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Synchronization phenomenon first discovered in Huygens’ clock shows that the

rhythms of oscillating objects can be adjusted via an interaction. Here we show

that the frequency stability of a piezoresistive micromechanical oscillator can be

enhanced via synchronization. The micromechanical clamped-clamped beam oscil-

lator is built up using the electrostatic driving and piezoresistive sensing technique

and the synchronization phenomenon is observed after coupling it to an external

oscillator. An enhancement of frequency stability is obtained in the synchroniza-

tion state. The influences of the synchronizing perturbation intensity and frequency

detuning applied on the oscillator are studied experimentally. A theoretical analy-

sis of phase noise leads to an analytical formula for predicting Allan deviation of

the frequency output of the piezoresistive oscillator, which successfully explains

the experimental observations and the mechanism of frequency stability enhance-

ment via synchronization. © 2017 Author(s). All article content, except where oth-

erwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4978222]

Micro and nano mechanical resonators have been widely studied as a potential alternative

to conventional quartz oscillators due to their advantages such as easier to miniaturize and to

be integrated with electronics.1,2 As frequency control or time reference devices, micromechan-

ical oscillators have to own a better frequency stability. However, their performances are often

degraded by large displacement instabilities due to scaling effect and nonlinearity,3–5 frequency

noise imposed by thermomechanical noise6–8 and intrinsic frequency fluctuations.9 According to

the comprehensive literature review by Sansa et al.,9 there still has several orders of magnitude

over the thermo-mechanical noise limit to improve the frequency stability for micro/nanomechanical

oscillators.

Synchronization phenomenon first discovered in Huygens’ clock shows that the rhythms of

oscillating objects can be adjusted via an interaction10 and accordingly synchronization is consid-

ered to be an effective technique to overcome the frequency dispersing. In recent few years, special

efforts have been invested in the reduction of phase noise and the improvement frequency stability in

micro/nanomechanical oscillators via synchronization. An improvement of the frequency stability is

observed when two micromechanical oscillators are synchronized.11 The phase noise can be signif-

icantly reduced when two anharmonic nanomechanical oscillator in the phase synchronized state.12

In the previous work,13 one micromechanical oscillator is synchronized to an external force and the

phase noise spectrum is given analytically which implies that the largest phase noise reduction occurs

in the center of the Shapiro step. Different from the oscillators reported in those studies, piezoresis-

tive micromechanical oscillators are proposed recently because of their better electrical transduction

efficiency but the induced joule heating is believed to affect their stability of frequency output. In
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this work, the synchronization phenomenon in a piezoresistive micromechanical clamped-clamped

(C-C) beam oscillator is investigated and the observed improvement of frequency stability is studied.

The piezoresistive oscillator is built up on a micromechanical C-C beam resonator that is fab-

ricated by a standard Silicon-On-Insulator (SOI) process. Fig. 1 shows a microscopic picture of

the micro-resonator and a schematic drawing of the oscillator circuit.4 The dimensions of the res-

onator are 478µm long, 10µm wide and 10µm thick respectively. It is electrostatically actuated in

its principle flexural mode. The high impedance of resonators at resonance makes other transduction

methods (such as piezoresistive and piezoelectric) popular except using the capacitive transduction

to detect the mechanical resonance. Here, the differential piezoresistive sensing method is used to

detect the transverse displacement.14 After amplification, the resulting signal is filtered and phase

shifted by a prescribed amount of φ0. Then the square wave signal with a fixed amplitude Vac2 from

the comparator is applied on the comb-drive electrode to electrostatically drive the resonator. The

feedback time-varying driving force compensates the energy dissipation and in the absence of any

external perturbations, this closed loop feedback sustains the beams vibration at an amplitude A0

and a frequency Ω0. To entrain the oscillator into synchronized motion, an external harmonic signal

of amplitude Vac1 and frequency Ωs is applied on the other comb-drive electrode as a perturbation

force to the beam oscillator. A frequency counter (Agilient 53230A) is used to log the frequency

output of the piezoresistive oscillator.

The equation of motion for the forced self-sustained nonlinear micromechanical beam’s

oscillation is well described using the Duffing equation.

mẍ + µẋ + k1x + k3x3
=Fact (1)

Where, m, µ, k1, k3 and Fact are the effective mass, damping coefficient, linear mechanical stiffness,

cubic mechanical stiffness and the actuation force, respectively. The micro-beam is actuated elec-

trostatically and the driving force Fact combining the self-sustaining force with the synchronization

perturbation can be expressed as follow.

Fact =
1

2

�����
∂C2

∂x

�����
(Vdc2 + Vac2sgn(cos φt))

2

−
1

2

�����
∂C1

∂x

�����
(Vdc1 + Vac1 cosΩst)

2

(2)

Where,
∂C1

∂x
and

∂C2

∂x
are capacitance gradients,Vdc1 and Vdc2 are DC driving voltages, φt = φ + φ0 is

the instantaneous oscillation phase of the coordinate x(t). In our experiment, the AC driving voltage

FIG. 1. An optical graph of micro beam resonator and the schematic drawing of the closed-loop circuit used in this work.



035204-3 Pu, Huan, and Wei AIP Advances 7, 035204 (2017)

is much smaller than DC voltage. The capacitance gradient can be expanded in Taylor’s series and

accordingly the driving force can be simplified as follow.

Fact =F0sgn (cos φt) + Fs cosΩst + k1ex + k3ex3 (3)

Where k1e,k3e,F0,Fs are respectively the linear electric spring constant, nonlinear electric spring con-

stant, the self-sustaining force and the external perturbation. The main resonance region is discussed

here and the parametric terms are neglected. Redefining time units and normalizing the Eq. 1 by the

spring constant k(k = k1 ☞ k1e) leads to the following equation of the oscillation.

ẍ + Q−1ẋ + x + βx3
= f0sgn(cos φt) + fs cosΩ′sτ (4)

Where, Q=
√

km
γ

, β =
k3−k3e

k
, f0 =

F0

k
, fs =

Fs

k
,Ω′s =Ωs

√

m
k

, τ =

√

k
m

t. Here Q is the quality factor, the

cubic-term coefficient β is positive (negative) depending on the hardening (k3) and softening (k3e)

nonlinearities. The self-sustaining force f 0 reaches the maximal when φ0 is π/2. The sign function

is expanded and simplified as follow after neglecting the higher order harmonics.

sgn(cos φt)≈−
4

π
sin(φ) (5)

For the self-excited oscillation without external perturbation (f s = 0), the frequency Ω0 and

amplitude A0 can be expressed as follows by using the method applied by Antonio.5

Ω0 =
1
√

2

*.
,
1 + *

,
1 +

48βQ2f 2
0

π2
+
-

1
2 +/
-

1
2

, A0 =
4Qf0

πΩ0

(6)

When a harmonic perturbation is applied (fs , 0), there exists a synchronization region [Ω0

− 1
2
Ωc,Ω0 +

1
2
Ωc] within which the frequency of mechanical oscillator Ω′

0
locks to synchronizing

frequency Ωs and the synchronization bandwidth Ωc is derived as follow.

Ωc =
πfs

4f0Q

*.
,
*
,

24βQA2
0

πΩ0

+
-

2

+ 1
+/
-

1
2

(7)

This synchronization region of the oscillator synchronized to an external force can also be obtained

similarly using averaging method.13 Fig. 2 shows the synchronization region at various perturbation

intensities (Vac1) predicted using Eq. 7. It is clear that the synchronization bandwidth is 170.5Hz

at Vac1 of 20mV and increases as the harmonic perturbation intensity increases. In the verify-

ing experiments, the beam micro-resonator is tested in a vacuum chamber with the air pressure

FIG. 2. The effect of perturbation intensity (Vac1) on the synchronization bandwidth (Ωc). The parameters used for prediction

are all obtained from measurements that Q≈ 11734, β = 3.45 × 109 respectively.
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FIG. 3. The frequency ratio Ωs/Ω
′
0

measured by sweeping Ωs at different perturbation intensities.

less than 0.01Pa. The resonator is driven into oscillation and a harmonic signal from a RF source

(Agilient 33250A) is applied to perturb the oscillation. The free-running self-oscillation frequency

is 202400Hz. Both the frequency outputs from the signal generator and the piezoresistive oscillator

are logged simultaneously using the dual channel frequency counter. The frequency ratio Ωs/Ω
′
0

is

obtained and plotted against Ωs as shown in Fig. 3.

It is obvious that there is a synchronization region in which the frequency of external perturbation

equals that of the piezoresistive oscillator. The synchronization bandwidths are respectively 185.7Hz,

262.1Hz and 328.8Hz for Vac1 of 20mV, 25mV and 30mV, which are close to the analytical predictions

shown in Fig. 2 and confirm that the synchronization bandwidth can be tuned by the intensity of

harmonic perturbation (or the signal to perturbation ratio SPR=fs/f0 ∝ Vac1/Vac2). By sweeping up

and down using different perturbation intensities, the Arnold tongue is figured out by connecting the

edges with dashed lines.

In the synchronization region, a series of experiments on frequency stability are performed at

various frequency detunings δΩ (δΩ=Ωs − Ω0) and a fixed perturbation intensity (Vac1=10mV).

Allan deviations of frequency outputs from the piezoresistive oscillator are plotted in Fig. 4 com-

paring with that of the free running oscillator and the synchronizing RF source. It clearly shows

that the frequency stability of the piezoresistive oscillator is enhanced as compared with that of

the oscillator before synchronization, but there is no much difference in the frequency stability

for different frequency detunings in the synchronization region, which indicates that the inten-

sity of harmonic perturbation has greater effect on the frequency stability than the frequency of

perturbation.

To further confirm this, a series of experiments on frequency stability are performed at various

intensities of harmonic perturbation Vac1 from 10mV to 50mV, a fixed self-sustaining amplitude

Vac2=400mV and a fixed frequency of harmonic perturbation located in the center of synchronization

region. Allan deviation of the oscillator frequency output is calculated as a function of integration

time τA from 100ms to 100s as shown in Fig. 5. It is clearly shown that the frequency stability can be

improved nearly 10 folds at τA=2s. For a linearly increasing SPR, we can find the frequency stability

can be enhanced gradually with slow growth. Intuitively, a bigger SPR brings a better synchronization

state which leads to better frequency stability. Interestingly, the frequency stability is not linearly

improved.

In order to better understand these phenomena of improving frequency stability via synchroniza-

tion, a theoretical investigation is conducted. A model of micromechanical oscillator synchronized

to an external force in a noisy environment has been put forward by Shoshani13 and the phase noise

spectrum is given. Starting from this point, a normalized equation of our closed loop oscillator

affected by additive noise ξ1, multiplicative noise ξ2 and a synchronization perturbation is written as

follow.
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FIG. 4. Allan deviation σ of the piezoresistive oscillator at different perturbation frequency detunings δΩ (colored lines) and

at unsynchronized state (dark line), and of the perturbation signal generated by RF source (dashed purple line).

FIG. 5. Allan deviation σ of the piezoresistive oscillator at free running and at different external perturbation intensities.

ẍ + Q−1ẋ + x + βx3
= f0sgn (cos φt) + fs cosΩ′sτ

+ξ1(t) + ξ2(t)x
(8)

Using the averaging method,13 the power spectral density of the random phase fluctuation can be

derived as follow.

Sφ(ω)=
4D

4π2ω2
+Ω

2
c − δΩ2

(9)

Where ω is the modulation frequency, Ωc is obtained in deterministic situation and D is the non-

dimensional noise intensity (D=Dd/2πf0). Noted that Dd is defined by the auto-correlation function

ξ(t)ξ(t +∆t)= 2Ddδ(∆t). Allan variance is a function of the power spectral density15 and is given as

follow.

σ2
A(τA)= 2(

2

Ω
′
0
τA

)2

∫ ∞
0

Sφ(ω) sin4(
ωτA

2
) dω (10)

Where, τA is the time interval, andΩ0 is the angular frequency of free-running oscillator. The synchro-

nization bandwidthΩc and the frequency detuning δΩ discussed here are all positive real. Assuming
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Ωc > δΩ, i.e. the oscillator operates in the synchronized state, and Allan deviation can be obtained

σA(τA)=

√
√

2πD

Ω
′2
0
τ2

A

(e−∆ΩτA − 2)
2 − 1

∆Ω
(11)

Where ∆Ω=

√

Ω
2
c − δΩ2. According to Eq. 7 and Eq. 11, it is clear that the Allan deviation is

a function of the synchronizing perturbation intensity (or SPR) and the frequency detuning. The

dimensional noise intensity Dd ≈ 9.93 × 10−4 is proportional to the noise spectra density which can

be obtained from the spectrum analyzer. The calculated Allan deviation σA of the piezoresistive

oscillator of different frequency detunings and perturbation intensities are shown in Fig. 6a and

Fig. 6b. It should be noted that the additive noise and multiplicative noise are used to give a general

description of the noise in the whole closed loop system rather than specific sources, and the data

from spectrum analyzer already takes the noise from the electrical devices into account. From the

experiments results and analytical results given above, we can find that a high-precision perturbation

brings a good performance of frequency stability of this synchronized micromechanical oscillator.

Besides, the perturbation is assumed to be a pure source in our model which might account for the

one order of magnitude difference between the experimental and analytical results in Fig. 4, Fig. 5

and Fig. 6. Nevertheless, the trends that the frequency stability of the synchronized oscillator stays

relatively stable in the synchronization region and can be further improved by a larger perturbation

intensity agree well with the trends of the experimental data in Fig. 4 and Fig. 5.

FIG. 6. Predicted Allan deviation σ of the piezoresistive oscillator (a) at frequency detunings δΩ varying from -40Hz to

40Hz and (b) at different external perturbation intensities varying from 10mV to 50mV.
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To conclude, a piezoresistive oscillator is built up on a C-C micromechanical beam resonator

and the improvement of its frequency stability is experimentally demonstrated via synchronization

phenomenon. The effects of external perturbation detuning and intensity are studied experimentally

and a theoretical model is built up to analyze the noise polluted oscillator and the explicit analytical

formula of Allan deviation successfully explains experimental observations. The parameters such as

nonlinearities (mechanical hardening and electrostatic softening), quality factor, signal to perturbation

ratio and noise intensity are all influencing the final frequency stability of the oscillator. In this work,

the frequency Ω0 of our piezoresistive oscillator equals to that of the external force Ωs once they

are synchronized and their frequency ratio η is 1. However, one should be noted that sub-harmonic

(e.g. η = 3) or super-harmonic (e.g. η = 1
3
) synchronization phenomena can be observed as well in

micro/nanomechanical oscillator.16
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