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Frequency-selective harmonic retrieval for Schottky mass spectrometry

Xiangcheng Chen *

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

(Received 8 March 2020; accepted 3 May 2020; published 26 May 2020)

Nuclear mass measurements by means of Schottky mass spectrometry critically rely on an accurate determi-
nation of revolution frequencies of the circulating ions in a storage ring. Such a harmonic retrieval problem
is conventionally tackled via the periodogram of the Schottky data, where the ion peaks are identified and
their spectral locations are obtained by fittings. However, the discrete frequency grid of the periodogram has
unfortunately hampered a fine resolution of two closely spaced harmonics. We thereby propose a method based
on the state space representation in the frequency domain to overcome this limit. Moreover, its frequency-
selective merit has allowed the method to focus only on a narrow band and thus greatly reduced the computational
cost while still retaining superb accuracy. With the real Schottky data from an isochronous-Schottky beam time
at the experimental cooler-storage ring in Lanzhou, the accuracy of the retrieved harmonics is demonstrated to
be around 1 ppm, as limited by the anisochronism effect of the ion optics.

DOI: 10.1103/PhysRevE.101.053310

I. INTRODUCTION

Schottky mass spectrometry (SMS), along with
isochronous mass spectrometry, is a precision ring-based
spectroscopic technique for direct nuclear mass measurements
[1,2]. The merits of large ring acceptance and small beam
emittance due to the electron cooling have allowed SMS to
precisely map a sizable area of nuclides on the nuclear chart
during one beam time (see, e.g., Refs. [3,4]). To date, about
300 mass values of nuclei in ground and isomeric states have
been obtained by SMS [1]. Recently, SMS was successfully
performed in combination with the isochronously tuned
ion optics of the experimental cooler-storage ring (CSRe)
at the Institute of Modern Physics (IMP) [5]. Because
the electron cooling is no longer required, this technical
advancement has potentially pushed the lower lifetime limit
of measurable exotic nuclei downwards into the millisecond
regime. The measurement precision of the isochronous SMS
will be comparable to the cooling SMS after employing
a position-resolving Schottky resonator to correct for the
hampering anisochronism effect [6,7].

Either way, an accurate determination of revolution fre-
quencies of the stored ions has always been a central focus
in SMS data analysis since they reflect the mass relationships
between different ion species [8]. It is well known that the
power spectral density (PSD) of an ion’s Schottky signal
in the frequency domain manifests an infinite number of
spikes equally distanced by its revolution frequency, where
each spike is called a harmonic and indexed by its harmonic
number [9]. Hence, the revolution frequency can be obtained
from any harmonic by dividing its spectral location by the cor-
responding harmonic number. Within this context, the present
work addresses the harmonic retrieval problem, which aims to
accurately determine the frequency of one specific harmonic.

*cxc@impcas.ac.cn

The widest adopted approach to the harmonic retrieval
problem is to directly identify the spectral peak on the PSD
spectrum and extract its location by Gaussian fitting (see, e.g.,
Refs. [3,4]). Usually, the PSD spectrum is estimated by the
periodogram, which is the modular square of the windowed
discrete Fourier transform (DFT) of the Schottky data [10].
By varying the window function, one can find a balance
between the spectral leakage and the peak width, depending
on whether the particular purpose is detecting a weak peak or
resolving adjacent peaks [11]. In practice, it is also necessary
to average several similar PSD spectra to further reduce the
noise fluctuation, which is beneficial in certain cases with a
poor signal-to-noise (SN) ratio, such as single ion detection
[12].

While this nonparametric method is quite intuitive, it crit-
ically depends on the PSD’s estimate, which changes sub-
stantially across different window functions. What is even
worse, the method considers only the DFT’s modulus and
discards its argument, which may lead to an unsuccessful
discrimination of two closely spaced harmonics (see Sec. III
for details). As a complementary approach, a few ab initio
methods, such as the multiple signal classification (MUSIC)
[13] and the estimation of signal parameters via rotational
invariance techniques (ESPRIT) [14], have been proposed to
overcome the aforementioned limitations. They are all based
on the state space representation of the data: a mathematical
technique that was first developed by R. Kalman [15] and
has become a canonical method in control engineering ever
since [16]. Those methods can yield adequate results by
exploiting the data’s internal structure but meanwhile suffer
from the heavy computational burden when calculating the
data’s autocorrelation in the time domain, as well as from
the intraharmonic interference if the data contain too many
harmonics.

It was then shown independently by two separate groups
that a state-space-based method could likewise be devel-
oped in the frequency domain [17,18]. As a result, the
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computational cost can be greatly reduced by means of the
fast Fourier transform (FFT) algorithm, and the intrahar-
monic interference can be well controlled due to the har-
monics’ frequency-isolating property. Having been inspired
by those frequency-domain methods, we present in this work
an improved harmonic retrieval solution with a favorable
frequency-selective merit as an alternative approach to the
determination of revolution frequencies in SMS data analysis.

II. METHOD

Owing to the periodic revolutions of the stored ions, the
digitized Schottky signal yn of length N can be modeled as a
superposition of J sinusoids:

yn =
J∑

j=1

a je
iω j n, n = 0, 1, . . . , N − 1, (1)

where aj = α jeiθ j and ω j ∈ [−π, π ) are the complex ampli-
tude and the angular frequency of the jth sinusoid, respec-
tively. The physical revolution frequency fr is related to the
angular frequency ω by

fr = 1

h

( ω

2π
fs + fl

)
, (2)

where fs is the sampling rate of the Schottky data, fl is
the center frequency set by the local oscillator, and h is the
harmonic number. It is reasonable to require that all {ω j}J

j=1
are distinct. The harmonic retrieval is, in fact, to estimate
every ω j from {yn}N−1

n=0 .

A. State space representation

In light of the state space representation, the Schottky data
in Eq. (1) can be rewritten in a recursive form:

yn = bHxn, (3)

xn+1 = Axn, (4)

where xn is the state variable with the initial condition

x0 =

⎛
⎜⎜⎜⎝

a1

a2

...
aJ

⎞
⎟⎟⎟⎠ ∈ CJ×1, b =

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠ ∈ CJ×1,

and

A =

⎛
⎜⎜⎜⎜⎝

eiω1 0 · · · 0
0 eiω2 · · · 0
...

...
. . .

...
0 0 · · · eiωJ

⎞
⎟⎟⎟⎟⎠ ≡ diag{eiω j }J

j=1 ∈ CJ×J .

The state space representation of Eq. (1) is actually not
unique. For instance, with a nonsingular matrix T ∈ CJ×J , we
construct

b′ = THb, x′
0 = T−1x0, A′ = T−1AT.

The trio (b′, x′
0, A′) is also a valid representation. It can be

verified that A’s range and eigenvalues are invariant under

this transformation [19]. In other words, they are the intrinsic
properties of the Schottky data. Indeed, the dimension of A’s
range, denoted by rank(A), is just the number of sinusoids,
and the arguments of A’s eigenvalues are the corresponding
angular frequencies.

Hereinafter, we will switch from the time domain to the
frequency domain by means of DFT:

ỹk =
N−1∑
n=0

ynz−kn
N , (5)

where zN = ei2π/N is the N th primitive root of unity. Note that
the set { 2πk

N }N−1

k=0 defines the DFT grid. By virtue of DFT’s
linear property, Eq. (3) is transformed to

ỹk = bHx̃k, (6)

which merely says that the frequency spectrum ỹk is a su-
perposition of subspectra x̃k , of which each element is one
sinusoidal spectrum at the kth grid point. Also, by virtue of
DFT’s shift property, Eq. (4) is transformed to

zk
N x̃k = Ax̃k + zk

N s, (7)

where an extra term comprising s = (I − AN )x0 accounts for
DFT’s implicit periodic extension of {xn}N−1

n=0 . Equations (6)
and (7) together constitute a state space representation of the
Schottky data in the frequency domain.

B. Principal matrix equation

By recursively substituting Eq. (6) into Eq. (7), one can
establish a set of equations for the geometric progression
{zlk

N ỹk}L
l=1 in terms of x̃k and s, expressed as

⎛
⎜⎜⎜⎜⎜⎝

zk
N ỹk

z2k
N ỹk

...

zLk
N ỹk

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

bHA

bHA2

...

bHAL

⎞
⎟⎟⎟⎟⎟⎠

x̃k + S

⎛
⎜⎜⎜⎜⎜⎝

zk
N

z2k
N

...

zLk
N

⎞
⎟⎟⎟⎟⎟⎠

≡ Cx̃k + S

⎛
⎜⎜⎜⎜⎜⎝

zk
N

z2k
N

...

zLk
N

⎞
⎟⎟⎟⎟⎟⎠

, (8)

where C ∈ CL×J is a Vandermonde matrix and S ∈ CL×L

encloses all the s-related terms. Its explicit expression is
suppressed as it is of no interest for the following derivation.

While Eq. (8) is valid for any grid point, it is advantageous,
however, to select only a small subset, denoted by {km}M

m=1 and
tagged as the central band, and to leave the rest as the periph-
eral band. This is exactly the frequency-selective merit of the
proposed method in this work, which can further reduce the
computational cost by neglecting the rather wide peripheral
band. Note that the tagged grid points do not necessarily have
to be contiguous. The proposed method applies also for a few
broken intervals as a whole central band.

Once the central band is defined, Eq. (8) is promoted to
include all the relevant {km}M

m=1, resulting in

ZY = CX + SZ, (9)

where X = (x̃k1 x̃k2 · · · x̃kM ) ∈ CJ×M ,

Y = diag{ỹkm}M
m=1 ∈ CM×M , (10)
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and the Vandermonde matrix

Z =

⎛
⎜⎜⎜⎜⎝

zk1
N zk2

N · · · zkM
N

z2k1
N z2k2

N · · · z2kM
N

...
...

. . .
...

zLk1
N zLk2

N · · · zLkM
N

⎞
⎟⎟⎟⎟⎠ ∈ CL×M . (11)

To eliminate the unknown matrix S in Eq. (9), one can use
null projection by right multiplying Z’s kernel [19]:

P = I − ZH(ZZH)−1Z ∈ CM×M . (12)

It can be verified that

ZP = O, PH = P, P2 = P.

Equation (9) is thus reduced to

ZYP = CXP. (13)

As the whole DFT grid is intentionally divided into two
bands, the matrices defined on the grid are correspondingly
partitioned as

b =
(

bc

bp

)
, A =

(
Ac O
O Ap

)
,

C = (Cc Cp), X =
(

Xc

Xp

)
,

where the subscripts c and p denote the central and peripheral
subspaces, respectively. Note that rank(Ac) = rank(Cc) =
rank(Xc) = Jc, which is the number of sinusoids in the central
band, and Xp = O as X is natively defined in the central
subspace.

Consequently, Eq. (13) can be rewritten in a simpler form:

ZYP = (Cc Cp)

(
Xc

O

)
P = CcXcP, (14)

which is actually irreducible if and only if rank(XcP) = Jc,
whose necessary condition is rank(P) � Jc, i.e., M � Jc + L
[19]. Since Eq. (14) plays a key role in the proposed method,
it is especially named the principal matrix equation.

C. Angular frequency estimation

It can be shown that A has the same relationship with C,
which is already given in Eq. (8), as Ac does with Cc, except
for changing b to bc. Furthermore, this relationship can be
rewritten in a computationally more favorable form:

Cc = CcAc, (15)

where Cc is all but the first row of Cc and Cc is all but the last
row of Cc.

A merit of Eq. (15) is that it is invariant under the change
in representation with a nonsingular matrix Tc ∈ CJc×Jc . This
can be concluded from the transforming expression

A′
c = T−1

c AcTc, C′
c = CcTc.

In addition, such a change in representation also preserves
Cc’s range. Therefore, we will not specifically distinguish C′

c
from Cc as they both denote the same invariant subspace.

According to the principal matrix equation (14), Cc can be ex-
actly recovered from the singular value decomposition (SVD)
of ZYP by comprising the left singular vectors corresponding
to all Jc nonzero singular values [19].

Once Cc is obtained, Eq. (15) can be employed to compute
Ac. However, Cc is, in general, a nonsquare matrix, entailing
that its inverse is ill defined. Consequently, Ac can, at best,
be formally solved by means of Moore-Penrose inverse C+

c ,
provided that L � Jc + 1 [19]:

Ac = C+
c Cc ≡ (

CH
c Cc

)−1 · (
CH

c Cc
)
. (16)

Afterwards, the unknown angular frequencies in the central
band can be deduced from Ac’s eigenvalues.

D. Noise corruption

To project our mathematical model in Eq. (1) to the phys-
ical world, an inevitable noise term wn must be added to the
right side. This additive noise is assumed to be wide-sense
stationary, with its first and second moments given as

E{wn} = 0, (17)

E{w∗
n′wn′+n} = rn, (18)

where E{·} denotes the ensemble average and the second
moment is understood in a cyclic sense such that rn is N
periodic. Note that such an assumption about the noise is
quite general but fairly applicable in most, if not all, practical
situations.

By means of DFT of Eqs. (17) and (18), the noise’s first
and second moments in the frequency domain read

E{w̃k} = 0, (19)

E{w̃∗
k′w̃k} =

{
Nρk, k = k′,
0, otherwise,

(20)

where {ρk}N−1
k=0 is the DFT of {rn}N−1

n=0 . According to the
Wiener-Khinchin theorem, {ρk}N−1

k=0 is just the noise’s PSD
spectrum, which is real and nonnegative [20].

After considering the noise term, it can be shown that the
principal matrix equation (14) is updated to

Z(Y − W)P = CcXcP, (21)

where W = diag {w̃km}M
m=1 ∈ CM×M . In light of the wide-

sense stationarity of the noise, it is advantageous to take the
quadratic form of Eq. (21), followed by ensemble average:

E{ZYPYHZH} = E{(CcXc + ZW) P (CcXc + ZW)H}
= CcXcPXH

c CH
c + E{ZWPWHZH}, (22)

where Eq. (19) has been referred to. Furthermore, by virtue of
Eq. (20), it can be shown that the noise term in Eq. (22) has a
simple, closed form:

E{ZWPWHZH} = Z · diag {Nρkm pm}M
m=1 · ZH ≡ ZDZH

,

(23)
where the real number pm is the mth diagonal element of the
Hermitian matrix P.

As for the data term on the left side of Eq. (22), it is
unfeasible to handle the ensemble average in practice. We
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will then use the time average 〈·〉, which is an average over a
number of similar data segments acquired at different times, to
approximate the ensemble average. As a result, the sinusoidal
term on the right side of Eq. (22) is estimated as

CcXcPXH
c CH

c = 〈ZYPYHZH〉 − ZDZH
. (24)

Similar to using Eq. (14), Eq. (24) can instead be employed
to obtain Cc, except that SVD ought to be replaced by the
eigenvalue decomposition (EVD) owing to the Hermitian
structure of CcXcPXH

c CH
c . Since the noise contributes non-

locally to the whole PSD spectrum of the Schottky data,
the right side of Eq. (24) is usually of full rank. Hence,
all the eigenvalues are nonzero. It is reasonable, however,
to take those eigenvectors corresponding to the Jc greatest
eigenvalues, which are, meanwhile, significantly greater than
the remaining ones, and form a matrix to estimate Cc. The
goodness of this estimate certainly depends on the SN ratio
and the time-averaging number, just like the conventional
periodogram does for the PSD estimation.

E. Remarks on numerical computation

Although the Vandermonde matrix Z defined in Eq. (11)
has a well-structured analytic expression, it is notorious for its
ill-conditioned behavior in numerical computation, owing to
the exponential inflation of the condition number [21]. Hence,
special attention must be paid to the numerical stability of the
proposal method.

For instance, it is disfavored to directly employ Eq. (12)
to compute the projection matrix P, as the matrix inversion
is computationally very costly and, unfortunately, rather in-
accurate. Instead, matrix factorization such as SVD or, more
efficiently, QR factorization should be employed to obtain P.
In short, let ZH be factorized as

ZH = (Q′ Q)

(
R
O

)
, (25)

where Q′ and Q together form a unitary matrix and R is
an upper triangular matrix. It can be shown by substituting
Eq. (25) into Eq. (12) that

P = QQH
. (26)

Note that the effective rank(Z) can sometimes be less than
its theoretical value because of the limited machine precision.
Therefore, a rank revealing QR factorization is recommended
to obtain Q [22].

Owing to the same consideration of the numerical stability,
it is advised to separate the multiplication of Z and ZH from
EVD when estimating Cc by using Eq. (24). That is, let
Uc ∈ CM×Jc be a part of the eigenvectors of 〈YPYH〉 − D,
which corresponds to the Jc most prominent eigenvalues. The
product ZUc also estimates Cc.

Once the estimate of Cc is obtained, Eq. (15) will be used to
solve for Ac. However, the estimation uncertainty propagates
to both sides of Eq. (15). Hence, the Moore-Penrose inverse
used in Eq. (16), which is, in fact, the solution in the least-
squares sense, should be replaced by the total-least-squares
solution to account for this change [19]. In short, let Vc ∈
C2Jc×2Jc be all the right singular vectors of the compound

matrix (Cc Cc) ∈ C(L−1)×2Jc . If Vc is evenly partitioned as

Vc =
(

Vc1 Vc2

Vc3 Vc4

)
,

then Ac = −Vc2V−1
c4 .

In the end, the algorithm of the proposal method for
the frequency-selective harmonic retrieval is summarized as
follows.

(1) Start with the Schottky data yn.
(2) Transform yn to the frequency counterpart ỹk by means

of FFT.
(3) Select the central band in which Jc harmonics are to be

retrieved, and construct Y by virtue of Eq. (10).
(4) Construct Z by virtue of Eq. (11).
(5) Find Z’s kernel Q by virtue of Eq. (25), and construct

P by virtue of Eq. (26).
(6) With the a priori noise’s PSD spectrum ρk , construct

D by virtue of Eq. (23).
(7) Compute 〈YPYH〉 − D, followed by EVD to find Uc,

which is the eigenvectors corresponding to the Jc most promi-
nent eigenvalues.

(8) Estimate Cc by ZUc, and solve for Ac by virtue of
Eq. (15) in the total-least-squares sense.

(9) End with the retrieved angular frequencies, which are
the arguments of Ac’s eigenvalues.

Note that the proposed algorithm depends on two free pa-
rameters, L and M, which should fulfill the relationship M �
Jc + L � 2Jc + 1. Numerical experiments have suggested that
L = Jc + 1 and 20 � M � 30 can usually yield the most ac-
curate results. As a demonstration, a PYTHON implementation
of the algorithm can be found in Ref. [23].

III. EXAMPLE

In this section, the superiority of the proposed state-
space-based method over the conventional periodogram-based
method will be presented with synthetic data for the following
formula:

yn = αei(2π f n+π/3) + αei[2π ( f +δ f )n−π/3] + wn, (27)

where f is fixed to be 0.2 while δ f can be either 0.002
or 0.004, the complex noise wn is white Gaussian, with a
variance of 0.1, and the amplitude α is the same for the two
harmonics and is chosen to be 0.0356 such that the SN ratio
within the interval [0.18, 0.22] is −5 dB. This interval will
later be used as the central band for the proposed method.

In the conventional approach to the harmonic retrieval, the
PSD spectrum of the data is estimated by its periodogram,
which is merely the modular square of the data’s windowed
DFT. The window function can trade the spectral leakage
for the frequency resolution, where the latter can best be
achieved without any windows or, equivalently, with an im-
plicit boxcar window [11]. The finest frequency resolution
is, unfortunately, limited by the granularity of the DFT grid,
which is 1/N , with N being the total number of grid points. If
the frequencies of two equally strong harmonics differ by less
than 1/N , they will be indistinguishable on the periodogram.
Such a phenomenon, as demonstrated in Fig. 1, is akin to the
Rayleigh criterion of resolving two optical point sources from
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FIG. 1. Demonstration of the proposed method’s superresolution
of two closely spaced harmonics separated by δ f = 0.004 (top) and
δ f = 0.002 (bottom). The solid line shows the periodogram, and
the dashed lines indicate the retrieved harmonics by means of the
proposed method. The shaded region tags the central band used
by the proposed method. Shown in the inset are the eigenvalues of
〈YPYH〉 − D, ordered decreasingly.

their diffraction pattern [24]. The solid lines in Fig. 1 show the
periodogram of synthetic data of length N = 500, after time
averaging 20 similar spectra and zooming in on the vicinity
of the two harmonics. As the separation δ f decreases from
0.004 to 0.002, the two distinct peaks degenerate into one
peak, prohibiting a clear resolution.

As part of employing the proposed method, the parameter
L is selected to be 3 because Jc = 2, and the predefined central
band shown by the shaded regions in Fig. 1 corresponds to
M = 21. Moreover, the data length and the time-averaging
number are set to be the same as those used for the peri-
odogram. The retrieved harmonics with an accuracy around
10−4 by means of the proposed method are indicated by the
dashed lines in Fig. 1 and are also listed in Table I. Notably,
the eigenvalues of 〈YPYH〉 − D are plotted in a decreasing
order in the insets of Fig. 1, which can help estimate the
parameter Jc in case it cannot be determined in advance. It
is evident that the first two eigenvalues significantly surpass
the remaining ones regardless of whether the Rayleigh limit
of the separation δ f is reached, which indeed validates Jc =
2 in this example. In this sense, the proposed method can
achieve a superresolution, exceeding the Rayleigh limit of the
periodogram-based method.

TABLE I. Harmonic retrieval result of two harmonics defined in
Eq. (27) when they are separated by δ f = 0.004 and δ f = 0.002,
respectively.

Set frequency Retrieved frequency Deviation

0.200 0.20011 1.1 × 10−4

0.204 0.20393 −0.7 × 10−4

0.200 0.20010 1.0 × 10−4

0.202 0.20187 −1.3 × 10−4

IV. APPLICATION

Although the proposed method surpasses the conventional
method in certain cases, the latter is still complementary
as it reveals some a priori information for the former. For
instance, the estimated PSD spectrum by the periodogram can
coarsely indicate the spectral location of the target ions to help
define the central band for the proposed method. Moreover,
the noise’s PSD spectrum, which is an important input to the
proposed method, can be estimated by the periodogram, either
of particular background data with no ion signals or of normal
measurement data where the background can be extracted
in situ by SVD-based data smoothing [25]. In this section,
the applicability of the proposed method in SMS data analysis
will be demonstrated with real data from one beam time.

In an isochronous SMS experiment conducted in the
heavy-ion research facility in Lanzhou (HIRFL) [26], the
primary beam 58Ni19+ was accelerated by the synchrotron
CSRm to an energy of 393.165 MeV/u, followed by bom-
barding onto a 15-mm Be target. The projectile fragments
along the isospin line Tz = 1 were selected and purified by
the fragment separator RIBLL2, and injected into the storage
ring CSRe. The ring’s lattice was set to an isochronous mode
on the Tz = 1 nuclides with the transition point γt = 1.313.
The Schottky signals of the stored ions were detected by the
Schottky resonator installed in CSRe’s one straight section
[27]. During the data acquisition, the local oscillator was
tuned at fl = 243.2 MHz to match the resonant frequency of
the detector, and a rather wide frequency span of 2 MHz was
set to accommodate all the potential Tz = 1 nuclides.

Figure 2 shows the periodogram estimate of the PSD
spectrum of the Schottky data after 5-s time averaging. The
Kaiser window with a parameter of 20 is employed to compute
the periodogram [28]. Clearly visible are many sharp ion
peaks, in addition to the rather broad resonant background. A
few selected peaks, which belong to some high-yield Tz = 1
nuclides, are highlighted by the shaded regions in Fig. 2,
with close-ups in the insets. Other peaks are their transverse
bands or belong to contaminating ions that do not fulfill the
isochronous condition.

The zoomed spans are intentionally kept the same for all
the peaks and will also be used as the central bands for the
proposed method to retrieve their corresponding harmonics.
Such a span translates to the parameter M = 23. In addition,
we will naturally set the number of harmonics Jc = 1 for each
central band. However, as already hinted by the shape and
the width of the 58Ni28+ peak, Jc is instead set as 2. This is
due to the significant space-charge effect in the quite intense
58Ni28+ beam (around 2 × 106 ions) generating a parasitic
peak adjunct to the main peak [29]. The noise’s PSD is
estimated by fitting another background spectrum with the
Lorentzian function superposed on a possible linear trend.

The harmonics retrieved by means of the proposed method
are indicated by the dashed lines in the insets of Fig. 2
and, more explicitly, listed in Table II. In total, six species
of bare ions with Tz = 1 are identified with an in-house
program [30]: 58Ni28+, 56Co27+, 54Fe26+, 52Mn25+, 50Cr24+,
and 48V23+. Owing to their adjacent positions on the nuclear
chart and hence their similar mass-to-charge ratios m/q, they
all have comparable revolution frequencies fr . As a result,
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FIG. 2. Schottky data periodogram of length N = 2000 after 5-s time averaging. The shaded regions indicate the central bands, each of
which is used by the proposed method to retrieve the harmonic contained therein, whereas the boxed region around −750 kHz is blown up in
Fig. 4. Shown in the insets are the zoomed spectra of identified ions, labeled in the top right corner. The dashed lines in all insets indicate the
retrieved harmonics.

their spectral peaks on the PSD spectrum manifest a structured
pattern. Specifically, the peaks on the left shoulder of the
resonant background all have the harmonic number h = 161,
and h = 162 for the peaks on the right shoulder.

Figure 2 shows that 54Fe26+ and 52Mn25+ are both present
at the 161st and the 162nd harmonics. For those two nu-
clides, their revolution frequencies can be obtained in two
ways, either by calculating the spectral distance between their
neighboring harmonics or by virtue of Eq. (2). Hence, the
self-consistency of the retrieved spectral locations can be
tested as follows. First, the spectral distances between the
two harmonics are 1.506 359 and 1.505 005 MHz for 54Fe26+

and 52Mn25+, respectively. By presuming these are the actual
fr , h can correspondingly be calculated to be 161.003 and
162.003 same for 54Fe26+ and 52Mn25+. Since these numbers

TABLE II. Harmonic retrieval result of the identified ion peaks
in Fig. 2. Note that in the case with two harmonics corresponding to
the same ion, only the value in boldface is employed to compute its
revolution frequency.

Ion Location (kHz) h fr (MHz)

58Ni28+ −298.668 161 1.508 704
−294.784

56Co27+ −484.043 161 1.507 553
54Fe26+ −671.156 161 1.506 390

835.203 162
52Mn25+ −889.936 161 1.505 031

615.069 162
50Cr24+ 392.689 162 1.503 659
48V23+ 134.779 162 1.502 067

are very close to integers, the harmonic retrieval result is
indeed self-consistent.

Furthermore, the accuracy of the result can be tested by
relating to the physical reality. First, each nuclide’s fr is
obtained by virtue of Eq. (2) with the boldfaced values in
Table II. Since those nuclides were all under the isochronous
condition, their respective fr is independent of the orbital
length in the first order approximation [8]. Therefore, all
the ions can be assumed to circulate on the same orbit and
experience the same magnetic field. It can then be shown that
fr is determined by m/q with just two parameters, a and b
[31]:

fr = a√
(m/q)2 + b

. (28)

Figure 3 shows the fr-m/q plot for the six identified
nuclides, where the nuclear masses are taken from the latest
atomic mass evaluation AME2016 with a proper deduction
of the orbital electrons’ contribution [32]. It is remarkable
that the simple model in Eq. (28) can well fit the data points
by using the harmonic retrieval result as a key input. The
relative residual is only about 1 ppm, or even less, for all
the nuclides. This excellent goodness of fit has supportively
confirmed the validity of the proposed method. Note that the
obtained accuracy aligns well with a previous machine study
on the isochronous correction at CSRe, as characterized by the
relative uncertainty of the revolution time of an isochronous
nucleus, reported to be 1.34 × 10−6 in Ref. [33].

Finally, the applicability of the proposed method can be
tested against weak peaks in the periodogram shown in Fig. 2,
where a zoomed region around −750 kHz is shown in Fig. 4.
For the single peak on the left and the double peak on the right
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FIG. 3. Top: revolution frequencies of the six nuclides as a
function of their mass-to-charge ratios. The solid line is the fitting
result of the data points by virtue of the model in Eq. (28). Bottom:
fitting residuals relative to the corresponding fitted values.

of this region, separate parameter sets are fed to the proposed
method to retrieve their respective harmonics. Specifically,
M = 21, Jc = 1 are set for the single peak, and M = 25, Jc =
2 are set for the double peak, while the corresponding central
bands are highlighted by the shaded regions in Fig. 4. The
harmonic retrieval results, as indicated by the dashed lines in
Fig. 4, have proved with their good alignments with the cor-
responding peaks that the proposed method is also applicable
in poor SN ratio cases.

V. CONCLUSIONS

We have presented a frequency-domain approach to the
harmonic retrieval problem based on the state space repre-
sentation. This method exploits the sinusoidal structure of the

FIG. 4. Zoomed portion of the periodogram in Fig. 2 showing
weak peaks. Note that the ordinate scale changes from logarithmic
to linear. The shaded regions define central bands for the proposed
method to retrieve the corresponding harmonics, while the dashed
lines indicate the retrieval results.

harmonic and casts only a general assumption of wide-sense
stationarity on the noise. Being complementary to the con-
ventional periodogram-based approach, the proposed method
is fully window independent and takes both DFT’s modulus
and argument into account. Its frequency-selective merit can
greatly reduce the computational cost while still being able to
yield accurate results. Moreover, its superresolving capability
makes the proposed method in particular superior in certain
tricky situations, such as when a few harmonics are closely
clustered, where the periodogram-based method may fail to
distinguish them. Although the method itself has been devel-
oped within the context of SMS, it can likely find applications
also in a broader field of Fourier-transform mass spectrometry
and even beyond, such as in ion-cyclotron-resonance spec-
trometry [34] or in the direction-of-arrival estimation [35].
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