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S U M M A R Y
This paper describes an efficient approach for computing the frequency response of seismic
waves propagating in 2- and 3-D earth models within which the magnitude and phase are
required at many locations. The approach consists of running an explicit finite difference
time domain (TD) code with a time harmonic source out to steady-state. The magnitudes and
phases at locations in the model are computed using phase sensitive detection (PSD). PSD
does not require storage of time-series (unlike a fast Fourier transform), reducing its memory
requirements. Additionally, the response from multiple sources can be obtained from a single
finite difference run by encoding each source with a different frequency. For 2-D models
with many sources, this time domain phase sensitive detection (TD–PSD) approach has a
higher arithmetic complexity than direct solution of the finite difference frequency domain
(FD) equations using nested dissection re-ordering (FD–ND). The storage requirements for
2-D finite difference TD–PSD are lower than FD–ND. For 3-D finite difference models, TD–
PSD has significantly lower arithmetic complexity and storage requirements than FD–ND, and
therefore, may prove useful for computing the frequency response of large 3-D earth models.
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1 I N T RO D U C T I O N

Computation of the frequency response (phase and magnitude) of

seismic waves propagating in heterogeneous, anisotropic, viscoelas-

tic media is required for a number of scientific and engineering

endeavors, including frequency domain full-waveform inversion,

earthquake site response modelling and structural vibration studies.

When the frequency response is required at a limited number of lo-

cations, it can be computed efficiently with a finite difference time

domain (TD) code by storing the time-series at specified receiver lo-

cations and computing the magnitude and phase with a fast Fourier

transform (FFT). However, when the frequency response is required

at many or all grid locations in the model, as in frequency domain

(FD) full-waveform inversion (e.g. Pratt et al. 1998), the memory

requirements for storing the waveforms at many model locations

(for subsequent FFT analysis) make this approach prohibitive.

An alternative approach is to compute the frequency response

by reformulating the finite difference equations in the FD (Marfurt

1984; Štekl & Pratt 1998; Hustedt et al. 2004). The resulting lin-

ear system has the form Ku = f . For fourth-order accuracy spatial

differencing on a 2-D elastic n × n finite difference staggered grid,

the system of implicit equations for u (the unknown particle veloc-

ities and stresses) at the finite difference cell locations is a large,

complex, banded (band-diagonal with eight subbands), sparse, non-

Hermitian system matrix K with O(n2) non-zero entries. Direct

solution of the 2-D matrix using LU-factorization with nested dis-

section (ND) re-ordering requires O(n2 log2n) storage and O(n3)

operations (arithmetic complexity), and, for an n × n × n 3-D prob-

lem, O(n4) storage and O(n6) operations (George & Liu 1981). An

attractive feature of direct solution is its ability to provide solutions

for additional sources f via a low cost backsubstitution. For typical

2-D seismic exploration models [e.g. 10 000 × 2500, K of O(108)]

with several hundred sources, high performance sparse direct solu-

tion of the frequency domain system via nested dissection (FD–ND)

(Li & Demmel 2003) is an efficient approach for computing of the

entire-model frequency response. For large 3-D problems, however,

direct solution requires a prohibitive O(n6) operations. A viable al-

terative is to solve Ku = f with an iterative method, recognizing that

a separate iterative solution is now required for each source. For 3-D

problems, a simple Krylov iterative solver without preconditioning

and blocking requires O(n3) storage and a sparse matrix–vector

multiplication requiring O(n3) operations per iteration. To speed

up convergence, Krylov methods require a preconditioner (Barrett

et al. 1994). For 2-D acoustic wave propagation, Plessix & Mul-

der (2003) show that a separation-of-variables preconditioner and

a bi-conjugate gradient (BICGSTAB) Krylov iterative solver yield

acceptable convergence for smooth models and low frequencies.

Unfortunately, poor convergence was observed as the frequency of

the wave and the roughness of the model increase to values typically

encountered in seismic exploration problems.
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1070 K. T. Nihei and X. Li

In the following sections, we examine an alternative approach for

computing the frequency response of a heterogeneous, anisotropic,

viscoelastic medium. The approach consists of running an explicit

finite difference TD code with a harmonic wave source out to

steady-state, and then extracting the magnitude and phase from

the transient data via phase sensitive detection (PSD). The PSD

algorithm requires integration over a single cycle of the wave-

form to obtain accurate phase and magnitude estimates. Because

this integration is performed by a summation over time, it is not

necessary to store waveforms at all the grid locations, as would

be required if a FFT was employed. We also demonstrate that

the response of multiple sources at different spatial locations can

be obtained in a single finite difference run by encoding each

source with a different frequency and extracting the phase and

magnitude fields for each source (i.e. each frequency) via the PSD

algorithm.

2 E N T I R E - M O D E L F R E Q U E N C Y

R E S P O N S E M O D E L L I N G W I T H F I N I T E

D I F F E R E N C E T I M E D O M A I N A N D

P H A S E S E N S I T I V E D E T E C T I O N

( T D – P S D )

In principle, the phase and magnitude fields can be computed from a

finite difference TD code by recording the time-series at all locations

in the model that are generated by a broad-band source. For a 2-D

n × n model, this approach requires storage of n2 time-series of

length N i.e. O(n2 N ) storage and n2 FFT i.e. O(n2 N log2 N ) op-

erations; (i.e. Press et al. 1992). For a 3-D n × n × n model, this

approach requires O(n3 N ) storage and O(n3 N log2 N ) operations.

The large storage requirements make this approach intractable for

large 2-D and modest size 3-D models.

2.1 Phase sensitive detection (PSD)

Here, we describe an alternative approach that can recover the mag-

nitude and phase fields at a single frequency from finite differ-

ence TD simulations performed with a time harmonic source. The

approach, which is commonly employed in digital lock-in ampli-

fiers to recover the magnitude and phase of very small AC signals

with exceptionally high accuracy (e.g. Stanford Research Systems

1999), is referred to as PSD. The PSD algorithm uses a reference

waveform and a 90◦ phase shifted version of this reference wave-

form to compute the magnitude E sig and phase θ sig of the recorded

signal εsig

εsig = Esig cos(ωt + θsig) signal,

εref 0◦ = Eref cos(ωt + θref) reference (in-phase),

εref 90◦ = Eref cos(ωt + θref + 90◦) reference (out-of-phase). (1)

The cross-correlation of the recorded signal εsig with the refer-

ence ε ref0◦ over an integer number of periods mT gives the in-phase

component of the signal X

X = 1

mT

∫ tS+mT

tS

[εsig · εref 0◦ ] dt . (2)

The cross-correlation of the recorded signal εsig with the 90◦

phase shifted reference ε ref90◦ over an integer number of periods mT
gives the out-of-phase component of the signal Y

Y = 1

mT

∫ tS+mT

tS

[εsig · εref 90◦ ] dt . (3)

The magnitude and phase of the signal are computed from the

in-phase and out-of-phase components

Esig = 2
√

X 2 + Y 2/Eref

θsig = tan−1(Y/X ) + θref, (4)

which can be verified by substitution of eqs (1)–(3) into eq. (4).

Practical implementation of the PSD approach in a finite differ-

ence TD code requires two pieces of information: (1) a starting time

t S at which the integration should commence, and (2) the number

of periods mT required for an accurate estimate of the magnitude

and phase. For the former, a simple criterion based on the traveltime

of the slowest shear waves in the model is used (Appendix A). For

the latter, experience with the TD–PSD approach has demonstrated

that a single period (i.e. m = 1) of integration is sufficient to obtain

accurate phase and magnitude estimates.

Because the PSD approach requires a simple integration over

time, the magnitude and phase computations do not require the

storage of time-series. This significantly reduces the storage re-

quirements over the FFT approach in applications that require the

computation of the magnitude and phase at many locations in the

finite difference model, such as FD full-waveform inversion (Pratt

et al. 1998; Sirgue & Pratt 2004). It should be noted that, taken

collectively, the PSD eqs (1)–(3) have the form of a discrete Fourier

transform (DFT) for the specific case where the signal is a harmonic

wave, the reference wave has a magnitude of 1 and a phase of zero

(i.e. E ref = 1 and θ ref = 0), and the integration is over integer multi-

ples of the wave period T . The application of a DFT, which like PSD,

is also a running sum over time calculation, to extract the frequency

response of finite difference TD electromagnetic wave propagation

simulations is described by Furse (2000).

2.2 Accuracy test

The accuracy of the TD–PSD approach for computing the phase

and magnitude fields is established for a 2-D isotropic elastic in-

clusion model through a comparison with a FD boundary element

method (BEM) solution (Nihei 2005). Because the BEM solution

is constructed from the analytic Green’s function for elastic waves,

experience has shown that it can be very accurate when the numeri-

cal integration is performed at ∼8–10 points per shear wavelength.

However, the computational expense of forming and solving the

implicit system of complex, non-sparse BEM equations limits its

applicability to simplistic earth models.

For the BEM-finite difference TD–PSD comparison, the model

consists of a square region containing higher P- and S-wave veloci-

ties (Fig. 1). A vertical body force source driven at 30 Hz excites both

P and S waves that superimpose in space and time to form simple

harmonic particle motion at every point in the model (Fig. 1).

The finite difference TD modelling was carried out using an elas-

tic staggered grid code with O(2) time and O(4) space differencing

accuracies (Levander 1988). The magnitude and phase fields are

computed via the PSD approach (i.e. eqs 1–4). The integrations

in eqs (2) and (3) are started at t S = 0.4 s. A comparison of the

recorded particle velocity at a location x = 200 m, z = −600 m

and that reconstructed from the PSD computed magnitudes and

phases is displayed in Fig. 2. At this particular receiver location,

simple harmonic motion (i.e. a steady-state) is achieved by 0.4 s.

Accurate PSD estimates of the particle velocity are evident at inte-

ger multiples of the wave period T = 1/(30 Hz), where the cross-

correlations in eqs (2) and (3) ‘ lock-in ’ to the correct magnitude and

phase.
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Frequency response modelling of seismic waves 1071

Figure 1. Snapshots of the vertical particle velocity taken at ωt = π : (left) BEM, and (right) reconstructed from the finite difference TD–PSD computed

magnitudes and phases. The model consists of a higher velocity 200 × 200 m square inclusion (V P = 4000 m s−1, V S = 2406 m s−1, ρ = 2200 kg m−3)

embedded in an infinite space (V P = 3300 m s−1, V S = 1700 m s−1, ρ = 2350 kg m−3). The source is a vertical body force driven at 30 Hz. The results

show very close agreement except in the outer 150 m of the finite difference TD model (region outside the dashed lines) where absorbing boundaries are

applied.

Figure 2. Finite difference TD particle velocity (vertical component) at a

location x =200 m, z =−600 m: (solid) recorded, and (dotted) reconstructed

from the TD–PSD computed magnitude and phase. The arrows indicate

integral multiples of the wave period T where the PSD integration ‘locks-in’

to the correct particle velocity magnitude and phase.

A comparison of the BEM and finite difference TD–PSD com-

puted magnitudes is shown in Fig. 3 for the vertical particle velocity.

The finite difference TD–PSD computed magnitude and phase fields

show very good agreement in the region interior to the absorbing

boundaries (indicated by the dashed box).

Detailed comparisons of the magnitude and phase fields along the

profile at z =−500 m are displayed in Fig. 4. The agreement between

the BEM and finite difference TD–PSD magnitudes and phases is

very good in the region interior to the absorbing boundaries of the

finite difference model.

2.3 SEG/EAGE salt model example

The subsurface can exhibit a range of complexities for elastic waves,

including multiscale heterogeneities, anisotropy and attenuation. To

be of practical value, the TD–PSD approach must be capable of

computing the frequency response in earth models with realistic

complexity. In this section, TD–PSD is used to extract the frequency

response of elastic waves propagating in the 2-D SEG/EAGE salt

model (Aminzadeh et al. 1994).

The 2-D SEG/EAGE salt model contains a high velocity salt

body embedded in faulted and variable thickness sediments typ-

ical of the Gulf of Mexico (Fig. 5). The model is isotropic with

a constant density (2450 kg m−3) and a constant Poisson’s ra-

tio (ν = 0.25). The 16.2 × 3.7 km finite difference model was

discretized into 12.2×12.2 m cells to form a 1324 × 300 mesh. A

stress-free boundary condition was set at the top of the model to

represent the surface of the ocean. A 30 Hz cosine wave (tapered

on its leading edge) was injected 3.7 m below the ocean surface at

location x = 3.7 km. The finite difference simulations on this model

were carried out to 41 s with a time step of 1.5 ms using an O(2,4)

viscoelastic staggered grid finite difference TD code (Robertsson

et al. 1994).

Traces for a receiver located in the bottom right-hand corner of

the model (x = 15.1 km, z = 3.1 km) are displayed in Fig. 6 for

two values of attenuation: Q = ∞ (zero attenuation) and Q = 150

(considered near the upper bound of Q values for Gulf of Mex-

ico sediments). This result demonstrates the long times required

to achieve steady-state (i.e. simple harmonic motion) in a purely

elastic model. In fact, the traces in Fig. 6 show that a steady-state

condition is not achieved in the 41 s simulation time for the Q = ∞
model, while it is achieved at ∼15 s in the Q = 150 model. Thus,

incorporating realistic Q values in the model can significantly re-

duce the number of time steps required to achieve steady-state

conditions.

The magnitude and phase of the vertical particle velocity were

computed at every cell in the finite difference model, and are dis-

played in Fig. 7 for the two Q values. As expected, attenuation has

a strong effect on the spatial decay of the magnitude away from the

source, while the corresponding phase changes are more subtle.

3 M U LT I S O U RC E M O D E L L I N G U S I N G

T D – P S D W I T H F R E Q U E N C Y- E N C O D E D

S O U RC E S

Frequency response measurements by a lock-in detector are made

possible by the PSD ’ s ability to accurately isolate the frequency re-

sponse at the specified frequency while rejecting contributions from

other frequencies (Stanford Research Systems 1999). This feature

can be exploited in finite difference TD–PSD modelling to compute

the frequency response at multiple frequencies from a single run

by superimposing multiple frequencies at the source or to compute

the frequency response for multiple sources by encoding each with

a slightly different frequency. Multifrequency PSD is described in

further detail below.

3.1 Multifrequency PSD

When multiple frequencies are present in the signal, beating (mod-

ulation) will occur (Kinsler et al. 1982), thereby altering the

Journal compilation c© 2007 RAS, GJI, 169, 1069–1078

No claim to original US government works

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/169/3/1069/623946 by guest on 16 August 2022



1072 K. T. Nihei and X. Li

Figure 3. Comparison of the magnitude of the vertical particle velocity computed by: (left) BEM, and (right) TD–PSD. The dashed box in the TD–PSD figure

indicates the location of the absorbing boundaries, and the solid box deliniates the high-velocity inclusion. The solid horizontal line is the profile along which

the fields are compared in Fig. 4.

Figure 4. Comparisons of the magnitude and phase of the vertical particle

velocity along the profile z = − 500 m computed by: (solid line) BEM

and (circles) TD–PSD. The vertical dashed lines show the location of the

absorbing boundaries in the finite difference model, and the vertical solid

lines show the location of the high velocity inclusion.

condition required to obtain stable estimates of the magnitudes and

phases using PSD. For the case of a source emitting two frequen-

cies, the following analysis will show that stable estimates of the

magnitude and phase can be obtained by integrating over the in-

verse of a beating frequency defined by the difference of the two

frequencies.

To demonstrate this, consider the case of two cosine waves with

different frequencies ω1 and ω2 being injected into a medium (either

two separate sources, or a single source emitting the superposition

of two cosine waves),

εsig = Esig1 cos(ω1t + θsig1) + Esig2 cos(ω2t + θsig2) signal

εref1( 0◦) = Eref1 cos(ω1t + θref1) reference (in-phase ω1)

εref1(90◦) = Eref1 cos(ω1t + θref1 + 90◦) reference (out-of-phase ω1).

(5)
Following eq. (2), form the in-phase component for frequency ω1

by cross-correlation with the reference,

X1 = 1

TB

∫ TB

0

[εsig · εref1( 0◦)]dt

= Esig1 Eref1( 0◦)

2TB

∫ TB

0

{cos[θsig1 − θref1(0◦)]

+ cos[2ω1t + θsig1 + θref1(0◦)]} dt

+ Esig2 Eref1( 0◦)

2TB

∫ TB

0

{cos[�ωBt + θsig2 − θref1(0◦)]

+ cos[(ω1 + �ωB)t + θsig2 − θref1(0◦)]} dt, (6)

where �ωB = (ω2 −ω1), and for simplicity the limits of the integral

are relative to the simulation time at which steady-state conditions

are achieved (t s in eqs 2 and 3). If the integration time is selected

with the following properties,

TB = 2π

�ωB

ω2 = ω1 + n�ωB, where n ≥ 1 is an integer, (7)

then the contribution of signal ω2 (second integral) drops out, and

the in-phase contribution of signal ω1 is recovered,

X1 = �ωB Esig1 Eref1( 0◦)

4π

∫ 2π
�ωB

0

{cos[θsig1 − θref1(0◦)]

+ cos[4πn�ωBt + θsig1 + θref1(0◦)]} dt

+�ωB Esig2 Eref1( 0◦)

4π

∫ 2π
�ωB

0

{cos[�ωB t + θsig2 − θref1(0◦)]
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Frequency response modelling of seismic waves 1073

Figure 5. SEG/EAGE salt model used to test the finite difference TD–PSD approach for estimating the frequency response. A 30 Hz source is located near the

free-surface, and a monitor receiver is embedded in the bottom-right corner of the model.

Figure 6. The traces recorded at the monitor receiver (Fig. 5). Note that the effect of adding attenuation to the model (Q = 150) is to significantly reduce the

time at which steady-state (simple harmonic motion) is achieved.

+ cos[(n + 1)�ωB t + θsig2 − θref1(0◦)]} dt

= Esig1 Eref1( 0◦)

2
cos[θsig1 − θref1(0◦)]. (8)

Following the same procedure for the out-of-phase component

gives,

Y1 = 1

TB

∫ TB

0

[εsig1 · εref1 (90◦)]dt

= �ωB Esig1 Eref1( 90◦)

4π

∫ 2π
�ωB

0

{sin[θsig1 − θref1(90◦)]

− sin[4πn�ωBt + θsig1 + θref1(90◦)]} dt

+�ωB Esig2 Eref1( 90◦)

4π

∫ 2π
�ωB

0

{sin[�ωB t + θsig2 − θref1(90◦)]

+ sin[(n + 1)�ωB t + θsig2 − θref1(90◦)]} dt

= Esig1 Eref1(90◦)

2
sin[θsig1 − θref1(90◦)].

(9)

Application of eq. (4) to eqs (8) and (9) gives the estimates of

the magnitude and phase for the ω1 component of the signal. The

same analysis can be applied to extract the ω2 component of the

signal. This result demonstrates that recovery of the magnitude and

phase for a signal composed of two harmonic waves with different

frequencies is possible if the integration time is set to the beating

period T B = 2π/� ωB .

This analysis can be generalized to the case of N f > 2 frequencies

to show that multifrequency PSD is possible for a signal composed

of many frequencies provided that a constant frequency separation

�ωB is maintained between the frequencies. As with the two fre-

quency example given above, the constant frequency separation for

the N f > 2 case allows the PSD integration over T B = 2π/�ωB

to accurately recover the magnitudes and phases for each frequency

component contained in the signal.

3.2 Frequency-encoded sources

Recent work on finite difference FD migration and full-waveform

inversion (Mulder & Plessix 2004; Sirgue & Pratt 2004) demonstrate

that subsurface imaging of structure and properties is possible with

far-fewer frequencies (N f < 10) than prescribed by Nyquist’s the-

orem. This work has also demonstrated that a scale approach to FD

inversion in which the inversion is progressed from low frequency

to high better ensures convergence to the global solution. Because

seismic reflection surveys can have hundreds (2-D) to thousands

(3-D) of spatially distributed sources and in order to preserve the

scale approach, it is desirable to have a frequency response seismic

modelling engine that can efficiently model many sources around a

narrow frequency band.

The multifrequency PSD described in Section 3.1 offers the pos-

sibility of obtaining the frequency response from many sources in

a single finite difference TD simulation by encoding each source

with a different frequency. As discussed in the previous section, for

more than two frequencies, each frequency should be separated by a

constant � f B in order for the PSD integration to accurately recover

the magnitude and phase.

Fig. 8 shows the layout for three frequency-encoded sources prop-

agating in the SEG/EAGE salt model (Q = 150). In this model, the

sources have frequencies f = 30 Hz + n� f B , where n = 0, 1, 2

and � f B = 0.1 Hz. Fig. 9 shows the trace recorded at the receiver

located in the bottom right corner of the model (Fig. 8). Comparison

of Fig. 9 with the trace from the single source simulation (Fig. 6)
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1074 K. T. Nihei and X. Li

Figure 7. The magnitude (a) and phase (b) fields of the vertical particle velocity computed with finite difference TD–PSD for two Q values.

Figure 8. SEG/EAGE salt model with the locations of the three sources used in the multisource test of TD–PSDFES. The source frequencies used were 30.0,

30.1 and 30.2 Hz.
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Frequency response modelling of seismic waves 1075

Figure 9. The trace recorded at the monitor receiver for the frequency-

encoded three source example (Fig. 8). The frequency difference between

each of the three sources, � f = 0.1 Hz, gives rise to beating with a period

of 10 s.

shows the T B = 1/� f B = 10 s beating resulting from the super-

position of the three frequencies. The magnitude and phase of the

vertical particle velocity were computed at every grid location in the

finite difference model. These values were then used to reconstruct

a snapshot of the time-harmonic wavefield (Fig. 10) using eq. (1).

Clear separation of the wavefields for each source can be seen, indi-

Figure 10. Vertical particle velocity transient fields at 40 s constructed for each of the three sources from the TD–PSDFES computed magnitudes and phases.

The computed wavefields show a clean separation of wave motion coming from each source.

cating that the PSD is capable of extracting the wavefield from each

source, with negligible contributions from the other sources.

4 A N A LY S I S O F T H E C O M P U TAT I O N A L

R E Q U I R E M E N T S F O R 2 - D A N D 3 - D

F I N I T E D I F F E R E N C E T D – P S D

In this section, we provide estimates of the storage and number

of operations (arithmetic complexity) for multisource frequency

response modelling using 2-D (n × n) and 3-D (n × n × n)

finite difference TD–PSD. We focus our motivation here on the

scale approach to frequency domain full-waveform inversion (dis-

cussed at the beginning of Section 3.2) in which the solution strat-

egy is to carry out the inversion for many (spatially distributed)

sources, starting at a low frequency and progressing to higher fre-

quencies (Mulder & Plessix 2004; Sirgue & Pratt 2004). For this

strategy, the TD–PSD approach can be applied in two flavours: (1)

TD–PSDSS consisting of N S individual single source runs, with

all runs at the same frequency, and (2) TD–PSDFES consisting of

a single run with N S frequency-encoded sources. In the second

approach, the frequency spacing between the frequency encoded

sources, � f B , is selected such that N S · � f B is small (i.e. narrow

bandwidth).

The operation count for a 3-D (n × n × n) finite difference model

using the first approach (TD–PSDSS) is

OC(ss) = NS

[
Nt n3 A + NT n3(A + B)

]
∼ NS Nt n3 A, for Nt � NT , (10)
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1076 K. T. Nihei and X. Li

Figure 11. Trade-off plot of the speed-up that can be obtained for multiple source frequency response modelling using frequency encoded sources (TD–

PSDFES) relative to the more conventional approach in which each source is modeled in a separate finite difference run (TD–PSDSS). The trade-off is between

the number of frequency-encoded sources and the frequency spread (between the first and last source) that can be tolerated. The boxed region highlights the

range of speed-ups possible with TD–PSDFES for 15–40 sources and a frequency bandwidth of 1–5 Hz.

where

NS ≡ is number of sources

N t ≡ is number of time steps to reach steady-state

NT ≡ is number of time samples in one period of the propagating

wave

A ≡ is number of operations in the finite difference TD algorithm

B ≡ is number of operations in the PSD algorithm.

The operation count for a 3-D (n × n × n) finite difference model

using the second approach (TD–PSDFES) is

OC(FES) = Nt n3 A + NTB n3(A + NS B)

= Nt n3 A

{
1 + NTB

Nt

[
1 + NS

(
B

A

)]}
, (11)

where N TB = T B/�t is the number of time steps in one beat cycle.

The ratio between eqs (10) and (11) has the form

R = OC(ss)

OC(FES)

∼ NS

1 + NTB

Nt

[
1 + NS

(
B

A

)]
∼ NS

1 + 1

� fB�t Nt

[
1 + NS

(
B

A

)] .
(12)

When eq. (12) is plotted as a function of the number of sources N S

and the product N S� f B (i.e. the frequency bandwidth occupied by

the N S sources each separated by � f B), a trade-off curve results

Fig. 11). This curve illustrates that if it is desirable to keep the

frequency spread between the first and last source in the simulation

to a minimum (i.e. a small value of N S� f B), as in the strategy for FD

full-waveform inversion discussed at the beginning of Section 3.2,

then there is an optimum number of sources that can be used in TD–

PSDFES to achieve the maximum speed-up over TD–PSDSS. For an

assumed ratio of (B/A) = 1/10 and an upper bound of N S� f B =

5 Hz, the TD–PSDFES speed-up is ∼10× when 15–40 sources are

used. Because the model size has dropped out of the ratio eq. (12),

this result also holds for 2-D TD–PSD.

Table 1 gives the computational efficiency (big-O) estimates for

both flavours of TD–PSD for the multiple source problem. Note

that these order of magnitude estimates do not reflect the smaller

gains described in eq. (12), that is, both flavours of TD–PSD have

the same operation counts. Also note that for problems with many

sources, TD–PSDFES requires N S more storage for the additional

magnitude and phase fields for each source.

Also shown in Table 1 for reference are the estimates of stor-

age and number of operations for direct solution of the finite dif-

ference FD equations by LU-factorization with the ND re-ordering

method (FD–ND; George & Liu 1981). For 2-D problems with many

sources, FD–ND is an effective solution strategy: both TD–PSDSS

and TD–PSDFES require a factor N S more operations than FD–ND,

but TD–PSDSS has lower storage requirements. For 3-D problems,

both TD–PSD approaches have significantly lower number of op-

erations than FD–ND. TD–PSDSS is superior to both TD–PSDFES

and FD–ND in storage requirements.

The storage and operation count estimates in Table 1 suggest

that for most 2-D frequency response modelling problems (many

sources, ample memory), FD–ND is the method of choice. For large,

memory-limited 3-D problems (e.g. 10 000 × 2500 × 2500) typical

in seismic exploration, multisource frequency response modelling

is best addressed with TD–PSDSS, that is, by running N S single

source TD–PSD runs.

5 S U M M A RY

This paper presents an approach for computing the frequency re-

sponse of realistic earth models using an explicit finite difference TD

Journal compilation c© 2007 RAS, GJI, 169, 1069–1078

No claim to original US government works

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/169/3/1069/623946 by guest on 16 August 2022



Frequency response modelling of seismic waves 1077

Table 1. Storage and operation requirements for 2-D (n × n) and 3-D (n × n × n) multiple source finite difference frequency response

modelling: FD–ND denotes frequency domain (FD) solution via nested dissection (ND) re-ordering, and TD–PSD denotes time domain

(TD) solution via phase sensitive detection (PSD). N S is the number of sources, N t is the number of time steps required to attain a

steady-state wavefield (see Appendix A), and N TB is the number of time steps in one beat period.

Finite difference frequency FD–ND TD–PSDSS TD–PSDFES (single run

response modelling (N S single source runs) with N S frequency-encoded sources)

2-D Storage O(n2 log 2 n) O(n2) O(n2 N S)

2-D #Operations O(n3) O(n2 N t N S) ∼O(n3 N S) O(n2 N TB N S) ∼O(n3 N S)

3-D Storage O(n4) O(n3) O(n3 N S)

3-D #Operations O(n6) O(n3 N t N S) ∼O(n4 N S) O(n3 N TB N S) ∼O(n4 N S)

code and a PSD algorithm. In the TD–PSD approach, the frequency

response of seismic waves is computed by running the finite differ-

ence TD code with a harmonic wave source out to steady-state, and

then extracting the magnitude and phase from the transient data via

a cross-correlation with in-phase and out-of-phase reference cosine

waves. The PSD algorithm requires integration over a single cycle

of the waveform to obtain accurate phase and magnitude estimates.

Because this integration is performed by a running summation over-

time, it is not necessary to store waveforms at the grid locations, as

would be the case if an FFT was used. Comparisons of the finite

difference TD–PSD approach with a FD boundary element method

(BEM) solution demonstrate the accuracy of this approach. Simu-

lations in the SEG/EAGE salt model demonstrate the importance

of including (realistic) attenuation in the model to reduce the time

required to achieve steady-state conditions (simple harmonic mo-

tion). It was demonstrated that the TD–PSD approach can be used

to obtain the frequency response of multiple sources in a single fi-

nite difference TD run by encoding each source with a different

frequency (TD–PSDFES). The presence of multiple sources gives

rise to beating, and analysis of multifrequency PSD demonstrates

that the PSD integration must be made over the beat period of the

interfering waves to accurately recover the magnitude and phase.

Analysis of the operation counts suggests that significant speed-

ups can be achieved with the frequency-encoded source approach

TD–PSDFES relative to the more conventional TD–PSDSS approach

where separate single source runs are performed. Analysis of the

storage for TD–PSDFES, however, indicates that this approach re-

quires significantly more memory to store the magnitude and phase

fields for all the sources. For large 3-D problems, this additional

storage may render the TD–PSDFES approach intractable. The anal-

ysis shows that the straightforward TD–PSDSS approach of running

separate finite difference models for each source is the best ap-

proach for 3-D frequency response modelling, with significantly

lower storage and operations than a direct solution of the finite

difference frequency domain equations using nested dissection

re-ordering (FD–ND). Further work is required to examine the per-

formance of TD–PSD in realistic 3-D earth models, and to investi-

gate potential avenues for increasing its computation efficiency.
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A P P E N D I X A : D E M O N S T R AT I O N

T H AT Nt ∼ O( n)

Let the number of time steps that a 2-D (n × n) or 3-D (n × n ×
n) finite difference TD code must be run to in order to attain

steady-state wavefields (i.e. simple harmonic motion) be defined

as

Nt = tS

�t
. (A1)

In eq. (A1), t S is selected large enough to include the slowest

arrivals coming from the most distant parts of the model. As a

conservative estimate, we take this to be the traveltime it takes

a shear wave to propagate across five lengths 5L of the largest

model dimension at the slowest shear velocity V Smin contained in the

model

tS = 5L

VS min

= 5 n �l

VS min

, (A2)

where �l is the grid size. We will see at the end of this analysis

that doubling or tripling this distance estimate will not alter the final

result. The time step �t is prescribed by the stability condition for

a fourth order spatial differencing scheme (Levander 1988)

�t ≤ �l√
2 VP max

∑
i=0,1

|ci |
= 0.6061 �l/VP max, (A3)

where c0 = 9/8 and c1 = −1/24 are the inner and outer coefficients

of the fourth order approximation to the first derivative.

Substituting eqs (A2) and (A3) into eq. (A1) gives

Nt = 5 n

0.6061 (VS min/VP max)
∼ O(n). (A4)

Because ‘ big-O ’ notation operation estimates are essentially pro-

portionality estimates for large inputs (i.e. large n), it is clear that

the relation (A4) still holds even if we had used a larger estimate of

the maximum propagation path.
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