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Nonlinear cubic theory is developed to obtain a frequency response of shock-free, forced
oscillations of an air column in a closed tube with an array of Helmholtz resonators connected
axially. The column is assumed to be driven by a plane piston sinusoidally at a frequency close or
equal to the lowest resonance frequency with its maximum displacement fixed. By applying the
method of multiple scales, the equation for temporal modulation of a complex pressure amplitude
of the lowest mode is derived in a case that a typical acoustic Mach number is comparable with the
one-third power of the piston Mach number, while the relative detuning of a frequency is
comparable with the quadratic order of the acoustic Mach number. The steady-state solution gives
the asymmetric frequency response curve with ben@kgw due to nonlinear frequency upshift in
addition to the linear downshift. Validity of the theory is checked against the frequency response
obtained experimentally. For high amplitude of oscillations, an effect of jet loss at the throat of the
resonator is taken into account, which introduces the quadratic loss to suppress the peak amplitude.
It is revealed that as far as the present check is concerned, the weakly nonlinear theory can give
quantitatively adequate description up to the pressure amplitude of about 3% to the equilibrium
pressure. ©2003 Acoustical Society of AmericdDOI: 10.1121/1.1600719

PACS numbers: 43.25.Gf, 43.25.Vt, 43.25.08FH]

I. INTRODUCTION axial cross section of a container nonuniform so as to render
it dissonant. By vibrating the whole container on a shaker,
shock-free, high-amplitude oscillations have been achieved

recently attracted much attention in view of applications toexpenmentally and theoretical analysis has also been made.

thermoacoustic devices. They commonly exploit resonance. ;j”;)e g:her methtod Itiot”? et>r<]pI0|thv![ave d|sper3|oz, as 'de-
in one form or another by exciting an acoustic system at g'sed by the present au sjthough it was proposed origi-

frequency close to or equal to one of its resonance frequer{]-aIIy in a different probler. Sound speed in gas is usually

cies (eigenfrequencies As the amplitude of oscillations of constant independent of frequency; therefore, no dispersion

gas becomes high, however, there emerges a shock, i.e., dRecurs in propagation. But, by connecting external agents to
continuity in pressure, etc., so that increase in pressure ani® tube, the phase speed can be made dependent on a fre-

plitude of oscillations tends to be suppressed as the excitdlUeNCy- In fact, this is achieved by connecting an array of
tion is increased. Helmholtz resonators to a tube of uniform cross section axi-

Whether or not the shock emerges is crucially deter-2lly- By sinusoidally driving the bellows mounted at one end
mined by the relation between resonance frequencies arff this tube, shock-free, high-amplitude oscillations of about
frequencies of higher harmonics of the excitation. If the reso10% of the equilibrium pressure have been generated at the
nance frequencies are ordered as multiples of the fundameRther closed end. Because the phase speed now depends on
tal one, just as in the case of a closed tube of uniform crosfie frequency, resonance frequencies are no longer ordered
section, then the tube is called beingnsonantand other- @S multiples of the fundamental one, and the tube becomes
wise dissonant-? As the amplitude of excitation is increased dissonant automatically without any change of cross section
in a consonant tube, each frequency of higher harmonic8f the tube.
generated by nonlinearity hits the respective resonance fre- In the present context, it may be worthwhile to mention
quencies so that higher modes are gradually excited and efhe dispersion. For propagation in a tube of nonuniform cross
ergy in the fundamental mode is pumped up into highesection, the phase speed cannot be defined strictly even in the
modes and dissipated there. This cascade process of eneiggse of an exponential horn because the amplitude decays or
flow is the mechanisms behind emergence of the shock argrows in the direction of propagation. The propagation speed
the resulting suppression of increase in pressure amplitude s then determined by the characteristics and is still given by
the fundamental mode. the sound speed. In this sense, the system still renfains

In order to annihilate the shock, the cascade procesgerbolic In the tube with the array, on the contrary, a plane
should be blocked by any means. At present, there are twsinusoidal wave can be propagated so that the phase speed is
methods confirmed experimentally at high pressure levelclearly defined, which is now different from the sound speed
One is the method devised by Lawrenseiral? and llinskii  and dependent on the frequency. The connection of the array
et al3 at MacroSonix. The essential point lies in making thechanges the hyperbolic system originally todispersive

Novel methods for generation of shock-free, high-
amplitude oscillations of gas in a tulfer a containerhave
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Besides the two methods, Ruden&bal® have already
proposed ideas to block the cascade process by introducin 3 e = e R R e = e A
special absorbers of the second harmonics through thepigen,
boundary condition. Andreeet al.” have confirmed the ef-
fects experimentally, though at even lower pressure level.
For suppression or reduction of the second harmonics, Guse
et al® have abandoned a usual monochromatic excitation tc
control the driver actively by adding to the fundamental sinu-
soidal excitation the second harmonic one with a phase dif-
ference. While these methods focus on increase in so-calle:
quality factorof a resonator, it is questionable whether or not
shock-free oscillations are ultimately achieved.

The purpose of this paper is to formulate nonlinear
forced oscillations of an air column in the tube with the array
of Helmholtz resonators and to derive theoretically a fre- FIG. 1. lllustration of a tube with an array of Helmholtz resonators.
guency response corresponding to the one obtained
experimentally: Supposing each resonator is small in effect,tween the theory and experiment as the amplitude becomes
one-dimensional motion of air is assumed over the cross segigh.
tion of the tube except for a boundary layer on the wall and
vicinity of resonator’s orifices open to the tube. Supposing
also that the axial spacing between neighboring resonators j§ FORMULATION OF THE PROBLEM
small in comparison with a wavelength, the continuum ap- _ )
proximation for the resonators is made so that the effects d?‘ Basic equations
the discrete distribution in array may be smeared out per We start by formulating the problem. Suppose a straight,
axial length. rigid tube of radiusR and of lengthl, to which an array of

Because the pressure level observed in the experiment ildelmholtz resonators is connectéske Fig. 1L One end of
still small relative to the equilibrium pressure, weakly non-the tube is allowed to be displaced by a plane piston while
linear theory is developed by using the asymptotic method othe other end is closed by a flat plate. The tube is closed
multiple (two) scale€ The bellows used in the experiment hermetically with the resonators inclusive. Each resonator is
are modeled as a plane piston reciprocating sinusoidally bssumed small in the sense that the cavity’s volumes
taking account of the correspondence between the displacguch smaller than the tube’s volume per spacikd, A
ment of the bellows and the one of the piston. The boundar§= TR?) being the cross-sectional area of the tube drtide
condition for the piston is usually of three types, either one2xial spacing. This ratio is denoted y(=V/Ad<1), and
of the maximum displacement, maximum speed, or maxicalled asize parameteof the array. Taking the axial spacing
mum acceleration being held constant, the first of which i§0 beé much smaller than a wavelength of oscillation, the
used in the present theory. continuum approximation is made for dlscr_ete cﬂstrlbutlon of

As the ratio of the maximum displacement of the pistonthe resonators to average |t_s effect per un_lt_aX|aI Ie_ngth.
to the tube length is much smaller than unity, so is the piston 1€ Reynolds number is usually sufficiently high that
Mach number defined by the ratio of the maximum pistoneﬁeCts of viscosity and heat conduction are limited only

speed to the sound speed, which is comparable in order witYYithi” the boundary layer developing on the tube wall. In the
the former. Denoting the piston Mach number 4y, and a outside of the boundary layer called a region of an acoustic

typical acoustic Mach number in the tube byrespectively, main flow, these lossy effects are negligible. The boundary

the situation in the experiment corresponds to a case Wherelay.er Is thin and the array is Sm‘?‘”‘@l)' so the QCOUSt.'C
. 13 . . main flow may be regarded as being almost one-dimensional.
is of ordere " and the relative detuning of a frequency from

the resonar?ce one is of ordef (=£29). It is emphasized Under these assumptions, the basic equations for the main
—®p ) P flow have already been presented in Ref. 10.

that the rigorous cubic nonlinear theory starting from the The equations of continuity and of motions are com-
formulation based on the above assumptions is necessary (.. into the following equations:

obtain a frequency response correctly up to the third order in
i J J a
the pressure ampl_ltude. . 2 rura)— _.2 % v, ds,
The problem is formulated in Sec. Il and the lossless at IX A
linear theory is first described in Sec. Ill. Section IV is de- 1)

voted to the nonlinear theory by using the method of mul-ith the signs ordered vertically wheseandt denote, re-
tiple scales to derive th_e equation for slow modulation of aspectively, the axial coordinate along the tube and the time,
complex pressure amplitude of the fundamental mode. Fromyhijle u anda denote, respectively, the axial velocity of the

the steady-state solution to the equation, the frequency resir and the local sound speed. The latter is defined by
sponse is obtained and compared with the experiment. In (y—1)ly
3

Sec. V, an effect of the jet loss at the throat of the resonator azzd_p: 2 =
is considered in order to compensate the discrepancy be- dp Po

Helmholtz resonator

2
Ui_'y—l(a_aO)

: 2
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with ag= \ypo/pg Wherep and p denote, respectively, the vV o[, (y-1 ,, (y»~D2y-1 ,
pressure and density of the air and the subscript 0 attached &5~ B_aé St| Pe™ 2P0 Pc 672p2 [

p andp implies the respective values in equilibriumpeing 0 @)

the ratio of the specific heats, argg is the linear sound

speed. Since the lossy effects are neglected in the acoustic The behavior of the resonator is governed(Sysupple-
main flow, the adiabatic relatiop/po=(p/po)” is assumed mented by the equation of motion for the air in the throat.

to hold. The momentum balance of the air in the throat of lenigth
Through the right-hand side @f) are included the ef- requires that
fects of the boundary layer and of the array of Helmholtz

resonators. Here;,, represents the velocity directed inward aq 2L\v g2
normal to the boundary of the axial cross section of the Lﬁz—pﬁp— r m_lli(PoW), ()

acoustic main-flow region,sdbeing the line element along

the boundary. Where the tube wall existg,is the velocity at  where the last term represents the friction at the throatall.

the edge of the boundary layey, given by Using the lowest relation df7) to evaluatepw, substitution
of (7) for q into (8) leads to the following equation:

_ y—1 N o2 (du 2 312
Vp= 1+ﬁ L iirvk () (9pc+2\/;(9 pc+ 5,
ﬁtz r* at3/2 wOpC
where v denotes the kinematic viscosity taken constant, Pr 2.2 2,13
. 2 . ’ -1 - —-1) 9
being the Prandtl number, and the derivative of minus half- = 2p’ + y=1 0P (y=D(2y=1) 7°Pc
: !, anc P T S, at? 677p2 2
order of a functionf(x,t) is defined as ¥Po Y Po
o )
- Mf 1 v f(x7)
TR el Jt—7 dr. @ where p’ (=p—po) is the excess pressure in the tubg,

(=r/c)), ¢, beingL'/Le with L'=L+2r andL,=L+2

On the other hand, where the tube opens to the resona 0.82, is the reduced radius of the throat by taking account
tor, v,, is the velocity of the air flowing out of the throat into Of the end corrections on both ends, angl (= VBag/LeV)
the tube,—w. Because the throat is much shorter than &S the natural angular frequency of the resonafine deriva-
typical wavelength, the mass flux densiyaveraged over tive of three-half order is defined by differentiating the de-
the cross section of the throat may be regarded as beirfgvative of minus half-order twice with respect to
uniform along the throat. While no account of motions of the
air is taken in the cavity, the rate of increase in the mass
therein must balance with the mass flux flown into it. Thisg Reduction by the velocity potential

requires that . . .

Addition and subtraction ofl) with the upper and lower

Ipe signs lead, respectively, to
V—r-=8Bq, 6)

du Ju  2a oJa

—+u—+—1—=0, (10
where p. denotes the mean density of the air in the cavity, at ox y—1lox
andB denotes the cross-sectional area of the throat.

Thus, the integral irf1) consists of two contributions as and
follows: 2 aa+ oa N U a fﬁ ; W
— | —=+u—|+ta—=— Puv,ds.
-1\ 0t A n
1 y—1\ v o~ ¥ au\  « ap, ymLidt o oxf o ox
~ Qu,ds=2| 1+ — |55 ——m| = | — — —, o . .
A JPr | R* at ox) p ot In order to eliminatea from these equation, we introduce a
(6)  velocity potentialg defined by
where R* is the reduced radius of the tube defined by _d¢
R/(1-BR/2Ad), andq is set equal tgpw at the orifice on =3 (12)

the tube side. The derivation of the right-hand side(&f

may be facilitated by multiplyingA and & by d, respec-  Substituting(12) into (10) and integrating this with respect to
tively, noting thatd(ds) corresponds to the area element onx, we have

the surface bounding the region of the acoustic main flow.
Here,q in (5) is expressed in terms of the excess prespyre
(=pc—Ppo) in place of the density. Assuming the adiabatic
relation for the air in the cavityp. is expanded into the
Taylor series with respect tp; to yield q in the following  This is simply the Bernoulli’s theorem. Multiplyind.1) by a
form: and using(13) to eliminatea?, we derive

—+
a2

a’=af—(y—1) —

2
e, 126 s
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P 2,92(,5 d(ap\? ap ¢ tube length. Using this angular frequensyy/l, » is made
W_%W: - E(a_x) —r= )a_t v dimensionless by introducing as

a

AT LA IS §oncs w=""C0. (20)

2 \ox] ox@ A JUn™

(14) By the replacementl8), (14) with (6) is normalized as
In passing, substituting13) into (2), p’ is expressed in- &25 325
versely in terms of ¢. In fact, by expandingp/py = 52

=(a%/ad)”~1 arounda=a, and truncating the series at

s . _\2 .
the cubic terms, it follows that K@ dp, oo " 1)‘9‘15 2%
ap  po [[dd\? L[ 2 S| = Yyl — =
'=—po—+ = | —| —aj — ep gt gt \ X at X
P=Po%gr T 2a2| ot ) 20 ox

\?% .2 —12( 27
po [(v=2) [0\ 96 [0\ _ 2<v+1>(ﬁ) Pb_ 2 (ﬂ) o1
e R L e e N e "2 \w w Pawa)

The boundary conditions are imposed at the piston surwith Fz(lie3/_5’)1’7,_3(::(1+sym)1’7, and a?=1
face and the closed end so that the velocity of the air may be-¢(y—1)[d¢/dt +&(dp/9X)?/2], wherea?/p and p, are
equal to the one of the respective surfaces. Taking the origiexpanded, respectively, as
of the coordinate at the mean position of the piston surface

_ 2 2
over one period and the closed endxat!, the respective 5_2_1_ _, 9¢  L(y=2)| ¢ N ¢
conditions are expressed as follows: 3_ e(y—2) a € —2 e P
i dx, i ot
W—T—wapé +cC.C. +eee, (22
1 and
at x=x,== X, +c.c=X, cog wt) (16) (y—1 _ _
p p p , _ _ y—1)_, (y=1(2y-1)_,
2 pe=l+ep e’ 5Pl +e—— P
and
¢ - (23
5:0 at x=1, 17 On the other hand9) is normalized as

wherex,, denotes the position of the piston surface; the dis-9°p; 7%,

7 Fe 20

placement amplitudeX,, and the angular frequency of ex- e +or 5r302 +(mo0)"Pe

citation, », are taken real and positive, c.c. implying the

complex conjugate tall preceding termsif any. - (y—1) &25(;2 L(y=1)(2y-1)
=(moy)p te —¢

C. Normalization a2 6
We next normalize the equations and the boundary con-

ditions by making the following replacement: 52?(:3

e (24
[X, t1 (rba a! p1 pCI p" p(’:] at
with og=lwy/may, whered and 8, are the parameters rep-

=[x, (ag)t, luo¢, 3, pop. pope; resenting the boundary-layer effects due to the tube wall and

podoUoP’, podoUoPel, (18)  the throat wall, respectively, and are given by
where the quantities with the overbar imply the dimension- B vy—1)\ yvllag _Vrllag
less ones, andy is a typical speed of the air, say the maxi- 6=2| 1+ JPr] R and 6,=2 rx (25

mum speed in the acoustic main flow. Here, two Mach num-
bers are defined: one is the acoustic Mach number [N (24), p’ is given, after normalization afl8), by
associated with the air speed and the other the piston Mach — —\ 2 —\ 2
numbere,. Both Mach numbers are assumed to be much 57— _ %Jr f{(@) _(%) ]
Ix
1\ 3 — —\ 2
W—Z)(%) +%(%

smaller than unity, as at 2|\ gt

. . 3 it it \ IX
In a lossless case of a tube without the array of resonators, it J N
is known that the air column will resonate in the lowest On the other hand, the boundary conditions are normal-
mode when a half-wavelengtirag/w coincides with the ized as

Ug pr 2
e=—<1 and g,= <1. (19 €
a.o ao + Z

+--. (26
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(95_ L moc eiwo’t_ v ¢ eiﬂ'a"[_ 2

B—Y—Iz +c.c. at X—z +cC.c., (27
and

i$ _

ﬁ_Y_O at x=1, (28

wherec represents the dimensionless amplitogg| (<1)
andmoc corresponds te, .

Ill. LOSSLESS LINEAR THEORY

At first, it is instructive to discuss the lossless linear

case. Taking the limit as, 6, and5,— 0, with c/¢ fixed, the

linearized problem is governed by the following equations:

FPp PP Ip;

T 29
3%p!.

— H(mo0) pi=(moo)’p’, (30
,_ 99

with the boundary conditions given by

dp  mocC . dd
—=j——€™'4¢c.c. atx=0 and —=0 at x=1.
X 2e X
(32
Here and hereafter, the overbar is omitted.
Setting
¢] [o0]
p'|=| F(X) |™'+c.c., (33
pel LG(x)

and substituting this int29)—(31) to eliminateF andG, we
derive

d*®
W+k2q>=o, (34)
wherek is given by
K= (mo)?| 1+ —ﬂ‘i) (35)
o= 0

Imposing the boundary conditioi(32), the solutions are eas-

ily obtained as

| (V7] 2262 cogk(x—1)] ¢ |
p'i=| 1 Sk Ze’”‘+c.c.,
Pe s

(36)

with s=o3/(03— 0?).

It is noted in(36) thatk becomes purely imaginary for

09<0o<y1l+«k og. Then, cofk(x—1)] andk sink take, re-
spectively, coshk|(x—1)] and — |k|sinhk|. As o approaches

C;
o, i
: "
0'....|....|....|....|....|....|....|....|....|....
0O 1 2 3 4 5 6 7 8 9 10
GO

(b)s_"'l"'l"'l"'l

FIG. 2. Graphs of the resonance frequencies (m=1, 2, and 3. (a)
displays the dependence ary with the value ofx fixed at 0.2, andb)
displays the dependence anwith the value ofo fixed at 2.5.

This is a resonance supported by the array of resonators
where the air column oscillates in unison. It seems to be
worth examining this new resonance, but we are concerned
here with the resonance when Eivanishes, i.e.k=mar
(>0) (m=1,23,...).

Unlike in the case of the tube without the array, there are
two resonance frequencies, (>0) for a given value ofn.
They are determined from the quadratic equatidh-[ m?
+(1+ K)a'g]az-i- mzagzo in o2 as

(om)?=3{m*+(1+ k)0

+ \/[m2+(l+ K)O'(z)]z—4m20'(2)},

(37

with the signs ordered vertically. It is easily found thaf,
<o9<1+«k 0¢<o,, . Figure 2 shows the dependence of
o, (M=1, 2, and 3 on o, or « for either one fixed. In the
tube without the array, the resonance frequencies are given
by o=m simply. In Fig. Za), wherex is fixed to be 0.2, it is
seen thatr,, tends tom aso vanishes, whereas,, tends to

ao, k tends to diverge and the evanescence occurs in theanish. On the other hand, ag becomes largar,, ando,
limit. This is due to the side-branch resonance where eactend to 1+« oo and m/\/1+ k, respectively, fom<oy.

resonator reflects back the incident wave totally. Asp-
proachesy1l+ k oy, on the other handk tends to vanish.

1776 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003

For a large value otrg, it is o,’s that correspond to the
resonance frequencies in the tube without the array. But,
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since the tube then becomes consonant, the merit of conneathere we note the [ = (7o c/e)explimo’ty)] is dependent

tion of the array is lost. For a fixed value of=2.5, on the
other hand, the dependencedgf on « is shown in Fig. 2b).
As «k increases, the resonance frequencies decrease,
whereaso,, increase. For a small value ef, o, are ex-
pressed asymptotically as

N KO’%
Tn=09p 1+W+'“}, (38)
and
. Ko
Um:m[l—m Tl (39

for oo>m, while the expressions af,, are exchanged for
(To< m.

IV. NONLINEAR THEORY

We now develop a nonlinear theory by taking account o
small but finite magnitude of and also lossy effects. While
the magnitudes of and ofe, are defined clearly, the one of

e is left ambiguous and should now be relatedctowhen

the driving frequencyr is off the resonance, the linear solu-

tion (36) suggests that is of the same order asor g,. This
is because the quantities on the left-hand sid€36) are
regarded as being of order unity. But,@ss set closer to the
resonance frequency, becomes much larger than as the
term “resonance” implies. Therg is determined not only by

of t, and is of order?.

We seek the solutions t@1) and (24) with (26) under
the boundary condition&t1) and(28) in the asymptotic ex-
pansion ofe as

é $© PASY ¢
p’ FO | pgf O | 162 £@ | 4. (42)
P, g(o) g(l) 9(2)

By introduction oft,, the differential operator is expanded
as

i (9+2(7+ 43
&, : (43)

g atg

The lowest-order problem aftakes the same form &29) to

(31) with ¢, p’, andp. replaced by#©®, f©, andg®,
respectively. But, they are now subjected to the homoge-
feous boundary conditiong(®)/9x=0 atx=0 andx=1,
sinced¢/dx in (41) is expanded around=0 andE is as-
sumed to be of ordes?. Thus, the lowest-order solutions are
given by the eigensolutions of the system. Taking(36),

the formal limit asc/e—0, k— 7, ando— o, and setting
(m?0?/k sink)c/2e to be a, the solutions are obtained as

¢ i/moq
fOl=] 1 |cogm(x—1)]ad™o+cc., (44)
g(o) S1

c but also by a detuningo, indicating how far the driving with s,=03/(05—03) (01#0,), where m2a2(1+ «s,)
frequency is set from the resonance one. Since the experi= 72 and the complex amplitude including the detuning is
ment exploits the resonance in the lowest mode, we considerssumed to depend agp but unspecified at this order.

a case wherer is near the lowest resonance frequency
(=0,). SettingAo=0—0, ksink in the denominator of
(36) may be approximated as w(dk/da)|0=alAa, SO ¢,

p’, andp. are estimated to be of ordets|Aa|. For this to
be of order unitye is determined as

c
~[Ad]

Since we assume the lossless case heraliverges, of

(40)

€

Here, we make the following remark. The constant
becomes positive or negative depending on the values, of
ando; . Therefore, the pressure in the cavity differs from the
one in the tube in magnitude and phase.lf is chosen
greater tharno;, as is usually the case, the pressure ampli-
tude in the cavity becomes higher than the one in the tube.

1. First-order problem

course, asAo vanishes. The experimental result indicates

thatc is of order 103, |Ao| is of 1072, ande is of 10 1.
This suggests that is of ¢ andAc is of £2. Also, § and 6,
for the lossy effects are estimated to besdf

A. Perturbation procedures

In light of the ordering mentioned above, the exponen-

tial factor exp{mot) in (27) may be written as eXpm(o;
+&%0")t] by settingAo=¢20", o’ being a quantity of order
unity. Regarding:?t as a slow variable compared withwe
employ the method of multiplétwo) scales by introducing
two variablest, (=t) andt, (=¢2t). Then, the boundary
condition (27) may be given, without the overbar, as

i E
—i_dmoity 2
X2 e +c.c+0(e“E)

c .
at x= Ee“”’ltOJr c.c+0(&%c), (41)

J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003

Let us now proceed to the first-order problem. Then, the
equations take the following form:

(924,(1) (924,(1) ag(l)
a2 axd "ot
(;¢(0) (;xg(o)
- _ — 0y (y—
k[ (y=1)g™+(y=2) oty | at
9 (9(1,(0) 2 (yd)(o) (72¢(0)
3t Tox ) —(7—1)—5t0 peat (45)
and
g (y—1) 9*g?
+ 24(1) [ 160 . A—
é’t% (moo)°g (mog) 2 &tg ,
(46)
with
Sugimoto et al.: Nonlinear frequency response of air column 1777



96N 1{9dON2 1/ 950)\2
O] ki I L 7
dtg 2\ dtg 2\ ox
while the boundary conditions at this order take simply
(yd)(l)
I =0 at x=0 and x=1. (49

Introducing(44) into the right-hand sides a#5)—(47),

we find the first-order solutions should be in the following

form:
1 1
o) [0l o)
f F& | imoitoy c.ot | FE |, (49
1

where®™, F(Y andG{" (j=0,2) are functions ok and
a to be determined, and the subscrjpimplies the coeffi-
cient of the jth harmonics, ‘€™ 1'o, Substituting(49) into

For the zeroth harmonics, on the other hand, the right-
hand side of(45) contains no terms independent tf.
Therefore, we take§”=0. From(46) and (47), we have

1 1 1
M_gW=|=(1_ -
F{=G§ {2<1 2t

XcoiZw(x—l)]]|a|2. (56)
These solutions show that while no steady streaming occurs
at this order, the steady but nonuniform pressure distribution
appears in the tube as well as in the cavities. The maximum
|a|? occurs at both ends, while the minimum| «|?/ o2 oc-

curs in the middle. Note that the effect of the array, i«.,
appears only in the minimum throughy .

2. Second-order problem

(45—(47), we consider the respective harmonics separately.

For the second harmonics, we eliminat§” and G$" to
derive the equation fo$" as follows:

P

2 2 [
dT + kz(b(zl):

Tra (oot (k=47 A

X co§ 2m(x—1)]}a?, (50

with ki=(270,)%(1+«s,) and s,=03/(05—403) (o4
#o0o/2), whereAd, and. A, are given by
2

T
Aozk_g[ y—3+k|(s1-Sp) 07 =S+ (y—1)

|

(S1—S) o5+ S+ (y—1)

2

2 2. 91
X(s1—1)s107+4(y— 1)51326 (51)

and
77_2

[7+1+K

2 2 o
X(s1—1)s07+4(y— 1)31526 , (52

with Q= o3/a3. Note thatk3# 472 butk, is assumed not to
vanish, i.e.,o1# 1+ koy/2. The second-harmonic solu-
tions are easily obtainable as

L _ 2
D5 27701{,40+A200i27-r(x ]}as, (53
FO= | Agr S 14 S| +] gt S 1= 2
2 0 4 ;{ 2 4 gg
XCO{ZW(X—l)]]aZ, (54)
W 1 1 2
GZ =152 A0+Z 1+0'_i _(7_1)5 +32 .Az
! 1 ! 1 s 2 1 2
7 ~ 7 —(y=1 g |cog2m(x—1)] 1 a”.

(59

1778 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003

Upon completion of the first-order problem, we proceed
to the second-order problem. It is given by

PpD 2@  gg@
_ _ —K@L L@ Mm@
2T gy KOTETEME, 6D
with
ag© J
K(2)=K( o, —(7—1)%(9‘0)9‘”)
&(;5(0) ag(l) (9¢(1) ﬁg(o)
—(7—2)(
dty  dtg dty iy
(y—2) ad)(o) 2+((9¢(0) 2 &g(o)
2 ato X at
L mD(r-2) a¢® 392
2 dty  dto
(y—=1)(2y-1) «99(0’3]
+ , (58)
6 o
2 ,(0) —1/2 | 92 ;(0)
L@= 7 00 7o (59
dtadty &2 oty Y2\ ax® |

J 90 9 9O 52 1)
MB)=—_——|2 o0 —(y—1) —¢ ¢2
Ao\~ ax X ty X
,9¢(1) (92¢(0) (y+1) M,(O) 2(92(1)(0)
+ —
ato &x2> 2 (ax) ax
(60)
and
azg(z)
— gz H(m0)’g® = (wag)*®
0
29©@ 5 53290 52
— 209 AT 1) L)
(?tz(?to t] (9t0 0’)1'0
—1)(2y—1) 9°g»3
(y=D(2y-1) g | 61)

6 ats
with
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(9¢(2) (9¢(0) (9(;')(0) a¢(1) ¢9¢(0) a(ﬁ(l)
_ + _

f=—
dto ity gty dtg X OX
— 2 9dON3 1 98O [ 90\ 2
L2 ¢)+_¢ ¢ ©2
6 dto 2 gty | ox
The boundary conditions now take
agp? o
=i 701l =
o |Zze' +c.c. atx=0, (63
and
(9¢(2)
I =0 at x=1. (64)

6(2y-3)+ L)
01

Q3=

3m(y+1l) wkoq {

85 8

—2(y=2)

1 mro(y—1) 5
3+ U_i Sz} + — 5 6(y—2)s]

+ 515~ 3(2y—1)s3+| 2

1
-

1
3+

1

1
3+—2
g1

+24(y—2)s,+ s,—3(2y—1)s?

si
6 .

Here, note that the fractional derivative of minus half-order

$1S; (72)

S
—12y-1)| 1+ ¢

At this order, we do not necessarily have to seek the fulof the lexpone_ntial function is reduced to the Fresnel
solutions. We have only to derive the condition for the com-integral* and given simply as

plex amplitudea from the boundary conditions. Setting the

solutions in the following form:

@ q)(lz) q)(sz)
f(2) — ng) eiw01t0+ F2(32) e3i770'lt0+c.c., (65)
g?] | c@ GQ
and substituting this int¢57)—(62), we end up with
D
dx; +I2DP=Bcog m(x—1)]
+terms in cop3m(x—1)], (66)
with k2= (7o)2(1+ ks;) = 72 and
da S ] )
B=—po—+iza+iQqlal*a, (67)
2 &

whereu, S (=S +iSiy), andQy (=Q,+Q,+ Q3) are de-
fined as

Coroes 14 2| 2 K 68

n=2+2kS; +5_7T_0'1£7, (68)
0'70-1

B B mo, [ 8 kb,S 69

Se=—Sm= - 0—§+T, (69
™ 2
Ql:_(f_l y— 1t kol —(y=3)s1+2(y=2)s;
Sisz
_(7—1)5132—(7_1)T Ao, (70

Tl 2 3+ ! +2(y—2)
Q2 20, Y KOy Y 0_% 1+2(y 2

s?s,
—(y= s (y=D) | (4 (71

and

J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003

a2 (1-i) . .
—7 Totg— dmoito= (l 170'1) —l/Zel moity.
dty 270,

(73

The derivative of three-half order is given by (1—i)
X (7o) ?IN2maexplmoty) [ = (i moq) ¥%explimoity)]. Itis
found from(69) that sincex is small, the friction loss due to
the throat wall becomes comparably small with the one due
to the tube wall. In addition, whef) is chosen large, it is
made even smaller.

The solution®{? is obtained as

q><2>=£(x—1)sir[w(x—1)]+c co§ m(x—1)]
1 20 1

+Cysif m(x—1)]+terms incop3m(x—1)],
(74)

whereC; and(, are integration constants to be determined.
By imposing the boundary conditior{§3) and (64), it fol-
lows that whileC,, i.e., the coefficient of the homogeneous
solution, is left undetermined within the present framework
of the theory:? C, must vanish, and3=iE/e2. The latter
gives the equation governing the behavioraos

- da N S N , E 75
g+ 2 Qolal*a= . (75)
Here, we examine the value 6J, for a large value of}.
Noting that s;,=1/(1-1/Q)~1+1/Q+--- and s,=1/(1
—4/Q0)~1+4/Q+--- so thats,—s;<1, and k3=477[1
+ K(sz—sl)ai], it is found thatA, is much larger than the
other terms and therefol®, is dominant inQq. Approxi-
mating .4, to be

w2 (y+1+ k)
TN o

Qp may be evaluated as

773(7—!— 1+ «)?

T 2004w

(77
Thus, it is found thaQ), is positive for()>1.
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We proceed to complete the second-order problem by
taking account of all terms including those unspecified so far. 'M
Although the calculations are straightforward, the full ex-
pressions fog(®, (), g(® are too complicated to be repro- with Q=Qy/4y2, T =2myo,c, andAg=g20".
duced here. By making use of the same approximation lead-  SettingP=|P|exp(6) and separating the real and imagi-
ing to (76), we present here only the leading expressions fohary parts, it follows that
the respective modes

P
+SP+Q|P|2P Féﬂ-Aot (85)

i(y—3—x) IPl, o iblr s
@ Y 27K 2 2 SimlP|=T siny, (86)
P 1670, A, co§3m(x—1)]|al?a (78) gt
3im(y—3—k) and
(2) —
3T 20— ) Ay cod m(x—1)]a® ;
o7 3_
3im(y+ 1+ k) | P o muAa|P|+S,|P|+Q|P|°=T cosy, (87
WAZ cog3m(x—1)]a?, (79
o (K2—
nes with =mAot— 6. For the steady-state solution, we drop
5 i da 1 1 alat to haveS,,|P|=T siny, 6= mAot+constant, and
FP~— — —co§m(x—1)]+ 5| 1- |4,
Toq dty 2 o] T
(y—3—«) Ao=— (Sre Q|P|2 \/|P|2 52) (88)
x co§ m(x—1)]| |2~ | ————

16

It is found that|P| is bounded al’/S;,. This suggests that
the peak amplitude is proportional to the magnitude of exci-
tationT’, i.e., c. It is also found that the peak frequency is
shifted downward by the dispersion due to the wall friction

Aycod3m(x—1)]|al?a,  (80)

200 —3—
F@)~ 97 (y—3—x) 1 A, cog m(x while shifted upward by nonlinearity, becauSg,.<0 and
s
° 2(k3— ) 2 Q>0 for O>1. If I'<1 so that|P|<1, we can neglect
2 . . . _ .
; 9m2(y+ 1+ k) Q|P|*P in (85) to have immediately the steady-state solution
-1]ea +2—A2 cog§3m(x—1)]a’, as
2(k3—97?) R
i mAot
(81) _ _re™™ 9
2) 2) S—mulo
G{P)~s,F{, (82
CP~s,F?, 83) Thus, we obtain the linear resonance curve given by
with k3= (3ma)2(1+ ks3) # 972 and s3=03/(05— 907 r

where the approximatio(v6) is used, and,; ands; in G{*

P= (90

V(mpdo—Se)?+ Sy,

and G are left unapproximated. Here, we assume ttiat

#m? and o1 # 0/3. Details will be discussed later. which is consistent witli88) in the limit asP— 0.

Incidentally, (90) can also be derived from the linear
theory shown previously.When the lossy effects are in-
Let us examine the steady-state solutior{#6). Before  cluded, the form op’ in (36) is unaltered buk?® is modified
doing this, we transform the equation into a form suitable for&S
comparison with the results of measurements. Scefhas
been used conveniently to make a note of ordering in devel- 1+ KUo/[Uo o= (1-i)80%\2m ]
oping the asymptotic analysis. From the viewpoint of the _ _|)5/\/_
experiment, however, it is not a quantity to be measured (91)
easily, while use ofa is not also suitable for comparison.
Because an available quantity is the excess pressure in tigee the expression fdér below (4) in Ref. 4. But, note the
tube, we rewrite(75) in terms of the dimensionless excess difference in the sign of argument of the exponential function
pressure relative tp,. In view of (18), (42), and(44), we  for the piston displacement. This difference yields in-
set stead of+i. Expanding the right-hand side ¢81) around
— o=0g by settingo=0,+ Ag, we retain the lossless terms
M=87§': ECOS{W(X_l)]peimrlur C.CH- -, up to the order ofAc but truncate the lossy terms to the
Po 2 lowest order. Thusk is obtained asr+ (7ulAo—S)o4/2.
(84) Next, noting that « 1in (44) corresponds to
where P=2eya (<1) to the lowest order. Noting that (72c?/k sink)c/2e, we approximatek sink as — m(k— )
dal gt=e2daldt,+---, and usingP instead ofa, (75) is  and take the lowest terms far to recover(90) after multi-
rewritten as plying it by 2evy in the relation betweea and P.

B. Steady-state solution

k?= 72¢?
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V. DISCUSSION OF THE RESULTS (@ 30

A. Nonlinear frequency response 20}

The nonlinear frequency response in the steady state is 0 E
described by(88) theoretically. The peak amplitude peax 10F
attained in the response curve is determined td'B&,, by .
the linear loss, while the peak frequencyPat Py is low- OF
ered byAo=S,./7u due to the dispersive effects of the .
boundary layer. This result is merely an extension of the -10F
linear case. Although the linear downshift is constant, the :
shift dependent on the amplitude occurs throu@fP|2P, '20;'
which is responsible for bendin¢gskew of the response _302

curve toward the higher or lower frequency side. We exam- 0

ine variations ofQ as o is changed withk fixed. This cor-

responds physically to changing cavity volume and axial

spacing, with the tube length, its cross-sectional area, and the () 1

throat length held constant. o
From (70)—(72) with (51) and(52), it is expected tha® r

may diverge ati) |s,|=o; (i) |s,|=2°; (iii) k3=0; or (iv)

-1
k§=47-r2. The first casdi) where o= 0y does not occur =5 10 3
unlessk=0 or oy=0, as is seen from Fig.(@ or (37). The = E
second caséi) with 20, = oy may occur if the frequency of ?’ .
the second harmonics hits,, wherebyo, and k must sat- Q 102k

isfy the relationoy= y12/(3+4k). But, because of evanes-
cence atoy, no divergence of) occurs there. In fact, it is
confirmed that all terms proportional 8 in Q cancel out
altogether. The third cas@ii) corresponds to the one with 10"3O —
20,=+1+ ko for resonance, and indeed occurs whef

and k satisfy the following relation:

4(3— «) FIG. 3. Graphs of the coefficiel® versuso, with « fixed at 0.1, 0.2 and

On= / =g.<2. (92) 0.3: (a) displays the values d where the respective values divergeoat
0 3(1+ K)? cr =0,~1.79, 1.61, and 1.46 and at,=0, and (b) displays the relative
errors|(Q—Q,)/Q| of the asymptotic value®, to Q for the three values of

The fourth case(iv) corresponds to the second harmonic .

resonance whena; hits 20=. But this case does not occur

becauseo;#0 nor o;#1. Besides the third cas® di- lines as in Fig. 8). It is found thatQ, agrees withQ very

verges in the limit agrp— 0. This divergence is very rapid as well for o> 2 and the relative errors are almost less than 1%.

—a(y—1)(2y+ 1)/3272K3ag. In addition, we have as- Even belowoy,, there is a region in whicl®, still gives a

sumed for the second-order solutions thgt: w2 or o,  good approximation te.

#ay/3. The equalityk3= 72 holds for o;=\/o¢/3, where The other parameteys andS are relatively simple. Fig-

09=(5%116—9«)/3(1+ «). The equalityo;=0o/3 holds ure 4 displays the graphs qf and S, versuso, for «

for oo=72/(8+9k). Although these cases have no direct=0.1, 0.2, and 0.3, where the meaning@fwill be given

bearing on(85), they should be avoided in the sense of seekiater. Three families of curves labelgd S,,, andD are

ing uniformly valid, asymptotic solutions. drawn. In each family, the broken, solid, and dotted lines
Taking account of such exceptional cas@sjs drawn represent the values of labeled quantity f6¢ 0.1, 0.2, and

versuso in Fig. 3(a) for three fixed values ot. The broken, 0.3, respectively. In order to draw the graphsSjf,, the

solid, and dotted lines represent the values@ffor «  values oféd and 8, are set to be 0.0282 and 0.223 in view of

=0.1, 0.2, and 0.3, respectively. As is se€htakes both the experiment to be decribed in the next subsection. The

positive and negative values. This means that the responselue of &, is a little larger than the estimation. It is found

curve may be bent rightward or leftward, depending on thehat all quantities decrease ag increases, but they are al-

choice ofo. While Q diverges atry= o, and atog=0, it  most constant folr>2, and they decrease asbecomes

grows aso increases. In this limit, the asymptotic expres- smaller.

sion (77) for Qg is already available so th&@ is approxi-

Oy

mated as B. Comparison with the experimental result
Qo w3 (y+1+k)? We now compare the frequency response with the one
Q= 4_72~Qa:87,201(k§_47.,2) : (93 measured by using the tube of length=3256 mm) and of

diameter R (=80 mm) with the Helmholtz resonator hav-
Figure 3b) shows the relative errd(Q—Q,)/Q| for three  ing a cavity of volumeV (=49.7x 10 ® m®), and a throat of
values ofk=0.1, 0.2, and 0.3 by using the same types oflengthL (=35.6 mm) and of diameter2=7.11 mm) con-
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FIG. 4. Graphs of the coefficienis S, , andD vs o for k=0.1, 0.2, and  FIG. 6. Comparison of the nonlinear frequency response obtained by the

0.3. theory and experiment for the displacement amplitude of the beldys
<0.5 mm, where the broken and solid lines represent, respectively, the
curves without taking account of the jet loss and with it, while the measured

nected with the axial spacirdj(=50 mm). The size param- dgta are indicated by the blank square, solid square, blank'triangle, and solid
eter « takes the value 0.198 Figure 5 is the reproduction 0ﬁrlangle forX,=0.1, 0.2, 0.3, and 0.4 mm, respective¥y, being related to

: : ) . he one of the piston b¥,=1.42X,,.
the frequency response reported in Refsde Fig. 4, where
the half of the peak-to-peak value of the excess pressure ) ) )
measured on the flat plate at the closed ety relative to broken lines represehP| versus the dimensional frequency

the atmospheric pressupg is drawn versus the frequency of (‘71+_A")30/2| by _using(88). The displ_acement of t_he _bel-_
excitation w/27. The blank triangle, solid triangle, blank lows is converted into the one of the piston by multiplying it

circle, and solid circle indicate the data measured at the dig¥ith @ factor 1.422,so thatl” is given by 27yo1 X /I with
placement amplitude of the bellow§,=0.5, 1.5, 2.5, and XP:_1'422(b' The theory overesnmate_s not oqu the peak
3.5 mm, respectively. The equilibrium pressure and the meaﬁ'ﬁanItUdes but also the peak frequencies cf‘onS|de.rany, even
temperature in the tube near the closed end are 1.00P" Xo=0.5mm. When higher-order correctionsgtoin [P

x10° Pa and 25.6°C, respectively, spy=347.1 m/s, v on the right-hand side of84) are taken into account, it is
—1.567< 105 m/s P’r: 0.7089 an’d y=1.402. At t’his found that the deviation becomes worse. This is understood

temperature, the natural frequency of the resonatg®s is from the nature of asymptotic expansions that inclusion of

calculated to be 242.6 Hz with the end corrections. Thus, w&igher-order terms does not necessarily improve the accu-
find thatog=4.55 ande,=0.911. racy. Rather, the smallness || is required. Hence, it turns

Since k=0.198 andey=4.55 for the experiment, we out that the theory based ¢88) fails to describe the experi-

haveu=2.43,Q=15.2, ~ S,¢=S$,=0.0430. In Fig. 5, the Mental results adequately.
a Q e g So, the experimental data fof, smaller than 0.5 mm

are presented, though unpublished so far. Figure 6 shows the
frequency response where the blank square, solid square,
blank triangle, and solid triangle indicate the data measured
at X,=0.1, 0.2, 0.3, and 0.4 mm, respectively, and the equi-

librium pressure and the mean temperature are 1.010

0.5

be 241.3 Hz, note that bothy and o, are independent &
and therefore of the temperature. It is seen in Fig. 6 that as
X, is decreased, the broken lines tend to approach the data
measured. But, the theory overestimates the peak amplitude
slightly even for the smallest excitation wi¥,=0.1 mm.

0.10 X 10° Pa and 23.1°C, respectively. As in Fig. 5, the broken
SP I lines represen|P| versus the dimensional frequency calcu-
e lated by (88) whereay=345.6 m/s,v=1.539x10"° m?/s,

p 00 o5l Pr=0.7095, andy=1.402. Whilew/2 is now shifted to

45 46 47 48 49 50 51 52
Frequency (Hz)

i ) i C. Effect of jet loss
FIG. 5. Comparison of the nonlinear frequency response obtained by the

theory and experiment for the displacement amplitude of the beldws The discrepancy may be attributed to some effects not
=0.5 mm, where the broken and solid lines represent, respectively, thegken into account in the analysis. One is an effect of jet loss
curves without taking account of the jet loss and with it, while the measuregN - .

data are indicated by the blank triangle, solid triangle, blank circle, and soli hich ,Occurs at the Fhroat of the resonator. As the amp“tUde
circle forX,=0.5, 1.5, 2.5, and 3.5 mm, respectivelty, being related to the ~ Of OsCillatory flows n the throat t?ecomes 'Iarge, the flow
one of the piston by, =1.42,,.. pattern(except for direction of flowjust entering the throat
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differs from the one leaving the thro@ee Fig. L When the

it follows that & must vanish. To remedy this, it may be

air is sucked into the throat, it flows toward the orifice om-considered to introduce another time variahle=e<t). But,
nidirectionally, whereas when it is ejected, it flows in theasAo andE are assumed to be of ordef, the introduction
form of jet unidirectionally. This asymmetry of flow pattern of t; is inconsistent.

on the suction and ejection sides gives rise to the jet loss.

To resolve the dilemma, we notice the following point.

The detailed analysis is given in the Appendix of Ref. 10 andThe parametek takes a small value such as 0.1 or 0.2, but it
is not reproduced here. The jet loss introduces the additiondlas been regarded as a quantity of order unity and indepen-

term
vV |dpg| ape
- — ==, 94
poaozBLe at | at (94)

to the right-hand side gB) for the behavior of the resonator.
Then, the normalized equatid@4) is modified into

7%p; 327
_C+5r — C+(7TO'0)2§::
(9t2 (91.3/2
—1) ¢°p.?
=(mro)zﬁ+s(y ) —
It?
—1)(2y—1) #%p.® Jpr| ap;
T DY D TP )| 2 P (9
6 at? at | at

where 8;=V/IBL.= (I/mooLe)?. Since the new term is ac-
companied by, it yields additional terms in the first-order
solution. In fact, it follows that

(99(0)
o

0’)9(0)
atg

= —4(7a15,)%(|sing|siné){|cog m(x—1)]|

x cog w(x—1)]}al?, (96)

with a=|a|e'? andé= 7o1ty+ 6. Using the following Fou-
rier expansions:

2 g [
|sm§|sm§——?n;ac ?=2) elné
4i

. 4i
=——ef+ —edtt...tcc,

37 157 ©7

and
|cog m(x—1)]|cog m(x—1)]
4 2 sin(nml/2)

ein7]
a2 n(n?—4)

8 8
= Ecos{w(x— L]+ 15, €S Ia(x=1)]+---, (998
with 7x=7 and the sums taken except fo=0 andn
==+ 2, there arises i1i46) the term proportional to cps(x
—1)lexp(moity)|aja. Note that although cps(x—1)] is de-
fined only in the interval &x=<1 originally, it is extended

dent ofe. As the magnitude 0§ becomes comparable with
the value ofx, however, the smallness of the latter may be
taken into account. Ik is taken as small as, the contribu-
tion from the jet loss had rather be incorporated in the
second-order problem. Thei in (67) includes the addi-
tional term given by

128« 550583
- e, (99
9me oy
and(75) is replaced by
020 S i 20 2 100
IME ?a I?|a|a Qol | a—(rl?, (100

with Do=128«8,03s3/903. In terms ofP, finally, (85) is
modified as

P , :
|,U,E+SP+|D|P|P+Q|P|2P=1"e"7A‘”, (10
with
64K530'1$i
= Sy (102

In Fig. 4, the graph ob vs o is displayed fork=0.1, 0.2,
and 0.3.

Separating the real and imaginary part§1®1) by set-
ting P=|P|exp(#), the only correction t¢86) and(87) is to
replaceS,,, with S;,,+ D|P|. Then, the frequency response is
given by

1‘*2
Sre‘*'Q|P|2i \/WZ_(Sim'I' D|P|)2J-
(103

It is found that the jet loss add3|P| to the linear ones,,,
and then the peak amplitude is determined as

1
Ppeak:ﬁ(_$m+ VSip+4D1).

For I'<S, /4D, Ppea is given by I'/S;,, whereas forl
>S}/4D, Ppeqis given by JT'/D. The latter suggests that
the peak amplitude does not increase in proportioh &s in
the linear regime but tqT. The changeover may be defined
to occur atl'=S2 /4AD=T",,, which givesI',,=0.0012 for
D=0.398. This corresponds to 0.34 mm .

The response curves taking account of the jet loss are
drawn in the solid lines in Fig. 5. For the amplitude 0.5 mm,

1
Ao=—
T

(104

periodically to the outside of it with period 2 and so is the good agreement is observed for the peak amplitude but the

case with|cogm(x—1)]. Thus, the solution49) must in-
clude the componerﬂ)(ll)expawolto). As is inferred from

peak frequency is slightly overestimated. The latter is deter-
mined by the accuracy of measurement of the temperature. If

the analysis for the second-order problem, this term giveshe temperature is higher by 1 degree, then the peak fre-

rise to the equation fob{") corresponding td66) with 5
proportional td a| a. Applying the boundary condition&8),

J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003

quency is shifted by 0.09 Hz to the right. For the amplitude
smaller than 0.5 mm, the solid lines in Fig. 6 shows the
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response curves with the jet loss. In this case, the peak frehan the critical frequency ., . When the theoretical curve is
guencies are well predicted. Although the peak amplitudesompared with the experiment, it is revealed that both results
are overestimated slightly, it is found that account of the jetdo not agree with each other quantitatively, although quali-
loss iproves the results considerably. tatively the tendency of the bent may be explained. In par-
As the amplitude increases beyond 0.5 mm, howeveticular, the theory overestimates the peak amplitude consid-
there arises significant discrepancy. It may be attributed terably.
the following two points. Although the frequency of the sec- The discrepancy has been resolved to some extent by
ond harmonics never hits, , the ratioo, /o is 1.98 and  taking account of the jet loss at the throat. It introduces the
very close to 2 numerically. Even if no shock then occurs,additional nonlinear dissipation to the linear one so that the
this situation is not preferable to the theory. Secondly, thgpeak amplitude is suppressed as the amplitude becomes
frequency of the fifth harmonics,dq, hits o, for evanes- large. It is found that the peak amplitude then becomes pro-
cence in the present case. Then the energy absorption at tpertional to the square root of the amplitude of excitation. As
fifth harmonics is enhanced so that the theory might be limfar as the present experiment is concerned, the linear and
ited. Furthermore if causes of the discrepancy are soughteakly nonlinear theory with the jet loss can give a quanti-
beyond the present framework, it is open whether or not théative description up to the pressure amplitude 3% to the
weakly nonlinear theory is still applicable. In addition, an- equilibrium pressure. In order to design a tube for generation
other effect of transverse motions of air in the cross-sectiomf even higher peak amplitude, the results in the present
might come into play, associated with emergence of acoustipaper provide useful guidelines.
streaming. To make a firm conclusion, however, it is neces-
sary to check validity of the theory against new experimentACKNOWLEDGMENTS
by using tubes in geometrically different configuration taking
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