1), and all four predictors made signifi­
cant independent contributions (ps < .00(1). The results
from the multiple regression analysis are provided in Ta­
ble 4 (psychoacoustic model). Sirnilarity ratings were, in
general, higher when frequency ratios were simpler as
opposed to more complex, and they were higher when

the test tones were closer in pitch. Thus, two psycho­
acoustic factors, ratio simplicity and pitch distance, pro­
vide a c1ear and parsimonious explanation of the varia­

tion in Krurnhansl's (1979) results.



from this analysis are shown in Table 4 (combined model).
Thus, tones related by simple ratios were judged to be

more similar than tones related by more complex ratios,

even with the influence of tonal harmonic factors and pitch

distance held constant. Effects of ratio simplicity above

and beyond those associated with music-theoretic con­

structs provide compeIling evidence of the influence of
frequency ratios on the perception of tone patterns.

Similarity Between Intervals
If simplicity of frequency ratios functions as a psycho­

acoustic primitive, then it may contribute to the perceived

similarity between intervals. Levelt et al. (1966) had

listeners judge similarities among 15 different complex­

tone intervals and 15 different pure-tone intervals. Multi­
dimensional scaling revealed a three-dimensional solution

for complex-tone judgments. The coordinates of two di­

mensions formed a U-shaped curve corresponding to dis­

tance in pitch (interval size). The coordinates ofthe third

dimension of the solution were associated with ratio sim­

plicity (r = .826, N = 15, P < .00(5), indicating its

influence on similarity judgments, as proposed above.

For complex tones, then, judgments of interval similar­

ity were based on pitch distance (interval size) and ratio

simplicity, as were judgments of tone similarity (Krum­
hansl, 1979). In the three-dimensional scaling solution

for pure-tone intervals, no dimension was significantly

corre1ated with ratio simplicity. Coordinates from two

dimensions formed the same U-shaped curve based on in­

terval size that was found with complex tones. However,

the third dimension indicated the presence of reference
points associated with simple frequency ratios, with the

perfect fourth (4:3) and major third (5:4) at a local mini­

mum, the perfect fifth (3:2) at a local maximum, and the

octave (2: 1) at another local minimum (Levelt et al.,

1966, Figure 2). The coordinates ofthis dimension could

not be predicted by our index because intervals with sim­
ple ratios had either very high or very low values. Never­

the1ess,effects of ratio simplicity on sirnilarity judgments
for pairs of intervals (pure or complex tones) or tones

confirm the applicability of the construct to perceived
similarity .

DISCUSSION

We have reported effects of simplicity of frequency ra­

tios on the perception of pure and comp1extones for pat­

terns involving sequential as weIl as simu1taneous inter­

vals. Ratio simplicity accounted for judgments of both

consonance and similarity across a wide range of tasks

and 1isteners. It also accounted for the ability of listeners
to distinguish one tone sequence from another, whether

they were musically experienced adults or 9-month-old

infants. These findings are consistent with the hypothe­

sis that tones related by simple frequency ratios are pro­

cessed more readily than tones related by more complex

ratios.
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Dur finding that ratio simplicity affects perception

across tasks, listeners, and contexts is inconsistent with

the prevailing view that the relation between simple fre­

quency ratios and auditory pattern processing is a prod­
uct of enculturation (e.g., Bums & Ward, 1982; Dowl­

ing & Harwood, 1986). Closer inspection of this literature
reveals, however, that the likely source of the apparent

discrepancies is methodological. Although Plomp and

Levelt (1965) reported no effects of ratio simplicity on

judgments of consonance (simultaneous pure tones), their

exclusion of common, familiar (consonant) intervals re­

sulted in the absence of stimuli with simple frequency ra­
tios, obscuring potential effects of ratio simplicity.

Kameoka and Kuriyagawa (1969a), who found very small

peaks in consonance judgments for simple frequency ra­

tios, had listeners compare intervals with a very narrow

range of consonance (i.e., ratio simp1icity) differences,

thereby minimizing the effects of ratio simplicity. Thus,
the findings of Plomp and Levelt and those of Kameoka

and Kuriyagawa reveallittle about how simplicity of fre­

quency ratios, in general, relates to perceived consonance

and dissonance.

Anomalies in studies of intervallic similarity (e.g., oc­

tave equivalence) may also have methodological origins,
especially the failure to find octave effects in adult listeners
(Allen, 1967; Kallman, 1982), given their presence in in­

fant listeners (Demany & Armand, 1984). The finding

that musically untrained adu1ts based their judgments of

tone similarity solelyon pitch distance may stern from

the use of a very wide pitch range (four octaves in Allen,
1967; 28 semitones in Kallman, 1982), which increased

the salience of pitch differences. Very high tones are ob­

viously unlike very low tones. Indeed, narrowing the pitch

range of intervals to be judged resu1ted in the emergence

of some effects of octave equivalence (Kallman, 1982).

Finally, Bums and Ward's (1978) finding of the appar­
ent irrelevance of simple frequency ratios to perceptual

judgments may be attributable to the excessive difficulty
of their task. They asked musically untrained listeners to

identify which of two intervals was wider, raising the pos­

sibility that subjects who were unab1e to perform this

unusual task may have been ab1e to differentiate the in­

tervals from one another. In fact, 2 of the 6 untrained

listeners had to be excluded from the data analysis be­
cause they consistently judged the relative width of inter­

vals by the absolute pitch of their initial tone.

Despite the aforementioned failures to find effects of

ratio simplicity, the effects of simplicity on perceptual pro­
cessing are, by and large, pervasive. Definitive causal evi­

dence regarding the association between frequency ratios

and scale structure is still unavai1able. Nevertheless, there

is a plausible direction of influence despite the conten­

tion that the association is simp1y a coincidence (e.g.,
Dowling & Harwood, 1986)-a "remarkable" coinci­
dence, according to Aldwell and Schachter (1989, p. 26).

This coincidence has also been explained by the degree

of sensory consonance of simultaneous complex tones,
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for which the alignment of adjacent harmonics (and hence

frequency ratios) are a contributing factor (Bums & Ward,

1982). Thus, although processing advantages for simple
ratios could indeed influence scale structure, the univer­

sality of simple ratios in scales does not constitute defini­

tive evidence of such processing advantages.

Our primary objective, in the present review, was to

demonstrate that simplicity of frequency ratios provides
a parsimonious account of the available data on interval

perception. We can offer no explanations-only specula­

tions-about why simple frequency ratios may confer pro­

cessing advantages for inexperienced as well as experi­

enced listeners.

A number of investigators (e.g., Boomsliter & Creel,
1961; Patterson, 1986; Roederer, 1973) maintain that

information in the temporal pattern of neural discharge

(specifically, similarity) provides the clue to interval

preferences and consonance. According to Moore (1989),

temporal firing patterns also could account for sirnilari­

ties between individual tones related by simple frequency
ratios and for our inability to perceive melody or musi­

cal pitch at frequencies above 5000 Hz (Attneave & 01­

son, 1971), where neural synchrony is not operative. This

general approach is compatible with the claim of inher­

ent ease of processing for tones related by simple fre­
quency ratios (Cohen et al., 1987; Schellenberg & Tre­
hub, in press; Trehub & Trainor, 1993).

The data presented in this paper are also consistent with

Terhardt's (1974, 1978, 1984) contention that, from birth,

exposure to naturally occurring sounds (especially speech)

leads to farniliarity with the intervals between audible
(lower) harmonics, which exemplify simple frequency ra­
tios (2:1,3:2,4:3, etc.). For this approach to be applica­

ble to the infant discrirnination data, however, the requi­

site learning would have to occur in the early months of

life. Indeed, there is evidence of early recognition of the

mother's voice (DeCasper & Fifer, 1980; Mehler, Ber­

toncini, Barriere, & Jassik-Gerschenfeld, 1978) and of
perceptual effects of language of exposure by 6 months

of age (Kuhl, Williams, Lacerda, Stevens, & Lindblom,

1992; Polka & Werker, 1994). Experiential effects such

as these could be considered to exemplify innately guided

learning (Gould & Marler, 1987), a process character­

ized by initial selectivity in responsiveness and rapid
learning.

It is tempting to describe simultaneous and sequential

tones with simple frequency ratios as exhibiting good

form, particularly in light of their apparent processing ad­

vantages. Although patterns of simultaneous tones may
meet conventional Gestalt (e.g., Koffka, 1935; Köhler,
1947) criteria of phenomenal simplicity (e.g., sounding

simpler than tones with complex ratios, sounding fused
or "whole") or information-theoretic criteria of pattern

goodness (e.g., Garner, 1970, 1974; Pomerantz &

Kubovy, 1981), patterns of sequential tones do not (but

see Bartlett, 1993). Instead, such patterns meet a differ­
ent but equally stringent test of goodness-ease of pro­

cessing by naive listeners (Trehub & Trainor, 1993).

Tones related by simple frequency ratios may constitute
natural intervals or prototypes (Rosch, 1975), providing

a perceptual frame of reference for other intervals (Tre­

hub & Unyk, 1991). Their contribution to grouping pro­

cesses (Deutsch, 1982; McAdams, 1993) and to the anal­
ysis of complex auditory events or "scenes" (Bregman,

1990, 1993) remains to be determined.
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NOTE

I. The subscripts denote the octave from which the tone is drawn.
C. is middle C; C" then, is three octaves below middle C.
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