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1. Introduction

Numerical integration has numerous applications in several optical fields as the wave-front
reconstruction from wave-front slope measurements [1-4]. It has found important optical
applications such as, for example, shearing interferometry. Recently, a new wave-front
reconstruction method based on the Discrete Fourier transform useful for this interferometric
techniqueis presented in [5]. In[6] Roddier et. a presented a novel wave-front reconstruction
algorithm using an iterative Fourier transforms. Many of these algorithms are applied in the
Sachk-Hartmann test as, for example, the generalized algorithm presented in [7]. Y et another
application of the numerical integration is the optica surfaces determination by laser
deflectometry. This technique is based on the measure of the deviation suffered by the
incident light in a test surface [8]. This deviation contains the slope data information of the
profile of the test surface. For this purpose, we begin investigating a one-dimensional
integration operation [9, 10].

While carrying out numerical computation with sampled data one should realize that
sampled data represent, with certain accuracy, data that are originally continuous functions
and those numerical algorithms approximate certain continuous transformation of those
functions. Consequently, results of the computation should be evaluated with respect to that
continuous transformation. In other words, given computational algorithm applied to sampled
data, one should find out to what continuous transformation of continuous functions that are
represented by the sampled data this algorithm corresponds. In this paper, we address this
problem for the case of numerical integration of functions using sampled representation of
their derivatives.

Integration of functions can be regarded as a convolution of the functions with a
corresponding integration kernel, or point spread function. Different numerical integration
algorithms will correspond to different approximations of the ideal integration point spread
function. In particular, they will differ in terms of their resolving power, that is, of their
capability to resolve between two close sharp peaks in the functions.

Thanks to the convolution theorem for Fourier Transform, convolution integral can be
treated in Fourier transform domain as a product of Fourier spectrum of the function and of
that of the convolution kernel called convolution frequency transfer function, or frequency
response. On account of that, one can also characterize numerical integration algorithms in
terms of the accuracy of approximating the ideal integration frequency response.

The purpose of the paper is to investigate, theoretically and by numerical simulation,
frequency responses and resolving power of several numerical integration agorithms.
Specifically, we investigate trapezoidal integration formula, two modifications of Simpson
formula, integration using cubic splines and two integration methods by ‘ 1/f-filtering’ in the
domain of Discrete Fourier Transform that, in a certain sense, approximate frequency
response of the ideal integration most closely. We will also show limitations imposed to the
integration accuracy by the finiteness of the number of available function samples and by
methods of treating boundary effects in the numerical integration.

In Sect.2 we present and compare analytical formulas for frequency responses of
continuous integration and its different numerical approximations, including the method of
integration in the domain of Discrete Fourier Transform (DFT) using Fast Fourier Transform
algorithm. The latter being the best approximation to the ideal continuous integrator in terms
of its frequency response, heavily suffers from boundary effects due to finiteness of the
number of signal samples. Therefore in Sect. 3 we introduce an improved modification of this
method that works in the domain of Discrete Cosine Transform and is much less vulnerable
to the boundary effects. The analytical treatment is supported by experimental results of
comparison of the methods presented in Sect. 4. In Sect. 4.1 we compare the integration
accuracy provided by different numerical agorithms for integration of sinusoidal functions
with integer number of periods in sampled data, the case of periodic signals, when no
boundary effects are observed for the DFT based method. In Sect. 4.2 we investigate
boundary effects for aperiodic signals of DFT and DCT based numerical integration
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algorithms and show that the latter provides results with substantially lower boundary effects.
In Sect. 4.3 we present results on numerical comparison of resolving power of different
integration algorithms. In Conclusion, we summarize the results. The paper contains aso two
appendices. As we compare numerical integration methods and ideal continuous integrator in
terms of their frequency responses, we prove, in Appendix 1, that discrete frequency
responses of the numerical integrators are samples of frequency responses of the
corresponding continuous integration filters. In Appendix 2 we show how DCT based
integration method can be efficiently implemented using fast Discrete Cosine Transform
algorithms.

2. Continuous and numerical integratorsand their frequency responses

Digital signal integrating is an operation that assumes interpolation of sampled data. Similarly
to signal differentiating, signal integrating operates with infinitesimal signal increments. It can
also betreated as signal convolution. In the Fourier transform domain, it is described as

a(x)= ja(x)dx = T z;f—a( f )exp(—i27Ax)dx = T H.p (F o £ )exp(=i2ax)df (1)

where a(x) and o f ) are signal and its Fourier transform spectrum, respectively, and

i
Hin(f)= o @
isthe integrating filter frequency response.
In digital processing, integrating filtering described by Eq. (1) can be implemented in the
domain of Discrete Fourier Transform (DFT) as:

{at= |D"—r{77r(im) . D'_—r{ak}}, ©)
where {a,}, k=01..,N-1 is a set of N samples of the input signal to be integrated,

DFT{} and IDFT{} are operators of direct and inverse Discrete Fourier Transforms, sign
e denotes element-wise product of vectors, and

0, r=0
. —%, r=12..,N/2-1
=4 g , (49
-, r=N/2
2%

Mneer F=N/2+1.,N-1
foreven N and

O, r=0
pim —J_ N s (N=1)/2, (4b)

r - _Ei
n*N_ri r:N/2+l,...,N_1

for odd N [11], where h is the signal sampling interval. Note that digital signal integrating
according to Eq. (3) automatically implies signal discrete sinc-interpolation [11]. We will
refer to this integration method as DFT-based method.

A number of numerical integration methods have been described in the literature. Most
known numerical integration methods are the Newton-Cotes quadrature rules ([11], [12] and
[23]). The three first rules are the trapezoidal, the Simpson and the 3/8 Simpson ones. In al
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the methods, the value of the integral in the first point is not defined because it affects to the
result constant bias and should be arbitrarily chosen. When it is chosen to be equal to zero, the
trapezoidal ruleis:

h
al'=0 al'=alj+ (a1 +al)

- ®)
In the Simpson rule, the second point needs to be evaluated by the trapezoidal rule, then
h
a® =0, a¥=a% + g(ak—z +4a1 +ay) ©)
In the 3/8-Simpson rule, the second and the third points need to be evaluated by the
trapezoidal rule and the Simpson rule respectively. Then

a®'® =0, af") =g + %?(ak—s +38_p + 384 + ) @)
In these integration methods, a linear, a quadratic, and a cubic interpolation, respectively, are
assumed between the sampled slope data. In the cubic spline interpolation, a cubic polynomial
is evaluated between every couple of points [13], and then, an analytical integration of these
polynomials is performed.

As it is shown in Appendix, discrete frequency response of the digital filter (Discrete
Fourier Transform coefficients of its point spread function) are samples of the equivalent
continuous filter frequency response. Given signal sampling and reconstruction devices,
frequency response of the continuous filter that corresponds to a digital filter is fully
determined by the discrete frequency response of the digital filter. Therefore, we will compare
the numerical integration methods in terms of their discrete frequency responses. Discrete
point spread functions for trapezoidal, Simpson and 3/8 Simpson’s integrators are determined
from Eqgs. (5)-(7) asfollows:

h
al" —a") = > (a1 +ay) (8)
() _gs_h
ak ak—Z 3(ak—Z +4ak*1+ ak) (9)
3h
alss/ss) _ alg8s) =5 (ay_3+3a,_,+3a_;+ay)

(10)
Discrete point spread function for the method based on cubic spline interpolation of the input
data information can be found asfollows:

2

1
A% -l = ~lac+aa)-, (morme)
2 24 (11)
where the coefficients are determined by the system of linear equations:
6
h(my_y +4my + M) = h (y 41— 28y +2ay_y) (12)

Taking N point Discrete Fourier Transform of these expressions (Egs. (8)-(12)) we obtain

a V(- exp(i2ar I N))= gar [1+ expli2zr 1 N)]_

: (13)
S (1 explidar I N))= ga, [1+ 4exp(i27r I N)+ exp(idnr I N)]
; (14
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3h : . :
21— expli6m IN)|= g % [1+ 3expli2zr I N)+3explidzr | N)+exp(i6zr / N)| 5)

m(cs) =D COS(%) {1+ 3 }04

4 —j sin(%) COS(ZW"I)-F 2

(16)

Therefore the frequency responses of these integrators are, respectively:

o) 0, r=0,
="l o= eosm/N) g 1)
r 2i sin(zr I N)
2 0 r=0
g = e N2 (18
O disin(2r IN) '’ ’
S 0, r=0
== ={ | cos3m / N)+3coslar / N) r=1oN-10 19
r isin(3zr / N)
. ar(cs) 0, r=0
=" =) hooslzyN)[ 3 r=1..N-1 (20
r 4i sin(zr/N) cos2zr/N)+2 |

In Fig. 1, absolute values of the frequency responses of the DFT based method of
integration (Eq. (4)) and of the Newton-Cotes rules and cubic spline method (Egs. (17)-(20))
are represented with a frequency coordinate normalized to its maximal value. Because the
absolute values of discrete frequency responses are symmetric, only half of the curves are
shown.

Normalized frequency
0O 01 02 03 04 05 06 07 08 09 1

Log[abs(Frequency Response)]

HAI— —

Fig 1. Comparison of frequency responses of trapezoidal, Simpson, 3/8 Simpson, Cubic Splines
and Fourier methods of integrations
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DFT method fregquency response coefficients are, by the definition, samples of the ideal
“Uf" frequency response of the continuous integrator. Therefore, with respect to
approximation of the ideal frequency response, it can be regarded as a “gold standard”. As it
can be appreciated in the figure, frequency responses of all methods are similar in the low
frequency region, and the Newton-Cotes rules and cubic spline method began to deviate from
the ideal one in the medium and high frequency zones. The Simpson and 3/8 Simpson rules
exhibit large deviations and even poles (the frequency response tends to infinity) at the
highest frequency and at 2/3 of the maximal frequency, respectively. The cubic spline based
method isthe closest to the “gold standard” DFT-method.

3. DCT based integrator

Although DFT-based integration (FI) method is the closest approximation to the continuous
integrator, this method suffers from boundary effects since it implements cyclic convolution
rather than shift-invariant convolution. Boundary effects exhibit themselves in form of
oscillations around signal discontinuities that may occur between samples at the beginning
and the end of the available signal realization. One can substantially decrease influence of
boundary effects by means of signal extension to double length with its “mirror reflected”
copy according to the equation:

a {ak, k=01..,N-1
k =

8Nk, K=N,..,.2N -1 @)
Such an extended signal {a, }, by the definition, has no discontinuities at its ends and in the
middle and can be used in the DFT based integration method instead of the initial signal.
Frequency response of the integration filter in this case is defined by Eqg. (4a), in which the

number of samples N should be replaced by 2N . The value of n,(j“t) is inessential as N-th

DFT spectral coefficient of symmetrical signals such as {g, } is equal to zero (see Appendix
2, Eq. (A2-4)).

Note, that in this case of the doubled signal length the degree of approximation of the
ideal “1/f “ frequency response of the continuous integrator is even better than that for the
above DFT based method because the doubling of the number of signal samples results in two
times more dense grid of samples of the frequency response.

The doubling of the number of signal samples in this implementation of the DFT based
method does not necessarily doubles the computational complexity of computation. As it is
shown in Appendix 2, 2N- DFT convolution of signals obtained by mirror reflection extension
can be carried out using fast algorithms of Discrete Cosine Transform and of associated with
it Discrete Cosine/Sine Transform for signals of N samples. We will refer to this modified
DFT based integration method as “ extended”, or DCT-based method.

4. Experimental comparison

In this section we present results of experimental comparison of the methods. First, we will
compare accuracy provided by different numerical integration agorithms for integrating
sinusoidal signals with integer number of periods in sampled data that, due to the periodicity
do not present any discontinuity at signal borders and therefore are free of boundary effects.
Then we investigate boundary effects for two modifications of the DFT-method, regular one
that uses N-point DFT, and the DCT based method that assumes even extension of the input
data to double length and show that the latter substantially reduces integration boundary
effects. Finally, we provide results on numerical comparison of resolving power of different
integration algorithms.

4.1 Integration of periodic sinusoidal signals

In these experiments, sinusoidal signals and their derivatives are generated as,
correspondingly:
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fo(x)= cos{Z;r ﬁ X+ randomphasej

fo(x)= 27 P cos[Z;z Py randomphasej
N N (22)

where N is the number of signa samples, p is the frequency parameter of the sinusoidal
signal, the normalized frequency is given by 2p/N; randphase corresponds to an initial
random phase and x represents the domain of the signal (0< x < N ). The frequencies are
selected to have an integer number of periods in the signal length. Different integration
methods are applied to the derivatives. Then, the obtained functions were compared with the
analytically generated signal by estimating the integration root mean square error as

error:\/:li[fi (k) o)

k=0 (23)

where f;(k) is the obtained function with the numerical integration and f,(k) is the

analytical function of Eq. (22). In the experiments, pseudo-random phase data were generated
using pseudo-random number generator and the error was averaged over 1000 realizations.
In figures 2(a) and 2(b) we represent the average integration error for each of studied

integration methods as a function of 2p/N , the normalized frequency of the sinusoidal

signal. In these experiments, signals were evaluated in N = 256 samples. From figures 2, one
can see that all methods give similarly low error for low frequencies. When the frequency of
the sinusoidal signa is increased, the different integration methods exhibit different
behaviour; for example, for a frequency equals to 2/3 of the maximum frequency, the 3/8
Simpson method gives very high error. A similar behaviour occurs for the Simpson method
when the frequency is near to the signal maximal frequency defined by the sampling rate.

25 4 - 0.7 7 - ST TRy T T
® Fourier v : L4 : ‘ a): I ® Fourier . o [(b)t B I_,i
So0 L -Trapezoidal |______ A%, 506 — Trapezoidal \ I~
= Sziﬂépszﬂl_ ! | 1 1 5051 -{0OCubicSpline | - - -+ ~73 -
=15 - UDIC SPINE | —j— — — cQ44 Lo L,L,,,L_‘_,Q,J
o ¢ Simpson 3/8 | | I Al o | | | I |
0o fq-d-n- o o-oropoq E03f-booooo] oo eE L
O N D L) g2 IS e

I e Y A7 =gl 0 el TS E T
L1 e Yea S N QDD‘B T

0 07
0 010203040506070809 1 0 010203040506070809 1
Normalized Frequency Normalized Frequency

Fig. 2. Integration error of periodic sinusoidal signals as a function of the normalized
frequency: (@) for all methods; (b) only for DFT-based, trapezoidal and cubic spline methods

Figures 2(a), and (b), show that the trapezoidal method and the method based on the cubic
spline interpolation give similar errors in al frequencies, lower for the cubic spline based
method. The error produced by the Fourier integration method for considered periodic signals

is defined only by computation round-off errors. Obviously, al these results are in agreement
with the behaviour of the frequency responses of the methods shown in figure 1.

4.2 Aperiodic signals and boundary effects

In order to study the boundary effects for the best methods (DFT-based method (FI), DCT-
based method (Extended method) and method based in the interpolation of the slope data by
cubic splines (CSl)) another numerical experiment was carried out with sinusoidal signals of a
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non -integer number of periods. The number of periods is given by the parameter p in Eq.
(22). For different integer frequenciesp,,, Sinusoidal signals were generated with

parameter p= p;; +S/n, s=0,...,n with values equally spaced in the interval p;;, i +1-
For each p;,; , the error was evaluated in every signal sample k as

1L 2
error, (k)= EZ [fi PiatS/N () _ f Pt/ (k)]
s=0

(24)

where {fip(k)} are samples of the numerically integrated function for each frequency and
{f O"(k)} are corresponding samples of the analytical signal.

Figure 3(a) shows obtained experimental results for the error for the three methods and
the signal normalized frequency v = 0.273 (corresponding to relatively low frequencies). The
number of signal samples N was 256 and the number of divisions of the frequency interval n
was 20. From the figure one can see that the boundary effects are more severe for FI method
than for the CSl method. DCT-based (Extended) method shows errors that are very close
though slightly larger then those for the cubic spline method. In the figure we can appreciate
that the boundary effects practically disappear after 10-th signal sample.

The sample-wise integration error obtained for signal frequency increased to v = 0.547
(medium freguency) is shown in Fig. 3(b). In this case the boundary effect error for DFT-
based and spline methods are similar while the error for DCT-based (Extended) method is
substantially lower. These boundary effects also last only approximately first 10 samples. By
comparing these errors with those for the low frequency region we can see that the boundary
errors in the first 10 samples increased for al methods and that for DCT-based (Extended)
method they are the lowest. In the stationary region (beyond the first 10 samples), the error for
the CSI method turned to be higher than that for both DFT-based (FI) and DCT-based
methods and is in agreement with figures 1 and 2.

For higher initial high frequency, v = 0.820, the error produced by the three studied
methods is shown in Fig. 3(c). From the figure, we see that the errors produced by the CSl
method are much higher than those obtained with both DFT and DCT-based methods. In the
CSl method, the stationary errors predominate over those due to boundary effects. We can
also see that, for the DFT-based (FI) and DCT-based methods, boundary effects last same 10
first samples and that their values are higher than in the low and medium frequency regions.

0.06 1 0.16 0.6
| -~ Fourier
L0.05 (a) 0.14 _ 05 . (C)
2 50124 o -~ Cubic Spline
(50.04 -+ Fourier 5 o1l ~ Fourier @ 044 —+ Reflected Method
- }
2003 - Cubic Spline 5008 4 -s-Cubic Spline § 031
S +Reflected Method ~ E | -+ Reflected Method S
. ? . @ 0.2
£0.04 =011
0027 0 ‘ R
0 S

4 6
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o

2
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Fig. 3. Experimentally obtained integration error versus sample k for DFT-based (FI) method
(black) CSI method (red) and DCT-based (Extended) method (blue). Normalized initial
frequency: (@) v=0.273. (b) v=0.547 and (c) v=10.820

Finaly, in order to check, how boundary effects depend on the number N of samples
where the signal and its derivative are evaluated, we repeat the previous numerical experiment
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for different signal lengths. Figure 4 shows the error obtained in the first 10 samples for the
number of the samples N = 256, 512 and 1024. The initial normalized frequency in this
experiment was v = 0.547. From the figure, one can conclude that the boundary errors are
similar in al the cases and they do not last more than about 10 samples independently of the
number of pixels, or about 10 sampling intervals.

0.16 7 0.16
014 1 (@ o1 (b) 0141 (©
50.12 A 5012 1 50124
@ g @ g1 G 011
S -=- Fourier S s ] -~ i
-£0.08 1 -20.08 1 ~ Fourier 2008 Fourier
] = Cubic Spline < , ‘ i = Cubic Spline
=0.06 s Reflected Method =0.06 - Cubic Spline 30.06 1 o
20,04 20041 ~+ Reflected Method £ (g4 | Reflected Method
0.02 1 0.02 0.02 1
0 e e ey
0 2 4pygb 8 10 0 2 4p6 8 10 0 2 4pygb 8 10

Fig. 4. Average error evaluated in the 10 first samples of the domain for the same initia
normalized frequency (p = 0.547) but different N: (a) N = 256, (b) N = 512, (c) N = 1024. The
black curve corresponds to Fourier integration method, the blue one to the DCT- based method
and the red one to the cubic spline based method.

4.3 Resolving power of integrators

Resolving power of integrators characterizes their capability to resolve between close sharp
impulses in the integrated data. It is fully defined by the integrator frequency responses.
However, it is much more sraightforward to compare the resolving power for different
integrators directly in signal domain. Figure 5 illustrates results of numerical evaluation of
the capabilities of three types of integrators, trapezoidal, cubic spline and DFT-based ones, to
reproduce two sharp impulses placed on the distance of one sample one from ancther for the
case when the second impulse is half height of the first impulse. The signals are 8 times sub-
sampled to imitate the corresponding continuous signals a the integrator output.

The figure clearly shows that the tested integrators differ in their resolving power. DFT-
based integrator produces the sharpest peaks with the lowest valley between the peaks while
cubic spline integrators and trapezoidal integrators exhibit poorer behavior. In particular, the
latter seems to be incapable of reliable resolving the half height impulse against oscillations
seen in the sub-sampled signal.

1
| | |
o8l — J— L — L _
| | |
0.6 — — — —if +—— -+ —
| | |
04 — - — — - —-L -
| |
02— 4 —— -—-L-
| |
o L L
125 130 135 125 130 135
@ (b) (©)

Fig. 5. Theoretical Profile(a) and Integrated Profiles with Trapezoidal Rule (b), Cubic Spline
method (c), and DFT- Method (d). All are shown subsampled.

5. Conclusion

We presented results of analytical and experimental comparison of frequency responses and
resolving power of five methods for numerical integration of sampled data: trapezoida
method, Simpson method, Simpson-3/8 method, cubic spline method and DFT-based method.
We have shown that DFT based method provides the best numerical approximation to the
ideal continuous integrator and outperforms other integrators in terms of the resolving power,
athough it is vulnerable to boundary effects due to the fact that it implements signal cyclic
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convolution rather than regular shift invariant convolution. We suggested a modification of
this method, a DCT-based one that assumes signal extension by “mirror reflection” on its
boundaries and that can be efficiently implemented using Fast DCT and DcST transforms. We
have shown that the DCT-based method, being even dlightly better than the DFT-based
method in terms of approximation of theidea continuous integrator, is also substantially more
robust to boundary effects. We aso have shown that boundary effect errors for both methods
do not propagate more than to about 10 first and last signal samples, or about 10 sampling
intervals.
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Appendix 1. Discrete representation of convolution integrals and point spread function
and frequency response of digital filtering

The convolution integral of a signal a(x) with shift invariant kernel h(x) (point spread
function, PSF):

b(x) = [ alenix- e

. (A1-1)
is numerically evaluated in computers using samples {a, } of signal a(x) as
N,-1
b, = Z h,ay_n
= (A1-2)

This operation is commonly called digital filtering and the set of N, weight coefficients fh,}
is called point spread function of the digital filter. Let us consider the correspondence between
digital filter of Eqg. (A1-2) and convolution integral of Eq. (A1-1) by finding the point spread
function h(x) of a continuous filter that corresponds to a given set of digital filter
coefficients{h, }. Results {b,} of computations according to Eq. (A1l-2) are regarded as

samples of acontinuous signal b(x) that can be generated from the set of samples {b, } as

N,-1
b(x) = ibk(p(r)(x— KAx)

k=0 , (AL-3)
where {(p(')(-)} is a set of interpolation functions that, by convention, reconstruct signal b(x)
from samples {b,} with certain admitted accuracy, K =k+u(), u") is a position shift (in
units of the sampling interval Ax ) of sample b, on the reconstruction device with respect to
the origin of signal b(x) coordinate system, N isthe number of samples {b, } used for the
reconstruction. By representing in Eqg. (A1-3) samples {bk} as defined by Eq. (A1-2) one
obtain

b(x) = th_(mz_lhnak_n}“)(x— )

k=0 : (A1-4)
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Let us suppose that samples {a,,,} of signal a(x) are obtained by means of a sampling device

with point spread function ¢'@)[x— MAx|, where A= m+u® and u@ is the position shift
of sample a, with respect to the origin of signal a(x) coordinate system:

an = [ale)p"[¢ - Maxlae

(A1-5)
Then Eqg. (A1-4) can berewritten as
Np—1 Np-1
= > hy [alel e - (K - Fax o) (x—kax)=
k=0| n=0 _
Np—1N, -1
o] 33 o Rl € -
oo k=0 n=0 ) (A1_6)
Therefore, PSF of the equivalent continuous filter is
Np 1IN, -1
heq (X! §)= Z z hn¢(r)(x - RAX)¢(d) [§ - (E - ﬁ)AX]
k=0 n=0 (Al—?)

As one can see from this equation, continuous filter equivalent to the given digital filter of Eq.
(A1-2) is not shift invariant. The reason lies, as it will be clear from what follows, in the
finiteness of the number of signal samples.

It is more convenient to characterize equivalent continuous filter by its frequency
response found as Fourier Transform of its impulse response over both variablesx, ¢&:

Heq(f.p)= T Theq (x, &) expli2z(fx— p&)ldxd& =

—oo—00

[Ni:lhn expli ZﬂpﬁAx)][Nilexp[i 27 (f - p)EAx]]x

n=0 k=0

j(p x) exp(i 27x)ax j 99 (&) expl(~i22p&)dé

(A1-8)
This expression contains 4 terms:
= . (). (-
He(f, p)=DFR(p)- SV(f, p)- @/(f)- @'(-~ p) (AL-9)
Theterm DFR(p)
Nj-1 N,-1
DFR(p Zh exp(i 22pfAX) = exp(Zﬂpu Ax)Zh exp(i 27pnAx)
=0 n=0 (A1-10)

is determined solely by digital filter discrete point spread function {h,} and is referred to as
discrete frequency response of the digital filter. It isa periodic function with period/Ax .
Term SV(f, p)
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SV(f,p)= Ni_:lexp[i 27(f - p)kax]= sm[;r[( f(f—_p)pl\)lzf]x] exp[i;z(f (Nb +u 1)Ax]

k=0

(A1-11)

depends only on the number N, of output signal samples. It reflects the fact that digital filter

defined by Egs. (A2) and obtained as a discrete representation of the convolution integral is
nevertheless not shift invariant owing to boundary effects associated with the finiteness of the
number N, of samples of the filter output signal {b,} involved in the reconstruction of

continuous output signa b(x). When the number of signal samples N, increases,

contribution of the boundary effects into the reconstructed signal decreases and the quality of
the digital filter approximation to the convolution integral improves. In the limit, when
N, — o, thefilter is shift invariant as

im N sin[z(f — p)N,Ax] _5(f—p)

Np—= Ny sinfz(f — p)ax] (A1-12)
Last two terms
j' o'\ (x) expli 27fx )dx
(A1-13)
and
j(p x) exp(— i 277px)dx
(A1-14)

are frequency responses of the signal reconstruction and discretization devices, respectively. If
signal reconstruction and discretization devices are, as it is required by the sampling theorem,

ideal low pass filters, terms® ") () and @@ (- p) remove all but one periods of the discrete
frequency response DFR(p). Because this is not the case for all real devices, one should

anticipate aliasing effects similar to those in signal reconstruction.
Show that discrete frequency response of the digital filter DFR(p) is directly related to

coefficients of the Discrete Fourier Transform of the filter discrete PSF{h,,}. Compute DFT
with a shift parameter u introduced in signal domain as:

o Sheierty

hnO

j (A1-15)

As we will see later, the shift parameter is needed in order to coordinate indices of signa
samples with the continuous coordinate system of the discrete frequency response. We refer to

this modification of DFT as SDFT(u;0) [11].
Replace {h, } in Eq. (A1-10) by inverse SDFT(u;0) of {7, }

Np-1
h,= > n, exp( |2;rn+urj ‘{nr exp( i2r — H p(—iernr]
; ﬂ r=0 N Ni (A1-16)

and obtain:
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Np—IN; -1 ; o
DFR(f ) o e exp{i ZEH fAX—]n+ [ fAxu(@ —ﬂ} =
n=0 r=0 Ny, Ny

Np-1 Np-1
. ur : r
7, eXpl |27{ faxu(@ —ﬂ expi Zn[ fo—]n} =

S SO o i oo iz o M) ]
r=0 gn[”(hoAx—r)} 2 2 )Ny

h (A1-17)
Now one can see that, with settings u=—-u'® = —(N, —1)/2 , phase shift factors in Eq. (Al-
17) are compensated and:

LN-1
DFR(f)e< ansincd[Nh;ﬂ(hoAx—r)]
=0 , (A1-18)
where
sincd(N; x) = 7_5”1 X
Nsin(x/N) (A1-19)

It follows from Eq. (A1-18) that values of the discrete frequency response DFR(f) of the
digital filter at points f =r/N,Ax, r =0,..., N, —1 within one period I/Ax of its periodicity
are proportional to SDFT[- (N, —1)/2,0] coefficients {7, } of the interpolation kernel {h,}.
Between these sampling points, DFR(f) is interpolated with the discrete sinc-interpolation
function of Eq. (A1-19).

Appendix 2. Computation of convolution of signals with “mirror reflection” extension
using Discrete Cosine and Discrete Cosine/Sine Transforms.

Consider asignal extended to its double length by “mirror reflection”:
a,, k=01..,N-1

(A2-1)
Its DFT spectrumis asfollows:
1 & ( kr]
& =——— » a explizr— |=
r 2N kZ:(:) k p 2N
N-1
{2 a Co{ﬂ' (k+1/2)r }}exp(—ifr J=ar(DCT)eXp[ m_)
2N N , (A2-2)
where
(o) 2 & k+1/2
DCT
a =DCTa, j=—— ) a co§y r———r
| = oy 2 {r U2
(A2-3)

is Discrete Cosine Transform (DCT). Therefore, the DFT spectrur.n of signa extended by
“mirror reflection” can be computed via DCT using Fast DCT agorithm. From properties of
DCT it follows that DCT spectra feature the following symmetry property:
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P =0. o = o) (A2-4)

For computing convolution, the sgnal spectrum 'defmed by Eq. (A2-2) should be
multiplied by the filter frequency response for signals of 2N samples and then the inverse
DFT should be computed for the first N samples:

by = Jli zi_:la bet exp( |7z2j77r exp( i27 2k|r\lj
2N (A2-5)

where{n, } are filter frequency response coefficients. The coefficients {nr} are the DFT of
samples of thefilter PSF that are real numbers. They feature the symmetry property:

{ r :nZN—r}1 (A2-6)

where asterisk symbolizes complex conjugate. By using Egs. (A2-4) and (A2-6), obtain that:

1 (DCT (DCT) . k+1/2
— o + a expl —12x r|+

o k+1/2
+Z“2?FIUZN ,exp{ 127 N (ZN—r)}}=

1 (ocT),. N~ (ocT) o k+1/2 . . k+1/2
——, + > « exp —i2x r|+mn, expi2r r
m{ 0 770 ; r ﬂr p 2N 77r 2N

(A2-7)

p

As

. k+1/2 N k+1/2
expl —i2r r|{+n expi2zr =
T ey

ZR{nr exp(_izﬂk+1/2rﬂ :nrreco{ﬁ k+1/2rj n:msn(”k+1/2r]
2N N N (A2-8)

where {n{e} and {nim} arereal and imaginary parts of {7, }, we obtain finally:

1 (OCT) (bcT) { k+1/2 j i k+1/2
by =—~— + E a, co 2 (DCT Rre
k m{ Mo - nr z o, sm( N I'j

(A2-9)

First two terms of this expression congtitute inverse DCT of the product { (DCT) )1 } while

the third term is Discrete Cosineg/Sine Transform (DcST) of the product {ar(DCT)nr } Both
transforms can be computed using fast algorithms [ 11].
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