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Nonlinear cubic theory is developed to obtain a frequency response of shock-free, forced
oscillations of an air column in a closed tube with an array of Helmholtz resonators connected
axially. The column is assumed to be driven by a plane piston sinusoidally at a frequency close or
equal to the lowest resonance frequency with its maximum displacement fixed. By applying the
method of multiple scales, the equation for temporal modulation of a complex pressure amplitude
of the lowest mode is derived in a case that a typical acoustic Mach number is comparable with the
one-third power of the piston Mach number, while the relative detuning of a frequency is
comparable with the quadratic order of the acoustic Mach number. The steady-state solution gives
the asymmetric frequency response curve with bending~skew! due to nonlinear frequency upshift in
addition to the linear downshift. Validity of the theory is checked against the frequency response
obtained experimentally. For high amplitude of oscillations, an effect of jet loss at the throat of the
resonator is taken into account, which introduces the quadratic loss to suppress the peak amplitude.
It is revealed that as far as the present check is concerned, the weakly nonlinear theory can give
quantitatively adequate description up to the pressure amplitude of about 3% to the equilibrium
pressure. ©2003 Acoustical Society of America.@DOI: 10.1121/1.1600719#

PACS numbers: 43.25.Gf, 43.25.Vt, 43.25.Cb@MFH#
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I. INTRODUCTION

Novel methods for generation of shock-free, hig
amplitude oscillations of gas in a tube~or a container! have
recently attracted much attention in view of applications
thermoacoustic devices. They commonly exploit resona
in one form or another by exciting an acoustic system a
frequency close to or equal to one of its resonance frequ
cies ~eigenfrequencies!. As the amplitude of oscillations o
gas becomes high, however, there emerges a shock, i.e.
continuity in pressure, etc., so that increase in pressure
plitude of oscillations tends to be suppressed as the ex
tion is increased.

Whether or not the shock emerges is crucially det
mined by the relation between resonance frequencies
frequencies of higher harmonics of the excitation. If the re
nance frequencies are ordered as multiples of the fundam
tal one, just as in the case of a closed tube of uniform cr
section, then the tube is called beingconsonantand other-
wisedissonant.1,2 As the amplitude of excitation is increase
in a consonant tube, each frequency of higher harmo
generated by nonlinearity hits the respective resonance
quencies so that higher modes are gradually excited and
ergy in the fundamental mode is pumped up into hig
modes and dissipated there. This cascade process of e
flow is the mechanisms behind emergence of the shock
the resulting suppression of increase in pressure amplitud
the fundamental mode.

In order to annihilate the shock, the cascade proc
should be blocked by any means. At present, there are
methods confirmed experimentally at high pressure le
One is the method devised by Lawrensonet al.2 and Ilinskii
et al.3 at MacroSonix. The essential point lies in making t
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axial cross section of a container nonuniform so as to ren
it dissonant. By vibrating the whole container on a shak
shock-free, high-amplitude oscillations have been achie
experimentally and theoretical analysis has also been m

The other method is to exploit wave dispersion, as
vised by the present authors,4 although it was proposed origi
nally in a different problem.5 Sound speed in gas is usual
constant independent of frequency; therefore, no disper
occurs in propagation. But, by connecting external agent
the tube, the phase speed can be made dependent on
quency. In fact, this is achieved by connecting an array
Helmholtz resonators to a tube of uniform cross section a
ally. By sinusoidally driving the bellows mounted at one e
of this tube, shock-free, high-amplitude oscillations of abo
10% of the equilibrium pressure have been generated a
other closed end. Because the phase speed now depen
the frequency, resonance frequencies are no longer ord
as multiples of the fundamental one, and the tube beco
dissonant automatically without any change of cross sec
of the tube.

In the present context, it may be worthwhile to menti
the dispersion. For propagation in a tube of nonuniform cr
section, the phase speed cannot be defined strictly even i
case of an exponential horn because the amplitude deca
grows in the direction of propagation. The propagation sp
is then determined by the characteristics and is still given
the sound speed. In this sense, the system still remainshy-
perbolic. In the tube with the array, on the contrary, a pla
sinusoidal wave can be propagated so that the phase spe
clearly defined, which is now different from the sound spe
and dependent on the frequency. The connection of the a
changes the hyperbolic system originally to bedispersive.
14(4)/1772/13/$19.00 © 2003 Acoustical Society of America
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Besides the two methods, Rudenkoet al.6 have already
proposed ideas to block the cascade process by introdu
special absorbers of the second harmonics through
boundary condition. Andreevet al.7 have confirmed the ef
fects experimentally, though at even lower pressure le
For suppression or reduction of the second harmonics, Gu
et al.8 have abandoned a usual monochromatic excitatio
control the driver actively by adding to the fundamental sin
soidal excitation the second harmonic one with a phase
ference. While these methods focus on increase in so-ca
quality factorof a resonator, it is questionable whether or n
shock-free oscillations are ultimately achieved.

The purpose of this paper is to formulate nonline
forced oscillations of an air column in the tube with the arr
of Helmholtz resonators and to derive theoretically a f
quency response corresponding to the one obta
experimentally.4 Supposing each resonator is small in effe
one-dimensional motion of air is assumed over the cross
tion of the tube except for a boundary layer on the wall a
vicinity of resonator’s orifices open to the tube. Suppos
also that the axial spacing between neighboring resonato
small in comparison with a wavelength, the continuum a
proximation for the resonators is made so that the effect
the discrete distribution in array may be smeared out
axial length.

Because the pressure level observed in the experime
still small relative to the equilibrium pressure, weakly no
linear theory is developed by using the asymptotic method
multiple ~two! scales.9 The bellows used in the experime
are modeled as a plane piston reciprocating sinusoidally
taking account of the correspondence between the displ
ment of the bellows and the one of the piston. The bound
condition for the piston is usually of three types, either o
of the maximum displacement, maximum speed, or ma
mum acceleration being held constant, the first of which
used in the present theory.

As the ratio of the maximum displacement of the pist
to the tube length is much smaller than unity, so is the pis
Mach number defined by the ratio of the maximum pist
speed to the sound speed, which is comparable in order
the former. Denoting the piston Mach number by«p , and a
typical acoustic Mach number in the tube by«, respectively,
the situation in the experiment corresponds to a case whe«
is of order«p

1/3 and the relative detuning of a frequency fro
the resonance one is of order«2 (5«p

2/3). It is emphasized
that the rigorous cubic nonlinear theory starting from t
formulation based on the above assumptions is necessa
obtain a frequency response correctly up to the third orde
the pressure amplitude.

The problem is formulated in Sec. II and the lossle
linear theory is first described in Sec. III. Section IV is d
voted to the nonlinear theory by using the method of m
tiple scales to derive the equation for slow modulation o
complex pressure amplitude of the fundamental mode. F
the steady-state solution to the equation, the frequency
sponse is obtained and compared with the experiment
Sec. V, an effect of the jet loss at the throat of the reson
is considered in order to compensate the discrepancy
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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tween the theory and experiment as the amplitude beco
high.

II. FORMULATION OF THE PROBLEM

A. Basic equations

We start by formulating the problem. Suppose a straig
rigid tube of radiusR and of lengthl , to which an array of
Helmholtz resonators is connected~see Fig. 1!. One end of
the tube is allowed to be displaced by a plane piston wh
the other end is closed by a flat plate. The tube is clo
hermetically with the resonators inclusive. Each resonato
assumed small in the sense that the cavity’s volumeV is
much smaller than the tube’s volume per spacingAd, A
(5pR2) being the cross-sectional area of the tube andd the
axial spacing. This ratio is denoted byk ([V/Ad!1), and
called asize parameterof the array. Taking the axial spacin
to be much smaller than a wavelength of oscillation, t
continuum approximation is made for discrete distribution
the resonators to average its effect per unit axial length.

The Reynolds number is usually sufficiently high th
effects of viscosity and heat conduction are limited on
within the boundary layer developing on the tube wall. In t
outside of the boundary layer called a region of an acou
main flow, these lossy effects are negligible. The bound
layer is thin and the array is small (k!1), so the acoustic
main flow may be regarded as being almost one-dimensio
Under these assumptions, the basic equations for the m
flow have already been presented in Ref. 10.

The equations of continuity and of motions are co
bined into the following equations:

F ]

]t
1~u6a!

]

]xGFu6
2

g21
~a2a0!G56

a

A R vn ds,

~1!

with the signs ordered vertically wherex and t denote, re-
spectively, the axial coordinate along the tube and the ti
while u anda denote, respectively, the axial velocity of th
air and the local sound speed. The latter is defined by

a25
dp

dr
5a0

2S p

p0
D (g21)/g

, ~2!

FIG. 1. Illustration of a tube with an array of Helmholtz resonators.
1773Sugimoto et al.: Nonlinear frequency response of air column
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with a05Agp0 /r0 wherep and r denote, respectively, th
pressure and density of the air and the subscript 0 attache
p andr implies the respective values in equilibrium,g being
the ratio of the specific heats, anda0 is the linear sound
speed. Since the lossy effects are neglected in the aco
main flow, the adiabatic relationp/p05(r/r0)g is assumed
to hold.

Through the right-hand side of~1! are included the ef-
fects of the boundary layer and of the array of Helmho
resonators. Here,vn represents the velocity directed inwa
normal to the boundary of the axial cross section of
acoustic main-flow region, ds being the line element alon
the boundary. Where the tube wall exists,vn is the velocity at
the edge of the boundary layervb , given by

vb5S 11
g21

APr
DAn

]2 1/2

]t21/2S ]u

]xD , ~3!

wheren denotes the kinematic viscosity taken constant,
being the Prandtl number, and the derivative of minus h
order of a functionf (x,t) is defined as

]2 1/2f

]t21/2 [
1

Ap
E

2`

t f ~x,t!

At2t
dt. ~4!

On the other hand, where the tube opens to the res
tor, vn is the velocity of the air flowing out of the throat int
the tube,2w. Because the throat is much shorter than
typical wavelength, the mass flux densityq averaged over
the cross section of the throat may be regarded as b
uniform along the throat. While no account of motions of t
air is taken in the cavity, the rate of increase in the m
therein must balance with the mass flux flown into it. Th
requires that

V
]rc

]t
5Bq, ~5!

whererc denotes the mean density of the air in the cav
andB denotes the cross-sectional area of the throat.

Thus, the integral in~1! consists of two contributions a
follows:

1

A R vn ds52S 11
g21

APr
D An

R*
]2 1/2

]t21/2S ]u

]xD2
k

r

]rc

]t
,

~6!

where R* is the reduced radius of the tube defined
R/(12BR/2Ad), andq is set equal torw at the orifice on
the tube side. The derivation of the right-hand side of~6!
may be facilitated by multiplyingA and ds by d, respec-
tively, noting thatd(ds) corresponds to the area element
the surface bounding the region of the acoustic main fl
Here,q in ~5! is expressed in terms of the excess pressurepc8
(5pc2p0) in place of the density. Assuming the adiaba
relation for the air in the cavity,rc is expanded into the
Taylor series with respect topc8 to yield q in the following
form:
1774 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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q5
V

Ba0
2

]

]t Fpc82
~g21!

2gp0
pc8

21
~g21!~2g21!

6g2p0
2 pc8

31¯G .
~7!

The behavior of the resonator is governed by~5! supple-
mented by the equation of motion for the air in the thro
The momentum balance of the air in the throat of lengthL
requires that

L
]q

]t
52pc1p2

2LAn

r

]1/2

]t1/2~r0w!, ~8!

where the last term represents the friction at the throat wa10

Using the lowest relation of~7! to evaluater0w, substitution
of ~7! for q into ~8! leads to the following equation:

]2pc8

]t2 1
2An

r *

]3/2pc8

]t3/2 1v0
2pc8

5v0
2p81

g21

2gp0

]2pc8
2

]t2 2
~g21!~2g21!

6g2p0
2

]2pc8
3

]t2

1¯ , ~9!

where p8 (5p2p0) is the excess pressure in the tube,r *
(5r /cL), cL being L8/Le with L85L12r and Le5L12
30.82r , is the reduced radius of the throat by taking acco
of the end corrections on both ends, andv0 (5ABa0

2/LeV)
is the natural angular frequency of the resonator.4 The deriva-
tive of three-half order is defined by differentiating the d
rivative of minus half-order twice with respect tot.

B. Reduction by the velocity potential

Addition and subtraction of~1! with the upper and lower
signs lead, respectively, to

]u

]t
1u

]u

]x
1

2a

g21

]a

]x
50, ~10!

and

2

g21 S ]a

]t
1u

]a

]xD1a
]u

]x
5

a

A R vn ds. ~11!

In order to eliminatea from these equation, we introduce
velocity potentialf defined by

u[
]f

]x
. ~12!

Substituting~12! into ~10! and integrating this with respect t
x, we have

a25a0
22~g21!F]f

]t
1

1

2 S ]f

]x D 2G . ~13!

This is simply the Bernoulli’s theorem. Multiplying~11! by a
and using~13! to eliminatea2, we derive
Sugimoto et al.: Nonlinear frequency response of air column
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]2f

]t2 2a0
2 ]2f

]x2 52
]

]t S ]f

]x D 2

2~g21!
]f

]t

]2f

]x2

2
g11

2 S ]f

]x D 2 ]2f

]x2 2
a2

A R vn ds.

~14!

In passing, substituting~13! into ~2!, p8 is expressed in-
versely in terms of f. In fact, by expanding p/p0

5(a2/a0
2)g/(g21) arounda5a0 and truncating the series a

the cubic terms, it follows that

p852r0

]f

]t
1

r0

2a0
2 F S ]f

]t D 2

2a0
2S ]f

]x D 2G
1

r0

2a0
2 F ~g22!

3a0
2 S ]f

]t D 3

1
]f

]t S ]f

]x D 2G1¯ . ~15!

The boundary conditions are imposed at the piston s
face and the closed end so that the velocity of the air may
equal to the one of the respective surfaces. Taking the or
of the coordinatex at the mean position of the piston surfa
over one period and the closed end atx5 l , the respective
conditions are expressed as follows:

]f

]x
5

dxp

dt
5

i

2
vXpeivt1c.c.

at x5xp5
1

2
Xpeivt1c.c.5Xp cos~vt !, ~16!

and

]f

]x
50 at x5 l , ~17!

wherexp denotes the position of the piston surface; the d
placement amplitude,Xp , and the angular frequency of ex
citation, v, are taken real and positive, c.c. implying th
complex conjugate toall preceding terms, if any.

C. Normalization

We next normalize the equations and the boundary c
ditions by making the following replacement:

@x, t, f, a, r, rc , p8, pc8#

5@ l x̄, ~ l /a0! t̄ , lu0f̄, a0ā, r0r̄, r0r̄c ,

r0a0u0p̄8, r0a0u0p̄c8#, ~18!

where the quantities with the overbar imply the dimensio
less ones, andu0 is a typical speed of the air, say the max
mum speed in the acoustic main flow. Here, two Mach nu
bers are defined: one is the acoustic Mach numbe«
associated with the air speed and the other the piston M
number«p . Both Mach numbers are assumed to be mu
smaller than unity, as

«[
u0

a0
!1 and «p[

vXp

a0
!1. ~19!

In a lossless case of a tube without the array of resonato
is known that the air column will resonate in the lowe
mode when a half-wavelengthpa0 /v coincides with the
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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tube length. Using this angular frequencypa0 / l , v is made
dimensionless by introducings as

v5
pa0

l
s. ~20!

By the replacement~18!, ~14! with ~6! is normalized as

]2f̄

] t̄ 2
2

]2f̄

] x̄2

5
kā2

«r̄

]r̄c

] t̄
2«F ]

] t̄
S ]f̄

] x̄
D 2

1~g21!
]f̄

] t̄

]2f̄

] x̄2 G
2«2

~g11!

2
S ]f̄

] x̄
D 2

]2f̄

] x̄2
2dā2

]2 1/2

] t̄ 21/2
S ]2f̄

] x̄2 D , ~21!

with r̄5(11«g p̄8)1/g, r̄c5(11«g p̄c8)
1/g, and ā251

2«(g21)@]f̄/] t̄ 1«(]f̄/] x̄)2/2#, where ā2/ r̄ and r̄c are
expanded, respectively, as

ā2

r̄
512«~g22!

]f̄

] t̄
2«2

~g22!

2
F S ]f̄

] t̄
D 2

1S ]f̄

] x̄
D 2G

1¯ , ~22!

and

r̄c511« p̄c82«2
~g21!

2
p̄c8

21«3
~g21!~2g21!

6
p̄c8

3

1¯ . ~23!

On the other hand,~9! is normalized as

]2p̄c8

] t̄ 2
1d r

]3/2p̄c8

] t̄ 3/2
1~ps0!2p̄c8

5~ps0!2p̄81«
~g21!

2

]2p̄c8
2

] t̄ 2
2«2

~g21!~2g21!

6

3
]2p̄c8

3

] t̄ 2
1¯ , ~24!

with s05 lv0 /pa0 , whered andd r are the parameters rep
resenting the boundary-layer effects due to the tube wall
the throat wall, respectively, and are given by

d52S 11
g21

APr
D An l /a0

R*
and d r52

An l /a0

r *
. ~25!

In ~24!, p̄8 is given, after normalization of~18!, by

p̄852
]f̄

] t̄
1

«

2
F S ]f̄

] t̄
D 2

2S ]f̄

] x̄
D 2G

1
«2

2
F ~g22!

3
S ]f̄

] t̄
D 3

1
]f̄

] t̄
S ]f̄

] x̄
D 2G1¯ . ~26!

On the other hand, the boundary conditions are norm
ized as
1775Sugimoto et al.: Nonlinear frequency response of air column
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]f̄

] x̄
5 i

psc

2«
eips t̄1c.c. at x̄5

c

2
eips t̄1c.c., ~27!

and

]f̄

] x̄
50 at x̄51, ~28!

wherec represents the dimensionless amplitudeXp / l (!1)
andpsc corresponds to«p .

III. LOSSLESS LINEAR THEORY

At first, it is instructive to discuss the lossless line
case. Taking the limit asc, d, andd r→0, with c/« fixed, the
linearized problem is governed by the following equation

]2f

]t2 2
]2f

]x2 5k
]pc8

]t
, ~29!

]2pc8

]t2 1~ps0!2pc85~ps0!2p8, ~30!

p852
]f

]t
, ~31!

with the boundary conditions given by

]f

]x
5 i

psc

2«
eipst1c.c. at x50 and

]f

]x
50 at x51.

~32!

Here and hereafter, the overbar is omitted.
Setting

F f
p8
pc8

G5FF~x!

F~x!

G~x!
Geipst1c.c., ~33!

and substituting this into~29!–~31! to eliminateF andG, we
derive

d2F

dx2 1k2F50, ~34!

wherek is given by

k25~ps!2S 11
ks0

2

s0
22s2D . ~35!

Imposing the boundary conditions~32!, the solutions are eas
ily obtained as

F f
p8
pc8

G5F i /ps
1
s

G p2 s2 cos@k~x21!#

k sink

c

2«
eipst1c.c.,

~36!

with s5s0
2/(s0

22s2).
It is noted in~36! that k becomes purely imaginary fo

s0,s,A11k s0 . Then, cos@k(x21)# and k sink take, re-
spectively, cosh@uku(x21)# and2ukusinhuku. As s approaches
s0 , k tends to diverge and the evanescence occurs in
limit. This is due to the side-branch resonance where e
resonator reflects back the incident wave totally. Ass ap-
proachesA11k s0 , on the other hand,k tends to vanish.
1776 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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This is a resonance supported by the array of resona
where the air column oscillates in unison. It seems to
worth examining this new resonance, but we are concer
here with the resonance when sink vanishes, i.e.,k5mp
(.0) (m51,2,3,. . . ).

Unlike in the case of the tube without the array, there
two resonance frequenciessm

6 (.0) for a given value ofm.
They are determined from the quadratic equations42@m2

1(11k)s0
2#s21m2s0

250 in s2 as

~sm
6!25 1

2 $m21~11k!s0
2

6A@m21~11k!s0
2#224m2s0

2%, ~37!

with the signs ordered vertically. It is easily found thatsm
2

,s0,A11k s0,sm
1 . Figure 2 shows the dependence

sm
6 (m51, 2, and 3! on s0 or k for either one fixed. In the

tube without the array, the resonance frequencies are g
by s5m simply. In Fig. 2~a!, wherek is fixed to be 0.2, it is
seen thatsm

1 tends tom ass0 vanishes, whereassm
2 tends to

vanish. On the other hand, ass0 becomes large,sm
1 andsm

2

tend toA11k s0 and m/A11k, respectively, form!s0 .
For a large value ofs0 , it is sm

2’s that correspond to the
resonance frequencies in the tube without the array. B

FIG. 2. Graphs of the resonance frequenciessm
6 (m51, 2, and 3!: ~a!

displays the dependence ons0 with the value ofk fixed at 0.2, and~b!
displays the dependence onk with the value ofs0 fixed at 2.5.
Sugimoto et al.: Nonlinear frequency response of air column
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since the tube then becomes consonant, the merit of con
tion of the array is lost. For a fixed value ofs052.5, on the
other hand, the dependence ofsm

6 on k is shown in Fig. 2~b!.
As k increases, the resonance frequenciessm

2 decrease,
whereassm

1 increase. For a small value ofk, sm
6 are ex-

pressed asymptotically as

sm
15s0F11

ks0
2

2~s0
22m2!

1¯G , ~38!

and

sm
25mF12

ks0
2

2~s0
22m2!

1¯G , ~39!

for s0.m, while the expressions ofsm
6 are exchanged fo

s0,m.

IV. NONLINEAR THEORY

We now develop a nonlinear theory by taking account
small but finite magnitude of« and also lossy effects. While
the magnitudes ofc and of«p are defined clearly, the one o
« is left ambiguous and should now be related toc. When
the driving frequencys is off the resonance, the linear solu
tion ~36! suggests that« is of the same order asc or «p . This
is because the quantities on the left-hand side of~36! are
regarded as being of order unity. But, ass is set closer to the
resonance frequency,« becomes much larger thanc, as the
term ‘‘resonance’’ implies. Then,« is determined not only by
c but also by a detuningDs, indicating how far the driving
frequency is set from the resonance one. Since the exp
ment exploits the resonance in the lowest mode, we cons
a case wheres is near the lowest resonance frequencys1

2

([s1). SettingDs5s2s1 , k sink in the denominator of
~36! may be approximated as2p(dk/ds)us5s1

Ds, so f,

p8, andpc8 are estimated to be of orderc/«uDsu. For this to
be of order unity,« is determined as

«'
c

uDsu
. ~40!

Since we assume the lossless case here,« diverges, of
course, asDs vanishes. The experimental result indicat
that c is of order 1023, uDsu is of 1022, and« is of 1021.
This suggests thatc is of «3 andDs is of «2. Also, d andd r

for the lossy effects are estimated to be of«2.

A. Perturbation procedures

In light of the ordering mentioned above, the expone
tial factor exp(ipst) in ~27! may be written as exp@ip(s1

1«2s8)t# by settingDs5«2s8, s8 being a quantity of order
unity. Regarding«2t as a slow variable compared witht, we
employ the method of multiple~two! scales by introducing
two variablest0 ([t) and t2 ([«2t). Then, the boundary
condition ~27! may be given, without the overbar, as

]f

]x
5 i

E

2
eips1t01c.c.1O~«2E!

at x5
c

2
eips1t01c.c.1O~«2c!, ~41!
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where we note thatE @5(ps1c/«)exp(ips8t2)# is dependent
of t2 and is of order«2.

We seek the solutions to~21! and ~24! with ~26! under
the boundary conditions~41! and ~28! in the asymptotic ex-
pansion of« as

F f
p8
pc8

G5Ff (0)

f (0)

g(0)
G1«Ff (1)

f (1)

g(1)
G1«2Ff (2)

f (2)

g(2)
G1¯ . ~42!

By introduction of t2 , the differential operator is expande
as

]

]t
5

]

]t0
1«2

]

]t2
1¯ . ~43!

The lowest-order problem of« takes the same form as~29! to
~31! with f, p8, and pc8 replaced byf (0), f (0), and g(0),
respectively. But, they are now subjected to the homo
neous boundary conditions:]f (0)/]x50 at x50 andx51,
since]f/]x in ~41! is expanded aroundx50 andE is as-
sumed to be of order«2. Thus, the lowest-order solutions a
given by the eigensolutions of the system. Taking, in~36!,
the formal limit asc/«→0, k→p, ands→s1 , and setting
(p2s2/k sink)c/2« to bea, the solutions are obtained as

Ff (0)

f (0)

g(0)
G5F i /ps1

1
s1

Gcos@p~x21!#aeips1t01c.c., ~44!

with s15s0
2/(s0

22s1
2) (s1Þs0), where p2s1

2(11ks1)
5p2 and the complex amplitudea including the detuning is
assumed to depend ont2 but unspecified at this order.

Here, we make the following remark. The constants1

becomes positive or negative depending on the values os0

ands1 . Therefore, the pressure in the cavity differs from t
one in the tube in magnitude and phase. Ifs0 is chosen
greater thans1 , as is usually the case, the pressure am
tude in the cavity becomes higher than the one in the tu

1. First-order problem

Let us now proceed to the first-order problem. Then,
equations take the following form:

]2f (1)

]t0
2 2

]2f (1)

]x2 2k
]g(1)

]t0

52kF ~g21!g(0)1~g22!
]f (0)

]t0
G ]g(0)

]t0

2
]

]t0
S ]f (0)

]x D 2

2~g21!
]f (0)

]t0

]2f (0)

]x2 , ~45!

and

]2g(1)

]t0
2 1~ps0!2g(1)2~ps0!2f (1)5

~g21!

2

]2g(0)2

]t0
2 ,

~46!

with
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f (1)52
]f (1)

]t0
1

1

2 S ]f (0)

]t0
D 2

2
1

2 S ]f (0)

]x D 2

, ~47!

while the boundary conditions at this order take simply

]f (1)

]x
50 at x50 and x51. ~48!

Introducing~44! into the right-hand sides of~45!–~47!,
we find the first-order solutions should be in the followin
form:

Ff (1)

f (1)

g(1)
G5FF2

(1)

F2
(1)

G2
(1)
Ge2ips1t01c.c.1FF0

(1)

F0
(1)

G0
(1)
G , ~49!

whereF j
(1) , F j

(1) , andGj
(1) ( j 50,2) are functions ofx and

a to be determined, and the subscriptj implies the coeffi-
cient of the j th harmonics, ei j ps1t0. Substituting~49! into
~45!–~47!, we consider the respective harmonics separat
For the second harmonics, we eliminateF2

(1) and G2
(1) to

derive the equation forF2
(1) as follows:

d2F2
(1)

dx2 1k2
2F2

(1)5
i

2ps1
$k2

2A01~k2
224p2!A2

3cos@2p~x21!#%a2, ~50!

with k2
25(2ps1)2(11ks2) and s25s0

2/(s0
224s1

2) (s1

Þs0/2), whereA0 andA2 are given by

A05
p2

k2
2 H g231kF ~s12s2!s1

22s21~g21!

3~s121!s1s1
214~g21!s1

2s2

s1
2

V G J , ~51!

and

A25
p2

~k2
224p2!

H g111kF ~s12s2!s1
21s21~g21!

3~s121!s1s1
214~g21!s1

2s2

s1
2

V G J , ~52!

with V5s0
2/s1

2. Note thatk2
2Þ4p2 but k2 is assumed not to

vanish, i.e.,s1ÞA11ks0/2. The second-harmonic solu
tions are easily obtainable as

F2
(1)5

i

2ps1
$A01A2 cos@2p~x21!#%a2, ~53!

F2
(1)5HA01

1

4 S 11
1

s1
2D 1FA21

1

4 S 12
1

s1
2D G

3cos@2p~x21!#J a2, ~54!

G2
(1)5H s2FA01

1

4 S 11
1

s1
2D 2~g21!

s1
2

V G1s2FA2

1
1

4 S 12
1

s1
2D 2~g21!

s1
2

V Gcos@2p~x21!#J a2.

~55!
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For the zeroth harmonics, on the other hand, the rig
hand side of~45! contains no terms independent oft0 .
Therefore, we takeF0

(1)50. From~46! and ~47!, we have

F0
(1)5G0

(1)5H 1

2 S 12
1

s1
2D 1

1

2 S 11
1

s1
2D

3cos@2p~x21!#J uau2. ~56!

These solutions show that while no steady streaming oc
at this order, the steady but nonuniform pressure distribu
appears in the tube as well as in the cavities. The maxim
uau2 occurs at both ends, while the minimum2uau2/s1

2 oc-
curs in the middle. Note that the effect of the array, i.e.,k,
appears only in the minimum throughs1 .

2. Second-order problem

Upon completion of the first-order problem, we proce
to the second-order problem. It is given by

]2f (2)

]t0
2 2

]2f (2)

]x2 2k
]g(2)

]t0
5K (2)1L (2)1M (2), ~57!

with

K (2)5kH ]g(0)

]t2
2~g21!

]

]t0
~g(0)g(1)!

2~g22!S ]f (0)

]t0

]g(1)

]t0
1

]f (1)

]t0

]g(0)

]t0
D

2
~g22!

2 F S ]f (0)

]t0
D 2

1S ]f (0)

]x D 2G ]g(0)

]t0

1
~g21!~g22!

2

]f (0)

]t0

]g(0)2

]t0

1
~g21!~2g21!

6

]g(0)3

]t0
J , ~58!

L (2)522
]2f (0)

]t2]t0
2

d

«2

]2 1/2

]t0
21/2S ]2f (0)

]x2 D , ~59!

M (2)52
]

]t0
S 2

]f (0)

]x

]f (1)

]x D2~g21!S ]f (0)

]t0

]2f (1)

]x2

1
]f (1)

]t0

]2f (0)

]x2 D2
~g11!

2 S ]f (0)

]x D 2 ]2f (0)

]x2 ,

~60!

and

]2g(2)

]t0
2 1~ps0!2g(2)2~ps0!2f (2)

522
]2g(0)

]t2]t0
2

d r

«2

]3/2g(0)

]t0
3/2 1~g21!

]2

]t0
2 ~g(0)g(1)!

2
~g21!~2g21!

6

]2g(0)3

]t0
2 , ~61!

with
Sugimoto et al.: Nonlinear frequency response of air column
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f (2)52
]f (2)

]t0
2

]f (0)

]t2
1

]f (0)

]t0

]f (1)

]t0
2

]f (0)

]x

]f (1)

]x

1
~g22!

6 S ]f (0)

]t0
D 3

1
1

2

]f (0)

]t0
S ]f (0)

]x D 2

. ~62!

The boundary conditions now take

]f (2)

]x
5 i

E

2«2 eips1t01c.c. at x50, ~63!

and

]f (2)

]x
50 at x51. ~64!

At this order, we do not necessarily have to seek the
solutions. We have only to derive the condition for the co
plex amplitudea from the boundary conditions. Setting th
solutions in the following form:

Ff (2)

f (2)

g(2)
G5FF1

(2)

F1
(2)

G1
(2)
Geips1t01FF3

(2)

F3
(2)

G3
(2)
Ge3ips1t01c.c., ~65!

and substituting this into~57!–~62!, we end up with

d2F1
(2)

dx2 1k1
2F1

(2)5B cos@p~x21!#

1terms in cos@3p~x21!#, ~66!

with k1
25(ps1)2(11ks1)5p2 and

B52m
]a

]t2
1 i

S

«2 a1 iQ0uau2a, ~67!

wherem, S (5Sre1 iSim), andQ0 (5Q11Q21Q3) are de-
fined as

m5212ks1S 11
s1

V D5
2

ps1

dk

ds U
s5s1

, ~68!

Sre52Sim52Aps1

2 S d

s1
2 1

kd rs1
2

V D , ~69!

Q152
p

s1
H g211ks1

2F2~g23!s112~g22!s2

2~g21!s1s22~g21!
s1

2s2

V G J A0 , ~70!

Q25
p

2s1
H g112ks1

2F2S g231
1

s1
2D s112~g22!s2

2~g21!s1s22~g21!
s1

2s2

V G J A2 , ~71!

and
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Q352
3p~g11!

8s1
3 1

pks1

8 H F6~2g23!1
~g23!

s1
2 Gs1

22~g22!S 31
1

s1
2D s2J 1

pks1~g21!

8 H 6~g22!s1
2

1S 31
1

s1
2D s1s223~2g21!s1

31F2S 32
1

s1
2D

124~g22!s21S 31
1

s1
2D s223~2g21!s1

2

212~g21!S 11
s1

V D s1s2G s1
2

V J . ~72!

Here, note that the fractional derivative of minus half-ord
of the exponential function is reduced to the Fres
integral11 and given simply as

]2 1/2

]t0
21/2eips1t05

~12 i !

A2ps1

eips1t05~ ips1!21/2eips1t0.

~73!

The derivative of three-half order is given by2(12 i )
3(ps1)2/A2ps1exp(ips1t0) @5( ips1)3/2exp(ips1t0)#. It is
found from~69! that sincek is small, the friction loss due to
the throat wall becomes comparably small with the one d
to the tube wall. In addition, whenV is chosen large, it is
made even smaller.

The solutionF1
(2) is obtained as

F1
(2)5

B
2p

~x21!sin@p~x21!#1C1 cos@p~x21!#

1C2 sin@p~x21!#1terms in cos@3p~x21!#,

~74!

whereC1 andC2 are integration constants to be determine
By imposing the boundary conditions~63! and ~64!, it fol-
lows that whileC1 , i.e., the coefficient of the homogeneou
solution, is left undetermined within the present framewo
of the theory,12 C2 must vanish, andB5 iE/«2. The latter
gives the equation governing the behavior ofa as

im
]a

]t2
1

S

«2 a1Q0uau2a5
E

«2 . ~75!

Here, we examine the value ofQ0 for a large value ofV.
Noting that s151/(121/V)'111/V1¯ and s251/(1
24/V)'114/V1¯ so that s22s1!1, and k2

254p2@1
1k(s22s1)s1

2#, it is found thatA2 is much larger than the
other terms and thereforeQ2 is dominant inQ0 . Approxi-
matingA2 to be

A 2'
p2~g111k!

~k2
224p2!

, ~76!

Q0 may be evaluated as

Q0'Q2'
p3~g111k!2

2s1~k2
224p2!

.0. ~77!

Thus, it is found thatQ0 is positive forV@1.
1779Sugimoto et al.: Nonlinear frequency response of air column
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We proceed to complete the second-order problem
taking account of all terms including those unspecified so
Although the calculations are straightforward, the full e
pressions forf (2), f (2), g(2) are too complicated to be repro
duced here. By making use of the same approximation le
ing to ~76!, we present here only the leading expressions
the respective modes

F1
(2)'2

i ~g232k!

16ps1
A2 cos@3p~x21!#uau2a, ~78!

F3
(2)'

3ip~g232k!

2s1~k3
22p2!

A2 cos@p~x21!#a3

1
3ip~g111k!

2s1~k3
229p2!

A2 cos@3p~x21!#a3, ~79!

F1
(2)'2

i

ps1

]a

]t2
cos@p~x21!#1

1

2 S 12
1

s1
2DA2

3cos@p~x21!#uau2a2F ~g232k!

16

2
1

2 S 11
1

s1
2D GA2 cos@3p~x21!#uau2a, ~80!

F3
(2)'F9p2~g232k!

2~k3
22p2!

1
1

2 S 11
1

s1
2D GA2 cos@p~x

21!#a31
9p2~g111k!

2~k3
229p2!

A2 cos@3p~x21!#a3,

~81!

G1
(2)'s1F1

(2) , ~82!

G3
(2)'s3F3

(2) , ~83!

with k3
25(3ps1)2(11ks3)Þ9p2 and s35s0

2/(s0
229s1

2),
where the approximation~76! is used, ands1 ands3 in G1

(2)

and G3
(2) are left unapproximated. Here, we assume thatk3

2

Þp2 ands1Þs0/3. Details will be discussed later.

B. Steady-state solution

Let us examine the steady-state solution to~75!. Before
doing this, we transform the equation into a form suitable
comparison with the results of measurements. So far« has
been used conveniently to make a note of ordering in de
oping the asymptotic analysis. From the viewpoint of t
experiment, however, it is not a quantity to be measu
easily, while use ofa is not also suitable for comparison
Because an available quantity is the excess pressure in
tube, we rewrite~75! in terms of the dimensionless exce
pressure relative top0 . In view of ~18!, ~42!, and ~44!, we
set

r0a0u0p̄8

p0
5«g p̄85

1

2
cos@p~x21!#Peips1t1c.c.1¯ ,

~84!

where P52«ga (!1) to the lowest order. Noting tha
]a/]t5«2]a/]t21¯ , and usingP instead ofa, ~75! is
rewritten as
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im
]P

]t
1SP1QuPu2P5GeipDst, ~85!

with Q5Q0/4g2, G52pgs1c, andDs5«2s8.
SettingP5uPuexp(iu) and separating the real and imag

nary parts, it follows that

m
]uPu
]t

1SimuPu5G sinc, ~86!

and

muPu
]c

]t
2pmDsuPu1SreuPu1QuPu35G cosc, ~87!

with c5pDst2u. For the steady-state solution, we dro
]/]t to haveSimuPu5G sinc, u5pDst1constant, and

Ds5
1

pm S Sre1QuPu26A G2

uPu2
2Sim

2 D . ~88!

It is found thatuPu is bounded atG/Sim . This suggests tha
the peak amplitude is proportional to the magnitude of ex
tation G, i.e., c. It is also found that the peak frequency
shifted downward by the dispersion due to the wall fricti
while shifted upward by nonlinearity, becauseSre,0 and
Q.0 for V@1. If G!1 so that uPu!1, we can neglect
QuPu2P in ~85! to have immediately the steady-state soluti
as

P5
GeipDst

S2pmDs
. ~89!

Thus, we obtain the linear resonance curve given by

uPu5
G

A~pmDs2Sre!21Sim
2

, ~90!

which is consistent with~88! in the limit asP→0.
Incidentally, ~90! can also be derived from the linea

theory shown previously.4 When the lossy effects are in
cluded, the form ofp8 in ~36! is unaltered butk2 is modified
as

k25p2s2H 11ks0
2/@s0

22s22~12 i !d rs
2/A2ps#

12~12 i !d/A2ps
J .

~91!

See the expression fork below ~4! in Ref. 4. But, note the
difference in the sign of argument of the exponential funct
for the piston displacement. This difference yields2 i in-
stead of1 i . Expanding the right-hand side of~91! around
s5s0 by settings5s11Ds, we retain the lossless term
up to the order ofDs but truncate the lossy terms to th
lowest order. Thus,k is obtained asp1(pmDs2S)s1/2.
Next, noting that a in ~44! corresponds to
(p2s2/k sink)c/2«, we approximatek sink as 2p(k2p)
and take the lowest terms fora to recover~90! after multi-
plying it by 2«g in the relation betweena andP.
Sugimoto et al.: Nonlinear frequency response of air column
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V. DISCUSSION OF THE RESULTS

A. Nonlinear frequency response

The nonlinear frequency response in the steady sta
described by~88! theoretically. The peak amplitudePpeak

attained in the response curve is determined to beG/Sim by
the linear loss, while the peak frequency atP5Ppeak is low-
ered byDs5Sre /pm due to the dispersive effects of th
boundary layer. This result is merely an extension of
linear case. Although the linear downshift is constant,
shift dependent on the amplitude occurs throughQuPu2P,
which is responsible for bending~skew! of the response
curve toward the higher or lower frequency side. We exa
ine variations ofQ ass0 is changed withk fixed. This cor-
responds physically to changing cavity volume and ax
spacing, with the tube length, its cross-sectional area, and
throat length held constant.

From ~70!–~72! with ~51! and~52!, it is expected thatQ
may diverge at~i! us1u5`; ~ii ! us2u5`; ~iii ! k2

250; or ~iv!
k2

254p2. The first case~i! where s15s0 does not occur
unlessk50 or s050, as is seen from Fig. 2~a! or ~37!. The
second case~ii ! with 2s15s0 may occur if the frequency o
the second harmonics hitss0 , wherebys0 andk must sat-
isfy the relations05A12/(314k). But, because of evanes
cence ats0 , no divergence ofQ occurs there. In fact, it is
confirmed that all terms proportional tos2 in Q cancel out
altogether. The third case~iii ! corresponds to the one wit
2s15A11ks0 for resonance, and indeed occurs whens0

andk satisfy the following relation:

s05A 4~32k!

3~11k!2[scr,2. ~92!

The fourth case~iv! corresponds to the second harmon
resonance when 2s1 hits 2s6. But this case does not occu
becauses1Þ0 nor s1Þ1. Besides the third case,Q di-
verges in the limit ass0→0. This divergence is very rapid a
2p(g21)(2g11)/32g2k3s0

7. In addition, we have as
sumed for the second-order solutions thatk3

2Þp2 or s1

Þs0/3. The equalityk3
25p2 holds for s15As0/3, where

s05(56A1629k)/3(11k). The equalitys15s0/3 holds
for s05A72/(819k). Although these cases have no dire
bearing on~85!, they should be avoided in the sense of se
ing uniformly valid, asymptotic solutions.

Taking account of such exceptional cases,Q is drawn
versuss0 in Fig. 3~a! for three fixed values ofk. The broken,
solid, and dotted lines represent the values ofQ for k
50.1, 0.2, and 0.3, respectively. As is seen,Q takes both
positive and negative values. This means that the resp
curve may be bent rightward or leftward, depending on
choice ofs0 . While Q diverges ats05scr and ats050, it
grows ass0 increases. In this limit, the asymptotic expre
sion ~77! for Q0 is already available so thatQ is approxi-
mated as

Q5
Q0

4g2 'Qa5
p3~g111k!2

8g2s1~k2
224p2!

. ~93!

Figure 3~b! shows the relative erroru(Q2Qa)/Qu for three
values ofk50.1, 0.2, and 0.3 by using the same types
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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lines as in Fig. 3~a!. It is found thatQa agrees withQ very
well for s.2 and the relative errors are almost less than 1
Even belowscr , there is a region in whichQa still gives a
good approximation toQ.

The other parametersm andS are relatively simple. Fig-
ure 4 displays the graphs ofm and Sim versuss0 for k
50.1, 0.2, and 0.3, where the meaning ofD will be given
later. Three families of curves labeledm, Sim , and D are
drawn. In each family, the broken, solid, and dotted lin
represent the values of labeled quantity fork50.1, 0.2, and
0.3, respectively. In order to draw the graphs ofSim , the
values ofd andd r are set to be 0.0282 and 0.223 in view
the experiment to be decribed in the next subsection.
value of d r is a little larger than the estimation. It is foun
that all quantities decrease ass0 increases, but they are a
most constant fors.2, and they decrease ask becomes
smaller.

B. Comparison with the experimental result

We now compare the frequency response with the
measured by using the tube of lengthl (53256 mm) and of
diameter 2R (580 mm) with the Helmholtz resonator hav
ing a cavity of volumeV (549.731026 m3), and a throat of
lengthL (535.6 mm) and of diameter 2r (57.11 mm) con-

FIG. 3. Graphs of the coefficientQ versuss0 with k fixed at 0.1, 0.2 and
0.3: ~a! displays the values ofQ where the respective values diverge ats0

5scr'1.79, 1.61, and 1.46 and ats050, and ~b! displays the relative
errorsu(Q2Qa)/Qu of the asymptotic valuesQa to Q for the three values of
k.
1781Sugimoto et al.: Nonlinear frequency response of air column
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nected with the axial spacingd (550 mm). The size param

eterk takes the value 0.198. Figure 5 is the reproduction
the frequency response reported in Ref. 4~see Fig. 4!, where
the half of the peak-to-peak value of the excess pres
measured on the flat plate at the closed end,dp, relative to
the atmospheric pressurep0 is drawn versus the frequency o
excitation v/2p. The blank triangle, solid triangle, blan
circle, and solid circle indicate the data measured at the
placement amplitude of the bellowsXb50.5, 1.5, 2.5, and
3.5 mm, respectively. The equilibrium pressure and the m
temperature in the tube near the closed end are 1
3105 Pa and 25.6 °C, respectively, soa05347.1 m/s, n
51.56731025 m2/s, Pr50.7089, andg51.402. At this
temperature, the natural frequency of the resonatorv0/2p is
calculated to be 242.6 Hz with the end corrections. Thus,
find thats054.55 ands150.911.

Since k50.198 ands054.55 for the experiment, we
havem52.43, Q515.2, 2Sre5Sim50.0430. In Fig. 5, the

FIG. 4. Graphs of the coefficientsm, Sim , andD vs s0 for k50.1, 0.2, and
0.3.

FIG. 5. Comparison of the nonlinear frequency response obtained by
theory and experiment for the displacement amplitude of the bellowsXb

>0.5 mm, where the broken and solid lines represent, respectively,
curves without taking account of the jet loss and with it, while the measu
data are indicated by the blank triangle, solid triangle, blank circle, and s
circle for Xb50.5, 1.5, 2.5, and 3.5 mm, respectively,Xb being related to the
one of the piston byXp51.422Xb .
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broken lines representuPu versus the dimensional frequenc
(s11Ds)a0/2l by using~88!. The displacement of the bel
lows is converted into the one of the piston by multiplying
with a factor 1.422,4 so thatG is given by 2pgs1Xp / l with
Xp51.422Xb . The theory overestimates not only the pe
amplitudes but also the peak frequencies considerably, e
for Xb50.5 mm. When higher-order corrections top8 in uPu
on the right-hand side of~84! are taken into account, it is
found that the deviation becomes worse. This is underst
from the nature of asymptotic expansions that inclusion
higher-order terms does not necessarily improve the ac
racy. Rather, the smallness ofuPu is required. Hence, it turns
out that the theory based on~88! fails to describe the experi
mental results adequately.

So, the experimental data forXb smaller than 0.5 mm
are presented, though unpublished so far. Figure 6 shows
frequency response where the blank square, solid squ
blank triangle, and solid triangle indicate the data measu
at Xb50.1, 0.2, 0.3, and 0.4 mm, respectively, and the eq
librium pressure and the mean temperature are 1.
3105 Pa and 23.1 °C, respectively. As in Fig. 5, the brok
lines representuPu versus the dimensional frequency calc
lated by ~88! wherea05345.6 m/s,n51.53931025 m2/s,
Pr50.7095, andg51.402. Whilev0/2p is now shifted to
be 241.3 Hz, note that boths0 ands1 are independent ofa0

and therefore of the temperature. It is seen in Fig. 6 tha
Xb is decreased, the broken lines tend to approach the
measured. But, the theory overestimates the peak ampli
slightly even for the smallest excitation withXb50.1 mm.

C. Effect of jet loss

The discrepancy may be attributed to some effects
taken into account in the analysis. One is an effect of jet l
which occurs at the throat of the resonator. As the amplitu
of oscillatory flows in the throat becomes large, the flo
pattern~except for direction of flow! just entering the throa

he

he
d
id

FIG. 6. Comparison of the nonlinear frequency response obtained by
theory and experiment for the displacement amplitude of the bellowsXb

,0.5 mm, where the broken and solid lines represent, respectively,
curves without taking account of the jet loss and with it, while the measu
data are indicated by the blank square, solid square, blank triangle, and
triangle forXb50.1, 0.2, 0.3, and 0.4 mm, respectively,Xb being related to
the one of the piston byXp51.422Xb .
Sugimoto et al.: Nonlinear frequency response of air column



he
n
s
n
n

r.

-
r

he

ve

e

t.
t it
pen-
h
be

he

is

t

d

are
m,
the

ter-
e. If
fre-
de
he
differs from the one leaving the throat~see Fig. 1!. When the
air is sucked into the throat, it flows toward the orifice om
nidirectionally, whereas when it is ejected, it flows in t
form of jet unidirectionally. This asymmetry of flow patter
on the suction and ejection sides gives rise to the jet lo
The detailed analysis is given in the Appendix of Ref. 10 a
is not reproduced here. The jet loss introduces the additio
term

2
V

r0a0
2BLe

U]pc8

]t
U ]pc8

]t
, ~94!

to the right-hand side of~9! for the behavior of the resonato
Then, the normalized equation~24! is modified into

]2p̄c8

] t̄ 2
1d r

]3/2p̄c8

] t̄ 3/2
1~ps0!2p̄c8

5~ps0!2p̄81«
~g21!

2

]2p̄c8
2

] t̄ 2

2«2
~g21!~2g21!

6

]2p̄c8
3

] t̄ 2
2«dJU] p̄c8

] t̄
U ] p̄c8

] t̄
, ~95!

wheredJ5V/BLe5( l /ps0Le)
2. Since the new term is ac

companied by«, it yields additional terms in the first-orde
solution. In fact, it follows that

U]g(0)

]t0
U ]g(0)

]t0
524~ps1s1!2~ usinjusinj!$ucos@p~x21!#u

3cos@p~x21!#%uau2, ~96!

with a5uaueiu andj5ps1t01u. Using the following Fou-
rier expansions:

usinjusinj52
2i

p (
n52`

`
@~21!n21#

n~n224!
einj

52
4i

3p
ei j1

4i

15p
e3i j1¯1c.c., ~97!

and

ucos@p~x21!#ucos@p~x21!#

52
4

p (
n52`

`
sin~np/2!

n~n224!
einh

5
8

3p
cos@p~x21!#1

8

15p
cos 3@p~x21!#1¯ , ~98!

with px5h and the sums taken except forn50 and n
562, there arises in~46! the term proportional to cos@p(x
21)#exp(ips1t0)uaua. Note that although cos@p(x21)# is de-
fined only in the interval 0<x<1 originally, it is extended
periodically to the outside of it with period 2 and so is t
case with ucos@p(x21)#u. Thus, the solution~49! must in-
clude the componentF1

(1)exp(ips1t0). As is inferred from
the analysis for the second-order problem, this term gi
rise to the equation forF1

(1) corresponding to~66! with B
proportional touaua. Applying the boundary conditions~48!,
J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
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it follows that a must vanish. To remedy this, it may b
considered to introduce another time variablet1([«t). But,
asDs andE are assumed to be of order«2, the introduction
of t1 is inconsistent.

To resolve the dilemma, we notice the following poin
The parameterk takes a small value such as 0.1 or 0.2, bu
has been regarded as a quantity of order unity and inde
dent of«. As the magnitude of« becomes comparable wit
the value ofk, however, the smallness of the latter may
taken into account. Ifk is taken as small as«, the contribu-
tion from the jet loss had rather be incorporated in t
second-order problem. Then,B in ~67! includes the addi-
tional term given by

2
128kdJs1

3s1
3

9p«s0
2 uaua, ~99!

and ~75! is replaced by

im
]a

]t2
1

S

«2 a1 i
D0

«
uaua1Q0uau2a5s1

E

«2 , ~100!

with D05128kdJs1
3s1

3/9ps0
2. In terms ofP, finally, ~85! is

modified as

im
]P

]t
1SP1 iD uPuP1QuPu2P5GeipDst, ~101!

with

D5
64kdJs1s1

3

9pgV
. ~102!

In Fig. 4, the graph ofD vs s0 is displayed fork50.1, 0.2,
and 0.3.

Separating the real and imaginary parts of~101! by set-
ting P5uPuexp(iu), the only correction to~86! and~87! is to
replaceSim with Sim1DuPu. Then, the frequency response
given by

Ds5
1

pm FSre1QuPu26A G2

uPu2 2~Sim1DuPu!2G .
~103!

It is found that the jet loss addsDuPu to the linear oneSim ,
and then the peak amplitude is determined as

Ppeak5
1

2D
~2Sim1ASim

2 14DG!. ~104!

For G!Sim
2 /4D, Ppeak is given by G/Sim , whereas forG

@Sim
2 /4D, Ppeak is given byAG/D. The latter suggests tha

the peak amplitude does not increase in proportion toG as in
the linear regime but toAG. The changeover may be define
to occur atG5Sim

2 /4D[Gch , which givesGch50.0012 for
D50.398. This corresponds to 0.34 mm forXb .

The response curves taking account of the jet loss
drawn in the solid lines in Fig. 5. For the amplitude 0.5 m
good agreement is observed for the peak amplitude but
peak frequency is slightly overestimated. The latter is de
mined by the accuracy of measurement of the temperatur
the temperature is higher by 1 degree, then the peak
quency is shifted by 0.09 Hz to the right. For the amplitu
smaller than 0.5 mm, the solid lines in Fig. 6 shows t
1783Sugimoto et al.: Nonlinear frequency response of air column
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response curves with the jet loss. In this case, the peak
quencies are well predicted. Although the peak amplitu
are overestimated slightly, it is found that account of the
loss iproves the results considerably.

As the amplitude increases beyond 0.5 mm, howe
there arises significant discrepancy. It may be attributed
the following two points. Although the frequency of the se
ond harmonics never hitss2

2, the ratios2
2/s1 is 1.98 and

very close to 2 numerically. Even if no shock then occu
this situation is not preferable to the theory. Secondly,
frequency of the fifth harmonics, 5s1, hits s0 for evanes-
cence in the present case. Then the energy absorption a
fifth harmonics is enhanced so that the theory might be l
ited. Furthermore if causes of the discrepancy are sou
beyond the present framework, it is open whether or not
weakly nonlinear theory is still applicable. In addition, a
other effect of transverse motions of air in the cross-sec
might come into play, associated with emergence of acou
streaming. To make a firm conclusion, however, it is nec
sary to check validity of the theory against new experime
by using tubes in geometrically different configuration taki
account of some restrictions.

VI. CONCLUSIONS

The weakly nonlinear theory has been developed to
tain the frequency response of forced oscillations of the
column in the closed tube with the array of Helmholtz res
nators connected axially. Since the array introduces the w
dispersion, shock-free, high-amplitude oscillations are
tainable, and for their analysis, the usual asymptotic met
of multiple is successfully applicable. The analysis is ba
on the assumptions of one-dimensional motions in the ac
tic main flow outside of the boundary layer on the tube wa
and of the continuum approximation of the discrete distrib
tion of the resonators. Thus, no acoustic streaming involv
transverse motions of air in the cross section is covered,
the steady but axially nonuniform pressure distribution
quadratic order is revealed. By completing the second-o
problem, the cubic nonlinear equation describing tempo
slow modulation of the complex pressure amplitude of
lowest mode has been derived.

In the linear regime, as is well known, the small dis
pation and dispersion caused by the boundary layer on
tube and throat wall limit the peak amplitude and lower t
peak frequency. As the amplitude of excitation is increas
the nonlinear frequency shift occurs, depending on the
plitude of oscillations and on the natural frequency of t
resonator. The shift is crucially determined by the coeffici
Q in the equation. It takes positive or negative values so
the response curve may be bent toward the high- or l
frequency side. But, it is usual thatQ is positive and the
response curve is bent toward the high-frequency side,
cause the natural frequency of resonator is chosen hi
1784 J. Acoust. Soc. Am., Vol. 114, No. 4, Pt. 1, October 2003
e-
s
t

r,
to
-

,
e

the
-
ht
e

n
tic
s-
s

-
ir
-
ve
-
d
d
s-
,
-
g
ut
f
er
al
e

he

d,
-

t
at
-

e-
er

than the critical frequencyscr . When the theoretical curve i
compared with the experiment, it is revealed that both res
do not agree with each other quantitatively, although qu
tatively the tendency of the bent may be explained. In p
ticular, the theory overestimates the peak amplitude con
erably.

The discrepancy has been resolved to some exten
taking account of the jet loss at the throat. It introduces
additional nonlinear dissipation to the linear one so that
peak amplitude is suppressed as the amplitude beco
large. It is found that the peak amplitude then becomes p
portional to the square root of the amplitude of excitation.
far as the present experiment is concerned, the linear
weakly nonlinear theory with the jet loss can give a quan
tative description up to the pressure amplitude 3% to
equilibrium pressure. In order to design a tube for genera
of even higher peak amplitude, the results in the pres
paper provide useful guidelines.
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