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Frequency Scanning Microstrip  Antennas 
MAGNUS DANIELSEN A N D  ROLF JQRGENSEN 

. Absmct-The principles of using  radiating  microstrip  resonators as 
elements in a frequency  scanning  antenna a m y  are  described.  The 
resonators  are  cascade-coupled. This gives a scan of the main  lobe  due 
to the ph&-shift in the resonator m addition to that created  by the 
transmission line phase-shift.  Experimental  results in X-band, in good 
agreement  .with the theory, show that it is possible to scan the main 
lobe an  angle  of *30° by a v h t i o n  of the frequency *300 MHz, and 
where the 3 dB beamwidth is less  than 10". The directivity was  14.7 
dB, while the gain was  8.1 dB. The  efficiency  might  be  improved  by a 
trade-off between the efficiency  and the scanning  angle, or by  using a 
better amplitude disttiiution. 

T 
I. INTRODUCTION 

HE IDEA of utilizing the  radiation  from microstrip 
resonatos was proposed  and  published  by  Munson  and 

Howell [ 11, [ 23. Since then, microstrip antennas have been 
subject to different investigations for frequencies from  the 
VHF to the X-band with  both circular and linear  polarization 
[ 3.1 -[ 91. Earlier works on frequency scanning have been based 
on  the  frequency  dependent phase-shift between the  antenna 
elements created  by delay in a  transmission line, to which the 
elements were loosely coupled [ l o ] .  In [ 111 a printed circuit 
grid antenna at  2 GHz resulted in a slightly frequency- 
dependent beam direction. 

In the  present work we use microstrip antenna  resonators as 
elements in a frequency scanning  array. Contrary to previous 
works, we have cascade-coupled the resonators. Consequently, 
we obtain a phase-shift due  to  the transmission microstrip 
resonator  in  addition to  that caused by the transmission line 
connecting  the elements,  which can yield an appreciable frac- 
tion of the  total phase-shift. According to these  principles  a 
method  to design a  frequency-scanning antenna array based on 
the design of a single antenna  element is described. 

11. SINGLE-MICROSTRIP RESONATOR 
The single elements in the  antenna array are microstrip 

transmission resonators with  a common  conducting ground 
plane (Fig. 1). Each resonator radiates from  its  two  ends [9 ] .  
Radiation  from an open circuit  microstrip  line was first  treated 
by Lewin [ 121.  The radiated  power from a resonator is given 
formally  by an  identical  formula as found in [ 121 : 

where we have normalized the  current  amplitude in each of 
the  two  opposite propagating waves in the  resonator t o  1d and 
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Fig.  1.  Transmission microstrip resonator  and its equivalent  network. 

neglected the coupling line. In (l) ,  ko = 2171x0 is the propaga- 
tion  factor, x0 is the vacuum wavelength, h is the  stripground 
spacing, p o  and €0 are  the permeability and permittivity of 
vacuum,  respectively, E is the effective relative permittivity 
[ 151, and F ~ ' ( E )  = F ~ ' ( E ,  IZ = 1) a function [ 131 given in 
the  Appendix. F ~ ' ( E )  reduces to twice the  function Lewin 
found  for  the  open  circuit, when there is no  mutual coupling 
between the  two  ends [ 141. 

In the design procedure we will use the  radiation  quality 
factor 

OU 
Q =- 

r P  

where w = 27rf is the cyclic frequency  and 

Z u=- 
2f 

is the normalized  energy content in the  resonator. 2 is the 
characteristic  impedance of the  resonator  microstrip line. 

The  radiation losses are represented  by two  conductances 
placed at  the  ends of the  resonator 

The coupling to  the element is performed by quarter wave- 
length transformers at  the  input  and  output. In the design, 
losses in the lines are neglected, but will be taken  into  account 
as restrictions  to  the  theory.  The characteristic admittances of 
the  transformers Y o f  and Yoo' and  that of the  resonator 
Y = 1 /Z are determined by three  conditions. 

1 )  The  resonators should be matched  at  the  input  at  the 
center  frequency, giving rise to 

v '2 
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where Yi, is the  input  admittance.  Insertion of (4) into (5) 
gives 

The  total phase-shift change through  the  resonator  due to 
the  frequency change Af is then  found  from  (13) 

where the  first  term is due to the  resonator  length,  and 
where we have introduced  the reflections from  the  resonator 
ends  without  radiation, as seen from inside the  resonator, 
defined by 

K sin (21rAf/f,) 
S,,, = arctan 

~~ 

1 - K cos (2~Af/f,) 

is caused by the  resonator  effect. Here we have  defined 

A more convenient  expression for K ,  obtained by inser- 
tion of (9) and (10) in (16)  and using the  approximation 
(GZ/2p1)2 Q 1, is 2) The phase shift through  the  resonator is fixed to  the 

Same value for all elements  in  the array. With the purpose to 
calculate the phase shift  through  the  resonator  from reference 
plane  B to C (Fig. l ) ,  we recognize that  at these  planes the 
resonator is connected  to equivalent input and output lines 
with the characteristic admittances Yo'2/Yo and YOof2/Yo ,  
respectively, obtained by the  transformation of the real trans- 
mission line characteristic admittances  through  the  quarter 
wavelength transformers. The reflection  coefficients from  the 
resonator  ends, when radiation is present, as seen from inside 
the  resonator are then  found  to be 

3) The division of the  input  power in  radiated and trans- 
mitted  power regulates the  excitations of the  elements  and  the 
array  radiation pattern.  The powers Pi and Pt in the  incident 
wave at B and  output wave at C are found as the  product of 
the respective transformed transmission  line  characteristic 
admittance and the electric field squared.  Hence we define  the 
power  transmission  coefficient 

Since the  resonator is matched  at f, at  the  input, Et/Ei = -1. 
Using (7) and (8) we then find 

, Y - Yoor2/Yoo - G 

Y + Yoor2/Yoo + G -  
P 2  = 

1 - P 2  1 + P 1  

1 + P 2  1 - P l  
T=- .- The field transmission  coefficient from  point B to  B'is given by 

2 Y* '2/Yo 

Yo'2/Yo + Y + G '  
71 = 1 - P I ' =  With specified values of K and T,  (6) ,  (1 7), and  (1 9) can 

be used to find p1, p 2 ,  and Q,. With the aids of ( l ) ,  (7 ) ,  
and (8), the characteristic admittances Y ,   Y O ' ,  and Y ' 
can be found. In Fig. 2 curves of Z o ' =  l / Y o ' , Z o ~  = l / Y o o ,  
and Q, versus T for  different values of K are  shown,  with 
h = 0.304 mm and E ,  = 2.4. 

A restriction to  the  performance  of  the  element is given by 
the  conductor and  dielectric losses. The corresponding quality 
factor Qo is the highest possible Q, value applicable in the 
design procedure. In any case the efficiency of each element  is 

00, 

V e  = Qo/(Qo + Qr).  

Similarly, we find  the field  transmission coefficient  from 
point c' to c: 

2Y 
TI2 = 1 + p z ' =  

Yo'2/Yo -I- Y + G . 

The  transmitted electric field at C is then related to  the 
field in the incoming wave at B through an expansion of 
multiple  reflections  in the  resonator 

111. FREQUENCY SCANNING ARRAY 

A frequency scanning array is formed  by N elements spaced 
p freespace wavelengths and  cascade-coupled  by  transmission 
lines of the  length L and  transmission line wavelengths X, 
(Fig. 3). The characteristics of the  antenna are  described on 
the basis of 

1) the main beam scanning angle e,, 
2) the 3-dB beamwidth A03 d B ,  and 
3)  the sidelobe level. where f, is the  center frequencey and Af = f - f,. 
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by T and the element-to-element field attenuation  factor 

-- ~ L ' A ~  
20  y = 10 

IO0 where a(dB/m) is the  attenuation probability unit  length of 

Anticipating  a power  input  to  the  first  element of 1 W the 

(1 - T )  of this power  radiates. The  Nth  element  matches  the 
array  at the end.  Hence the radiated  power from  the  mth 
element is 

a 

a 
e 
LL power input to the  mth  element is ( P ~ 2 ) ~ - 1 .  The  fraction 

the transmission line. 
U 

L a 
50 

Fig. 2. Characteristic impedances ZO' and ZOO' for  input and ouput 
transformers, respectively, and radiation Q, versus transmission 
factor T with phase factors K = 0.5 and 0.7. 

Elern. no. N 

0) 
Fig. 3. (a) Structure of antenna array. (b) Quantities characterizing 

antenna array. 

The possibilities of forming different radiation  patterns are 
limited in the  present  antenna geometry  by  a  technologically , 

determined minimum width (0.1 mm) of the  microstrip used 
in the  h/4-transformer couplings. 

An array well suited for  examination of the frequency- 
scanning  characteristics, because of its simple structure, is the 
antenna  with  identical  elements, i.e., equal T for  the elements, 
giving an  exponential decay of the  excitation. An exception is 
'the last (N'th) element in the array, which is matched and 
hence  has a different  width, which is found  from  (6), setting 

This array is also simple to  fabricate, using a photographic 
repetition  technique.  The tolerance for each element is the 
same, giving only a frequency  shift  for  the  antenna and almost 
no  disturbance of the  other characteristics. 

As a  consequence of the  exponential variation of the 
element  excitation, A63 dB has an optimal value when the 
number of elements N exceeds  a  certain value, determined 

p 2  = 1, and (1) and (7). 

In this  expression we neglected the  mutual coupling between 
the elements. The  excitation of the  mth  element is then 

Im =Io&, 1 G m G N  (22) 

where Io is the  normalization  constant. 

the X-axis (Fig. 3(b)) is 
The  radiation  pattern  with equispaced elements  situated on 

where 

u = 6 + k d s i n e  (24) 

and k is the  propagation  factor, d = ph and 6 are  the element- 
toelement distance and phase-shift, respectively, and 6 is the 
angle between the beam and broadside  direction. After 
performing the  summation of (23) and  insertion of (21) and 
(22), we find 

I G(u)  l 2  forms  the u-curve of the  radiation  pattern,  from 
which we find u = us d B ,  where I G l 2  has decreased 3 dB. 
Using (24) we then find A e 3 d B  by numerical  calculations. 1 

In the simple and optimal case, where the  number of 
elements N 3= 1/(*), we find 

The scanning angle is found  to. be 

em =arcsin (-$) 
Here 6 is given by 
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where 6,,,, given by (15), accounts  for  the phase-shift due to  
the  resonator effect  and the second  term accounts  for  the 
phase-shift due  to  the transmission  line  length ( L * h )  and  the 
transformer plus resonator length (h ) .  

In the design of the array we must avoid grating  lobes for 
all frequency  shifts Af lower than  the maximum  shift Afm ax.  
This is obtained when the maximum value of u is somewhat 
less than 217, in practice determined to urnax M 300°.  Accord- 
ing to  (24), u = vmax when 8 = ~ / 2 ,  and 6 = a,,,. Hence 
we find 

= 6max  + 2 7 ~ ~ .  (29) 

An additional design equation is obtained  from (27), for  the 
maximum beam scanning angle 8, = -Omax : 

In  the design prescribed values of Omax and v,,, inserted 
into  (29) and (30) result  in solutions of 6,,, and p .  The 
phase-shift 6,, is, according to (28),  obtained by  selection 
of 6,,,, Afmax, and L to suitable values. A,,, and Afmax are 
limited  by the  resonator K value and bandwidth. L can be 
varied up  to a  limit determined by Ad3 dB and y is given by 
(26) and (20).  In  the  situations requiring small A 0 3  dB and 
large e,, a  trade-off between these quantities has to be done. 
In  many  situations  the overall efficiency 

V = Ve(1 - V ( 1  - Tr2) (31) 

has to be taken  into  account, where qe is defined in  Section 11. 
Typically, we find that  with  the parameters L = 5, T = 

0.9, y = 0.95, K = 0.65, and f, = 9.8 GHz, the  optimum 
N =  40, and with emax = 45", A83 dB = 5.7O, Af = 450 MHz, 
and V/Ve = 0.7. 

IV. EXPERIMENTS 

Two  antennas have been constructed to verify the  theory. 
For  both  antennas N = 19, p = 0.406, L = 4, h = 0.304 mm, 
and T = 0.9. The phase parameters were K = 0.5 and 0.65 for 
the  two  antennas.  The  geometry is shown in Fig. 3. 

Radiation  patterns were recorded  in the radio  anechoic 
chamber  at the Electromagnetics Institute. In the yz-plane the 
pattern varies about 6 dB from  the  direction perpendicular to 
parallel to  the  antenna plane  in  accordance with  the single- 
element  pattern described in [ 121. In the xz-plane patterns 
were measured at frequencies from 9-10.5 GHz with intervals 
of 100 MHz. Fig. 4 shows some of these diagrams for  the 
antenna with K = 0.65. The  pattern  at  the  center  frequency 
9.6 GHz is shown to be  in  good  agreement  with the  theory, 
regarding the sidelobe level, while the  experimental beam- 
width is 10-20 percent larger than  the  theoretical value 
(Fig. 5). 

The reason might be  overestimated values for y and T. 
Unwanted  reflections caused by  a  mismatch of the  resonators 
can also be a  reason, since they will add to  the  excitations  with 
different phase from element to element.  Such  reflections will 
also make  the minima between  the sidelobes less distinct than 
predicted.  The reflections  increase at frequencies  far from  the 
center  frequency, which causes a  wider beamwidth  and higher 
sidelobe level. Hence the  bandwidth of the  resonators limits 
the usable frequency interval. 

Apart  from an offset error of the  center  frequency,  due  to 
a 3 percent  error in the  layout,  the measured and  calculated 

i 
1 
I 
I t  
36O 1 

I 
I 

D 

ANGLE 

Fig. 4. Radiation  patterns  for  antennas with parameters T = 0.9, 
K = 0.65, 7 = 0.95. Full lines:  measured  patterns.  Dotted  line: 
theoretical  pattern  for 9 600 MHz. 

15 
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5 

Fig. 5.  3-dB-beamwidth  versus  frequency for  antennas with phase 
factor K = 0.5 and 0.65, respectively. For both antennas T = 0.9 
and y = 0.95. 

dependences of the main beam direction 8, on  the  frequency 
are in excellent  agreement  (Fig. 6) for  both  antennas. 

In Table I we have compared the  theoretical  and measured 
phase-shifts through  the  resonators  for a frequency  shift 
between points  in Fig. 5 corresponding to a  beamwidth of 
A03 d B  = 10 deg. The corresponding  scanning angle O m ,  
found  from Fig. 6, and (27) give a  measured  phase-shift 6 .  
The measured 6,,, is found  by  subtracting  the phase-shift 
caused by the line  length from 6 .  Comparison of this value 
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Fig. 6. Main beam  direction  versus  frequency  for  antennas  with  phase 
factor K = 0.5 and 0.65, respectively. For  both  antennas T = 0.9 
and 7 = 0.95. 

TABLE I 
BEAM  SCAN AND CHANGES  IN  PHASE-SHIFT  THROUGH SINGLE 

10 DEG 

Antenna 
Calculated Measured phon-shift 8, frequency frequency with 

R e m b r  *schitt 4.. Total Beam-scan Maximum Minimum 

RESONATORS BETWEEN FREQUENCIES WHERE A83 dB = 

K =  t d c g r m )  (degrees) 6 (dcgrm)  (degrees) [GHzl [GHzl 

0.5 

0.65 

11 6 61 2 2 5  10.2 9.6 

19 18 73 230 9.85 9.25 

with  the  theoretical  one  found  from  (15) shows that  the 
resonator effect contributes up to 25 percent  total phase-shift 
for  the  antennas. 

The directivity found  from  integration of the  theoretical 
pattern is 15.9 dB. The directivity of the  experimental  antenna 
is estimated to be  14.7 dB on the basis of the measured radia- 
tion  pattern.  The gain was measured to be 8.1 dB for  the 
antenna with K = 0.5.  The difference of -6.6 dB is somewhat 
larger than  the theoretically  estimated  efficiency of  -5 dB, 
and can be interpreted by the somewhat higher ohmic loss 
than used for  the  theoretical  estimation. Such  a  higher loss 
will also result in a  lower fi product, i.e., lower  effective 
antenna length and  hence a  lower experimental  than  theoretical 
directivity, as actually was found. 

V. CONCLUSION 

Investigation of frequency scanning microstrip antennas 
has shown  that a beam scan of 8 ,  = +30 degrees with a 3-dB 
beamwidth less than  10 degrees is possible using a frequency 
sweep interval of +300 MHz. Scanning angles up  to  545 
degrees with  some  degradation of the beamwidth can be 
obtained.  The sidelobe level is -12 dB. Increasing the  element 
number  to  the  optimum would decrease the  beamwidth by 
50 percent. 

A drawback to  the applicability of frequency-scanning 
antennas is the losses in the microstrip. The efficiency  might 
be improved by using a thicker  substrate  and making  a  trade- 
off between  the efficiency and scanning angle. 

A restriction  for  the  antennas is also the minimum line 
width of the coupling transformers of 0.1 mm, set by the 
photo lithographic process. This  results in maximum possible 
values of K 2 0.7 and T = 0.9-0.95. It is suggested that capac- 
itive  coupling to the  elements could extend  the ranges of K t o  
0.6-1 .O and of T to 0.9-1.0. 

APPENDIX 
The integral  F,’(E, n )  from [ 131, where E is the effective 

dielectric constant  and n is the  number of half wavelengths 

in the  resonator, can be written 

F ,  ‘ ( E ,  n )  = 2F1(e) + ~ 

4 nn E - I  nn 
-(-l)* (- sin-+2- cos -) 

nn& + E & 

where 

E +  1 (E-1)2 &+ 1 

E 2E& 6 - 1  
FI(E)=-------~- 

is the  function  for  the  radiation  from  an open-circuit micro- 
strip [ 121.  The first term in (Al )  gives the  radiation  from  the 
resonator where no  mutual coupling is between  the  two  ends, 
and the remaining terms  account  for  mutual coupling.  These 
terms cancel in the cases when E = 1 and  for n +. m, taking 
the  asymptotic  expansion of Si(a)  into  consideration. 
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