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Abstract:  Methods of numerical integration of sampled data are compared 
in terms of their frequency responses and resolving power. Compared, 
theoretically and by numerical experiments, are trapezoidal, Simpson, 
Simpson-3/8 methods, method based on cubic spline data interpolation and 
Discrete Fourier Transform (DFT) based method. Boundary effects 
associated with DFT- based and spline-based methods are investigated and 
an improved Discrete Cosine Transform based method is suggested and 
shown to be superior to all other methods both in terms of approximation to 
the ideal continuous integrator and of the level of the boundary effects.     
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1. Introduction 

Numerical integration has numerous applications in several optical fields as the wave-front 
reconstruction from wave-front slope measurements [1-4]. It has found important optical 
applications such as, for example, shearing interferometry. Recently, a new wave-front 
reconstruction method based on the Discrete Fourier transform useful for this interferometric 
technique is presented in [5].  In [6] Roddier et. al presented a novel wave-front reconstruction 
algorithm using an iterative Fourier transforms. Many of these algorithms are applied in the 
Sachk-Hartmann test as, for example, the generalized algorithm presented in [7]. Yet another 
application of the numerical integration is the optical surfaces determination by laser 
deflectometry. This technique is based on the measure of the deviation suffered by the 
incident light in a test surface [8]. This deviation contains the slope data information of the 
profile of the test surface. For this purpose, we begin investigating a one-dimensional 
integration operation [9, 10].  

While carrying out numerical computation with sampled data one should realize that 
sampled data represent, with certain accuracy, data that are originally continuous functions 
and those numerical algorithms approximate certain continuous transformation of those 
functions. Consequently, results of the computation should be evaluated with respect to that 
continuous transformation. In other words, given computational algorithm applied to sampled 
data, one should find out to what continuous transformation of continuous functions that are 
represented by the sampled data this algorithm corresponds. In this paper, we address this 
problem for the case of numerical integration of functions using sampled representation of 
their derivatives.  

Integration of functions can be regarded as a convolution of the functions with a 
corresponding integration kernel, or point spread function.  Different numerical integration 
algorithms will correspond to different approximations of the ideal integration point spread 
function. In particular, they will differ in terms of their resolving power, that is, of their 
capability to resolve between two close sharp peaks in the functions.  

Thanks to the convolution theorem for Fourier Transform, convolution integral can be 
treated in Fourier transform domain as a product of Fourier spectrum of the function and of 
that of the convolution kernel called convolution frequency transfer function, or frequency 
response. On account of that, one can also characterize numerical integration algorithms in 
terms of the accuracy of approximating the ideal integration frequency response.    

The purpose of the paper is to investigate, theoretically and by numerical simulation, 
frequency responses and resolving power of several numerical integration algorithms. 
Specifically, we investigate trapezoidal integration formula, two modifications of Simpson 
formula, integration using cubic splines and two integration methods by ‘1/f-filtering’ in the 
domain of Discrete Fourier Transform that, in a certain sense, approximate frequency 
response of the ideal integration most closely.  We will also show limitations imposed to the 
integration accuracy by the finiteness of the number of available function samples and by 
methods of treating boundary effects in the numerical integration. 

In Sect.2 we present and compare analytical formulas for frequency responses of 
continuous integration and its different numerical approximations, including the method of 
integration in the domain of Discrete Fourier Transform (DFT) using Fast Fourier Transform 
algorithm. The latter being the best approximation to the ideal continuous integrator in terms 
of its frequency response, heavily suffers from boundary effects due to finiteness of the 
number of signal samples. Therefore in Sect. 3 we introduce an improved modification of this 
method   that works in the domain of Discrete Cosine Transform and is much less vulnerable 
to the boundary effects. The analytical treatment is supported by experimental results of 
comparison of the methods presented in Sect. 4.  In Sect. 4.1 we compare the integration 
accuracy provided by different numerical algorithms for integration of sinusoidal functions 
with integer number of periods in sampled data, the case of periodic signals, when no 
boundary effects are observed for the DFT based method.  In Sect. 4.2 we investigate 
boundary effects for aperiodic signals of DFT and DCT based numerical integration 
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algorithms and show that the latter provides results with substantially lower boundary effects. 
In Sect. 4.3 we present results on numerical comparison of resolving power of different 
integration algorithms. In Conclusion, we summarize the results. The paper contains also two 
appendices. As we compare numerical integration methods and ideal continuous integrator in 
terms of their frequency responses, we prove, in Appendix 1, that discrete frequency 
responses of the numerical integrators are samples of frequency responses of the 
corresponding continuous integration filters. In Appendix 2 we show how DCT based 
integration method can be efficiently implemented using fast Discrete Cosine Transform 
algorithms.  

2. Continuous and numerical integrators and their frequency responses 

Digital signal integrating is an operation that assumes interpolation of sampled data. Similarly 
to signal differentiating, signal integrating operates with infinitesimal signal increments. It can 
also be treated as signal convolution. In the Fourier transform domain, it is described as  
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is the integrating filter frequency response. 
In digital processing, integrating filtering described by Eq. (1) can be implemented in the 

domain of Discrete Fourier Transform (DFT) as: 
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where { }ka , 1,...,1,0 −= Nk  is a set of N samples of the input signal to be integrated, 

{}.DFT  and {}.IDFT  are operators of direct and inverse Discrete Fourier Transforms, sign 
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for even N  and 
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for odd N [11], where h is the signal sampling interval.  Note that digital signal integrating 
according to Eq. (3) automatically implies signal discrete sinc-interpolation [11]. We will 
refer to this integration method as DFT-based method.  

A number of numerical integration methods have been described in the literature. Most 
known numerical integration methods are the Newton-Cotes quadrature rules ([11], [12] and 
[13]). The three first rules are the trapezoidal, the Simpson and the 3/8 Simpson ones. In all 
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the methods, the value of the integral in the first point is not defined because it affects to the 
result constant bias and should be arbitrarily chosen. When it is chosen to be equal to zero, the 
trapezoidal rule is: 
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.         (5) 

In the Simpson rule, the second point needs to be evaluated by the trapezoidal rule, then 
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In the 3/8-Simpson rule, the second and the third points need to be evaluated by the 
trapezoidal rule and the Simpson rule respectively. Then 
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In these integration methods, a linear, a quadratic, and a cubic interpolation, respectively, are 
assumed between the sampled slope data. In the cubic spline interpolation, a cubic polynomial 
is evaluated between every couple of points [13], and then, an analytical integration of these 
polynomials is performed.  

As it is shown in Appendix, discrete frequency response of the digital filter (Discrete 
Fourier Transform coefficients of its point spread function) are samples of the equivalent 
continuous filter frequency response. Given signal sampling and reconstruction devices, 
frequency response of the continuous filter that corresponds to a digital filter is fully 
determined by the discrete frequency response of the digital filter. Therefore, we will compare 
the numerical integration methods in terms of their discrete frequency responses. Discrete 
point spread functions for trapezoidal, Simpson and 3/8 Simpson’s integrators are determined 
from Eqs. (5)-(7) as follows: 
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Discrete point spread function for the method based on cubic spline interpolation of the input 
data information can be found as follows:    
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where the coefficients are determined by the system of linear equations:  
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Taking N point Discrete Fourier Transform of these expressions (Eqs. (8)-(12)) we obtain 
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Therefore the frequency responses of these integrators are, respectively: 
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In Fig. 1, absolute values of the frequency responses of the DFT based method of 

integration (Eq. (4)) and of the Newton-Cotes rules and cubic spline method (Eqs. (17)-(20)) 
are represented with a frequency coordinate normalized to its maximal value. Because the 
absolute values of discrete frequency responses are symmetric, only half of the curves are 
shown.  
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Fig 1. Comparison of frequency responses of trapezoidal, Simpson, 3/8 Simpson, Cubic Splines 
and Fourier methods of integrations 
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DFT method frequency response coefficients are, by the definition, samples of the ideal 
“1/f” frequency response of the continuous integrator. Therefore, with respect to 
approximation of the ideal frequency response, it can be regarded as a “gold standard”. As it 
can be appreciated in the figure, frequency responses of all methods are similar in the low 
frequency region, and the Newton-Cotes rules and cubic spline method began to deviate from 
the ideal one in the medium and high frequency zones. The Simpson and 3/8 Simpson rules 
exhibit large deviations and even poles (the frequency response tends to infinity) at the 
highest frequency and at 2/3 of the maximal frequency, respectively. The cubic spline based 
method is the closest to the “gold standard” DFT-method.  

3. DCT based integrator 

Although DFT-based integration (FI) method is the closest approximation to the continuous 
integrator, this method suffers from boundary effects since it implements cyclic convolution 
rather than shift-invariant convolution.  Boundary effects exhibit themselves in form of 
oscillations around signal discontinuities that may occur between samples at the beginning 
and the end of the available signal realization. One can substantially decrease influence of 
boundary effects by means of signal extension to double length with its “mirror reflected” 
copy according to the equation: 
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         (21) 
Such an extended signal { }ka , by the definition, has no discontinuities at its ends and in the 
middle and can be used in the DFT based integration method instead of the initial signal.  
Frequency response of the integration filter in this case is defined by Eq. (4a), in which the 

number of samples N  should be replaced by N2 . The value of ( )int
Nη  is inessential as N-th 

DFT spectral coefficient of symmetrical signals such as { }ka~  is equal to zero (see Appendix 
2, Eq. (A2-4)).  

Note, that in this case of the doubled signal length the degree of approximation of the 
ideal “1/f “ frequency response of the continuous integrator is even better than that for the 
above DFT based method because the doubling of the number of signal samples results in two 
times more dense grid of samples of the frequency response. 

The doubling of the number of signal samples in this implementation of the DFT based 
method does not necessarily doubles the computational complexity of computation. As it is 
shown in Appendix 2, 2N- DFT convolution of signals obtained by mirror reflection extension 
can be carried out using fast algorithms of Discrete Cosine Transform and of associated with 
it Discrete Cosine/Sine Transform for signals of N samples. We will refer to this modified 
DFT based integration method as “extended”, or DCT-based method. 

4. Experimental comparison 

In this section we present results of experimental comparison of the methods. First, we will 
compare accuracy provided by different numerical integration algorithms for integrating 
sinusoidal signals with integer number of periods in sampled data that, due to the periodicity 
do not present any discontinuity at signal borders and therefore are free of boundary effects. 
Then we investigate boundary effects for two modifications of the DFT-method, regular one 
that uses N-point DFT, and the DCT based method that assumes even extension of the input 
data to double length and show that the latter substantially reduces integration boundary 
effects. Finally, we provide results on numerical comparison of resolving power of different 
integration algorithms.  

4.1 Integration of periodic sinusoidal signals  

In these experiments, sinusoidal signals and their derivatives are generated as, 
correspondingly:  
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where N is the number of signal samples, p is the frequency parameter of  the sinusoidal 
signal, the normalized frequency is given by 2p/N; randphase corresponds to an initial 
random phase and x represents the domain of the signal ( Nx ≤≤0 ). The frequencies are 
selected to have an integer number of periods in the signal length. Different integration 
methods are applied to the derivatives. Then, the obtained functions were compared with the 
analytically generated signal by estimating the integration root mean square error as  
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where ( )kfi  is the obtained function with the numerical integration and ( )kf0  is the 
analytical function of Eq. (22). In the experiments, pseudo-random phase data were generated 
using pseudo-random number generator and the error was averaged over 1000 realizations. 
In figures 2(a) and 2(b) we represent the average integration error for each of studied 
integration methods as a function of Np2 , the normalized frequency of the sinusoidal 
signal. In these experiments, signals were evaluated in N = 256 samples. From figures 2, one 
can see that all methods give similarly low error for low frequencies. When the frequency of 
the sinusoidal signal is increased, the different integration methods exhibit different 
behaviour; for example, for a frequency equals to 2/3 of the maximum frequency, the 3/8 
Simpson method gives very high error. A similar behaviour occurs for the Simpson method 
when the frequency is near to the signal maximal frequency defined by the sampling rate.  
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Fig. 2. Integration error of periodic sinusoidal signals as a function of the normalized 
frequency: (a) for all methods; (b) only for DFT-based, trapezoidal and cubic spline methods  

Figures 2(a), and (b), show that the trapezoidal method and the method based on the cubic 
spline interpolation give similar errors in all frequencies, lower for the cubic spline based 
method. The error produced by the Fourier integration method for considered periodic signals 
is defined only by computation round-off errors. Obviously, all these results are in agreement 
with the behaviour of the frequency responses of the methods shown in figure 1. 

4.2 Aperiodic signals and boundary effects 

In order to study the boundary effects for the best methods (DFT-based method (FI), DCT-
based method (Extended method) and method based in the interpolation of the slope data by 
cubic splines (CSI)) another numerical experiment was carried out with sinusoidal signals of a 
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non -integer number of periods. The number of periods is given by the parameter p in Eq. 
(22). For different integer frequencies intp , sinusoidal signals were generated with 

parameter nspp /int += , ns ,...,0=  with values equally spaced in the interval 1, intint +pp . 

For each intp , the error was evaluated in every signal sample k  as 
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where ( ){ }kf p
i

 are samples of the numerically integrated function for each frequency and 

( ){ }kf p
0   are corresponding samples of the analytical signal. 

Figure 3(a) shows obtained experimental results for the error for the three methods and 
the signal normalized frequency ν = 0.273 (corresponding to relatively low frequencies). The 
number of signal samples N was 256 and the number of divisions of the frequency interval n 
was 20. From the figure one can see that the boundary effects are more severe for FI method 
than for the CSI method. DCT-based (Extended) method shows errors that are very close 
though slightly larger then those for the cubic spline method. In the figure we can appreciate 
that the boundary effects practically disappear after 10-th signal sample.   

The sample-wise integration error obtained for signal frequency increased to ν = 0.547 
(medium frequency) is shown in Fig. 3(b). In this case the boundary effect error for DFT-
based and spline methods are similar while the error for DCT-based (Extended) method is 
substantially lower. These boundary effects also last only approximately first 10 samples. By 
comparing these errors with those for the low frequency region we can see that the boundary 
errors in the first 10 samples increased for all methods and that for DCT-based (Extended) 
method they are the lowest. In the stationary region (beyond the first 10 samples), the error for 
the CSI method turned to be higher than that for both DFT-based (FI) and DCT-based 
methods and is in agreement with figures 1 and 2. 

For higher initial high frequency, ν = 0.820, the error produced by the three studied 
methods is shown in Fig. 3(c). From the figure, we see that the errors produced by the CSI 
method are much higher than those obtained with both DFT and DCT-based methods. In the 
CSI method, the stationary errors predominate over those due to boundary effects. We can 
also see that, for the DFT-based (FI) and DCT-based methods, boundary effects last same 10 
first samples and that their values are higher than in the low and medium frequency regions.     

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10
Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline

Reflected Method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline

Reflected Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10
Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline

Reflected Method

(a) (b) (c)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10
Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline

Reflected Method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline

Reflected Method

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10
Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline

Reflected Method

(a) (b) (c)

 
Fig. 3. Experimentally obtained integration error versus sample k for DFT-based (FI) method 
(black) CSI method (red) and DCT-based (Extended) method (blue). Normalized initial 
frequency: (a) ν = 0.273. (b) ν = 0.547 and (c) ν = 0.820 

 
Finally, in order to check, how boundary effects depend on the number N of samples 

where the signal and its derivative are evaluated, we repeat the previous numerical experiment 
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for different signal lengths.  Figure 4 shows the error obtained in the first 10 samples for the 
number of the samples N = 256, 512 and 1024. The initial normalized frequency in this 
experiment was ν = 0.547. From the figure, one can conclude that the boundary errors are 
similar in all the cases and they do not last more than about 10 samples independently of the 
number of pixels, or about 10 sampling intervals.   

  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline
Reflected Method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel
In

te
g

ra
ti

o
n

 E
rr

o
r

Fourier
Cubic Spline
Reflected Method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier
Cubic Spline
Reflected Method

(a) (b) (c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier

Cubic Spline
Reflected Method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel
In

te
g

ra
ti

o
n

 E
rr

o
r

Fourier
Cubic Spline
Reflected Method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2 4 6 8 10Pixel

In
te

g
ra

ti
o

n
 E

rr
o

r

Fourier
Cubic Spline
Reflected Method

(a) (b) (c)

 
Fig. 4. Average error evaluated in the 10 first samples of the domain for the same initial 
normalized frequency (p = 0.547) but different N: (a) N = 256, (b) N = 512, (c) N = 1024. The 
black curve corresponds to Fourier integration method, the blue one to the DCT- based method 
and the red one to the cubic spline based method.  

4.3 Resolving power of integrators 
Resolving power of integrators characterizes their capability to resolve between close sharp 
impulses in the integrated data. It is fully defined by the integrator frequency responses. 
However, it is much more straightforward to compare the resolving power for different 
integrators directly in signal domain.  Figure 5 illustrates results of numerical evaluation of 
the capabilities of three types of integrators, trapezoidal, cubic spline and DFT-based ones, to 
reproduce two sharp impulses placed on the distance of one sample one from another for the 
case when the second impulse is half height of the first impulse. The signals are 8 times sub-
sampled to imitate the corresponding continuous signals at the integrator output. 

The figure clearly shows that the tested integrators differ in their resolving power. DFT-
based integrator produces the sharpest peaks with the lowest valley between the peaks while 
cubic spline integrators and trapezoidal integrators exhibit poorer behavior. In particular, the 
latter seems to be incapable of reliable resolving the half height impulse against oscillations 
seen in the sub-sampled signal.  
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Fig. 5. Theoretical Profile(a) and Integrated Profiles with Trapezoidal Rule (b),  Cubic Spline 
method (c), and DFT- Method (d). All are shown subsampled. 

5. Conclusion 

We presented results of analytical and experimental comparison of frequency responses and 
resolving power of five methods for numerical integration of sampled data: trapezoidal 
method, Simpson method, Simpson-3/8 method, cubic spline method and DFT-based method. 
We have shown that DFT based method provides the best numerical approximation to the 
ideal continuous integrator and outperforms other integrators in terms of the resolving power, 
although it is vulnerable to boundary effects due to the fact that it implements signal cyclic 
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convolution rather than regular shift invariant convolution.  We suggested a modification of 
this method, a DCT-based one that assumes signal extension by “mirror reflection” on its 
boundaries and that can be efficiently implemented using Fast DCT and DcST transforms. We 
have shown that the DCT-based method, being even slightly better than the DFT-based 
method in terms of approximation of the ideal continuous integrator, is also substantially more 
robust to boundary effects. We also have shown that boundary effect errors for both methods 
do not propagate more than to about 10 first and last signal samples, or about 10 sampling 
intervals.  
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Appendix 1. Discrete representation of convolution integrals and point spread function 
and frequency response of digital filtering                     

The convolution integral of a signal ( )xa  with shift invariant kernel ( )xh  (point spread 
function, PSF):  

( ) ( ) ( )∫
∞

∞−

−= ξξξ dxhaxb

.         (A1-1) 
is numerically evaluated in computers using samples { }ka  of signal ( )xa  as 

∑
−

=
−=

1

0

hN

n
nknk ahb

           (A1-2) 
This operation is commonly called digital filtering and the set of hN weight coefficients { }nh  
is called point spread function of the digital filter. Let us consider the correspondence between 
digital filter of Eq. (A1-2) and convolution integral of Eq. (A1-1) by finding the point spread 
function ( )xh  of a continuous filter that corresponds to a given set of digital filter 

coefficients{ }nh . Results { }kb  of computations according to Eq. (A1-2) are regarded as 

samples of a continuous signal ( )xb   that can be generated from the set of samples { }kb  as  

( ) ( ) ( )∑
−

=

∆−=
1

0

~bN

k

r
k xkxbxb ϕ

,         (A1-3) 

where ( ) ( ){ }⋅rϕ  is a set of interpolation functions that, by convention, reconstruct signal ( )xb  

from samples { }kb  with certain admitted accuracy, ( )rukk +=~ , ( )ru  is a position shift (in 

units of the sampling interval x∆ ) of sample 0b  on the reconstruction device with respect to 

the origin of signal ( )xb  coordinate system, hN  is the number of samples { }kb  used for the 

reconstruction. By representing in Eq. (A1-3) samples { }kb  as defined by Eq. (A1-2) one 
obtain 

( ) ( ) ( )∑ ∑
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r
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,       (A1-4) 
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Let us suppose that samples { }ma  of signal ( )xa  are obtained by means of a sampling device 

with point spread function ( )[ ]xmxd ∆− ~~ϕ , where ( )dumm +=~~  and ( )du  is the position shift 
of sample 0a  with respect to the origin of signal ( )xa  coordinate system: 

( ) ( )[ ]∫
∞

∞−

∆−= ξξϕξ dxmaa r
m

~~

        (A1-5) 
Then Eq. (A1-4) can be rewritten as 

( ) ( ) ( ) ( )[ ] ( ) ( )∑ ∑ ∫
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.    (A1-6) 
Therefore, PSF of the equivalent continuous filter is 

( ) ( ) ( ) ( ) ( )[ ]∑∑
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     (A1-7) 
 
As one can see from this equation, continuous filter equivalent to the given digital filter of Eq. 
(A1-2) is not shift invariant. The reason lies, as it will be clear from what follows, in the 
finiteness of the number of signal samples.  

It is more convenient to characterize equivalent continuous filter by its frequency 
response found as Fourier Transform of its impulse response over both variables x , ξ : 

( ) ( ) ( )[ ] =−= ∫ ∫
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.     (A1-8) 
This expression contains 4 terms: 

( ) ( ) ( ) ( ) ( ) ( ) ( )pfpfSVpDFRpfH rr
eq −Φ⋅Φ⋅⋅= ,,

.     (A1-9) 
The term ( )pDFR  

( ) ( ) ( )( ) ( )∑∑
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∆∆=∆=
1

0
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2exp2exp~~2exp
hh N
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n
n xpnihxpuixnpihpDFR πππ

 (A1-10) 
 
is determined solely by digital filter discrete point spread function { }nh  and is referred to as 

discrete frequency response of the digital filter. It is a periodic function with period x∆1 . 

Term ( )pfSV ,   
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  (A1-11) 

depends only on the number bN  of output signal samples. It reflects the fact that digital filter 
defined by Eqs. (A2) and obtained as a discrete representation of the convolution integral is 
nevertheless not shift invariant owing to boundary effects associated with the finiteness of the 
number bN  of samples of the filter output signal { }kb  involved in the reconstruction of 

continuous output signal ( )xb .  When the number of signal samples bN  increases, 
contribution of the boundary effects into the reconstructed signal decreases and the quality of 
the digital filter approximation to the convolution integral improves. In the limit, when 

∞→bN , the filter is shift invariant as 

( )[ ]
( )[ ] ( )pf

xpfN

xNpf
N

b

b
b

Nb

−=
∆−
∆−

∞→
δ

π
π
sin

sin
lim

       (A1-12) 
Last two terms 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

=Φ dxfxixf rr πϕ 2exp

         (A1-13) 
and 

( ) ( ) ( ) ( ) ( )∫
∞

∞−

−=−Φ dxpxixp dd πϕ 2exp

        (A1-14) 
are frequency responses of the signal reconstruction and discretization devices, respectively. If 
signal reconstruction and discretization devices are, as it is required by the sampling theorem, 

ideal low pass filters, terms ( ) ( )frΦ  and ( ) ( )pd −Φ  remove all but one periods of the discrete 

frequency response ( )pDFR . Because this is not the case for all real devices, one should 
anticipate aliasing effects similar to those in signal reconstruction.  

Show that discrete frequency response of the digital filter ( )pDFR  is directly related to 

coefficients of the Discrete Fourier Transform of the filter discrete PSF{ }nh . Compute DFT 
with a shift parameter u  introduced in signal domain as:  

∑
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As we will see later, the shift parameter is needed in order to coordinate indices of signal 
samples with the continuous coordinate system of the discrete frequency response. We refer to 
this modification of DFT as ( )0;uSDFT  [11].   

Replace { }nh  in Eq. (A1-10) by inverse ( )0;uSDFT  of { }rη  
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(A1-16) 
and obtain: 
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 (A1-17) 

Now one can see that, with settings ( ) ( ) 21−−=−= h
d Nuu , phase shift factors in Eq. (A1-

17) are compensated and: 

( ) ( )[ ]∑
−

=

−∆∝
1

0

;sincd
LN

r
hhr rxfNNfDFR πη

,      (A1-18) 
where 

( ) ( )NxN

x
xN

sin

sin
;sincd =

.          (A1-19) 
It follows from Eq. (A1-18) that values of the discrete frequency response ( )fDFR  of the 

digital filter at points xNrf h∆= , 1,...,0 −= hNr  within one period x∆1  of its periodicity 

are proportional to ( )[ ]0;2/1−− hNSDFT  coefficients { }rη  of the interpolation kernel { }nh . 

Between these sampling points, ( )fDFR  is interpolated with the discrete sinc-interpolation 
function of Eq. (A1-19). 

Appendix 2. Computation of convolution of signals with “mirror reflection” extension 
using Discrete Cosine and Discrete Cosine/Sine Transforms. 

Consider a signal extended to its double length by “mirror reflection”: 
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Its DFT spectrum is as follows: 
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where 

( ) { } ∑
−

=

⎟
⎠

⎞
⎜
⎝

⎛ +==
1

0

2/1
cos

2

2 N

k
kk

DCT
r r

N

k
a

N
aDCT πα

.      (A2-3) 
is Discrete Cosine Transform (DCT). Therefore, the DFT spectrum of signal extended by 
“mirror reflection” can be computed via DCT using Fast DCT algorithm. From properties of 
DCT it follows that DCT spectra feature the following symmetry property: 
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( ) 0=DCT
Nα ; 

( ) ( )DCT
uN

DCT
u −= 2αα

.         (A2-4) 
For computing convolution, the signal spectrum defined by Eq. (A2-2) should be 

multiplied by the filter frequency response for signals of N2 samples and then the inverse 
DFT should be computed for the first N samples: 
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,    (A2-5) 
where{ }rη  are filter frequency response coefficients. The coefficients { }rη  are the DFT of 
samples of the filter PSF that are real numbers. They feature the symmetry property: 

{ }∗
−= rNr 2ηη  ,           (A2-6) 

 
where asterisk symbolizes complex conjugate. By using Eqs. (A2-4) and (A2-6), obtain that: 
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where { }re
rη  and { }im

rη  are real and imaginary parts of { }rη , we obtain finally: 

( ) ( )
⎪⎩

⎪
⎨
⎧

−⎟
⎠

⎞
⎜
⎝

⎛ ++= ∑
−

=

1

1
00

2/1
cos

2

1 N

r

re
r

DCT
r

DCT
k r

N

k

N
b πηαηα ( )

∑
−

=
⎟
⎠

⎞
⎜
⎝

⎛ +1

1

2/1
sin

N

r

im
r

DCT
r r

N

kπηα
. 

  (A2-9) 

First two terms of this expression constitute inverse DCT of the product ( ){ }re
r

DCT
r ηα  while 

the third term is Discrete Cosine/Sine Transform (DcST) of the product ( ){ }im
r

DCT
r ηα . Both 

transforms can be computed using fast algorithms [11].  

(C) 2005 OSA 18 April 2005 / Vol. 13,  No. 8 / OPTICS EXPRESS  2905
#6362 - $15.00 US Received 19 January 2005; revised 30 March 2005; accepted 31 March 2005


